A First Introduction to Torch.nn for Designing Deep Networks and to DLStudio for Experimenting with Them

Lecture Notes on Deep Learning

Avi Kak and Charles Bouman

Purdue University

Monday 30th January, 2023 18:46

©2023 A. C. Kak, Purdue University
The `torch.nn` module in PyTorch automates away for us several aspects of PyTorch programming.

As you already know from my Week 3 presentation, Autograd for automatic differentiation plays a central role in what PyTorch does. Ordinarily, in order to take advantage of Autograd, you must tell the system as to which tensors must be subject to the calculation of the partial derivatives by setting their `requires_grad` attribute to `True`. (For example, see the code on the slides 95 and 96 of my Week 3 presentation where you’ll see a “manual” configuration of a neural network with two linear layers, one denoted by the matrix w_1 and the other by the matrix w_2. Note the `requires_grad` property of the learnable parameters in those two layers being set to `True` in Lines 7 and 8.) However, with the container classes of the `torch.nn` module, you can move up a notch on the level of automation used. The container classes can figure out on their own as to which tensors should be subject to automatic differentiation.

The `torch.nn` module is best appreciated through actual demonstrations of the code examples that use this module. This lecture includes such in-class demos.
A second objective of this lecture is to introduce you to my Python module DLStudio.

With regard to the objective mentioned above, my main goal for creating DLStudio was for it to serve as a framework that would make it easier to experiment with different networks, different training and testing protocols, and different ways for a user to interact with a network.

DLStudio incorporates different aspects of Deep Learning in two different ways: as inner classes of the main class file, which, as you would guess, is named DLStudio, and as co-classes of the main class file.

An inner class typically resides within the body of the main class; that would be within the body of the DLStudio class in our case.

On the other hand, a co-class resides at the same level of abstraction as the main class, which in our case is the DLStudio class. From the standpoint of overall code organization, a co-class is placed in a separate directory at the same level in the overall directory structure of a module as the main class.

The inner classes are meant to serve as stepping stones to the more advanced topics addressed by the co-classes.
The topics addressed specifically by the inner classes can be considered to be generic — in the sense that the code presented gives you a most basic sense of how one solves a problem in deep learning.

The inner classes show what may be construed as the most basic solutions for problems such as object detection and localization, semantic segmentation, text classification, etc.

The inner classes also address basic architectural issues such as the skip connections that have become vitally important to how neural networks are designed today for real-world problems.

To learn from these inner classes, the best thing that a user can do is to play with the scripts in the Examples directory of the main distribution. That directory contains scripts for exercising the code in all of the inner classes of the main DLStudio class. **Go to the Examples directory, open up the script you are interested in in one of the windows of your computer, while you execute the script in another window. Next, make changes to the script and see what that does to the results.**
What facilitates learning in the manner described at the bottom of the previous slide is that DLStudio comes with its training datasets that, unfortunately, you have to download and install separately from the main DLStudio webpage. Your first experiments with the scripts in the Examples directory will be with these datasets. Subsequently, if you get a chance, you should try the same experiments with your own datasets.

The datasets that I supply consist of synthetically generated small sized images that should allow you to do most of your work with just a CPU in one of the more modern laptops. You will typically be working with images of size 64×64. These datasets are meant to serve as stepping stones to working with the real-world datasets.

That brings me to the co-classes of DLStudio.

Here are the four co-classes in the version 2.2.2 of DLStudio: (1) \textbf{AdversarialLearning} for experimenting with adversarial learning; (2) \textbf{Seq2SeqLearning} for sequence-to-sequence learning as in automatic translation; (3) \textbf{DataPrediction} for making prediction from time-series data; and (4) \textbf{Transformers} for illustrating the basic architectural principles of purely attentional networks.
The focus of the **AdversarialLearning** co-class is solely on neural-network based probabilistic modeling of a given training dataset. A model thus learned can subsequently be used to create new instances that look surprisingly similar to those in the training dataset. This is what is referred to as “deep fakes” in the popular media.

