
Reinforcement Learning: Incorporating Human
Preferences in the Fine-Tuning of Large

Language Models

Lecture Notes on Deep Learning

Avi Kak and Charles Bouman

Purdue University

Tuesday 23rd April, 2024 09:54

©2024 Avinash Kak, Purdue University

Purdue University 1

Preamble To TOC To HowTo

Reinforcement Learning as a research subject owes its origins to the study of
behaviorism in psychology. The behaviorists believe that, generally speaking, our
minds are shaped by the reward structures in a society. B. F. Skinner, a famous
American psychologist of the last century, is considered to be the high priest of
behaviorism.

Unfortunately for the behaviorists, their research was dealt a serious blow by
Noam Chomsky. Through his investigations in languages, Chomsky came to the
conclusion that the most fundamental structures in our minds are shaped by our
biology regardless of where we are born (implying that regardless of the reward
structures in a society).

In machine learning, reinforcement learning as a topic of investigation owes its
origins to the work of Andrew Barto and Richard Sutton at the University of
Massachusetts. Their 1998 book “Reinforcement Learning: An Introduction” (for
which a much more recent second-edition is now available on the web) is still a
go-to source document for this area.

The goal of this lecture is to give you an introduction to how to incorporate human

preferences in LLMs with Reinforcement Learning (RL).Purdue University 2

Preamble (contd.)

I suppose your first question is likely to be: What? Human preferences? Why?

Since LLM are trained on terabytes of textual data, it is highly likely that they
would pick up inappropriate information along the way.
[Just imagine an LLM that was trained unsupervised as all LLMs are. Along the lines of my Week 15 lecture, imagine that
the unsupervised training of this LLM was based on its ingesting pairs of textual sequences, with the second being a
continuation of the first. Obviously depending on the nature of the first sequence, it is entirely possible that the LLM would
pick up multiple possibilities for its continuation — with some using profanities and other forms of foul and possibly violent
language.]

What that implies is that, in general, you would need to sanitize the learned
model before its public release, or before having businesses build their applications
on top of the model.
[Sanitizing an LLM is made complex by the fact that what is appropriate in one cultural context many not be so in another.]

Sanitizing an LLM falls under the general category of how to incorporate the
more acceptable human preferences in a model.

While many aspects of how the AI-focused companies bring to bear normal
human preferences on their LLMs are not entirely clear, broadly speaking though,
it is generally believed that they use RL for the job.

Purdue University 3

Preamble (contd.)

In particular, the companies use an approach known as “Proximal Policy
Optimization Algorithms (PPO)” described in the following paper by Schulman et
al.: https://arxiv.org/pdf/1707.06347.pdf

PPO is an algorithm for iterative updating an RL agent’s policy (a policy is a mapping from

the states of the environment — LLM in our case — to the actions by the agent vis-a-vis the

environment) in a sufficiently conservative manner that ensures the stability of the model

updating process.

There is another algorithm also out there of very recent vintage for incorporating
human preferences in language models: the DPO algorithm (Direct Preference
Optimization) presented in following paper by Rafailov et el. It claims to get
about the same sort of results as the PPO approach but more simply and without
using RL:

https://arxiv.org/pdf/2305.18290.pdf

In order to understand the nuances of the PPO approach and to also understand
the DPO algorithm (since its authors justify DPO on the basis of how it performs
vis-a-vis PPO), you need to get to know the fundamental vocabulary of RL.
Purdue University 4

https://arxiv.org/pdf/1707.06347.pdf
https://arxiv.org/pdf/2305.18290.pdf

Preamble (contd.)

In this lecture, in order to balance the competing requirements of a good
presentation of the PPO algorithm and a good presentation of the fundamental
definitions of RL, I have given a higher priority to the former.

For that reason, the lecture begins with PPO.

However, the degree to which you will be able to understand the PPO material
depends on how comfortable you already are with the fundamental concepts of
RL. If you are not, the intro material that starts with Section 4 should be your
starting point before you start digging into PPO in the first three sections.

About the intro material that starts with Section 4, note that traditional
reinforcement learning has dealt with discrete state spaces. Consider, for example,
learning to play the game of tic-tac-toe. Each legal arrangement of X’s and O’s in
a 3× 3 grid constitutes a discrete state. One can show that there is a maximum
of 765 states in this case. (See the Wikipedia page on “Game Complexity”.)

What’s interesting is that the neural-network based formulations of RL can be
used to solve the learning problems even when the state spaces are continuous
and when a forced discretization of the state space would result in unacceptable
loss in learning efficiency.Purdue University 5

Preamble (contd.)

The intro material that starts with Section 4 first takes up what is known as
Q-Learning in RL. I’ll illustrate Q-Learning with a couple of implementations and
show how this type of learning can be carried out for discrete state spaces and
how, through a neural network, for continuous state spaces.

Toward the end of this lecture, I’ll review the concept of policy based methods for
RL. In particular, I’ll briefly go over an application of RL for improving the quality
of an e-commerce search engine with human feedback.

