
Transformers: Learning with Purely Attention
Based Networks

Lecture Notes on Deep Learning

Avi Kak and Charles Bouman

Purdue University

Saturday 4th May, 2024 05:38

©2024 Avinash Kak, Purdue University

Purdue University 1

Preamble To TOC To HowTo

So far you have seen two major architectural elements in the neural networks
meant for deep learning (DL): convolutional layers and recurrence layers. Until
recently, they were the primary reasons for the fame and glory that have been
bestowed on DL during recent years.

But now we have another element: attention layers.

That difficult problems could be solved with neural networks through purely
attention based logic — that is, without convolutions and recurrence — was first
revealed in the paper ”Attention is All You Need” by Vaswani et el. that you can
access here:

https://arxiv.org/pdf/1706.03762.pdf

The goal of this lecture is to explain the basic concepts of attention-based
learning with neural networks.

My explanations of the fundamental ideas involved will be in the context of
sequence-to-sequence learning as required for automatic translation. In particular,
I will focus on English-to-Spanish translation as a case study. Later I’ll talk about
how to apply these ideas for solving problems in computer vision.
Purdue University 2

https://arxiv.org/pdf/1706.03762.pdf

Preamble (contd.)

For seq2seq learning in general, attention takes two forms: self-attention and
cross-attention. However, for solving recognition problems in vision (or in
languages), you may need only self-attention.

Self-attention means for a neural network to figure out on its own what parts of a
sequence, such as a sentence of words or a sequence of patches in images,
together contribute to solving the problem at hand. For example, for language
translation, the goal of self-attention would be to figure out which words together
in the source language contribute to the production of any single word in the
target language. In image recognition, on the other hand, self-attention would
help a network figure out which patches together contribute the most for correctly
predicting the class label.

To elaborate, in seq2seq learning, consider the following sentence in English:

I was talking to my friend about his old car to find out if it was still
running reliably.

For a machine to understand this sentence, it has to figure out that the pronoun
“it” is strongly related to the noun “car” occurring earlier in the sentence.
Purdue University 3

Preamble (contd.)

A neural network with self-attention would be able to accomplish what is
mentioned at the bottom of the previous slide. Such a network would therefore be
able to answer the question:

What is the current state of Charlie’s old car?

assuming that system already knows that “my friend” in the sentence is referring
to Charlie.

For another example, again in seq2seq learning, consider the following Spanish
translation for the above sentence:

Yo estaba hablando con mi amigo acerca su viejo coche para averiguar
si todav́ıa funcionaba de manera confiable.

In Spanish-to-English translation, the phrase “su viejo coche” could go into “his
old car”, “her old car”, or “its old car”. Choosing the correct form would require
for the neural-network based translation system to have established the
relationship between the phrase “su viejo coche” and the phrase “mi amigo”.

Again, a neural network endowed with self-attention should be able to make that
connection.
Purdue University 4

Preamble (contd.)

While self-attention allows a neural network to establish the sort of intra-sentence
word-level and phrase-level relationships mentioned above, a seq2seq translation
network also needs what’s known as cross-attention.

Cross attention means discovering what parts of a sentence in the source language are

relevant to the production of each word and each phrase in the target language.

To see the need for cross-attention, consider the fact that in the
English-to-Spanish translation example mentioned previously, the Spanish word
“averiguar” has several nuances in what it means: it can stand for “to discover”,
“to figure out”, “to find out”, etc.

With cross-attention, during the training phase, the neural network would learn
that when the context in the English sentence is “friend”, it would be appropriate
to use “averiguar” for the translation because one of its meanings is “to find out.”

Along the same lines, in English-to-Spanish translation, ordinarily the English
word “running” would be translated into the gerund “corriendo” in Spanish,
however, on account of the context that would not be appropriate here.

Purdue University 5

Preamble (contd.)

To continue with the example at the bottom of the previous slide, on account of
the context “car” and through the mechanism of cross-attention the neural
network would learn that “running” is being used in the context of a “car
engine”, implying that that a more appropriate Spanish translation would be
based on the verb “funcionar”.

In this lecture, I’ll be teaching purely-attention based learning with the following
three inner classes in the Transformers module of DLStudio:

TransformerFG

TransformerPreLN

visTransformer

The first two, meant for seq2seq learning, are only slightly different variants of
the same implementation. I have kept them separate for educational reasons. The
last one shows how to use the self-attention in Transformers for solving image
recognition problems in computer vision.

Purdue University 6

Preamble (contd.)

The suffix “FG” in TransformerFG stands for “First Generation”. And the suffix
“PreLN” inn TransformerPreLN stands for “Pre Layer Norm”.

The TransformerFG implementation is based on the transformers as first envisioned
in the seminal paper ”Attention is All You Need” by Vaswani et el.:

https://arxiv.org/pdf/1706.03762.pdf

The class, TransformerPreLN, incorporates the modifications suggested in ”On
Layer Normalization in the Transformer Architecture” by Xiong et al.:

https://arxiv.org/pdf/2002.04745.pdf

The class, visTransformer, meant for solving image recognition problems, is based
on the paper “An Image is Worth 16× 16 Words: Transformers for Image
Recognition at Scale” by Dosovitskiy et al.:

https://arxiv.org/pdf/2010.11929.pdf

All three Transformer classes mentioned above are defined in the module file

Transformers.py in DLStudio.
Purdue University 7

https://arxiv.org/pdf/1706.03762.pdf
https://arxiv.org/pdf/2002.04745.pdf
https://arxiv.org/pdf/2010.11929.pdf

Preamble (contd.)
About the dataset I’ll be using to demonstrate Transformers for seq2seq learning,
DLStudio comes with the following data archive:

en_es_xformer_8_90000.tar.gz

In the name of the archive, the number 8 refers to the maximum number of words
in a sentence, which translates into sentences with a maximum length of 10 when
you include the SOS and EOS tokens at the two ends of a sentence. The number
90,000 is for how many English-Spanish sentence pairs are there in the archive.

The following two scripts in the ExamplesTransformers directory of the distribution
are your main entry points for experimenting with the seq2seq Transformer code
in DLStudio:

seq2seq_with_transformerFG.py
seq2seq_with_transformerPreLN.py

For the image recognition class visTransformer, I’ll use the CIFAR-10 dataset that
you are already very familiar with. The following two scripts in the same
ExamplesTransformers directory as mentioned above are your main entry points for
playing with the vision related Transformer code in DLStudio:

image_recog_with_visTransformer.py
test_checkpoint_for_visTransformer.py

Purdue University 8

Preamble – How to Learn from These Slides

At your first reading of these slides, just focus on thoroughly understanding the
following three topics:

What do we mean by attention and the theory and implementation of the QKV attention
that the transformers are based on. This is explained on Slides 12 through 19, for a total
of 7 slides.

Your next topic should be coming to grips with the notion of multi-headed attention and
its DLStudio implementation as explained on Slides 20 through 29, for a total of 10 slides.

Now jump to the end and spend some time on the vision transformer on Slides 85 through
95, for a total of 10 slides.

That makes for a total of 27 slides for your first reading. Note, however, in
this lecture in particular, the rest of the material not included above is just
as important. However, after you have understood the core concept of
what exactly is meant by Attention, you should be able to breeze through
the rest with relative ease.

Purdue University 9

Outline
1 The Basic Idea of Dot-Product Attention 11

2 Multi-Headed Attention 20

3 Implementation of Attention in DLStudio’s Transformers 24

4 The Encoder-Decoder Architecture of a Transformer 30

5 The Master Encoder Class 36

6 The Basic Encoder Class 38

7 Cross Attention 41

8 The Basic Decoder Class 47

9 The Master Decoder Class 50

10 Positional Encoding for the Words 54

11 TransformerFG and TransformerPreLN Classes in DLStudio 59

12 Regarding the Difficulty of Training a Transformer Network 64

13 Results on the English-Spanish Dataset 70

14 Transformers with Generative Pre-Training (GPT) 81

15 The Vision Transformer Class visTransformer 85

16 Using QKV Modeling for Inter-Pixel Attention 99

Purdue University 10

The Basic Idea of Dot-Product Attention

Outline

1 The Basic Idea of Dot-Product Attention 11

2 Multi-Headed Attention 20

3 Implementation of Attention in DLStudio’s Transformers 24

4 The Encoder-Decoder Architecture of a Transformer 30

5 The Master Encoder Class 36

6 The Basic Encoder Class 38

7 Cross Attention 41

8 The Basic Decoder Class 47

9 The Master Decoder Class 50

10 Positional Encoding for the Words 54

11 TransformerFG and TransformerPreLN Classes in DLStudio 59

12 Regarding the Difficulty of Training a Transformer Network 64

13 Results on the English-Spanish Dataset 70

14 Transformers with Generative Pre-Training (GPT) 81

15 The Vision Transformer Class visTransformer 85

16 Using QKV Modeling for Inter-Pixel Attention 99

Purdue University 11

The Basic Idea of Dot-Product Attention

On Explaining the Attention in Transformers

Modern attention networks were developed originally for solving
seq2seq learning problems as required for automatic translation from
one language to another. Even though more recently attention
networks have also been used for solving problems in other domains
— for example, computer vision — seq2seq learning still feels like the
most natural “domain” for a first introduction to the concept of
transformers.

Computation of attention requires representing the basic units of your
input domain with a triple of vectors denoted q for Query, k for Key,
and v for Value. When all of the input units are considered together
as tensors in each of the three categories, the same vectors become
tensors and are denoted Q for Query, K for Key, and V for Value.

After you have become comfortable with representing the domain
information with Query, Key, and Value vectors, the next idea you’d
need to conquer is dot-product attention. In this section, I’ll introduce
these ideas and the develop the notion of Single-Headed Attention.Purdue University 12

The Basic Idea of Dot-Product Attention

Expressing Words Through Their (q, k , v) Vectors

What makes attention networks unique in deep learning is that the
Query, Key, and Value vectors are created neither by convolution nor
by recurrence, but by direct matrix multiplication.

For seq2seq learning, we want to express each word w in a sentence
through a query vector q, a key vector k , and a value vector v , with
these three vectors being obtained through three learnable matrices
Wq, Wk , and Wv as follows:

q = w ·Wq k = w ·Wk v = w ·Wv (1)

where w is a vector of numbers that numerically represents a word in
the input sentence. As you know, we refer to such vector
representations as embeddings. Assume that the embedding size is M

and that all three matrices Wq, Wk and Wv are of size M ×M.

You can think of the q, k, and v vectors as a word w ’s three
representatives for assessing the importance of the word in question
to every other word in a sentence.Purdue University 13

The Basic Idea of Dot-Product Attention

The (q, k , v) Vectors for the Words (contd.)

Continuing with the thought in the last bullet of the previous slide, a
word w1 would consider a dot product of its own q vector with
another word w2’s k vector for estimating its relevance to w2 and use
the result of that dot product to modify its own v vector.

Obviously, loosely speaking, there is likely to be a certain mutuality
and symmetry to how the v vectors for the different words get
modified in this manner.

The figure shown below should help with the visualization of the idea.
[This figure is somewhat misleading because it does NOT show the q for one word engaged in a dot-product with
the k of another word. This issue disappears in the tensor formulation you will see next.]

Purdue University 14

The Basic Idea of Dot-Product Attention

From Word-Based (q, k , v) Vectors to
Sentence-Based (Q,K ,V) Tensors

In the explanation so far, I considered each word separately because
my goal was to convey the basic idea of what is meant by the
dot-product attention. In practice, one packs all the words in a
sentence in a tensor of two axes, with one axis representing the
individual words of the input sentence and other axis standing for the
embedding vectors for the words. In what follows, I’ll use X to denote
the input sentence tensor. (NOTE that, for a moment, I am ignoring
the fact that X will also have a batch axis.)

With all the words of a sentence packed into the tensor X , we can set
things up so that the network learns all of the matrices Wq, Wk , and
Wv for all the words in a sentence simultaneously. We can therefore
visualize a triplet of learnable tensors (WQ ,WK ,WV) whose different
axes would correspond to the individual-word (Wq,Wk ,Wv) matrices.