The **Seq2SeqLearning** co-class is for demonstrating the concepts of sequence-to-sequence learning as needed for, say, automatic translation from one language to another. This implementation of seq2seq learning is based on using recurrence to model the sentences in the source and target languages and in using attention to learn how to map the source language sentences to target language sentences. I have used English-to-Spanish translation for the demonstrations.

The **DataPrediction** co-class is meant specifically for demonstrating what it takes to make predictions using time-series data. While the data prediction problem has much in common with the sequence-to-sequence learning problem, there are also significant differences between the two problems. The differences relate to data normalization, data chunking, datetime conditioning, etc.
Finally, the Transformers co-class is meant to convey the basic concepts in purely attention-based networks, that is, networks with no convolutions or recurrence. Unfortunately, such network are very difficult to train and the successful examples in the literature can all be characterized as “Big Data, Big Model, Big Hardware (BdBmBh)”. That is, they are based on using large models that are trained on humongously large training datasets using industrial-strength hardware (that is, hardware with multiple high-performance GPUs). Such examples are not the best to use in an educational setting — especially if your teaching philosophy calls for the students to create their own networks.

What you will see in my co-class Transformers is an attempt to swim against the current. It is an implementation that you could run on a GPU in a university laboratory. The examples scripts based on the code in the Transformers co-class show results on an English-to-Spanish dataset.

Each of the four co-classes comes with its own examples directory with names like ExamplesTransformers, ExamplesDataPrediction, etc. As with the inner classes, go into these examples directories and start experimenting with the scripts presented there if you want to learn how to experiment with the co-classes.
Possible Levels of Automation in DL Programming

You could say that there exist three levels of automation in DL programming:

1. At the lowest level, you manually construct each layer and also manually declare the interfaces between the successive layers. [The one-neuron and multi-neuron networks implemented in the ComputationalGraphPrimer that you used for Homework 3 are examples of manually constructed networks.]

2. You declare the different components of your network architecture in the constructor of a network class and, subsequently, in a method of the class, through explicit declarations you specify the order in which the data is supposed to flow through the different components. [The torch.nn based network you used in your Homework 3 solution would be an example such a network.]

3. You eliminate the need for a separate declarations of the components and the order in which the data is supposed to flow through them by using a special container that figures out the order just on the basis of the sequence in which you placed the components in the container.
To Elaborate on the Highest Level of Automation

- In the context of DL programming, at its highest level of automation, a container class is something in which you drop each layer of your network, without explicitly declaring the layer-to-layer interconnections. The container then makes two assumptions:
 - The information will flow through the network in the order that is determined by the sequence of the layers you placed in the container.
 - And, that you did not make any errors in the sizes of input/output parameter tensors associated with the different layers.

- This represents the highest level automation — in the sense that you are saved from having to explicitly declare the learnable parameters that would correspond to the interconnections between the layers.

- With torch.nn, you achieve this level of automation with the Sequential container.
About the Possible Levels of Automation

- Of the three levels of automation listed on Slide 10, obviously, only the 2nd and the 3rd automation levels mentioned could be considered to be automated approaches to network construction. And `torch.nn` allows for both possibilities.

- Despite the fact that `torch.nn` makes it easy to write your code at the highest level of automation, *that does not make obsolete the practice of creating networks manually or through the second option on the previous slide.*

- Many aspects of education, research, and development with neural networks require manually created networks or those that are created with the second approach.
The Module Class in torch.nn

- As you can see in the documentation page at https://pytorch.org/docs/stable/nn.html, practically all of the structures in torch.nn are derived from the class torch.nn.Module.

- Here is a typical example (from the doc page) of how you create a network using torch.nn:

  ```python
  import torch.nn as nn
  import torch.nn.functional as F

  class Model(nn.Module):
      def __init__(self):
          super(Model, self).__init__()
          self.conv1 = nn.Conv2d(1, 20, 5)
          self.conv2 = nn.Conv2d(20, 20, 5)
      def forward(self, x):
          x = F.relu(self.conv1(x))
          return F.relu(self.conv2(x))
  ```

- As the example shows, you declare the individual layers of your network in the constructor initialization code of your own class. Subsequently, it is your declarations in the `forward()` method of this class that tell the system how to route the data through the network.
Introducing `torch.nn.Sequential`
Introducing torch.nn.Sequential

The Container Class torch.nn.Sequential

Here is the documentation page for this class:

class torch.nn.Sequential(*args: Module)

A sequential container. Modules will be added to it in the order they are passed in the constructor. Alternatively, an ordered dict of modules can also be passed in.