For a good understanding of the PPO material at the beginning of this lecture,
you need to have understood how the Policy Gradient methods work, as explained
at the end of lecture.

Purdue University 6

Preamble – How to Learn from These Slides

It is possible that your initial reaction to the order in which I have presented the
concepts in this lecture is going to be negative.

I have front-loaded the presentation with the concepts that dive immediately into
how you can use RL for incorporating human feedback in an LLM. A more natural
way would have been to push that material to the end of the lecture where it
actually belongs.

My reason was that is that RL is now being taught in more than one ML class at
Purdue and it is not uncommon for the students in my class to have had previous
exposure to RL. Such students would have been extremely bored by a revisit to
the basic definitions of RL before launching into what’s needed for LLM
fine-tuning.

Nevertheless, if you have had zero prior exposure to RL, I’d highly recommend

that you first make yourself familiar with the basic definitions on Slides 32

through 50 before tackling the material on Slides 9 through 31.

Purdue University 7

Outline

1 RLHF Notation 9

2 Modeling the Reward for Proximal Policy Optimization 17

3 Proximal Policy Optimization (PPO) 22

4 Back to the Basics: The Vocabulary of Reinforcement Learning 33

5 Modelling RL as a Markov Decision Process 39

6 Q-Learning 45

7 Solving the Cart-Pole Problem with Discrete States 52

8 Neural Networks for a Continuous State Space 68

9 From Value-Function Methods to Policy Based Methods 81

10 Policy Gradient Methods 85

Purdue University 8

RLHF Notation

Outline

1 RLHF Notation 9

2 Modeling the Reward for Proximal Policy Optimization 17

3 Proximal Policy Optimization (PPO) 22

4 Back to the Basics: The Vocabulary of Reinforcement Learning 33

5 Modelling RL as a Markov Decision Process 39

6 Q-Learning 45

7 Solving the Cart-Pole Problem with Discrete States 52

8 Neural Networks for a Continuous State Space 68

9 From Value-Function Methods to Policy Based Methods 81

10 Policy Gradient Methods 85

Purdue University 9

RLHF Notation

RLHF Notation

For explaining Reinforcement Learning for Human Feedback (RLHF),
I am going to use the notation I have seen in the publication
“Fine-Tuning Language Models from Human Preferences” by Ziegler et al.:

https://arxiv.org/pdf/1909.08593.pdf

I’ll use Σ to denote the tokenizer vocabulary and Σn to denote the set
of sequences of n tokens taken from the set Σ. Each token sequence
in Σn may be displayed as <c0, c1, . . . , cn−1> where ci ∈ Σ is a token.

Any exercise in language modeling through, say, unsupervised learning
will induce a probability distribution over the token sequences in Σn.
We will express these probabilities by ρ(c0, c1, . . . , cn−1).

That is ρ, when expressed as a function of the n arguments as shown,
is the joint probability of the individual tokens showing up in the order
indicated.

Purdue University 10

https://arxiv.org/pdf/1909.08593.pdf

RLHF Notation

RLHF Notation (contd.)

For Autoregressive Modeling of the language, the joint distribution
can be expressed as a product of the the marginals for each token in
the sequence subject to all the tokens previously seen.

ρ(c0, c1, . . . , cn−1) =

n−1∏
k=0

ρ(ck | c0, c1, . . . cn−1) (1)

We will now imagine a user interacting with the language model with
a collection of prompts that come from the set X = Σm of prompts.

A prompt will consist of a sequence of tokens with the proviso that the
number of tokens in a prompt be no longer than m. The notation Σm

merely says that the tokens are being drawn from the vocab Σ and
that the sequences formed are limited in length to m.

The set of all responses to the prompts will be denoted Y = Σn,
implying that the response to a prompt will be a sequence of n tokens.

Purdue University 11

RLHF Notation

RLHF Notation (contd.)

As an example of the difference between the sets X and Y, a prompt
x ∈ X could be an article of length up to 1000 tokens and the
response y ∈ Y could be a 100-token summary.

Let us now examine what the probability distribution ρ induced by
unsupervised learning has to say about the probabilistic relationship
between the prompts and their responses.

We could pose the following question to the learned language model:
Given a prompt sequence x and assume that we want the model to
return a meaningful token continuation of x in the form of a response
sequence xy, what is the probability ρ(xy) vis-a-vis the probability
ρ(x). The following conditional probability captures the ratio of the
two probabilities:

ρ(y|x) =
ρ(xy)

ρ(x)
(2)

Purdue University 12

RLHF Notation

RLHF Notation (contd.)

In principle, if we have access to the probability distribution ρ as
defined in Eq. (1) on Slide 11, we should be able to estimate both
the ρ(xy) and ρ(x) probabilities for the numerator and the
denominator in Eq. (2). So we should be able to assess the
appropriateness of a given y as a continuation of the prompt x.