Purdue University 15

The Basic Idea of Dot-Product Attention

Calculating the (Q,K ,V) Tensors

Calculation of the sentence-level Query, Key, and Value tensors can
be expressed more accurately and compactly as

Q = X ·WQ K = X ·WK V = X ·WV (2)

The tensor Q packs all the word-based query vectors into a single
data object. The tensor K does the same for the word-based key
vectors, and the tensor V for the value vectors.

Using Nw to denote the number of words in a sentence, we have
[Nw ,M] for the shape of the input tensor X . We set the three matrices
WQ , WK , and WV each to be of size M ×M. As a result, we’ll have
[Nw ,M] for the shapes of the output Q, K , and V tensors.

Using the Q, K , and V tensors, we can express more compactly the
calculation of the attention through a modification of the V tensor via
the dot-products Q · KT as shown on the next slide.

Purdue University 16

The Basic Idea of Dot-Product Attention

Calculating Attention with (Q,K ,V) Tensors

Using Q, K , and V tensors, the visual depiction of the attention
calculation shown earlier on Slide 14 can be displayed more compactly
as:

Recall that in the above depiction, Nw is the number of words in a
sentence, M the size of the embedding vectors for the words, and M is
also the size of the word-level original q, k, v vectors.

Purdue University 17

The Basic Idea of Dot-Product Attention

Calculating Attention with (Q,K ,V) (contd.)

In Python, the dot product of the Q and K tensors can be carried out
with a statement like

QK_dot_prod = Q @ K.transpose(2,1)

where @ is Python’s infix operator for matrix multiplication. As you
can see, the transpose operator is only applied to the axes indexed 1
and 2. Axis 0 would be for the batch index.

A tensor-tensor dot-product of Q and K directly carries out all the
dot-products at every word position in the input sentence. Since Q

and K are each of shape (Nw ,M) for an Nw -word sentence, the
inner-product Q · KT is of shape Nw × Nw , whose first Nw -element row
contains the values obtained by taking the dot-product of the
first-word query vector q1 with each of the k1, k2, k3, ..., kNw key vectors
for each of the Nw words in the sentence. The second row of Q · KT

will likewise represent the dot product of the second query vector with
every key vector, and so on.

Purdue University 18

The Basic Idea of Dot-Product Attention

Calculating Attention with (Q,K ,V) (contd.)
The dot-product attention is expressed in a probabilistic form through
its normalization by nn.Softmax() as shown below.

The following formula shows us calculating the attention — meaning
the attention-weighted values for the Value tensor V — using the
nn.Softmax normalized dot-products:

Z =
nn.Softmax(Q · KT)

√
M

· V (3)

The nn.Softmax is applied along the word axis (Axis 1).

The additional normalization by
√
M in the formula shown above is

needed to counter the property that large dimensionality for the embedding

vectors can result in large variances associated with the output of the dot

products.

The above can be established by the fact that if you assume
zero-mean unit-variance independent values for the components xi
and yi in the summation z =

∑N
i=1 xi · yi , the output z will also be

zero-mean but its variance will equal N.Purdue University 19

Multi-Headed Attention

Outline

1 The Basic Idea of Dot-Product Attention 11

2 Multi-Headed Attention 20

3 Implementation of Attention in DLStudio’s Transformers 24

4 The Encoder-Decoder Architecture of a Transformer 30

5 The Master Encoder Class 36

6 The Basic Encoder Class 38

7 Cross Attention 41

8 The Basic Decoder Class 47

9 The Master Decoder Class 50

10 Positional Encoding for the Words 54

11 TransformerFG and TransformerPreLN Classes in DLStudio 59

12 Regarding the Difficulty of Training a Transformer Network 64

13 Results on the English-Spanish Dataset 70

14 Transformers with Generative Pre-Training (GPT) 81

15 The Vision Transformer Class visTransformer 85

16 Using QKV Modeling for Inter-Pixel Attention 99

Purdue University 20

Multi-Headed Attention

Multi-Headed Attention

What I have described in the previous section is referred to as a
Single-Headed Attention. As it turns out, single-headed attention is
not sufficiently rich in its representational power for capturing all the
needed inter-word dependencies in a sentence.

Shown on the next slide is an illustration of Multi-Headed Attention.
We now partition the input tensor X along its embedding axis into
NH slices and apply single-headed attention to each slice as shown in
the figure.

That is, each Attention Head gets to focus on a slice along the
embedding dimension of the input sentence tensor.

For reasons that I’ll make clear later, I’ll denote the size of the
embedding slice given to each Attention Head by the same notation
sqkv that you saw earlier.

Purdue University 21

Multi-Headed Attention

Multi-Headed Attention (contd.)

Figure: Correction: In the upper part of the figure, read ZK as ZNH
. And, in the middle of the figure, read AHk as

AHNH
. The symbol NH stands for the number of Attention Heads used.

Purdue University 22

Multi-Headed Attention

Multi-Headed Attention (contd.)

Continuing with the notations used for Multi-Headed Attention, I’ll
use NH to denote the number of Attention Heads used. Since sqkv is
the size of the embedding slice fed into any single attention head, we
have

sqkv =
M

NH

(4)

Each Attention Head learns its own values for the Q, K , and V

tensors with its own matrices for WQ , WK , and WV .

While each Attention Head receives only a sqkv -sized slice from the
embedding axis of the input sentence, the output tensors Q, K , V will
still be of shape (Nw , sqkv) for the same reason as described in the
previous section.

Since for each Attention Head, Q and K are of shape (Nw , sqkv) for an
Nw -word sentence, the inner-product Q · KT is of the same shape as
in the previous section, that is Nw × Nw .

Purdue University 23

Implementation of Attention in DLStudio’s Transformers

Outline

1 The Basic Idea of Dot-Product Attention 11

2 Multi-Headed Attention 20

3 Implementation of Attention in DLStudio’s Transformers 24

4 The Encoder-Decoder Architecture of a Transformer 30

5 The Master Encoder Class 36

6 The Basic Encoder Class 38

7 Cross Attention 41

8 The Basic Decoder Class 47

9 The Master Decoder Class 50

10 Positional Encoding for the Words 54

11 TransformerFG and TransformerPreLN Classes in DLStudio 59

12 Regarding the Difficulty of Training a Transformer Network 64

13 Results on the English-Spanish Dataset 70

14 Transformers with Generative Pre-Training (GPT) 81

15 The Vision Transformer Class visTransformer 85

16 Using QKV Modeling for Inter-Pixel Attention 99

Purdue University 24

Implementation of Attention in DLStudio’s Transformers

Attention Head Implementation

The next slide shows the implementation of the AttentionHead in the
three transformer classes in DLStudio.

In the code shown on the next slide, all the dot-products mentioned
previously are calculated in line (N). Next, as shown in line (O) we
apply the nn.Softmax normalization to each row of the Nw × Nw -sized
Q · KT dot-products calculated in line (N).

The resulting Nw × Nw matrix is then used to multiply the
Nw × sqkv -sized V tensor as shown in line (V). The operations carried
out in lines (M) through (Q) of the code shown below can be
expressed more compactly as:

Z =
nn.Softmax(Q.KT)

√
M

· V

At this point, the shape of Z will be Nw × sqkv — ignoring again the
batch axis. This is the shape of the data object returned by each
AttentionHead instance.

Purdue University 25

Implementation of Attention in DLStudio’s Transformers

Attention Head Class in DLStudio’s Transformers Class

class AttentionHead(nn.Module):

def __init__(self, dl_studio, max_seq_length, qkv_size, num_atten_heads):

super(TransformerFG.AttentionHead, self).__init__()

self.dl_studio = dl_studio

self.qkv_size = qkv_size

self.max_seq_length = max_seq_length ## (A)

self.WQ = nn.Linear(self.qkv_size, self.qkv_size) ## (B)

self.WK = nn.Linear(self.qkv_size, self.qkv_size) ## (C)

self.WV = nn.Linear(self.qkv_size, self.qkv_size) ## (D)

self.softmax = nn.Softmax(dim=1) ## (E)

def forward(self, sent_embed_slice): ## sent_embed_slice == sentence_embedding_slice ## (F)

Q = self.WQ(sent_embed_slice) ## (G)

K = self.WK(sent_embed_slice) ## (H)

V = self.WV(sent_embed_slice) ## (I)

A = K.transpose(2,1) ## (J)

QK_dot_prod = Q @ A ## (K)

rowwise_softmax_normalizations = self.softmax(QK_dot_prod) ## (L)

Z = rowwise_softmax_normalizations @ V ## (M)

coeff = 1.0/torch.sqrt(torch.tensor([self.qkv_size]).float()).to(self.dl_studio.device) ## (N)

Z = coeff * Z ## (O)

return Z

Purdue University 26

Implementation of Attention in DLStudio’s Transformers

Self-Attention in DLStudio’s Transformers Co-Class

The AttentionHead class on the previous slide is the building block in a
SelfAttention layer that concatenates the outputs from all the
AttentionHead instances and presents the result as its own output.

In the code shown for SelfAttention in Slide 29, for an input sentence
consisting of Nw words and the embedding size denoted by M, the
sentence tensor at the input to forward() of SelfAttention in Line (B)
on Slide 29 will be of shape (B,Nw ,M) where B is the batch size.

As explained earlier, this tensor is sliced off into num atten heads

sections along the embedding axis and each slice shipped off to a
different instance of AttentionHead.

Therefore, the shape of what is seen by each AttentionHead in its
forward() in Line (F) is [B,Nw , sqkv] where sqkv equals M/num atten heads.
The slicing of the sentence tensor, shipping off of each slice to an
AttentionHead instance, and the concatenation of the results returned by
the AttentionHead instances happens in the loop in line (C) on Slide 29.Purdue University 27

Implementation of Attention in DLStudio’s Transformers

Self Attention (contd.)

You will add significantly to your understanding of how the attention
mechanism works if you realize that the shape of the output tensor
produced by a SelfAttention layer is exactly the same as the shape of
its input. That is, if the shape of the input argument sentence tensor in
Line (B) on the next slide is [B,Nw ,M], that will also be the shape of
the output produced by layer.

If you would not mind ignoring the batch axis for a moment, the
input/output tensor shapes for a SelfAttention layer are both [Nw ,M]

where Nw is the number of words in the input sentence and M the size
of the embedding vector for each word. You could therefore say that
the basic purpose of self-attention is to generate attention-enriched
versions of the embedding vectors for the words.

As you will see later, the statement made above applies to all of the
components of a transformer.

Purdue University 28

Implementation of Attention in DLStudio’s Transformers

Self Attention (contd.)

class SelfAttention(nn.Module):

def __init__(self, dls, xformer, num_atten_heads):

super(TransformerFG.SelfAttention, self).__init__()

self.dl_studio = dls

self.max_seq_length = xformer.max_seq_length

self.embedding_size = xformer.embedding_size

self.num_atten_heads = num_atten_heads

self.qkv_size = self.embedding_size // num_atten_heads

self.attention_heads_arr = nn.ModuleList([xformer.AttentionHead(dls,

self.max_seq_length, self.qkv_size, num_atten_heads) for _ in range(num_atten_heads)]) ## (A)

def forward(self, sentence_tensor): ## (B)

concat_out_from_atten_heads = torch.zeros(sentence_tensor.shape[0],

self.max_seq_length, self.num_atten_heads * self.qkv_size).float()

for i in range(self.num_atten_heads): ## (C)

sentence_embed_slice = sentence_tensor[:, :, i * self.qkv_size : (i+1) * self.qkv_size]

concat_out_from_atten_heads[:, :, i * self.qkv_size : (i+1) * self.qkv_size] = \

self.attention_heads_arr[i](sentence_embed_slice)

return concat_out_from_atten_heads

Purdue University 29

The Encoder-Decoder Architecture of a Transformer

Outline

1 The Basic Idea of Dot-Product Attention 11

2 Multi-Headed Attention 20

3 Implementation of Attention in DLStudio’s Transformers 24

4 The Encoder-Decoder Architecture of a Transformer 30

5 The Master Encoder Class 36

6 The Basic Encoder Class 38

7 Cross Attention 41

8 The Basic Decoder Class 47

9 The Master Decoder Class 50

10 Positional Encoding for the Words 54

11 TransformerFG and TransformerPreLN Classes in DLStudio 59

12 Regarding the Difficulty of Training a Transformer Network 64

13 Results on the English-Spanish Dataset 70

14 Transformers with Generative Pre-Training (GPT) 81

15 The Vision Transformer Class visTransformer 85

16 Using QKV Modeling for Inter-Pixel Attention 99

Purdue University 30

The Encoder-Decoder Architecture of a Transformer

The Transformer Architecture

Now that you understand the basics of the attention mechanism in a
transformer, it is time to jump to a higher perspective on the overall
architecture of a transformer.