To make it easier to understand, here are a couple of small examples:

Example of using Sequential
model = nn.Sequential(
 nn.Conv2d(1,20,5),
 nn.ReLU(),
 nn.Conv2d(20,64,5),
 nn.ReLU()
)

Example of using Sequential with OrderedDict
model = nn.Sequential(OrderedDict(
 [('conv1', nn.Conv2d(1,20,5)),
 ('relu1', nn.ReLU()),
 ('conv2', nn.Conv2d(20,64,5)),
 ('relu2', nn.ReLU())
]))
A More Elaborate `torch.nn.Sequential` Example

What follows is a more elaborate example of the use of the `torch.nn.Sequential` container. This code is a part of the code library at https://github.com/Zhenye-Na/blog

Just to see if my general-purpose DLStudio platform would work with Zhenye’s code, I simply copy-and-pasted the code shown below in an inner class of the DLStudio main class:

```python
class Net(nn.Module):
    def __init__(self):
        super(DLStudio.ExperimentsWithSequential.Net, self).__init__()
        self.conv_seqn = nn.Sequential(
            # Conv Layer block 1:
            nn.Conv2d(in_channels=3, out_channels=32, kernel_size=3, padding=1),
            nn.BatchNorm2d(32),
            nn.ReLU(inplace=True),
            nn.Conv2d(in_channels=32, out_channels=64, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=2, stride=2),
            # Conv Layer block 2:
            nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, padding=1),
            nn.BatchNorm2d(128),
            nn.ReLU(inplace=True),
            nn.Conv2d(in_channels=128, out_channels=128, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(in_channels=128, out_channels=128, kernel_size=3, padding=1),
        )
```

Continued on the next slide
Introducing `torch.nn.Sequential`

... continued from the previous slide

```python
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Dropout2d(p=0.05),
# Conv Layer block 3:
nn.Conv2d(in_channels=128, out_channels=256, kernel_size=3, padding=1),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
)
self.fc_seqn = nn.Sequential(
    nn.Dropout(p=0.1),
n    nn.Linear(4096, 1024),
n    nn.ReLU(inplace=True),
n    nn.Linear(1024, 512),
n    nn.ReLU(inplace=True),
n    nn.Dropout(p=0.1),
n    nn.Linear(512, 10)
)
def forward(self, x):
    x = self.conv_seqn(x)
    # flatten
    x = x.view(x.size(0), -1)
    x = self.fc_seqn(x)
    return x
```

- One of the demos I am planning to give in class is based on executing the code shown above on the CIFAR dataset.
Introducing DLStudio

Outline

1. Levels of Automation Made Possible by Torch.nn 9
2. Introducing torch.nn.Sequential 14
3. Introducing DLStudio 18
4. Inner Classes of DLStudio 22
5. DLStudio’s Co-Classes 25
6. Examples Directories for the Main DLStudio Class and Its Co-Classes 37
7. DLStudio Datasets for Deep Learning 44
The idea of DLStudio is to offer an integrated software platform for teaching (and learning) a wide range of basic architectural aspects of deep-learning neural networks.

But why create a separate platform?

Most instructors who teach deep learning ask their students to download the so-called famous networks from, say, GitHub and become familiar with them by running them on the datasets used by the authors of those networks. This approach is akin to teaching automobile engineering by asking the students to take the high-powered cars of the day out for a test drive and to become familiar with their handling.

In my opinion, this rather commonly used approach does not work for instilling in the student a deep understanding of the issues related to network architectures.
Introducing DLStudio

Intro to DLStudio (contd.)

DLStudio offers its own implementations for a variety of key elements of neural network architectures. These implementations, along with their explanations through detailed slides at our Deep Learning class website at Purdue, result in an educational framework that is much more efficient in what it can deliver within the time constraints of a single semester.