As you will see later, the main idea in RL is to learn a policy, which,
in general, is a mapping from the different possible states of the
environment to the actions that an agent can take in order to learn
how to best get to a presumed goal vis-a-vis the environment.

Any action chosen by the agent will change the state of the
environment in a way that is beyond the understanding of the agent.

The environment is our case is the LLM and agent is the computer
algorithm whose job is to make small changes to the learnable weights
in the LLM so that the LLM returns the best possible responses to
the human-supplied prompts.Purdue University 13

RLHF Notation

RLHF Notation (contd.)

To continue the thought in the last bullet on the previous slide, the
algorithm needs to learn a policy that would tell the algorithm what
changes to make to the LLM after gauging its state.

In general, the optimum policy is discovered iteratively through an
attempt to maximize an estimate of the future expected rewards.

We can start this iterative discovery of the optimum policy by
assuming that the probability distribution ρ is itself (implicitly) a
policy for the start. So if we use π to denote the policy that is being
learned, we can set π = ρ initially.

That begs the question: How can ρ, meant to be a probabilistic
model of the language as learned during unsupervised pre-training,
serve as a policy that is meant to be a mapping from the states of the
LLM to the actions of the algorithm that is trying to improve the
performance of the LLM.

Purdue University 14

RLHF Notation

RLHF Notation (contd.)

Before I answer the question at the bottom of the previous slide, let’s
first get a notational fix on what exactly is meant by a reward.

We can formulate the reward as a mapping from the cross-product
space X× Y to the set R of real numbers. That is, r : X× Y → R.
We are obviously modeling a concatenation like xy, where x is a
prompt and y a continuation of the prompt, as a state of the
environment. The entity xy is an element of the cross-product space
X× Y.

We can now write the following formula for the Future Expected
Reward

Eπ[r] = Ex∈X,y∼ρ(y|x)[r(x, y)] (3)

Although this formula for the Expected Reward is cool to look at, it
does not directly help us incorporate human preferences in the LLM.

What we need next is a way to model the reward itself.
Purdue University 15

RLHF Notation

RLHF Notation (contd.)
In order to set us up for modeling the Future Expected Reward, let
me quickly review how the human input would be processed for
improving the LLM.

The human would query the LLM with a set of prompts and then, for
each prompt, the LLM would sample its distribution ρ, which is a
probabilistic model of the LLM, for a small set of responses. For
example, if x ∈ X is a prompt, the sampling of ρ might yield the
following four different responses {y1, y2, y3, y4}, with each yi ∈ Y.

Subsequently, the human would be asked to choose the preferred
response amongst the four returned by the LLM. Following Ziegler et
al., let’s use the notation b ∈ {1, 2, 3, 4} to denote the preferred
response yb.

We can package this interaction between the human and the LLM in
the form of sextuples like (x, y1, y2, y3, y4, b). The question now is: How
do we use these sextuples for constructing a model for the reward?

Purdue University 16

Modeling the Reward for Proximal Policy Optimization

Outline

1 RLHF Notation 9

2 Modeling the Reward for Proximal Policy Optimization 17

3 Proximal Policy Optimization (PPO) 22

4 Back to the Basics: The Vocabulary of Reinforcement Learning 33

5 Modelling RL as a Markov Decision Process 39

6 Q-Learning 45

7 Solving the Cart-Pole Problem with Discrete States 52

8 Neural Networks for a Continuous State Space 68

9 From Value-Function Methods to Policy Based Methods 81

10 Policy Gradient Methods 85

Purdue University 17

Modeling the Reward for Proximal Policy Optimization

Modeling the Reward for PPO

Following the discussion on Slide 15, modeling the reward means
estimating the mapping r : X×Y → R that reflects human preferences.
Let’s use the notation r(x, y) to represent this function.

To see how that can be done, let’s go back to the sextuples like
(x, y1, y2, y3, y4, b) defined on Slide 16.

As the reader will recall, the sextuple shown above means that for a
prompt x ∈ X, we sampled the probabilistic model ρ of the LLM to
receive the four different responses {y1, y2, y3, y4} , with each yi ∈ Y,
and that a human evaluator chose the response indexed
b ∈ {1, 2, 3, 4} as their preferred one.

Given a set of sextuples like (x, y1, y2, y3, y4, b) for the purpose of
modeling the reward, the issue we are now facing is how to set up a
criterion for estimating the optimum reward function r(x, y) that
would maximize the “weight” given to the human preferences as
expressed by the choice of the index b in each sextuple?Purdue University 18

Modeling the Reward for Proximal Policy Optimization

Modeling the Reward for PPO (contd.)

To see how we can set up a criterion along the lines mentioned at the
bottom of the previous slide, you have to first appreciate the fact that
for a given prompt x, the following four ratios will add up to 1.0
regardless of the precise form of the reward function r(x, y):

∑
bi∈{1,2,3,4}

er(x,ybi)∑
k∈{1,2,3,4} er(x,yk)

= 1.0 (4)

What that implies that the following ratio for the specific preference b
expressed by a human can be interpreted as the probability of that
choice vis-a-vis the other possible choices.

er(x,yb)∑
k e

r(x,yk)
(5)

For obvious reasons we would want the reward function r(x, y) to give
as large a value to this preference as possible — taking into account
the other preferences expressed by the same human or the others.