For seq2seq learning, the overall architecture of a transformer is that
of an Encoder-Decoder. The job of the Encoder is to create an
attention map for the sentences in the source language and the job of
the Decoder is to use that attention map for translating the
source-language sentence into a target-language sentence.

During training, the loss calculated at the output of the Decoder
propagates backwards through both the Decoder and the Encoder.
This process ensures that the attention map produced by the Encoder
at its output reflects the intra-word dependencies amongst the
source-language sentence that take into account what’s needed for
achieving the ground-truth translation in the target language.

Purdue University 31

The Encoder-Decoder Architecture of a Transformer

The Transformer Architecture (contd.)

While Encoder-Decoder is a simple way to characterize the overall
architecture of a transformer, describing the actual architecture is
made a bit complicated by the fact that the Encoder is actually a
stack of encoders and the Decoder actually a stack of decoders as
shown on Slide 35.

In order to make a distinction between the overall encoder and the
encoding elements contained therein, I refer to the overall encoder as
the Master Encoder that is implemented by the class MasterEncoder in
DLStudio’s Transformers module. I refer to each individual encoder
insider the Master Encoder as a Basic Encoder that is an instances of
the class BasicEncoder.

Purdue University 32

The Encoder-Decoder Architecture of a Transformer

The Transformer Architecture (contd.)

Similarly, on the decoder side, I refer to the overall decoder as the
Master Decoder that is implemented in the class MasterDecoder. I refer
to each decoder in the Master Decoder as a Basic Decoder that I
have implemented with the class BasicDecoder.

The implementation classes mentioned above are explained in greater
detail in the several sections that follow.

Earlier I mentioned that, ignoring the batch axis, if the sentence
tensor at the input to a layer of SelfAttention is of shape (Nw ,M),
that’s also the shape of its output.

As it turns out, that shape constancy applies throughout the
processing chains on the encoder and the decoder side. The final
output of the Master Encoder will also be of shape (Nw ,M), as will be
the shape of the input to the Master Decoder and the shape of the
output from the Master Decoder.

Purdue University 33

The Encoder-Decoder Architecture of a Transformer

The Transformer Architecture (contd.)

The number of words as represented by Nw is the value of the variable
max seq length in the transformer code presented later in this section.

Therefore, one way of looking at all of the layers in the architecture
shown on the next slide is that they are all engaged in using attention
to enrich the embedding vectors of the words in order to allow the
words to play different roles in different contexts and vis-a-vis what’s
needed for sequence-to-sequence translation to work correctly.

Purdue University 34

The Encoder-Decoder Architecture of a Transformer

Encoder-Decoder Architecture for a Transformer

Purdue University 35

The Master Encoder Class

Outline

1 The Basic Idea of Dot-Product Attention 11

2 Multi-Headed Attention 20

3 Implementation of Attention in DLStudio’s Transformers 24

4 The Encoder-Decoder Architecture of a Transformer 30

5 The Master Encoder Class 36

6 The Basic Encoder Class 38

7 Cross Attention 41

8 The Basic Decoder Class 47

9 The Master Decoder Class 50

10 Positional Encoding for the Words 54

11 TransformerFG and TransformerPreLN Classes in DLStudio 59

12 Regarding the Difficulty of Training a Transformer Network 64

13 Results on the English-Spanish Dataset 70

14 Transformers with Generative Pre-Training (GPT) 81

15 The Vision Transformer Class visTransformer 85

16 Using QKV Modeling for Inter-Pixel Attention 99

Purdue University 36

The Master Encoder Class

Master Encoder

The main purpose of the MasterEncoder is to invoke a stack of
BasicEncoder instances on a source-language sentence tensor.

The output of each BasicEncoder is fed as input to the next BasicEncoder

in the cascade, as illustrated in the loop in Line (B) below. The stack
of BasicEncoder instances is constructed in Line (A).

class MasterEncoder(nn.Module):

def __init__(self, dls, xformer, how_many_basic_encoders, num_atten_heads):

super(TransformerFG.MasterEncoder, self).__init__()

self.max_seq_length = xformer.max_seq_length

self.basic_encoder_arr = nn.ModuleList([xformer.BasicEncoder(dls, xformer,

num_atten_heads) for _ in range(how_many_basic_encoders)]) ## (A)

def forward(self, sentence_tensor):

out_tensor = sentence_tensor

for i in range(len(self.basic_encoder_arr)): ## (B)

out_tensor = self.basic_encoder_arr[i](out_tensor)

return out_tensor

Purdue University 37

The Basic Encoder Class

Outline

1 The Basic Idea of Dot-Product Attention 11

2 Multi-Headed Attention 20

3 Implementation of Attention in DLStudio’s Transformers 24

4 The Encoder-Decoder Architecture of a Transformer 30

5 The Master Encoder Class 36

6 The Basic Encoder Class 38

7 Cross Attention 41

8 The Basic Decoder Class 47

9 The Master Decoder Class 50

10 Positional Encoding for the Words 54

11 TransformerFG and TransformerPreLN Classes in DLStudio 59

12 Regarding the Difficulty of Training a Transformer Network 64

13 Results on the English-Spanish Dataset 70

14 Transformers with Generative Pre-Training (GPT) 81

15 The Vision Transformer Class visTransformer 85

16 Using QKV Modeling for Inter-Pixel Attention 99

Purdue University 38

The Basic Encoder Class

Basic Encoder

The BasicEncoder consists of a layer of self-attention (SA) followed by a
purely feed-forward layer (FFN). You already know what is
accomplished by SA. The role played by FFN is the same as it does in
any neural network — to enhance the discrimination ability of the
network.

The output of SA goes through FFN and the output of FFN becomes
the output of the BasicEncoder.

To mitigate the problem of vanishing gradients, the output of each of
the two components — SA and FFN — is subject to Layer Norm. In
addition, we use residual connections, one that wraps around the SA
layer and the other that wraps around the FFN layer as shown in the
figure on Slide 35.

Deploying a stack of BasicEncoder instances becomes easier if the
output tensor from a BasicEncoder has the same shape as its input
tensor.Purdue University 39

The Basic Encoder Class

Basic Encoder (contd.)

As shown on Slide 29, the SelfAttention layer in a Basic Encoder
consists of a number of AttentionHead instances, with each AttentionHead

making an independent assessment of what to say about the
inter-relationships between the different parts of an input sequence.

As you also know already, it is the embedding axis that is segmented
out into disjoint slices for each AttentionHead instance. The calling
SelfAttention layer concatenates the outputs from all its AttentionHead

instances and presents the concatenated tensor as its own output.
class BasicEncoder(nn.Module):

def __init__(self, dls, xformer, num_atten_heads):
super(TransformerFG.BasicEncoder, self).__init__()
self.dls = dls
self.embedding_size = xformer.embedding_size
self.max_seq_length = xformer.max_seq_length
self.num_atten_heads = num_atten_heads
self.self_attention_layer = xformer.SelfAttention(dls, xformer, num_atten_heads) ## (A)
self.norm1 = nn.LayerNorm(self.embedding_size) ## (B)
What follows are the linear layers for the FFN (Feed Forward Network) part of a BasicEncoder
self.W1 = nn.Linear(self.max_seq_length * self.embedding_size, self.max_seq_length * 2 * self.embedding_size)
self.W2 = nn.Linear(self.max_seq_length * 2 * self.embedding_size, self.max_seq_length * self.embedding_size)
self.norm2 = nn.LayerNorm(self.embedding_size) ## (C)

def forward(self, sentence_tensor):
sentence_tensor = sentence_tensor.float()
self_atten_out = self.self_attention_layer(sentence_tensor).to(self.dls.device) ## (D)
normed_atten_out = self.norm1(self_atten_out + sentence_tensor) ## (E)
basic_encoder_out = nn.ReLU()(self.W1(normed_atten_out.view(sentence_tensor.shape[0],-1))) ## (F)
basic_encoder_out = self.W2(basic_encoder_out) ## (G)
basic_encoder_out = basic_encoder_out.view(sentence_tensor.shape[0], self.max_seq_length, self.embedding_size)
for the residual connection and layer norm for FC layer:
basic_encoder_out = self.norm2(basic_encoder_out + normed_atten_out) ## (H)
return basic_encoder_out

Purdue University 40

Cross Attention

Outline

1 The Basic Idea of Dot-Product Attention 11

2 Multi-Headed Attention 20

3 Implementation of Attention in DLStudio’s Transformers 24

4 The Encoder-Decoder Architecture of a Transformer 30

5 The Master Encoder Class 36

6 The Basic Encoder Class 38

7 Cross Attention 41

8 The Basic Decoder Class 47

9 The Master Decoder Class 50

10 Positional Encoding for the Words 54

11 TransformerFG and TransformerPreLN Classes in DLStudio 59

12 Regarding the Difficulty of Training a Transformer Network 64

13 Results on the English-Spanish Dataset 70

14 Transformers with Generative Pre-Training (GPT) 81

15 The Vision Transformer Class visTransformer 85

16 Using QKV Modeling for Inter-Pixel Attention 99

Purdue University 41

Cross Attention

Cross Attention Class in DLStudio’s Transformers Class

Before presenting the decoder side of a transformer network, I must
first explain what is meant by Cross Attention and how I have
implemented it in DLStudio’s transformers.

Whereas self-attention consists of taking dot products of the Query
vectors for the individual words in a sentence with the Key vectors for
all the words in order to discover the inter-word relevancies in a
sentence, in cross-attention we take the dot products of the Query
vectors for the individual words in the target-language sentence with
the Key vectors at the output of the Master Encoder for a given
source-language sentence. These dot products then modify the Value
vectors supplied by the Master Encoder.

In what follows, I’ll use X enc represent the tensor at the output of
the MasterEncoder. Its shape will be the same as that of the source
sentence supplied to the MasterEncoder instance.

Purdue University 42

Cross Attention

Cross Attention (contd.)

If Nw is the maximum number of words allowed in a sentence in either
language, the X tensor that is input into the MasterEncoder will be of
shape (B,Nw ,M) where B is the batch size, and M the size of the
embedding vectors for the words.

Therefore, the shape of the output of the MasterEncoder, X enc, is also
(B,Nw ,M). Now let X target represent the tensor form of the
corresponding target language sentences. Its shape will also be
(B,Nw ,M).

The idea of CrossAttention is to ship off the embedding-axis slices of
the X enc and X target tensors to the CrossAttentionHead instances for
the calculation of the dot products and, subsequently, for the output
of the dot products to modify the Value vectors in what was supplied
by the MasterEncoder.