DLStudio facilitates learning through a combination of inner classes of the main module class — called DLStudio naturally — and several co-classes of the main class.

For the most part, the common code that you’d need in different scenarios for using neural networks has been placed inside the definition of the main DLStudio class in a file named DLStudio.py in the distribution. That makes more compact the definition of the other inner classes within DLStudio. And, to a certain extent, that also results in a bit more compact code in the co-classes of DLStudio.
The inner-classes and the co-classes listed in the next two sections of this lecture are meant to give you a well-rounded exposure to the following fundamental architectural elements of deep-learning networks:

1. Linear Layers
2. Convolutional Layers
3. Recurrent Layers
4. Attention Layers

DLStudio will also expose you to higher-level architectural organizations of the elements listed above in different kinds of Encoder-Decoder networks.

And, in addition to the above, DLStudio would make you thoroughly aware of some fundamental problems in neural learning that are caused by vanishing or exploding gradients and how one mitigates against them with skip connections between the layers.
Outline

1. Levels of Automation Made Possible by Torch.nn 9
2. Introducing `torch.nn.Sequential` 14
3. Introducing DLStudio 18
4. **Inner Classes of DLStudio** 22
5. DLStudio’s Co-Classes 25
6. Examples Directories for the Main DLStudio Class and Its Co-Classes 37
7. DLStudio Datasets for Deep Learning 44
The Inner Classes of DLStudio

Each inner class is designed to illustrate either a fundamental aspect of neural learning or something that is foundational to an application based on neural learning. These are listed below:

For Experimenting with Skip Connections: Deep networks suffer from the problem of vanishing gradients that degrades their performance. The SkipConnections inner class allows you to experiment with different mitigation strategies for addressing this problem.

For Experimenting with Object Detection and Localization: You can experiment with networks for object detection and localization using the inner class DetectAndLocalize. In addition to classification, such networks must also localize them. The localization part requires regression for the coordinates of the bounding box that localize the object.
For Experimenting with Semantic Segmentation: DLStudio comes with the inner class `SemanticSegmentation` for experimenting with semantic segmentation. Given a scene with multiple objects in it, the purpose of semantic segmentation is to assign correct labels to the pixels in the image, while, at the same time, grouping the pixels together that belong to the same object.

For Experimenting with Text Classification:

You can use the inner class `TextClassification` to experiment with recurrent neural networks (RNN) for analyzing user-feedback text for sentiment analysis.
Outline

1 Levels of Automation Made Possible by Torch.nn 9
2 Introducing torch.nn.Sequential 14
3 Introducing DLStudio 18
4 Inner Classes of DLStudio 22
5 DLStudio’s Co-Classes 25
6 Examples Directories for the Main DLStudio Class and Its Co-Classes 37
7 DLStudio Datasets for Deep Learning 44
Co-Class on Adversarial Learning

More than anything else, it is what can be accomplished with Adversarial Learning that has fired up popular imagination about the powers of AI. People are fascinated and terrified by the deep-fakes that can be produced with deep learning algorithms. If a neural network can transform a pure noise vector into the likeness of a particular human face, is there anything it cannot do? — that’s what people wonder.

The purpose of the AdversarialLearning co-class is to simply teach you the basic architectural principles that underlie the design of networks that can generate the so-called deep fakes.

The two basic components of such networks are the Generator, whose job is transform a pure noise vector (also known as a latent vector) into an image that looks like those in the training dataset, and the Discriminator (also called Critic) whose job is to keep on getting better at recognizing the training images as the training proceeds but, at the same time, to disbelieve whatever the Generator is producing at its output.
For classroom instruction and demonstration, I’ll be using images not as complex as, say, the face images — since my goal in this class is that you should be able to run my demos on ordinary hardware (as opposed to industrial strength hardware).

Shown below is a comparison of a batch of real images on the left and a batch of fake images on the right.

At the end of 30 epochs of training, shown at left is a batch of real images and, at right, the images produced by the Generator from noise vectors.

