(50) 1. Consider the three-phase full-bridge rectifier.

Let $e_{as} = E\cos\theta_e$, $e_{bs} = E\cos\left(\theta_e - \frac{2\pi}{3}\right)$, $e_{cs} = E\cos\left(\theta_e + \frac{2\pi}{3}\right)$ where $\theta_e = \omega_e t$. Consider the interval where valves 1, 2 and 3 are conducting (i.e. the 1-2-3 interval), which begins at $\theta_e = \frac{\pi}{3}$ and $i_{as} = I_d$.

(a) Derive an explicit expression for $i_{as}(\theta_e)$ during this interval.

(b) Derive an explicit expression for $v_{dc}(\theta_e)$ during this interval.

(c) What determines the angle θ_e at which valve 1 turns off? An implicit relationship for this angle is sufficient.

(50) 2. Consider the full-bridge inverter connected to a balanced resistive load.

(a) The switching signals for S_1, S_2, and S_3 are sketched below. The switching signals for S_4, S_5, and S_6 are, respectively, the logical compliments of S_1, S_2, and S_3. Evaluate
the values of v_{ng} (voltage from node n to node g) and v_{an} for intervals I and II. Assume all devices are ideal. Express answers in terms of V_{dc} and/or R.

(b) If the conducting transistor and diode voltage drops are 1-V each, re-evaluate v_{ng} and v_{an} for interval II only.