Purdue University 43

Cross Attention

Cross Attention (contd.)

class CrossAttention(nn.Module):

def __init__(self, dls, xformer, num_atten_heads):

super(TransformerFG.CrossAttention, self).__init__()

self.dl_studio = dls

self.max_seq_length = xformer.max_seq_length

self.embedding_size = xformer.embedding_size

self.num_atten_heads = num_atten_heads

self.qkv_size = self.embedding_size // num_atten_heads

self.attention_heads_arr = nn.ModuleList([xformer.CrossAttentionHead(dls,

self.max_seq_length, self.qkv_size, num_atten_heads) for _ in range(num_atten_heads)])

def forward(self, basic_decoder_out, final_encoder_out):

concat_out_from_atten_heads = torch.zeros(basic_decoder_out.shape[0], self.max_seq_length,

self.num_atten_heads * self.qkv_size).float()

for i in range(self.num_atten_heads):

basic_decoder_slice = basic_decoder_out[:, :, i * self.qkv_size : (i+1) * self.qkv_size]

final_encoder_slice = final_encoder_out[:, :, i * self.qkv_size : (i+1) * self.qkv_size]

concat_out_from_atten_heads[:, :, i * self.qkv_size : (i+1) * self.qkv_size] = \

self.attention_heads_arr[i](basic_decoder_slice, final_encoder_slice)

return concat_out_from_atten_heads

Purdue University 44

Cross Attention

The CrossAttentionHead Class

CrossAttentionHead works the same as the regular AttentionHead described
earlier, except that now, in keeping with the explanation for the
CrossAttention class, the dot products involve the Query vector slices
from the target sequence and the Key vector slices from the
MasterEncoder output for the source sequence.

The dot products eventually modify the Value vector slices that are
also from the MasterEncoder output for the source sequence. About the
word ”slice” here, as mentioned earlier, what each attention head sees
is a slice along the embedding axis for the words in a sentence.

If X target and X source represent the embedding-axis slices of the
target sentence tensor and the MasterEncoder output for the source
sentences, each CrossAttentionHead will compute the following dot
products:

Q = Xtarget · WQ K = Xsource · WK V = Xsource · WV (5)

Purdue University 45

Cross Attention

CrossAttentionHead Class (contd.)

Note that the Queries Q are derived from the target sentence,
whereas the Keys K and the Values V come from the source
sentences.

The operations carried out in lines (N) through (R) can be described
more compactly as:

Zcross =
nn.Sofmax(Qsource · Ktarget

T)
√

M
· Vsource (6)

class CrossAttentionHead(nn.Module):

def __init__(self, dl_studio, max_seq_length, qkv_size, num_atten_heads):
super(TransformerFG.CrossAttentionHead, self).__init__()
self.dl_studio = dl_studio
self.qkv_size = qkv_size
self.max_seq_length = max_seq_length
self.WQ = nn.Linear(max_seq_length * self.qkv_size, max_seq_length * self.qkv_size) ## (B)
self.WK = nn.Linear(max_seq_length * self.qkv_size, max_seq_length * self.qkv_size) ## (C)
self.WV = nn.Linear(max_seq_length * self.qkv_size, max_seq_length * self.qkv_size) ## (D)
self.softmax = nn.Softmax(dim=1) ## (E)

def forward(self, basic_decoder_slice, final_encoder_slice): ## (F)
Q = self.WQ(basic_decoder_slice.reshape(final_encoder_slice.shape[0],-1).float()) ## (G)
K = self.WK(final_encoder_slice.reshape(final_encoder_slice.shape[0],-1).float()) ## (H)
V = self.WV(final_encoder_slice.reshape(final_encoder_slice.shape[0],-1).float()) ## (I)
Q = Q.view(final_encoder_slice.shape[0], self.max_seq_length, self.qkv_size) ## (J)
K = K.view(final_encoder_slice.shape[0], self.max_seq_length, self.qkv_size) ## (K)
V = V.view(final_encoder_slice.shape[0], self.max_seq_length, self.qkv_size) ## (L)
A = K.transpose(2,1) ## (M)
QK_dot_prod = Q @ A ## (N)
rowwise_softmax_normalizations = self.softmax(QK_dot_prod) ## (O)
Z = rowwise_softmax_normalizations @ V ## (P)
coeff = 1.0/torch.sqrt(torch.tensor([self.qkv_size]).float()).to(self.dl_studio.device) ## (Q)
Z = coeff * Z ## (R)
return Z

Purdue University 46

The Basic Decoder Class

Outline

1 The Basic Idea of Dot-Product Attention 11

2 Multi-Headed Attention 20

3 Implementation of Attention in DLStudio’s Transformers 24

4 The Encoder-Decoder Architecture of a Transformer 30

5 The Master Encoder Class 36

6 The Basic Encoder Class 38

7 Cross Attention 41

8 The Basic Decoder Class 47

9 The Master Decoder Class 50

10 Positional Encoding for the Words 54

11 TransformerFG and TransformerPreLN Classes in DLStudio 59

12 Regarding the Difficulty of Training a Transformer Network 64

13 Results on the English-Spanish Dataset 70

14 Transformers with Generative Pre-Training (GPT) 81

15 The Vision Transformer Class visTransformer 85

16 Using QKV Modeling for Inter-Pixel Attention 99

Purdue University 47

The Basic Decoder Class

The BasicDecoderWithMasking Class

As with the BasicEncoder class, while a Basic Decoder also consists of a
layer of SelfAttention followed by a Feedforward Network (FFN) layer,
but now there is a layer of CrossAttention interposed between the two.

The output from each of these three components of a Basic Decoder
instance passes through a LayerNorm layer. Additionally, you have a
residual connection that wraps around each component as shown in
the figure on Slide 35.

The Basic Decoder class in DLStudio’s transformer code is named
BasicDecoderWithMasking for the reason described below.

An important feature of the Basic Decoder is the masking of the
target sentences during the training phase in order to ensure that
each predicted word in the target language depends only on those
target words that were seen PRIOR to that point.

Purdue University 48

The Basic Decoder Class

The BasicDecoderWithMasking Class (contd.)

This recursive backward dependency is referred to as autoregressive
masking. In the implementation shown below, the masking is initiated
and its updates established by the MasterDecoderWithMasking class to be
described in the next section.

class BasicDecoderWithMasking(nn.Module):

def __init__(self, dls, xformer, num_atten_heads):
super(TransformerFG.BasicDecoderWithMasking, self).__init__()
self.dls = dls
self.embedding_size = xformer.embedding_size
self.max_seq_length = xformer.max_seq_length
self.num_atten_heads = num_atten_heads
self.qkv_size = self.embedding_size // num_atten_heads
self.self_attention_layer = xformer.SelfAttention(dls, xformer, num_atten_heads)
self.norm1 = nn.LayerNorm(self.embedding_size)
self.cross_attn_layer = xformer.CrossAttention(dls, xformer, num_atten_heads)
self.norm2 = nn.LayerNorm(self.embedding_size)
What follows are the linear layers for the FFN (Feed Forward Network) part of a BasicDecoder
self.W1 = nn.Linear(self.max_seq_length * self.embedding_size, self.max_seq_length * 2 * self.embedding_size)
self.W2 = nn.Linear(self.max_seq_length * 2 * self.embedding_size, self.max_seq_length * self.embedding_size)
self.norm3 = nn.LayerNorm(self.embedding_size)

def forward(self, sentence_tensor, final_encoder_out, mask):
self attention
masked_sentence_tensor = sentence_tensor
if mask is not None:

masked_sentence_tensor = self.apply_mask(sentence_tensor, mask, self.max_seq_length, self.embedding_size)
Z_concatenated = self.self_attention_layer(masked_sentence_tensor).to(self.dls.device)
Z_out = self.norm1(Z_concatenated + masked_sentence_tensor)
for cross attention
Z_out2 = self.cross_attn_layer(Z_out, final_encoder_out).to(self.dls.device)
Z_out2 = self.norm2(Z_out2)
for FFN:
basic_decoder_out = nn.ReLU()(self.W1(Z_out2.view(sentence_tensor.shape[0],-1)))
basic_decoder_out = self.W2(basic_decoder_out)
basic_decoder_out = basic_decoder_out.view(sentence_tensor.shape[0], self.max_seq_length, self.embedding_size)
basic_decoder_out = basic_decoder_out + Z_out2
basic_decoder_out = self.norm3(basic_decoder_out)
return basic_decoder_out

def apply_mask(self, sentence_tensor, mask, max_seq_length, embedding_size):
out = torch.zeros(sentence_tensor.shape[0], max_seq_length, embedding_size).float().to(self.dls.device)
out[:,:,:len(mask)] = sentence_tensor[:,:,:len(mask)]
return out

Purdue University 49

The Master Decoder Class

Outline

1 The Basic Idea of Dot-Product Attention 11

2 Multi-Headed Attention 20

3 Implementation of Attention in DLStudio’s Transformers 24

4 The Encoder-Decoder Architecture of a Transformer 30

5 The Master Encoder Class 36

6 The Basic Encoder Class 38

7 Cross Attention 41

8 The Basic Decoder Class 47

9 The Master Decoder Class 50

10 Positional Encoding for the Words 54

11 TransformerFG and TransformerPreLN Classes in DLStudio 59

12 Regarding the Difficulty of Training a Transformer Network 64

13 Results on the English-Spanish Dataset 70

14 Transformers with Generative Pre-Training (GPT) 81

15 The Vision Transformer Class visTransformer 85

16 Using QKV Modeling for Inter-Pixel Attention 99

Purdue University 50

The Master Decoder Class

Master Decoder

The primary job of the Master Decoder is to orchestrate the
invocation of a stack of BasicDecoderWithMasking instances. The number
of BasicDecoderWithMasking instances used is a user-defined parameter.

The masking that is used in each BasicDecoderWithMasking instance is set
here by the Master Decoder.

In Line (B) on Slide 53, we define the BasicDecoderWithMasking instances
needed. The linear layer in Line (C) is needed because what the
decoder side produces must ultimately be mapped as a probability
distribution over the entire vocabulary for the target language.

With regard to the data flow through the network, note how the mask
is initialized in Line (D) on Slide 53. The mask is a vector of one’s
that grows with the prediction for each output word. We start by
setting it equal to just a single-element vector containing a single ”1”.

Purdue University 51

The Master Decoder Class

MasterDecoderWithMasking (contd.)

Lines (E) and (F) in the code on the next slide declare the tensors
that will store the final output of the Master Decoder. This final
output consists of two tensors:

One tensor holds the integer index to the target-language vocabulary
word where the output log-prob is maximum. [This index is needed at
inference time to output the words in the translation.]

The other tensor holds the log-probs over the target language
vocabulary. The log-probs are produced by the nn.LogSoftmax in Line
(L).