Purdue University 19

Modeling the Reward for Proximal Policy Optimization

Modeling the Reward for PPO (contd.)

On the strength of the claims made on the previous slide, we can
devise a loss whose minimization should yield the reward function we
are looking for.

Let’s assume that we have collected M number of sextuples
(x, y1, y2, y3, y4, b) that capture the human preferences we are going to
use to further fine-tune the LLM. Presumably, M is large.

Using these M sextuples, our goal is to find the reward function r(x, y)

that minimizes the reward modeling loss given by:

Loss = −
M∑
j=1

log
er(x,yb)∑
k e

r(x,yk)
(6)

Just to give you an idea of what sort of parameters were used by
Ziegler et el. to minimize this loss:

“... the reward model is trained using the Adam optimizer with the loss shown above.
The batch size is 8 for style tasks and 32 for summarization, and the learning rate is
1.77× 10−5 for both.” Also, the authors trained for “a single epoch to avoid overfitting
to the small amount of human data, and turned off dropout.”Purdue University 20

Modeling the Reward for Proximal Policy Optimization

Modeling the Reward for PPO (contd.)

Just to make it explicit, the reward function r(x, y) you get by the
method described so far is a neural network. You feed the string x, y
into it, and it output the reward.

You may still ask as to why the r(x, y) function we get by the
minimization of the loss shown on the previous slide constitutes a
Future Expected Reward in the sense that phrase is used in RL.

The reason as to why r(x, y) constitutes a reward is that, as the
policy adapts itself increasingly to reflect the human preferences, the
value returned by r(x, y) would get larger. That follows from the
discussion on the previous two slides.

Purdue University 21

Proximal Policy Optimization (PPO)

Outline

1 RLHF Notation 9

2 Modeling the Reward for Proximal Policy Optimization 17

3 Proximal Policy Optimization (PPO) 22

4 Back to the Basics: The Vocabulary of Reinforcement Learning 33

5 Modelling RL as a Markov Decision Process 39

6 Q-Learning 45

7 Solving the Cart-Pole Problem with Discrete States 52

8 Neural Networks for a Continuous State Space 68

9 From Value-Function Methods to Policy Based Methods 81

10 Policy Gradient Methods 85

Purdue University 22

Proximal Policy Optimization (PPO)

Proximal Policy Optimization (PPO)

Now that we have a model for the Future Expected Reward, we need
to get to solving the problem of updating the LLM with RL.

As you can see in the depiction on the next slide, the model shown at
left is the initial LLM model you obtained with unsupervised training.
In the middle of the figure, you start with that model as your initial
policy model. The policy model evolves iteratively during PPO based
fine-tuning while the initial model remains unchanged.

I’ll continue to use ρ for a probabilistic representation of the initial
model. And πθ for a probabilistic representation of the policy model
as a function of the learnable parameters θ of the LLM that will be
updated by PPO. At the end of the fine-tuning exercise, πθ would
become the representation of the fine-tuned version of the LLM.

In addition to the two networks, one for the initial LLM model and
the other for the policy model, you also have the Reward Model
network that works as described in the previous section.Purdue University 23

Proximal Policy Optimization (PPO)

PPO for RLHF (contd.)

Figure: This figure is from the Hugging Face tutorial at https://huggingface.co/blog/rlhf.

Purdue University 24

https://huggingface.co/blog/rlhf

Proximal Policy Optimization (PPO)

PPO for RLHF (contd.)

If the initial model is too large, you may subject only a part of the
policy model to fine-tuning with PPO. The learnable weights in the
rest would remain frozen during the fine-tuning exercise.

The goal of PPO-based RLHF is to update the policy model and the
reward model together in multi-epoch training.

For stable fine-tuning of the initial model, we make sure that the
policy model πθ does not stray too far from the initial model ρ. To
bring that about, we add a penalty term to the updating of the
Reward Model as shown below. The notation R(x, y) represents the
updated version of the initial reward model r(x, y) estimated as
discussed in the previous section:

R(x, y) = r(x, y) − β log
πθ(y|x)
ρ(y|x)

(7)

The coefficient β is set so that the KL-Divergence between the initial
model ρ and the evolving policy model πθ does not exceed a
threshold. See the Ziegler et al. paper for how to set β.Purdue University 25

Proximal Policy Optimization (PPO)

PPO for RLHF (contd.)

To understand how the PPO algorithm actually updates the policy
πθ, you need to understand what we mean by the Action Space in the
context of language modeling and, subsequently, to also understand
what is meant by the Advantage Function that is closely related to
the reward function.

As you’ll recall, by policy we mean what action the agent (the part of
the code that’s going to update the initial language model) should
take in each state of the environment (which in our case is the
language model).