The following animated GIF shows how the Generator’s output evolves over 30 epochs using the same set of noise vectors.
Co-Class on Sequence-to-Sequence Learning

- Although, in the world of research, the excitement has shifted from recurrence-based sequence-to-sequence learning to using purely attention-based networks (known as Transformers), it is still important to learn the old-style recurrence based methods. [Just because airplanes are much faster than, say, automobiles, it does not mean that automobiles have ceased to be important.]

- Recurrence for Seq2Seq learning means using a neural network with feedback. When you scan a sequence of data, one element at a time, with such a network, the output of the neural network for each input element creates a context for processing the next element.

- In language translation, recurrence allows for each word to be understood in the context of all the words seen previously. And with a bidirectional scan of a sentence, such contexts can be incorporated in both directions.

- A concept that is central to using recurrence is the notion of hidden state. More on that on the next slide.
After you have finished scanning a sequence of data, the hidden state is a compact representation of the entire sequence. In language translation using recurrence, the goal would be to use the hidden state for a source-language sentence to generate its translation in the target language. During training, you would produce a target sentence, again one word at a time, starting with the final hidden state for the source sentence and the evolving hidden state for the target sentence as it is produced one word at a time again through recurrence.

In the more modern versions of the above, the evolving hidden state in the forward scan of a source language sentence is combined with the the same for the backward scan to generate what are known as the hidden units that are then put to use during translation.

Shown on the next slide is an example of a translation produced by the Seq2SeqLearning co-class of DLStudio.
An Example Result with the Seq2Seq Network You’ll See in Week 13

Original sentence in English: SOS they live near the school EOS
Spanish Translation in the "manythings" Corpus: SOS viven cerca del colegio EOS
Translation Generated by the seq2seq network: SOS viven cerca de la escuela EOS

Comment: Easy case. Seq2Seq translation is excellent. "Colegio" and "escuela" are generally considered to be synonyms, although in some Spanish speaking countries one may stand for the elementary school and the other for the high school.

Attention depiction:
Co-Class on Time-Series Data Prediction

- Predicting the next value in a time-series sequence is of great importance in many applications including weather forecasting, investing in stocks and bonds, balancing electrical power grids, and so on.

- It would seem that time-series data prediction has much in common with the sort of sequence-based learning one needs for language translation, text classification, etc. *As it turns out, that’s only partly true.*

- Time-series data prediction presents some unique challenges from the standpoint of machine learning: (1) Datetime conditioning; (2) Data chunking; and (3) Data normalization.

- Regarding *datetime conditioning*, each data entry in a data file is typically time-stamped with date-time string following by the actual value of the datum at that datetime.
The DataPrediction Co-Class (contd.)

- In other words, a data file is likely to consist of a continuously running timestamp in one column and the corresponding data observations in a second column. Let’s now say that the data you are observing is such that the time of the day, the day of the week, the week in a month, the month in a year, etc., strongly influence the data. To account for such multi-dimensional effects, the predictor that you are designing will also have to learn a multi-dimensional encoding of what’s initially a one-dimensional representation of time.

- **Data chunking** refers to the fact that, unlike natural language sentences, time-series data has no particular end. Collecting the data can be a continuous process that can go on and on indefinitely with no particular punctuations. From a machine-learning perspective, that raises the issue how to best segment the data for training a next-value predictor? Additionally, should the data segments be formed on a running basis or on a non-overlapping basis?
Finally, the issue of data normalization in the context of data prediction refers to the fact that any data scaling and other transformations you carry out on the time-series observation in order to make them suitable for neural-network based processing must be remembered so that you reverse-apply them to the predictions coming out of the network.

In my Week 12 lecture, I’ll demonstrate a data prediction network based on the DataPrediction co-class and show the results obtained with it on the Kaggle electrical utility power-load dataset that was collected over a span of over 10 years.

Shown on the next slide are some sample prediction results on the unseen test data portion of the overall dataset: The vertical axis for the “Hourly Energy Consumption” in Megawatts and the horizontal axis the hourly tick marks. The curve passing through the small green dots represents the predicted value at that hour based on the N prior data observations with N set to 90.
Shown below are the prediction results produced by the time-series data prediction network I’ll be presenting in my Week 12 lecture.