Purdue University 52

The Master Decoder Class

MasterDecoderWithMasking (contd.)

class MasterDecoderWithMasking(nn.Module):

def __init__(self, dls, xformer, how_many_basic_decoders, num_atten_heads):
super(TransformerFG.MasterDecoderWithMasking, self).__init__()
self.dls = dls
self.max_seq_length = xformer.max_seq_length
self.embedding_size = xformer.embedding_size
self.target_vocab_size = xformer.vocab_es_size ## (A)
self.basic_decoder_arr = nn.ModuleList([xformer.BasicDecoderWithMasking(dls, xformer,

num_atten_heads) for _ in range(how_many_basic_decoders)]) ## (B)
Need the following layer because we want the prediction of each target word to be a probability
distribution over the target vocabulary. The conversion to probs would be done by the criterion
nn.CrossEntropyLoss in the training loop:
self.out = nn.Linear(self.embedding_size, self.target_vocab_size) ## (C)

def forward(self, sentence_tensor, final_encoder_out): ## (D)
This part is for training:
mask = torch.ones(1, dtype=int) ## (E)
A tensor with two axes, one for the batch instance and the other for storing the predicted
word ints for that batch instance:
predicted_word_index_values = torch.ones(sentence_tensor.shape[0], self.max_seq_length,

dtype=torch.long).to(self.dls.device) ## (F)
A tensor with two axes, one for the batch instance and the other for storing the log-prob
of predictions for that batch instance. The log_probs for each predicted word over the entire
target vocabulary:
predicted_word_logprobs = torch.zeros(sentence_tensor.shape[0], self.max_seq_length,

self.target_vocab_size, dtype=float).to(self.dls.device) ## (G)
for mask_index in range(1, sentence_tensor.shape[1]):

masked_target_sentence = self.apply_mask(sentence_tensor, mask, self.max_seq_length,
self.embedding_size) ## (H)

out_tensor will start as just the first word, then two first words, etc.
out_tensor = masked_target_sentence ## (I)
for i in range(len(self.basic_decoder_arr)): ## (J)

out_tensor = self.basic_decoder_arr[i](out_tensor, final_encoder_out, mask)
last_word_tensor = out_tensor[:,mask_index] ## (K)
last_word_onehot = self.out(last_word_tensor.view(sentence_tensor.shape[0],-1)) ## (L)
output_word_logprobs = nn.LogSoftmax(dim=1)(last_word_onehot) ## (M)
_, idx_max = torch.max(output_word_logprobs, 1) ## (N)
predicted_word_index_values[:,mask_index] = idx_max ## (P)
predicted_word_logprobs[:,mask_index] = output_word_logprobs ## (Q)
mask = torch.cat((mask, torch.ones(1, dtype=int))) ## (R)

return predicted_word_logprobs, predicted_word_index_values ## (S)

def apply_mask(self, sentence_tensor, mask, max_seq_length, embedding_size):
out = torch.zeros_like(sentence_tensor).float().to(self.dls.device)
out[:,:len(mask),:] = sentence_tensor[:,:len(mask),:]
return out

Purdue University 53

Positional Encoding for the Words

Outline

1 The Basic Idea of Dot-Product Attention 11

2 Multi-Headed Attention 20

3 Implementation of Attention in DLStudio’s Transformers 24

4 The Encoder-Decoder Architecture of a Transformer 30

5 The Master Encoder Class 36

6 The Basic Encoder Class 38

7 Cross Attention 41

8 The Basic Decoder Class 47

9 The Master Decoder Class 50

10 Positional Encoding for the Words 54

11 TransformerFG and TransformerPreLN Classes in DLStudio 59

12 Regarding the Difficulty of Training a Transformer Network 64

13 Results on the English-Spanish Dataset 70

14 Transformers with Generative Pre-Training (GPT) 81

15 The Vision Transformer Class visTransformer 85

16 Using QKV Modeling for Inter-Pixel Attention 99

Purdue University 54

Positional Encoding for the Words

Positional Encoding for the Words

The main goal of positional encoding is to sensitize a neural network
to the position of each word in a sentence and also to each
embedding-vector cell for each word.

Positional encoding can be achieved by first constructing an array of
floating-point values as illustrated on the next slide and then adding
that array of numbers to the sentence tensor.

The alternating columns of the 2D array shown on the next slide are
filled using sine and cosine functions whose periodicities vary with the
column index in the pattern.

Note that whereas the periodicities are column-specific, the
numerators of the args to the sine and cosine functions are
word-position-specific. In the depiction shown on the next slide, each
row is an embedding vector for a specific word.

Purdue University 55

Positional Encoding for the Words

Positional Encoding (contd.)

In the pattern shown below to illustrate positional encoding, I am
assuming that the size of the word embedding vectors is 512 and that
we have a max of 10 words in the input sentence.

along the embedding vector index i -->

i=0 | i=1 | i=2 | i=3 | | i=511

w pos=0 | | | | |
o ---
r pos=1 | | | | |
d ---

pos=2 | | | | |
i ---
n .
d .
e .
x ---

pos=9 | | | | |

| |
| |
| |_________________
| |
| |
V V

pos pos ## (D)
sin(-------------) cos(-------------)

100^{2i/512} 100^{2i/512} ## (E)

In this case, the sentence tensor is of shape (10, 512). So the array of
positional-encoding numbers we need to construct will also be of
shape (10, 512). We need to fill the alternating columns of this
(10, 512) array with sin() and cos() values as shown above.

Purdue University 56

Positional Encoding for the Words

Positional Encoding (contd.)

To appreciate the significance of the values shown on the previous
slide, first note that one period of a sinusoidal function like sin(pos) is
2 ∗ π with respect to the word index pos. That would amount to only
about six words. That is, there would only be roughly six words in
one period if we just use sin(pos) for the positional indexing needed
for the pattern shown on the previous slide.

On the other hand, one period of a sinusoidal function like sin(pos/k)
is 2 ∗ pi ∗ k with respect to the word index pos. So if k = 100, we
have a periodicity of about 640 word positions along the pos axis.

The important point is that every individual column in the 2D pattern
shown above gets a unique periodicity and that the alternating
columns are characterized by sine and cosine functions.

Shown on the next slide is the function in DLStudio’s transformer
code that implements positional encoding.

Purdue University 57

Positional Encoding for the Words

Positional Encoding (contd.)

def apply_positional_encoding(self, sentence_tensor):

position_encodings = torch.zeros_like(sentence_tensor, dtype=float)

Calling unsqueeze() with arg 1 causes the "row tensor" to turn into a "column tensor"

which is needed in the products in lines (F) and (G). We create a 2D pattern by

taking advantage of how PyTorch has overloaded the definition of the infix ’*’

tensor-tensor multiplication operator. It in effect creates an output-product of

of what is essentially a column vector with what is essentially a row vector.

word_positions = torch.arange(0, self.max_seq_length).unsqueeze(1)

div_term = 1.0 / (100.0 ** (2.0 * torch.arange(0,

self.embedding_size, 2) / float(self.embedding_size)))

position_encodings[:, :, 0::2] = torch.sin(word_positions * div_term) ## (F)

position_encodings[:, :, 1::2] = torch.cos(word_positions * div_term) ## (G)

return sentence_tensor + position_encodings

Purdue University 58

TransformerFG and TransformerPreLN
Classes in DLStudio

Outline

1 The Basic Idea of Dot-Product Attention 11

2 Multi-Headed Attention 20

3 Implementation of Attention in DLStudio’s Transformers 24

4 The Encoder-Decoder Architecture of a Transformer 30

5 The Master Encoder Class 36

6 The Basic Encoder Class 38

7 Cross Attention 41

8 The Basic Decoder Class 47

9 The Master Decoder Class 50

10 Positional Encoding for the Words 54

11 TransformerFG and TransformerPreLN Classes in DLStudio 59

12 Regarding the Difficulty of Training a Transformer Network 64

13 Results on the English-Spanish Dataset 70

14 Transformers with Generative Pre-Training (GPT) 81

15 The Vision Transformer Class visTransformer 85

16 Using QKV Modeling for Inter-Pixel Attention 99

Purdue University 59

TransformerFG and TransformerPreLN
Classes in DLStudio

The Two Transformer Classes in DLStudio

Everything I have said so far in this lecture is for the transformers as
originally envisioned in the much celebrated Vaswani et el. paper. In
DLStudio, my implementation for that architecture is in the class
TransformerFG where the suffix “FG” stands for “First Generation”.

Authors who followed that original publication observed that the
Vaswani et el. architecture was difficult to train and that was the
reason why it required a carefully designed “warm-up” phase during
training in which the learning-rate was at first increased very slowly
and then decreased again.

In particular, it was observed by by Xiong et al. in their paper “On
Layer Normalization in the Transformer Architecture” that using LayerNorm

after each residual connection in the Vaswani et al. design
contributed significantly to the stability of the learning process.

Purdue University 60

TransformerFG and TransformerPreLN
Classes in DLStudio

TransformerFG vs. TransformerPreLN

Xiong et al. advocated changing the point at which the LayerNorm is
invoked in the original design. In the two diagrams shown on the next
slide, the one at left is for the encoder layout in TransformerFG and the
one on right for the same in TransformerPreLN for the design proposed
by Xiong et al.

As you can see in the diagrams, in TransformerFG, each of the two
components in the BasicEncoder — Self Attention and FFN — is
followed with a residual connection that wraps around the
component. That is, in TransformerFG, the residual connection is
followed by LayerNorm.

On the other hand, in TransformerPreLN, the LayerNorm for each
component is used prior to the component and the residual
connection wraps around both the LayerNorm layer and the component,
as shown at right below.

Purdue University 61

TransformerFG and TransformerPreLN
Classes in DLStudio

TransformerFG vs. TransformerPreLN (contd.)

Purdue University 62

TransformerFG and TransformerPreLN
Classes in DLStudio

TransformerFG vs. TransformerPreLN (contd.)

While the the difference between TransformerFG and TransformerPreLN

depicted in the diagram on the previous slide specifically addresses the
basic encoder, the same difference carries over to the decoder side.

In TransformerPreLN, inside each Basic Decoder, you will have three
invocations of LayerNorm, one before the Self-Attention layer, another
one before the call to Cross-Attention and, finally, one more
application of LayerNorm prior to the FFN layer.

Purdue University 63

Regarding the Difficulty of Training a Transformer Network

Outline

1 The Basic Idea of Dot-Product Attention 11

2 Multi-Headed Attention 20

3 Implementation of Attention in DLStudio’s Transformers 24

4 The Encoder-Decoder Architecture of a Transformer 30

5 The Master Encoder Class 36

6 The Basic Encoder Class 38

7 Cross Attention 41

8 The Basic Decoder Class 47

9 The Master Decoder Class 50

10 Positional Encoding for the Words 54

11 TransformerFG and TransformerPreLN Classes in DLStudio 59

12 Regarding the Difficulty of Training a Transformer Network 64

13 Results on the English-Spanish Dataset 70

14 Transformers with Generative Pre-Training (GPT) 81

15 The Vision Transformer Class visTransformer 85

16 Using QKV Modeling for Inter-Pixel Attention 99

Purdue University 64

Regarding the Difficulty of Training a Transformer Network

Training Transformer Networks and the Sudden
Model Divergence

Transformers, in general, are difficult to train and that’s especially the
case with TransformerFG. Using the same learning rate throughout
the training process either results in excessively slow learning if the
learning-rate is too small, or unstable learning if the learning-rate is

not small enough.

When transformer learning becomes unstable, you get what’s known
as sudden model divergence, which means roughly the same thing as
mode collapse for the case of training a GAN.

As you are training a transformer model, you would want to use some
metric to measure the performance of the current state of the model
so that you can be sure that the model is still learning and that it has
not suddenly regressed into a divergence. Obviously, for such a check
on the model, you would use an assortment of sentence pairs drawn
from the corpus.

Purdue University 65

Regarding the Difficulty of Training a Transformer Network

BLEU for Measuring Checkpoint Performance

DLStudio makes it easier to carry out such checks through the
checkpoints it writes out to the disk memory every 5 epochs. You can
then apply the very popular BLEU metric to the checkpoints. You
have model divergence when the value returned by this metric stays
at 0. BLEU stands for “BiLingual Evaluation Understudy”.

BLEU score measures the performance of a language translation
framework by measuring the frequencies of the n-grams in the
predicted sentences in the target language for the n-grams that exist
in the ground-truth sentences. By n-gram here, I mean a sequence of
consecutively occurring words — the qualifier n refers to the length of
the sequence.

Given a sentence pair, one predicted and the other the target, for a
given value of n, BLEU counts the number of n-grams in the
predicted sentence for each n-gram that exists in the target sentence
for a set of n values.

Purdue University 66

Regarding the Difficulty of Training a Transformer Network

The BLEU Metric for Checkpoint Performance (contd.)

When comparing the n-grams between the predicted and the target

sentences, you do NOT seek a position based matching of the

n-grams. For a given value of n, what BLEU calculates is the

occurrence count for an n-gram in the predicted sentence that has a

matching n-gram anywhere in the target sentence. The ratio of this
number to the total number of such n-grams in the predicted
sentence is the translation precision as measured for that n. Typically,
one constructs a weighted average of these ratios for n ∈ {1, 2, 3, 4}.

The above formula requires a critical modification in order to be
effective: You do not want the occurrence based count for an n-gram
in a predicted sentence to exceed the count for the same n-gram in
the target sentence. [To cite an example provided by the original authors of BLEU, consider the case
when the predicted sentence is a gibberish repetition of a commonly occurring word like “the” as in the predicted
sentence “the the the the the the the”. Assume that the target sentence is “the cat is on the mat”. A unigram

based precision in this case would return a value of 7
7
= 1 since the unigram “the” occurs 7 times in the predicted

sentence and it does occur at least once in the target sentence. To remedy this shortcoming, we require that the
count returned for any n-gram not exceed the count for same n-gram in the target sentence. With that modification,

the value returned for the example would be 2
7
. You would impose this constraint for all n in the n-grams used.]