In our context, the space of all possible actions available to the agent
consists of all the tokens in the tokenizer vocabulary. For example, if
the goal is to generate the best continuations for a prompt, then the
actions would consist of adding tokens to the prompt.

Purdue University 26

Proximal Policy Optimization (PPO)

PPO for RLHF (contd.)
The above definition of action is consistent with the definition of
state presented earlier. I had mentioned that given a sequence x ∈ X
as the prompt and given y ∈ Y as a possible continuation of x, we
could refer to the concatenation xy as defining a state.

A distinguishing feature of the PPO algorithm is its formulation of
the Advantage Function. You could say that PPO uses the future
expected reward function r(x, y), or its continually evolving version
R(x, y), through the Advantage Function.

For a given policy πθ, the Advantage Function gives us a measure

how much better any given action would be in relation to all other

possible actions available to the agent.

If we measure the quality of a specific candidate action a by the value
of the expected reward that is to be had through the state achieved
by that action, and we somehow get the average of the same measure
for all other possible actions in the same state, the Advantage
Function would return the difference between the two values.Purdue University 27

Proximal Policy Optimization (PPO)

PPO for RLHF (contd.)

The implementation of the Advantage Function is straightforward. At
the beginning, the reward function is directly as described in the
previous section R(x, y) = r(x, y). So for each possible extension y to
x, all you have to do calculate the difference of the rewards for each
choice y vis-a-vis all other choices. Subsequently, you do the same
with the updated rewards.

While the implementation of the Advantage Function is
straightforward, you have to bear in mind that updating of the policy
πθ in PPO requires care: You do what may be referred to as “clipped
updating”, as explained on the next slide.

The updating of πθ is carried out through a stochastic gradient
ascent algorithm as explained at the end of this lecture where I have
introduced the Policy Gradient Approach to RL.

Purdue University 28

Proximal Policy Optimization (PPO)

PPO for RLHF (contd.)

Stochastic Gradient Ascent based update algorithm for the updating
of πθ is based on first calculating the ratio of the probabilities as
shown below at the iteration index t and for the values of the policy
network’s learnable parameters represented by θ:

ratiot(θ) =
πθ(at |st)

πθt−1
(at |st)

(8)

The gradient of the policy function πθ would then be given by the
following expression where At is the value returned by the Advantage
Function for the action at .

ĝ = Et

[
∇θ min

[
ratiot(θ) · At , clip[ratiot(θ), 1− ϵ, 1 + ϵ] · At

]]
(9)

The expectation shown above is carried out over the samples in the
batch.

The slide shows how you can set up an objective function that you
can feed into an automatic gradient calculator such as ADAM.Purdue University 29

Proximal Policy Optimization (PPO)

PPO for RLHF (contd.)

If you want to estimate the gradients automatically with, say, the
Adam optimizer, you are going to need to express the above in the
form of the following Objective Function:

Lclip(θ) = Et

[
min

[
ratiot(θ) · At , clip[ratiot(θ), 1− ϵ, 1 + ϵ] · At

]]
(10)

Note that the min function has to choose the smaller of the ratiot(θ) · At

and a version of the same that is clipped to lie in the interval
[1− ϵ, 1 + ϵ].

Now assume the case when the Advantage At is positive. In this case,
we want to be disposed towards choosing the action at . So the
objective function for the estimation of the gradients by the Adams
optimizer will receive a version of ratiot that is guaranteed to NOT be
outside the clipping interval.

Purdue University 30

Proximal Policy Optimization (PPO)

PPO for RLHF (contd.)

What that implies is that the calculated gradients will not be allowed
to be too large for considering the action at . Therefore, there cannot
be too large a change to our policy — something that was a big
problem with the earlier Policy Gradient method described at the end
of this lecture.

For the case when the Advantage At is negative, now we want to
disfavor the action at . But, again, the degree to which this action will
get discounted through a reduced probability will be limited by the
clipping action.

Purdue University 31

Proximal Policy Optimization (PPO)

PPO for RLHF (contd.)

Shown below is a pseudocode implementation of PPO by Yuki Minai
from her blog:

https://medium.com/@ym1942/proximal-policy-optimization-tutorial-f722f23beb83

An episode in Line 4 consists of a sequence of triplets (si , ai , ri+1). The
state s0 could be the prompt, the action ai the act of concatenating
the prompt with a specific token, and ri+1 expected from the
’environment’, and so on for the other triplets.