As stated earlier, these prediction results are on the unseen test dataset, meaning that this data played no role in training the prediction network. Each prediction represented by a green dot was made on the basis of 90 preceding values in the test dataset. The ground-truth is shown by the continuous curve in the same plots.
The main purpose of the co-class *Transformers* is to teach the fundamental notions of *self-attention* and *cross-attention*.

What makes this co-class special — if you don’t mind my referring to my own code in that manner — is the conventional wisdom related to this topic in DL: “*That it is extremely difficult to train a small enough Transformer based model that would fit in the memory of a typical lab-based GPU and do so with a dataset that is not, say, all of Wikipedia.* As I have mentioned in the Preamble, all of the successful examples of Transformers in the literature are best described as BdBmBh examples where the acronym stands for “Big Data, Big Model, Big Hardware”.

What you will see in my Transformers co-class is an excercise in seq2seq learning, of the same sort as illustrated by the Seq2SeqLearning co-class, but with no recurrences and no convolutions.
The code in Transformers (note the terminating “s”) contains the two slightly different classes, one called **TransformerFG** and the other called **TransformerPreLN**. The suffix “FG” stands for “First Generation” and the suffix “PreLN” stands for “Pre Layer Norm”. Since some people in the research community claim that they get superior results with the latter, you need to know about it.

The “FG” implementation of transformers is the same as proposed originally in the now seminal paper by Vaswani et al. “Attention is All You Need”. However, the architecture parameters are different in order to create smaller models. And the “PreLN” version incorporates the modifications proposed by Xiong et al.

You should feel free to compare the result produced by either of the transformer based implementations with those produced by the Seq2SeqLearning based implementation.
Outline

1. Levels of Automation Made Possible by Torch.nn 9
2. Introducing torch.nn.Sequential 14
3. Introducing DLStudio 18
4. Inner Classes of DLStudio 22
5. DLStudio’s Co-Classes 25
6. Examples Directories for the Main DLStudio Class and Its Co-Classes 37
7. DLStudio Datasets for Deep Learning 44
Examples Directory for the Main DLStudio Class

The Examples subdirectory in the DLStudio distribution contains the following scripts based on the code in the main DLStudio class:

playing_with_reconfig.py Shows how you can specify a convolution network with a configuration string. The DLStudio module parses the string constructs the network.

playing_with_sequential.py Shows you how you can call on a custom inner class of the 'DLStudio' module that is meant to experiment with your own network. The name of the inner class in this example script is ExperimentsWithSequential.

playing_with_cifar10.py This is similar to the previous example script but is based on the inner class ExperimentsWithCIFAR that uses more common examples of networks for playing with the CIFAR-10 dataset.

playing_with_skip_connections.py This script illustrates how to use the inner class BMEnet of the module for experimenting with skip connections in a CNN. The constructor of the BMEnet class comes with two options: “skip_connections” and “depth”. By turning the first on and off, you can see the improvement you can get with skip connections. And by giving an appropriate value to the ”depth” option, you can see the results for networks of different depths.

custom_data_loading.py This script shows how to use the custom dataloader in the inner class CustomDataLoading of the DLStudio module. That custom dataloader is meant specifically for the PurdueShapes5 dataset that is used in object detection and localization experiments in DLStudio.

object_detection_and_localization.py This script shows how you can use the functionality provided by the inner class DetectAndLocalize of the DLStudio module for experimenting with object detection and localization. Detecting and localizing (D&L) objects in images is a more difficult problem than just classifying the objects. D&L requires that your CNN make two different types of inferences simultaneously, one for classification and the other for localization. For the localization part, the CNN must carry out what is known as regression.
Examples Directory (contd.)

noisy_object_detection_and_localization.py This script in the Examples directory is exactly the same as the previous one, the only difference is that it calls on the noise-corrupted training and testing dataset files.

semantic_segmentation.py This script is based on my mUnet neural network for semantic segmentation of images. The mUnet network assigns an output channel to each different type of object that you wish to segment out from an image.