Purdue University 67

Regarding the Difficulty of Training a Transformer Network

The BLEU Metric for Checkpoint Performance (contd.)

Since the n-gram based counts are based solely on the predicted
sentences (albeit on the basis that the same n-grams exist in the
target sentences), predicted sentences much shorter than the target
sentences will in general score higher. [Consider the case when when the predicted

sentence is “the cat is” for the target sentence “the cat is on the mat”. In this case, all of the unigram, digram,

trigram based scores for the quality of the translation will be perfect.] To guard against, the
BLEU metric multiplies the n-gram based scores with the factor
e(1−

r
c
) when c < r where c is the length of the predicted sentence

and r the length of the target sentence.

You use the BLEU metric in you code by calling on its implementation
provided by the Natural Language Toolkit (NLTK) library. If you
wish, you can download the source code for the BLEU metric from:

https://www.nltk.org/_modules/nltk/translate/bleu_score.html

Purdue University 68

https://www.nltk.org/_modules/nltk/translate/bleu_score.html

Regarding the Difficulty of Training a Transformer Network

Stabilizing the Learning for TransformerFG

For the case of TransformerFG, the original authors of the paper on
which TransformerFG is based showed that they could prevent model
divergence by starting with a very small learning rates, say 1e-9, and
then ramping up linearly with each iteration of training.

This is known as the learning-rate warm-up and it requires that you
specify the number of training iterations for the warm-up phase.
Typically, during this phase, you increment the learning rate linearly
with the iteration index.

Note that the more stable TransformerPreLN does NOT require a
learning-rate warm-up — because that transformer is inherently more

stable. The price you pay for that stability is the much slower

convergence of the model.

In my own rather informal and unscientific comparisons, the
performance I get with about 40 epochs of TransformerFG takes more
than 100 epochs with TransformerPreLN.Purdue University 69

Results on the English-Spanish Dataset

Outline

1 The Basic Idea of Dot-Product Attention 11

2 Multi-Headed Attention 20

3 Implementation of Attention in DLStudio’s Transformers 24

4 The Encoder-Decoder Architecture of a Transformer 30

5 The Master Encoder Class 36

6 The Basic Encoder Class 38

7 Cross Attention 41

8 The Basic Decoder Class 47

9 The Master Decoder Class 50

10 Positional Encoding for the Words 54

11 TransformerFG and TransformerPreLN Classes in DLStudio 59

12 Regarding the Difficulty of Training a Transformer Network 64

13 Results on the English-Spanish Dataset 70

14 Transformers with Generative Pre-Training (GPT) 81

15 The Vision Transformer Class visTransformer 85

16 Using QKV Modeling for Inter-Pixel Attention 99

Purdue University 70

Results on the English-Spanish Dataset

Results on the English-Spanish Dataset

Figure: Training loss vs. iterations for 20 epochs with the TransformerFG class in DLStudio.

Figure: Training loss vs. iterations for 60 epochs with the TransformerPreLN class in DLStudio.
Purdue University 71

Results on the English-Spanish Dataset

Translations Produced by TransformerFG

After 40 epochs of training with TransformerFG and with 90,000 pairs
of English-Spanish sentences, what follows are the results produced
on 20 randomly selected sentences from the dataset.

The training was carried out on RVL Cloud using a single GPU
(NVIDIA GeForce RTX 2080) and by executing the following command
in the ExamplesTransformers directory of DLStudio:

python3 seq2seq_with_transformerFG.py

Here are the parameters used for training the transformer network:

Batch size: 50
Embedding_size: 256
Number Basic Encoders: 4
Number Basic Decoders: 4
Number Attention Heads: 4
Number of Warmup Steps: 4000
Masking: False

Purdue University 72

Results on the English-Spanish Dataset

Translations Produced by TransformerFG (contd.)

And here is the timing performance:

Training time per 200 iterations: 167 seconds
Training time per epoch: 9 * 167 seconds = 25.05 minutes
Total training time for 40 epochs: 16 hours

The results are shown starting with the next slide.

Purdue University 73

Results on the English-Spanish Dataset

Translations Produced by TransformerFG (contd.)

Size of the English vocab in the dataset: 11258
Size of the Spanish vocab in the dataset: 21823

The number of learnable parameters in the Master Encoder: 124583936
The number of layers in the Master Encoder: 128

The number of learnable parameters in the Master Decoder: 149886015
The number of layers in the Master Decoder: 234

Number of sentence pairs in the dataset: 90000
No sentence is longer than 10 words (including the SOS and EOS tokens)

TRANSLATIONS PRODUCED:

1. The input sentence pair: [’SOS anybody can read it EOS’] [’SOS cualquiera puede leerlo EOS’]

The translation produced by TransformerFG: EOS cualquiera puede leerlo EOS EOS EOS EOS EOS EOS [CORRECT]

2. The input sentence pair: [’SOS is he your teacher EOS’] [’SOS es tu profesor EOS’]

The translation produced by TransformerFG: EOS es tu profesor EOS EOS EOS EOS EOS EOS [CORRECT]

3. The input sentence pair: [’SOS i wanted to study french EOS’] [’SOS querı́a estudiar francés EOS’]

The translation produced by TransformerFG: EOS querı́a estudiar francés EOS EOS EOS EOS EOS EOS [CORRECT]

4. The input sentence pair: [’SOS what are you doing next monday EOS’] [’SOS qué vas a hacer el próximo lunes EOS’]

The translation produced by TransformerFG: EOS qué vas a hacer el próximo lunes EOS EOS [CORRECT]

5. The input sentence pair: [’SOS it was a beautiful wedding EOS’] [’SOS fue un hermoso casamiento EOS’]

The translation produced by TransformerFG: EOS fue un hermoso hermoso EOS EOS EOS EOS EOS [WRONG]

(Continued on the next slide)

Purdue University 74

Results on the English-Spanish Dataset

Translations Produced by TransformerFG (contd.)
(...... continued from the previous slide)

6. The input sentence pair: [’SOS there were two glasses under the mirror EOS’] [’SOS bajo el espejo habı́a dos vasos EOS’]

The translation produced by TransformerFG: EOS bajo el espejo habı́a dos vasos EOS EOS EOS [CORRECT]

7. The input sentence pair: [’SOS he has a very interesting book EOS’] [’SOS él tiene un libro muy divertido EOS’]

The translation produced by TransformerFG: EOS él tiene un libro muy divertido EOS EOS EOS [CORRECT]

8. The input sentence pair: [’SOS i was waiting for tom EOS’] [’SOS estaba esperando a tom EOS’]

The translation produced by TransformerFG: EOS estaba esperando a tom EOS EOS EOS EOS EOS [CORRECT]

9. The input sentence pair: [’SOS mary has curlers in her hair EOS’] [’SOS mary lleva rulos en el pelo EOS’]

The translation produced by TransformerFG: EOS mary lleva tengo en el pelo EOS EOS EOS [WRONG]

10. The input sentence pair: [’SOS tom thought about mary a lot EOS’] [’SOS tom pensó mucho acerca de marı́a EOS’]

The translation produced by TransformerFG: EOS tom pensó mucho acerca de marı́a EOS EOS EOS [CORRECT]

11. The input sentence pair: [’SOS you are so shallow EOS’] [’SOS eres tan superficial EOS’]

The translation produced by TransformerFG: EOS eres tan superficial EOS EOS EOS EOS EOS EOS [CORRECT]

12. The input sentence pair: [’SOS can you solve this problem EOS’] [’SOS podéis resolver este problema EOS’]

The translation produced by TransformerFG: EOS puedes resolver este problema EOS EOS EOS EOS EOS [CORRECT]

13. The input sentence pair: [’SOS they were listening to the radio EOS’] [’SOS ellos estaban escuchando la radio EOS’]

The translation produced by TransformerFG: EOS ellos estaban escuchando la radio EOS EOS EOS EOS [CORRECT]

(Continued on the next slide)
Purdue University 75

Results on the English-Spanish Dataset

Translations Produced by TransformerFG (contd.)
(...... continued from the previous slide)

14. The input sentence pair: [’SOS come right in EOS’] [’SOS ven adentro EOS’]

The translation produced by TransformerFG: EOS entra aquı́ EOS EOS EOS EOS EOS EOS EOS [Semantically CORRECT]

15. The input sentence pair: [’SOS when did you learn to swim EOS’] [’SOS cuándo aprendiste a nadar EOS’]

The translation produced by TransformerFG: EOS cuándo aprendiste a nadar EOS EOS EOS EOS EOS [CORRECT]

16. The input sentence pair: [’SOS tom has been busy all morning EOS’] [’SOS tom estuvo ocupado toda la ma~nana EOS’]

The translation produced by TransformerFG: EOS tom ha estado toda toda ma~nana EOS EOS EOS [WRONG]

17. The input sentence pair: [’SOS i just want to read EOS’] [’SOS solo quiero leer EOS’]

The translation produced by TransformerFG: EOS solo quiero leer EOS EOS EOS EOS EOS EOS [CORRECT]

18. The input sentence pair: [’SOS tell us something EOS’] [’SOS dı́ganos algo EOS’]

The translation produced by TransformerFG: EOS dinos algo EOS EOS EOS EOS EOS EOS EOS [Semantically CORRECT]

19. The input sentence pair: [’SOS how often does tom play hockey EOS’] [’SOS con qué frecuencia juega tom al hockey EOS’]

The translation produced by TransformerFG: EOS con qué frecuencia juega tom al hockey EOS EOS [CORRECT]

20. The input sentence pair: [’SOS he was reelected mayor EOS’] [’SOS él fue reelegido alcalde EOS’]

The translation produced by TransformerFG: EOS él fue a alcalde EOS EOS EOS EOS EOS [WRONG]

Purdue University 76

Results on the English-Spanish Dataset

The Results Look Great — But What Does That Mean?

On the basis of the quality of the translations shown on the previous
three slides for a random collection of sentences, the results produced
by the TransformerFG-based network look very impressive. Does that

mean that I have presented a viable solution for automatic

English-to-Spanish translation?

The answer to the above question is: Not by a long shot!

The most likely reason for the excellent results: Overfitting of the

model to the training data.

A dataset of just 90,000 sentence pairs is much too small to create a
generalizable model given the overall complexity of the transformer
network. [Despite the fact that my transformer network is small compared to the networks used in corporate
labs, it still has around 300 million learnable parameters (see Slide 74). That’s still too large a model for the
available dataset.]

I could have gotten more “juice” out of my small dataset if I had also
incorporated in the learning framework the commonly used step of
tokenization as a front-end and trained the model with the tokens.Purdue University 77

Results on the English-Spanish Dataset

The Results Look Great, But ... (contd.)

The smallness of the dataset mentioned on the previous slide can also
be measured by the size of the vocabulary. As shown on Slide 74, the
English vocab has just 11,258 words. At the least you are going to
need a vocabulary that’s five times the size I have at my disposal if
you want to train a model with any power of generalization. And I’m
only talking about just ordinary conversational sentences.

And that brings me to a fundamental challenge associated with
developing deep-learning based solutions for novel problems, especially
if the problems require complex models like those based on
transformers: The high cost of creating labeled datasets.

A possible solution to this challenge: Non-supervised pre-conditioning
of the network with unlabeled data (that’s always available in
abundance), followed by using the available labeled data in
discriminative learning for fine-tuning the learnable parameters for the
task at hand.

Purdue University 78

Results on the English-Spanish Dataset

The Results Look Great, But ... (contd.)