Algorithm: Episodoc PPO

1. Initialize policy network \pi_theta

2. Initialize baseline network b_w

3. for iteration = 1,2,, num_episodes, do

4. Generate an episode s0,a0,r1, s1,a1,r2, s2,a2,r3, ... s_T-1, a_T-1, r_T through policy \pi_theta

5. for t = 0,1,2, ..., T-1, do

6. G_t = \SUM_{k = t+1}^T \gamma^{k-t-1} R_k

7. end for

8. Compute advantage estimates A_t = (G_t - b_w(s_t))

9. for epoch = 1, 2, ... , num_epochs do

10. ## Compute the objective function:

11. L^CLIP (\theta) = E_\pi [min(r(theta) . A_t, clip(r(theta), 1-\epsilon, 1+\epsilon) . A_t)]

12. L(w) = - 1/T \SUM_{t=0}^{T-1} (G_t - V_w (S_t))^2

13. Update \pi_theta using Adam(\grad_theta L^CLIP (theta))

14. Update bW using Adam(\grad_w L(w))

15. end for

16. end forPurdue University 32

https://medium.com/@ym1942/proximal-policy-optimization-tutorial-f722f23beb83

Back to the Basics: The Vocabulary of Reinforcement Learning

Outline

1 RLHF Notation 9

2 Modeling the Reward for Proximal Policy Optimization 17

3 Proximal Policy Optimization (PPO) 22

4 Back to the Basics: The Vocabulary of Reinforcement Learning 33

5 Modelling RL as a Markov Decision Process 39

6 Q-Learning 45

7 Solving the Cart-Pole Problem with Discrete States 52

8 Neural Networks for a Continuous State Space 68

9 From Value-Function Methods to Policy Based Methods 81

10 Policy Gradient Methods 85

Purdue University 33

Back to the Basics: The Vocabulary of Reinforcement Learning

Reinforcement Learning — Some Basic
Terminology

Here is an alphabetized list of the more basic elements of the
vocabulary of reinforcement learning (RI): action, agent, environment,
episode, goal, penalty, policy, reward, state, and state transition.

At any given time, the environment is in a particular state.

The agent interacts with the environment through a policy that it is
constantly refining on the basis of the rewards received from the
environment. The policy tells the agent what action to invoke when
the environment is in a particular state.

You could say that the entire goal of an RL based solution to a
problem is the learning of the best policy. As to what exactly is
meant by “best policy” will soon be clear.

[Here is an interesting asymmetry: While the agent can change the state of the environment through its
policy-suggested action, as to what state the environment transitions into as a result of that action depends entirely
on, say, the laws of physics or the laws of economics, etc. It is the environment that knows about those laws. The
agent can only react to each state of the environment by executing an action, but the consequences of that action
on the environment are beyond the agent’s reckoning.]

Purdue University 34

Back to the Basics: The Vocabulary of Reinforcement Learning

Basic Terminology (contd.)

In general, when the agent takes an action, that can change the state
of the environment and elicit a reward or a penalty from the
environment. The reward may be positive or negative or zero. A zero
or a negative reward constitutes a penalty.

A sequence of state transitions caused by the agent’s actions
constitutes an episode if there does not exist a state transition from
the terminal state in the sequence.

The overall goal of reinforcement learning is for the agent to learn the
best possible policy whose action choices maximize the rewards
received from the environment during each episode.

At all times, the agent is aware of the state of the environment. The
agent also knows what actions it has at its disposal for changing that
state. But what the agent does not know in advance is what action
to deploy in each state in order to maximize its rewards from the
environment during each episode. That it must learn on its own.Purdue University 35

Back to the Basics: The Vocabulary of Reinforcement Learning

The Basic RL Notation

Another way of saying the same thing as in the last bullet on the
previous slide: While the agent can use its policy to decide what
action to invoke in response to the current state of the environment,
it cannot predict the consequences of that action. [Read again the
note at the bottom of Slide 34.]

Initially, the agent’s policy chooses the actions randomly.
Subsequently, based on the rewards received, the agent refines its
policy in order to make the best choice for an action in each state of
the environment.

It is common to represent all possible states of the environment by
the set S = {s1, . . . , sn} and the set of actions that agent can execute in
order for the environment to transition from one state to another by
A = {a1, a2, . . . , am}.

Purdue University 36

Back to the Basics: The Vocabulary of Reinforcement Learning

The State, Action, Reward Sequence

I’ll use the symbol σt to denote the state of the environment at time
t. Obviously, σt ∈ S . The action taken by the agent at time t would
be denoted αt . Obviously, again, αt ∈ A.

The action αt taken by the agent at time step t will cause the state
of the environment to change to σt+1 ∈ S for the time step t + 1.

In response to this state transition, the environment will grant the
agent a reward rt+1. A reward is typically a small scalar value.

After receiving the reward rt+1 while the environment is in state σt+1,
the agent takes the action αt+1 ∈ A. This action will cause the state
of the environment to change to σt+2 ∈ S . And that will be followed
by the environment granting the agent a reward rt+2, and so on.

Assuming that the agent starts learning at time t = 0, we can think
of the following sequence of states, actions, and rewards:

σ0, α0, r1; σ1, α1, r2; σ2, α2, r3;
Purdue University 37

Back to the Basics: The Vocabulary of Reinforcement Learning

Visualizing the Learning Processing

An agent learning in this manner in response to the rewards received
from the environment may be visualized in the following manner:

Figure: The Agent’s action αt ∈ A when the environment is in state σt ∈ S results in the state transitioning to σt+1
and the environment granting the agent a reward rt+1 (which can be negative).