text_classification_with(TEXTnet.py This script is your first introduction to recurrent neural networks, meaning neural-networks with feedback. This particular example is for text classification.

text_classification_with(TEXTnet_word2vec.py Instead of using one-hot vectors for representing the words in the previous script, this script uses pre-trained word2vec embeddings.

text_classification_with(TEXTnetOrder2.py This script uses a “poor man’s solution” to “gated recurrence” that you need for dealing with the problem of vanishing gradients in RNN.

text_classification_with(TEXTnetOrder2_word2vec.py This script uses the same network as the previous script, but now we use the word2vec embeddings for representing the words.

text_classification_with(GRU.py This script demonstrates how one can use a GRU (Gated Recurrent Unit) to remediate one of the main problems associated with recurrence – vanishing gradients in the long chains of dependencies created by feedback.

text_classification_with(GRU_word2vec.py While this script uses the same learning network as the previous one, the words are now represented by fixed-sized word2vec embeddings.
Examples Adversarial Learning Directory

The Examples Adversarial Learning subdirectory in the DLStudio distribution contains the following scripts based on the code in the Adversarial Learning co-class:

- **dcgan DG1.py**: Demonstrates the DCGAN logic for probabilistic data modeling. Uses the PurdueShapes5GAN dataset for the demonstration.

- **dcgan DG2.py**: Shows the sensitivity of the basic DCGAN logic to any variations in the network or in how the weights are initialized.

- **wgan CG1.py**: This script is a demonstration of using the Wasserstein distance for data modeling through adversarial learning. The fourth script adds a Gradient Penalty term to the Wasserstein Distance based logic of the third script. The PurdueShapes5GAN dataset consists of 64x64 images with randomly shaped, randomly positioned, and randomly colored shapes.

- **wgan with gp CG2.py**: This script adds a Gradient Penalty term to the Wasserstein Distance based logic of the third script. The PurdueShapes5GAN dataset consists of 64 × 64 images with randomly shaped, randomly positioned, and randomly colored shapes.
Examples Seq2Seq Learning Directory

The Examples Seq2Seq Learning subdirectory in the DLStudio distribution contains the following scripts based on the code in the Seq2Seq Learning co-class:

seq2seq_with_learnable_embeddings.py This script demonstrates the basic PyTorch structures and idioms to use for seq2seq learning. The application example addressed in the script is English-to-Spanish translation. And the attention mechanism used for seq2seq is the one proposed by Bahdanau, Cho, and Bengio. This network used in this example calls on the nn.Embeddings layer in the encoder to learn the embeddings for the words in the source language and a similar layer in the decoder to learn the embeddings to use for the target language.

seq2seq_with_pretrained_embeddings.py This script, also for seq2seq learning, differs from the previous one in only one respect: it uses Google’s word2vec embeddings for representing the words in the source-language sentences (English). As to why I have not used at this time the pre-trained embeddings for the target language is explained in the main comment doc associated with the class Seq2SeqWithPretrainedEmbeddings.
ExamplesDataPrediction Directory

The ExamplesDataPrediction subdirectory in the DLStudio distribution contains the following demo script based on the code in the DataPrediction co-class:

```
power_load_prediction_with_pmGRU.py
```

For making predictions from time-series data, this script uses a subset of the dataset provided by Kaggle for one of their machine learning competitions. The dataset consists of over 10-years worth of hourly electric load recordings made available by several utilities in the east and the midwest of the United States.
Examples Transformers Directory

The Examples Transformers subdirectory in the DLStudio distribution contains the following two demo scripts based on the code in the Transformers co-class:

`seq2seq_with_transformerFG.py` This script is for experimenting with the code in the Transformers co-class of the DLStudio module. The goal here is to carry out English-to-Spanish translation in a manner similar to what’s demonstrated by the code in the Seq2SeqLearning co-class but without using recurrences or convolutions.