To follow up on the last bullet on the previous slide, here is an
influential 2010 paper “Why Does Unsupervised Pre-training Help Deep

Learning?” by Erhan et al. with this message:

https://www.jmlr.org/papers/volume11/erhan10a/erhan10a.pdf

Here is a very insightful quote from this paper:

“In virtually all instances of deep learning, the objective function is a highly non-convex function of the parameters,
with the potential for many distinct local minima in the model parameter space. The principal difficulty is that not
all of these minima provide equivalent generalization errors and, we suggest, that for deep architectures, the
standard training schemes (based on random initialization) tend to place the parameters in regions of the
parameters space that generalize poorly.”

What it says is that the standard practice of initializing the learnable
parameters with a uniform random distributions may not lead to a
model that generalizes well. We can only expect this problem to

become worse when there’s a dearth of labeled training data.

Purdue University 79

https://www.jmlr.org/papers/volume11/erhan10a/erhan10a.pdf

Results on the English-Spanish Dataset

The Results Look Great, But ... (contd.)

About the potential of unsupervised pre-training to remediate this
problem, the authors Erhan et el. go on to say:

“... unsupervised pre-training as an unusual form of regularization: minimizing variance and introducing bias towards
configurations of the parameter space that are useful for unsupervised learning. ”

That is, we can think of pre-training from unlabeled data as a form of
“initialization with regularization” for the learnable parameters.

A rather simple way to carry out such pre-training would be to change
the output of your network by possibly extending it with a
fully-connected layer so that the entire network acts like an
autoencoder. Now you can sensitize the learning weights in the
transformer model by requiring that the inputs match the outputs
while you feed unlabeled data into the input.

In the next section, I’ll briefly talk about a particular class of data
pre-conditioning strategies mentioned in the above paper that are
known as Generative Pre-Trained Transformer (GPT) strategies.

Purdue University 80

Transformers with Generative Pre-Training (GPT)

Outline

1 The Basic Idea of Dot-Product Attention 11

2 Multi-Headed Attention 20

3 Implementation of Attention in DLStudio’s Transformers 24

4 The Encoder-Decoder Architecture of a Transformer 30

5 The Master Encoder Class 36

6 The Basic Encoder Class 38

7 Cross Attention 41

8 The Basic Decoder Class 47

9 The Master Decoder Class 50

10 Positional Encoding for the Words 54

11 TransformerFG and TransformerPreLN Classes in DLStudio 59

12 Regarding the Difficulty of Training a Transformer Network 64

13 Results on the English-Spanish Dataset 70

14 Transformers with Generative Pre-Training (GPT) 81

15 The Vision Transformer Class visTransformer 85

16 Using QKV Modeling for Inter-Pixel Attention 99

Purdue University 81

Transformers with Generative Pre-Training (GPT)

Generative Pre-Trained Transformer (GPT)
The last couple of slides talked about the general case of
unsupervised pre-training of the model using unlabeled datasets for
performance boost especially when the labeled datasets are small.
Generative pretraining (GPT) is a special case of that. [More accurately

speaking, the acronym GPT stands for Generative Pre-trained Transformer.]

As to why “generative”, as was observed by Erhan et el., suppose X
represents the input to a network and Y its output. A purely
discriminative network is only concerned about the conditional
P(Y |X). On the other hand, a generative network is concerned about
the joint P(X ,Y).
[That is, while a discriminative network focuses on just getting Y right for whatever X it is presented with. On the
other hand, a generative network places both the input X and the output Y on an equal footing. For these reasons,
generative approaches are less prone to overfitting than purely discriminative approaches. Becoming aware of P(X)
would be akin to applying PCA to the unlabeled data in traditional machine learning. The same things happens in
the deep-learning context when the input data is first mapped to embeddings with the expectation that similar
elements at the input would result in embedding vectors that are closer together in value.]

I’ll now present some insights gleaned from the paper “Improving

Language Understanding by Generative Pre-Training” by Radford et al.:

https://www.cs.ubc.ca/~amuham01/LING530/papers/radford2018improving.pdfPurdue University 82

https://www.cs.ubc.ca/~amuham01/LING530/papers/radford2018improving.pdf

Transformers with Generative Pre-Training (GPT)

GPT for Transformers (contd.)
In the context of creating language models with transformers, the
focus of the paper by Radford et al. is exclusively on generative
approaches to make such a model aware of P(X) with unsupervised
training using unlabeled datasets.

The generative pretraining as presented as proposed by Radford et al.
consists of maximizing the likelihood L given by

L(U) =
∑
i

P(ui

∣∣∣ui−k , . . . ui−1;Θ)

where U represents the “tokens” in the corpus and k the size of the
context window. [Using the words directly in creating a language model can result in too large a
vocabulary — you’ll need a separate representation for every possible inflection of each noun and every possible
conjugation of each verb. Besides, you will also run into problems with “synthesized” words like
“overparameterized”. Language modeling becomes more efficient if the words are first decomposed into tokens
through a step called tokenization. As you would expect, tokenization is highly language specific.]

For the purpose of pretraining, the idea would be to possibly extend
transformer model you want to train so that you can measure the
conditional probability shown above and use its maximization as the
learning objective during pretraining.

Purdue University 83

Transformers with Generative Pre-Training (GPT)

GPT for Transformers (contd.)

As you would expect, the maximization of the pretraining objective
shown on the previous slide will make the network smarter about the
context for the tokens, for the words, for the sentences, etc.

The weights that are learned during pretraining would give the
network a good sense of what tokens, what words, what sentences,
and, perhaps, even what paragraphs constitute good sequences with
regard to how one word follows another, how one sentence follows
another, or, even, how one para follows another.

I’ll be discussing these ideas in much greater detail in my next week’s
lecture on LLM (Large Language Models).

Purdue University 84

The Vision Transformer Class visTransformer

Outline

1 The Basic Idea of Dot-Product Attention 11

2 Multi-Headed Attention 20

3 Implementation of Attention in DLStudio’s Transformers 24

4 The Encoder-Decoder Architecture of a Transformer 30

5 The Master Encoder Class 36

6 The Basic Encoder Class 38

7 Cross Attention 41

8 The Basic Decoder Class 47

9 The Master Decoder Class 50

10 Positional Encoding for the Words 54

11 TransformerFG and TransformerPreLN Classes in DLStudio 59

12 Regarding the Difficulty of Training a Transformer Network 64

13 Results on the English-Spanish Dataset 70

14 Transformers with Generative Pre-Training (GPT) 81

15 The Vision Transformer Class visTransformer 85

16 Using QKV Modeling for Inter-Pixel Attention 99

Purdue University 85

The Vision Transformer Class visTransformer

Image Recognition with a Transformer

As mentioned in the Preamble, it was shown in the paper “An Image is

Worth 16× 16 Words: Transformers for Image Recognition at Scale” by Dosovitskiy
et al. that transformers could also be used for solving image
recognition problems.

The authors referred to their contribution as ViT for “Vision
Transformer”.

The main contribution of ViT was to demonstrate that if you
chopped up an image into an array of patches, with each patch of
size 16× 16, and if you then represented each patch with a learnable
embedding, you could literally use the same transformer architecture
as in language modeling for solving image recognition problems.

You could think of the non-overlapping patches extracted from an
image — left to right and top to bottom — as constituting a patch
sequence, in very much the same way you think of a sentence as
consisting of a sequence of words.

Purdue University 86

The Vision Transformer Class visTransformer

Image Recognition with a Transformer (contd.)

Through embedding vectors, you would then be able to represent an
image by exactly the same sort of a tensor as you have seen earlier in
this lecture.

I have illustrated this idea in the figure on the next slide that shows
us representing an image with an 5× 5 array of nonoverlapping
patches. If a patch consists of p × p pixels, and assuming that we are
talking about color images, we will have a total of p2 × 3 numeric
values in a patch.

For transformer based processing, our goal is to learn to map the
3× p2 numeric values in a patch to an embedding vector of size M. If
P is the total number of patches in an image, this mapping will
convert an image into a tensor of shape [P,M]. This is exactly the
sort of a tensor as for a sentence of words as shown in the lower half
of Slide 22.

Purdue University 87

The Vision Transformer Class visTransformer

Image Recognition with a Transformer (contd.)

Purdue University 88

The Vision Transformer Class visTransformer

Image Recognition with a Transformer (contd.)

So far the idea of applying transformers to images seems straightforward.
But here are two key highly novel ideas in the ViT architecture that would
not be so easy to think of even in hindsight:

For image recognition, you have a class label for every training image and the question is
how to incorporate that in a transformer based neural network.

[In a regular convolutional neural network, you push the image through the neural network that makes a prediction
for the image class label at the output. You compare the predicted label with the true label and thus estimate the
loss that is backproped through the network. Unfortunately, that does not work for transformer based networks
simply because — if I could put it that way — such networks are more intensive in the extent of learning they need
to carry out.]

The authors of the ViT paper discovered that if they gave the transformer a “cell” in
which it could store its understanding of what was unique to all the images for the same
class, that helped the neural network make a correct guess for the class label. This “cell”
is referred to as the class token in the ViT architecture.

As you know already, transformer based learning for languages required positional
encoding for the words that gave the network a sense of the order in which the words
existed in a sentence. As you’ll recall, I presented sinusoidal positional encoding for the
case of language modeling on Slides 54-58. The question now is: How does one do that
for patch sequences? Here again, the solution consisted of providing another “cell”, but
this time on a per-patch basis, where the network can put away its understanding of the
order in which the patches relate to one another spatially. These per-patch cells are
referred to as positional-encodings in ViT.

Purdue University 89

The Vision Transformer Class visTransformer

Coding Issues for Vision Transformers

I’ll now now review some of the coding issues you are going to run
into if writing your implementation for a vision transformer, or if you
are trying to understand the visTransformer class in the Transformers

module of DLStudio.

But first you have to realize that the overall neural architecture for a
vision transformer is much simpler than what it is for language
modeling. That is because you do not need the Decoder you saw
earlier for the case of languages.

For example, for a vision transformer meant for image recognition,
you feed the output of the Encoder into a couple of Fully Connected
(FC) layers. The number of nodes in the final output layer of the FC
section equals the number of classes you your dataset.

Actually, a vision transformer is even simpler than what would be
implied by the above claim, as explained on the next slide.

Purdue University 90

The Vision Transformer Class visTransformer

Coding Issues for Vision Transformers (contd.)

Since the sole job of a vision transformer (meant for image
recognition) is to predict the class label of the input image and since
the purpose of the class token mentioned on the previous slide is to
learn what is unique about all the images that belong to the same
class, you only need to retain the class token from the output of the
transformer. That is, you would feed the embedding vector for just

the class token into the FC section for the prediction of the class

label.

What that general introduction to the overall architecture of a vision
transfer, I’ll do into the specifics of what you’re going to need in your
code.

Obviously, the very first thing you would need to do in your code
would be to extract the patches from the images and, for each image,
construct a tensor of shape P ×M for its representation, where P is
the number of patches in an image and M the dimensionality of the
embedding representation of a patch.

Over the next few slides, I’ll mention the two ways extracting the
patches frown the images and mapping the patches to the embedding
vectors.

Subsequently, I’ll talk about augmenting the patch-sequence tensor
with the class token and also bringing into play the position
encodings.

Purdue University 91

The Vision Transformer Class visTransformer

Coding Issues for Vision Transformers (contd.)

About extracting the patches and mapping them to their embedding
vectors, you can use one of the following two ways for that. Although
they look very different, under the hood they are the same.

You invoke a convolutional layer in kernel-size and the stride equal the patch size.
Let’s say you patch size 16× 16. You will construct an instance of the 2D convo
operator as follows:

conop = nn.Conv2d(3, M, P, stride=P)

where 3 is for the three color channels of a training image, M the embedding size
and P the kernel size. By setting both the kernel and the stride to the same value,
you will directly output the embedding vector of size M for each non-overlapping
P × P patch in the image. If your training dataset is CIFAR-10, your input images
are of size 32× 32. If you want your patches to be of size 16× 16, you would set
P = M = 16.