Purdue University 38

Modelling RL as a Markov Decision Process

Outline

1 RLHF Notation 9

2 Modeling the Reward for Proximal Policy Optimization 17

3 Proximal Policy Optimization (PPO) 22

4 Back to the Basics: The Vocabulary of Reinforcement Learning 33

5 Modelling RL as a Markov Decision Process 39

6 Q-Learning 45

7 Solving the Cart-Pole Problem with Discrete States 52

8 Neural Networks for a Continuous State Space 68

9 From Value-Function Methods to Policy Based Methods 81

10 Policy Gradient Methods 85

Purdue University 39

Modelling RL as a Markov Decision Process

A Stochastic RL Agent

The notation of Reinforcement Learning (RL) I presented in the
previous section was sterile — in the sense that it might have created
the impression that the relationships between the states, the actions,
and the rewards were deterministic and designed to guarantee success.

Such determinism cannot model the real-life scenarios in which one
would want to use RL.

You see, the environment has intractable aspects to it that can only
be modeled by a probabilistic relationship between the current state
and the consequences of any given action taken by the agent when
the environment is in that state. In other words, there are
uncertainties associated with our understanding of the environment.

How to best model these uncertainties is an area of research unto
itself. The models that have become the most popular are based on
the usual Markovian assumption as shown on the next slide.

Purdue University 40

Modelling RL as a Markov Decision Process

The Markovian Assumption

With the Markovian assumption, you have a stochastic RL agent for
which the rewards received from the environment and also the state
transition achieved by the environment at time t + 1 depend
probabilistically on just on the state/action pair at time t.

To be more precise, the state/action pair at time t completely
dictates a probability distribution for the next-state/reward pair at
time t + 1. We denote this probability as follows:

prob(σt+1, rt+1 | σt , αt)

Such an agent along with the environment is known as a Markov
Decision Process (MDP).

Such a probability distribution would allow us to estimate the
conditional probabilities related to the state transitions:

prob(σt+1 | σt , αt) =
∑
r

prob(σt+1, r | σt , αt)

Purdue University 41

Modelling RL as a Markov Decision Process

Future Expected Reward

In a similar manner, we can also compute the expected reward at time
t + 1:

E (rt+1 | σt , αt) =
∑
r

r
∑
σt+1

prob(σt+1, r | σt , αt)

where the outer summation on the right is with respect to all possible
reward values when the environment is in state σt and the agent is
invoking action αt . The inner summation is with respect to all
possible target states that the system can get to from the state σt .

With respect to time t, the estimate E (rt+1 | σt , αt) is a future
expected reward for time t + 1.

In general, the agent’s policy should be such that the action taken in
each state maximizes the future expected reward from the
environment.

Purdue University 42

Modelling RL as a Markov Decision Process

The Quality Index Q

Toward that end, we can associate with each (si , aj) pair a quality
index, denoted Q(si , aj), that is a measure of the maximum possible
value for the future expected reward from the environment for that
pair. That is, by definition,

Q(si , aj) = maxE
(
rt+1 | σt = si , αt = aj

)
The best policy for the agent, naturally, would be to choose that
action aj ∈ A in state si ∈ S which maximizes the quality index
Q(si , aj).

The conditioning shown on the right in the equation above means
that assuming that σt , which is the state of the environment at time
t, was si and assuming that αt , the action chosen by the agent at the
same time, was aj , then if we could estimate the maximum possible
value of the expected future reward at time t + 1, that would be the
value of the quality index Q(si , aj) at time t.

Purdue University 43

Modelling RL as a Markov Decision Process

The Quality Index Q (contd.)

The goal of RL should be to estimate the values for quality index
Q(si , aj) for all possible state/action pairs (si , aj).

We can conceive of Q as a table with |S | rows and |A| columns,
where |.| denotes the cardinality of a set. We could place in each cell
of the table the quality-index value we may conjure up for Q(si , aj).

Purdue University 44

Q-Learning

Outline

1 RLHF Notation 9

2 Modeling the Reward for Proximal Policy Optimization 17

3 Proximal Policy Optimization (PPO) 22

4 Back to the Basics: The Vocabulary of Reinforcement Learning 33

5 Modelling RL as a Markov Decision Process 39

6 Q-Learning 45

7 Solving the Cart-Pole Problem with Discrete States 52

8 Neural Networks for a Continuous State Space 68

9 From Value-Function Methods to Policy Based Methods 81

10 Policy Gradient Methods 85

Purdue University 45

Q-Learning

What is Q-Learning?

The probabilistic notions of the previous section serve a useful
purpose in helping us articulate a principled approach to
reinforcement learning. However, in practice, it is rather unlikely that
we will have access to the conditional probability distribution
mentioned on Slide 41 for a real life problem, not the least because of
the intractable nature of the uncertainties in the interaction between
the agent and the environment.