`seq2seq_with_transformerPreLN.py` This example script seeks to do the same as the one mentioned above, but with my other implementation of transformers — this one is based on the TransformerPreLN inner class of the Transformers class. In TransformerPreLN, LayerNorm is applied to the input to the self-attention layer and residual connection wraps around both. Similarly, LayerNorm is applied to the input to FFN and the residual connection wraps around both. Similar considerations applied to the decoder side, except we now also have a layer of cross-attention interposed between the self-attention and FFN.
Outline

1. Levels of Automation Made Possible by Torch.nn 9
2. Introducing torch.nn.Sequential 14
3. Introducing DLStudio 18
4. Inner Classes of DLStudio 22
5. DLStudio’s Co-Classes 25
6. Examples Directories for the Main DLStudio Class and Its Co-Classes 37
7. DLStudio Datasets for Deep Learning 44
DLStudio’s Image Datasets for Deep Learning

- DLStudio comes with multiple small-sized training and testing image datasets for experimenting with its inner classes and with the co-classes.

- The images for object detection and localization work are 32×32 and the images for semantic segmentation 64×64.

- As to the reason for small-sized images: I want the students to be able to experiment with the basic idioms of the programming needed for deep learning using their personal laptops that may only come with a rudimentary GPU if any at all.

- All of the datasets that you can use with the image-related inner classes are packaged in the following compressed tar archive:

 datasets_for_DLStudio.tar.gz
When you uncompress the archive mentioned at the bottom of the previous slide, you will gain access to the following PurdueShapes5 datasets:

- PurdueShapes5-10000-train.gz
- PurdueShapes5-1000-test.gz

 ## meant for object detection and localization

- PurdueShapes5-10000-train-noise-20.gz
- PurdueShapes5-1000-test-noise-20.gz

 ## meant for detection and localization under noisy conditions

 [there are two additional versions of the above dataset for different levels of noise, 50% and 80%]

- PurdueShapes5MultiObject-10000-train.gz
- PurdueShapes5MultiObject-1000-test.gz

 ## meant for semantic segmentation

The large integer you see in the name of each archive is the number of images it contains. So each of the training datasets mentioned above contains 10,000 training images and the corresponding testing dataset 1000 images.
DLStudio’s Dataset for Adversarial Learning

- DLStudio provides the following dataset archive for adversarial learning:

 datasets_for_AdversarialNetworks.tar.gz

- Unpacking the main adversarial learning archive mentioned above gives you access to the following more specific archive:

 PurdueShapes5GAN-20000.tar.gz

- The above mentioned archive consists of 20,000 images of size 64×64 for experimenting with the logic of adversarial learning.
For experimenting with text processing for, say, sentiment analysis, you would need to download the following archive:

text_datasets_for_DLStudio.tar.gz

Unpacking this archive will give you the following datasets:

- sentiment_dataset_train_40.tar.gz
- sentiment_dataset_test_40.tar.gz
 vocab_size = 17,001

- sentiment_dataset_train_200.tar.gz
- sentiment_dataset_test_200.tar.gz
 vocab_size = 43,285

- sentiment_dataset_train_400.tar.gz
- sentiment_dataset_test_400.tar.gz
 vocab_size = 64,350

I extracted these datasets from the publicly available Amazon user-feedback archive for the year 2007.

The integer number in the name of each dataset is the number of the positive and the number of the negative reviews I extracted from the Amazon archive. In general, the larger the number of reviews, the larger the vocabulary you have to contend with in your solution.
For sequence-to-sequence learning with DLStudio, you can download an English-Spanish translation corpus through the following archive:

en_es_corpus_for_seq2sq_learning_with_DLStudio.tar.gz

This data archive is a lightly curated version of the main dataset posted at http://www.manythings.org/anki/ by the folks at "tatoeba.org". My alterations to the original dataset consist mainly of expanding the contractions like "it’s", "I’m", "don’t", "didn’t", "you’ll", etc., into their "it is", "i am", "do not", "did not", "you will", etc. The original form of the dataset contains 417 such unique contractions. Another alteration I made to the original data archive is to surround each sentence in both English and Spanish by the "SOS" and "EOS" tokens, with the former standing for "Start of Sentence" and the latter for "End of Sentence".