The second approach is based on separately extracting the patches by calling
torch.tensor.unfold() and then mapping them with an nn.Linear layer to the
embedding vectors, as shown below:

for i, data in enumerate(self.train_data_loader):

input_images, labels = data

...

patch_sequences = input_images.unfold(2, self.patch_size[0], self.patch_size[1]).unfold(3, \

self.patch_size[0], self.patch_size[1])

patch_sequence_embeddings = patch_embedding_generator(patch_sequences)

...

...

Purdue University 92

The Vision Transformer Class visTransformer

visTransformer in DLStudio

The visTransformer class in the Transformers module in DLStudio
consists of the following inner classes and methods:

class visTransformer(nn.Module)

class PatchEmbeddingGenerator(nn.Module)

class MasterEncoder(nn.Module)

class BasicEncoder(nn.Module)

class SelfAttention(nn.Module)

class AttentionHead(nn.Module)

def run_code_for_training_visTransformer(self, dls, vis_transformer, display_train_loss=False, checkpoint_dir=’checkpoints’)

def run_code_for_evaluating_visTransformer(self, encoder_network, patch_embedding_generator)

def run_code_for_evaluating_visTransformer(self, encoder_network, patch_embedding_generator)

def run_code_for_evaluating_checkpoint(self, encoder_network, patch_embedding_generator, checkpoints_dir)

The names I have used the main vision transformer class visTransformer

and its five inner classes should make them self-explanatory.

Of the five inner classes, you have already seen the last four. In what
follows, I’ll present the definitions for the main class visTransformer and
its inner class PatchEmbeddingGenerator

Purdue University 93

The Vision Transformer Class visTransformer

Definition of the visTransformer Class

Shown on the next slide is the the top-level class for the vision
transformer in the Transformers module of DLStudio. We instantiate
the transformer network in Lines (1), (2) and (3).

Of the data flow presented in Lines (4) through (9), the most notable
fact is the “expansion” of the class token to cover all the patches in a
single image and its concatenation with the Axis 1 of the batch. The
batch is of shape [B,P,M) where B is the batch size, P + 1 the
number of patches along with the class token, and M the embedding
size. So the concatenation you see in Line (5) is along the patch Axis
— that is it is in accordance with the image representation shown in
Slide 88. Remember, whatever logic you place in the forward() of a
class derived from nn.Module is automatically applied to every instance
in a batch.

As you see in Line (7), we only retain the first embedding vector, the
one that corresponds to the class token, for feeding into the
fully-connected section.

About the fully-connected (FC) section of the network in Line (2), the
number 10 for the number of nodes in the final layer is for the 10
classes of the CIFAR10 dataset.

Purdue University 94

The Vision Transformer Class visTransformer

Definition of the visTransformer Class

class visTransformer(nn.Module):

def __init__(self, dl_studio, patch_size, embedding_size, num_basic_encoders, num_atten_heads,

save_checkpoints=True, checkpoint_freq=10):

super(visTransformer, self).__init__()

...

self.checkpoint_freq = checkpoint_freq

self.learning_rate = dl_studio.learning_rate

self.num_patches_in_image = (dl_studio.image_size[0] // patch_size[0]) *

(dl_studio.image_size[1] // patch_size[1])

self.max_seq_length = self.num_patches_in_image + 1

self.patch_size = patch_size

self.patch_dimen = (patch_size[0] * patch_size[1]) * 3

self.embedding_size = embedding_size

self.num_basic_encoders = num_basic_encoders

self.num_atten_heads = num_atten_heads

self.master_encoder = visTransformer.MasterEncoder(dl_studio, self, num_basic_encoders,

num_atten_heads) ## (1)

self.fc = nn.Sequential(## (2)

nn.Dropout(p=0.1),

nn.Linear(embedding_size, 512),

nn.ReLU(inplace=True),

nn.Linear(512, 10),

)

self.class_token = nn.Parameter(torch.randn((1, 1, embedding_size))).cuda() ## (3)

def forward(self, x):

class_token = self.class_token.expand(x.shape[0], -1, -1) ## (4)

x = torch.cat((class_token, x), dim=1) ## (5)

x = self.master_encoder(x) ## (6)

predicted_class_tokens = x[:,0] ## (7)

output = self.fc(predicted_class_tokens) ## (8)

return output ## (9)

Purdue University 95

The Vision Transformer Class visTransformer

Definition of the PatchEmbeddingGenerator Class

Shown below is the class PatchEmbeddingGenerator. It is an inner class of
the visTransformer class shown on the previous slide.

The most notable part of the code how we add Positional Encodings
to the patches in Line (5). As mentioned earlier, As mentioned
earlier, Positional Encoding consists of a learning a parameter on
per-patch basis that is unique to that patch in the image. Taking all
of the training images into account, what is unique to each patch is
its position in the image.

class PatchEmbeddingGenerator(nn.Module):

def __init__(self, vis_xformer, embedding_size):

super(visTransformer.PatchEmbeddingGenerator, self).__init__()

self.num_patches_in_image = vis_xformer.num_patches_in_image

self.patch_dimen = vis_xformer.patch_dimen ## (num of pixels in patch) * 3 for color

self.embedding_size = embedding_size

self.embed = nn.Linear(self.patch_dimen, embedding_size) ## (1)

self.positional_encodings = nn.Parameter(torch.randn((1,

self.num_patches_in_image, self.embedding_size))) ## (2)

def forward(self, x):

x = x.reshape(x.shape[0], -1, self.patch_dimen).cuda() ## (3)

patch_embeddings = self.embed(x) ## (4)

position_coded_embeddings = patch_embeddings + self.positional_encodings ## (5)

return position_coded_embeddings
Purdue University 96

The Vision Transformer Class visTransformer

The Vision Transformer Examples in the ExamplesTransformer Directory

You will find the following scripts in the ExamplesTransformers of
DLStudio:

image_recog_with_visTransformer.py

test_checkpoint_for_visTransformer.py

When you run the first script, it outputs checkpoints every 10 epochs
(by default). As the first is continuing to train further, you can test
the quality of the model learned in a checkpoint by executing the
second script. See the doc section of the second script for to specify a
particular checkpoint.

Without any hyperparameter tuning, shown below are some results on
the testing-portion of the CIFAR-10 dataset:
Displaying the confusion matrix:

plane car bird cat deer dog frog horse ship truck

plane: 65.63 1.60 3.41 3.71 2.91 1.90 2.40 1.20 13.23 4.01
car: 4.80 60.46 0.30 4.70 1.30 2.20 1.40 0.80 10.31 13.71

bird: 8.81 0.50 38.34 14.21 15.12 7.51 7.91 3.90 2.60 1.10
cat: 2.51 0.90 5.92 51.05 7.22 15.75 10.23 2.81 1.71 1.91

deer: 3.70 0.20 7.80 10.40 53.50 6.20 10.20 3.80 2.70 1.50
dog: 1.81 0.30 6.02 29.29 6.42 44.53 6.42 2.91 1.50 0.80

frog: 1.40 0.70 5.00 12.70 7.90 4.10 65.40 0.70 1.10 1.00
horse: 4.11 1.00 2.71 12.34 9.93 11.74 2.81 52.26 1.00 2.11
ship: 7.82 3.41 1.40 3.71 2.71 1.91 1.00 0.90 72.92 4.21

truck: 5.10 11.50 0.70 7.00 2.00 3.60 2.40 2.30 7.50 57.90
Purdue University 97

The Vision Transformer Class visTransformer

Training Loss on the CIFAR-10 Dataset Over 40
Epochs

Purdue University 98

Using QKV Modeling for Inter-Pixel Attention

Outline

1 The Basic Idea of Dot-Product Attention 11

2 Multi-Headed Attention 20

3 Implementation of Attention in DLStudio’s Transformers 24

4 The Encoder-Decoder Architecture of a Transformer 30

5 The Master Encoder Class 36

6 The Basic Encoder Class 38

7 Cross Attention 41

8 The Basic Decoder Class 47

9 The Master Decoder Class 50

10 Positional Encoding for the Words 54

11 TransformerFG and TransformerPreLN Classes in DLStudio 59

12 Regarding the Difficulty of Training a Transformer Network 64

13 Results on the English-Spanish Dataset 70

14 Transformers with Generative Pre-Training (GPT) 81

15 The Vision Transformer Class visTransformer 85

16 Using QKV Modeling for Inter-Pixel Attention 99

Purdue University 99

Using QKV Modeling for Inter-Pixel Attention

QKV for Inter-Pixel Attention

I am now going to revisit DLStudio’s GenerativeDiffusion module — more
specifically, the AttentionBlock inner class in that module. Although the
Attention there is also based on the QKV concept as explained in this
lecture, there are significant (and very interesting differences) between
the implementation of the concept you have seen so far in this lecture
and how the same concept is made to work for the case of diffusion.

As you have seen in this lecture, the notion of the embedding vector
representation of the basic units of the input data plays a
fundamental role in the original formulation of Attention. [As you have seen
already, Single-Headed Attention consists of learning from the embedding vector for each input unit (such as a word
or a patch) a Query vector Q, a Key vector K , and a Value vector V . The QKV vectors for the different input units
interact through dot-products for each input unit to figure out how it should attend to the other input units. And
that’s what’s referred to as the Attention mechanism. Multi-headed attention does the same thing but by first
segmenting the embedding vectors into P segments where P is the number of Attention Heads. Subsequently, the
QKV attention is calculated for each segment in exactly the same manner as for Single-headed attention.]

The same notion is used in UNetModel in GenerativeDiffusion for
inter-pixel attention at a couple of different levels in the UNet.

Purdue University 100

Using QKV Modeling for Inter-Pixel Attention

QKV for Inter-Pixel Attention (contd.)

As you would expect, the data that is input into the UNet is of shape
(B,C ,H,W). For calculating the inter-pixel attention, for each pixel
in the H ×W array, we consider the C floating-point values along the
channel axis as the embedding vector representation of that pixel.

Subsequently, (1) We first flatten the H ×W array of pixels into a
1-dimensional pixel array — just to make it easier to write the
dot-product code later. (2) We use a 1-dimensional convolution on
the 1-dimensional array of pixels to convert the C channels associated
with each pixel into a 3 ∗ C channels.

Since the channel axis is used as the embedding vector at each pixel,
increasing the number of channels gives us more latitude in dividing
the channel axis into portions reserved for Q, K , and V .

The next slide mentions a very interesting computationally efficient
way of implementing Vaswani attention for the inter-pixel case.

Purdue University 101

Using QKV Modeling for Inter-Pixel Attention

QKV for Inter-Pixel Attention (contd.)

An interesting difference between the formulation of Attention as in
Vaswani et al. and the same mechanism for inter-pixel attention as
implemented below is the absence of the matrices that multiply the
embedding vectors for the calculation of Q, K , and V .

In the implementation code you will see in the GenerativeDiffusion

class, the Q, K , V matrices are incorporated implicitly in the matrix
operator used for the 1-dimensional convolution carried out by the
self.qkv operator that is declared in the constructor of the
AttentionBlock class there.

It is the self.qkv operator declared there that increases the the
number of output channels from C to 3 ∗ C . Since, under the hood, a
convolution in PyTorch is implemented with a matrix-vector product
(as explained in my Week 8 slides), we can conceive of the matrix
being segmented along its row-axis into three different parts, one that
outputs the Q vector, the second that outputs the K vector, and
third that output the V vector.Purdue University 102

	The Basic Idea of Dot-Product Attention
	Multi-Headed Attention
	Implementation of Attention in DLStudio's Transformers
	The Encoder-Decoder Architecture of a Transformer
	The Master Encoder Class
	The Basic Encoder Class
	Cross Attention
	The Basic Decoder Class
	The Master Decoder Class
	Positional Encoding for the Words
	TransformerFG and TransformerPreLN Classes in DLStudio
	Regarding the Difficulty of Training a Transformer Network
	Results on the English-Spanish Dataset
	Transformers with Generative Pre-Training (GPT)
	The Vision Transformer Class visTransformer
	Using QKV Modeling for Inter-Pixel Attention