Q-Learning is a method for implementing an RL solution for a learning
agent that attempts to approximate the maximization of the future
expected rewards in the absence of explicit probabilistic modeling.

In Q-Learning, we attempt to place in the cells of the Q table the
estimated values for the best expected cumulative rewards for the
state-action pairs corresponding to those cells.

Purdue University 46

Q-Learning

Maximizing the Sum of the Discounted Rewards
Fundamentally, the entries in the cells of a Q table are the expected
future rewards. For practical reasons, we must incorporate the future
into these estimates on a discounted basis.

You can think of discounting as reflecting our lack of knowledge of
the conditional probability distributions mentioned in the last section.
That is, we cannot be too sure about how the choice of an action in
the current state will influence the future outcomes as the agent
makes state-to-state transitions. With this uncertainty about the
future, a safe strategy would be to deemphasize the expected rewards
that are more distant into the future.

Discounted or not, there is a troubling question here: Without any
probabilistic modeling of the sort mentioned in the previous section,
how can any agent look into the future and make any reasonable
sense of what should go into the Q table? As to how practical
implementations of Q-Learning get around this dilemma, we will get
to that later.Purdue University 47

Q-Learning

Updating the Q Table (contd.)

We will ignore for a moment the last bullet on the previous slide, and
acknowledge the recursive nature of the definition of Q(si , aj) on
Slide 43 when that definition is considered as a function of time.
That definition is recursive because the future expected reward at t
depends on its value at t + 1 in the same manner as the future
expected reward at t + 1 depends on its value at t + 2, and so on.

By unfolding the recursion and incorporating the discounting
mentioned on the previous slide, Q(si , aj) can be set to:

Q(si , aj)
∣∣∣
t

= max
(
rt+1 + γ · rt+2 + γ

2 · rt+3 + . . .
)

= max
(∞∑

k=0

γ
k · rt+1+k

)

where γ is the discounting factor and where we intentionally do not
start discounting the rewards until the time step t + 2 (assuming that
the current time is t) as a reflection of our desire to base the value of
Q primarily on the next time step and of our wariness about the more
distant future.

Purdue University 48

Q-Learning

Updating the Q Table

For the purpose of implementation, we express the update equation
shown on the previous slide in the following form:

Q(si , aj)
∣∣∣
t

⇐ (1 − β) ∗ Q(si , aj)
∣∣∣
t

+ β ∗
[
rt+1 + γ · max

aj∈A

{
Q(si , aj)

∣∣
t+1

}]

where the β is the learning rate. Note the assignment operator ‘⇐’,
which is what makes it an update formula.

Calling on the RL Oracle to provide the agent with what would
otherwise be unknowable, we can reexpress the above update formula
as:

Q(si , aj)
∣∣∣
t

⇐ (1−β)∗Q(si , aj)
∣∣∣
t
+ β∗

[
rt+1+{Consult the RL Oracle for the best estimate of the future rewards}

]

In the absence of consultation with an oracle, we could adopt the
following strategy: The agent would start with random entries in the
Q table. For obvious reasons, at the beginning the agent will very
quickly arrive at the terminal states that indicate failure.

Purdue University 49

Q-Learning

Updating the Q Table (contd.)

Each failure will result in updating the Q table with negative rewards
for the cells that cause transitions to such terminal states. This would
eventually — at least one would so hope — result in a Q table that
would reflect positive learning.

To elaborate further, for any state transition to failure, the value of
the reward rt+1 in an update formula of the type shown on the
previous slide would be a large negative number. That would push
down the entry in the Q(si , aj) table that led to such a transition,
making it less likely that the transition would be taken the next time.

In algorithm development, we talk about “time-memory tradeoff”.
What we have here is a “time-foresight tradeoff”. [About what’s meant by

“time-memory” tradeoff: What that means is that you can solve a problem by having memorized or theoretically

generated all of your solution paths and then, when confronted with a new instance of the problem, you simply look up

the memorized strategies. That would be referred to as a purely memory based solution. An alternative approach would

consist of only remembering the decision points in seeking out a solution to the problem. Then, when confronted with a

new instance of the problem, you would step through the solution space and test which way you should turn at each

decision point. In this case, you would be using lesser memory, but it would take longer to generate a solution.]

Purdue University 50

Q-Learning

Updating the Q Table (contd.)
I say “time-foresight tradeoff” because we do not have access to an
oracle. We therefore choose to stumble into the future anyway
through the state-transition table and learn from our mistakes as
recorded in the evolving Q table. It may take time, but, hopefully,
we’d still be able to solve the problem.

For stumbling forward in the learning process, we rewrite the formula
on Slide 49 as follows in which we estimate the future rewards by
stepping through the state transition table and accumulating the
future rewards by looking up the Q table:

Q(si , aj)
∣∣∣
t

⇐ (1−β)∗Q(si , aj)
∣∣∣
t
+ β∗{Estimate discounted future reward from Q-table and state-transition table}

This update formula lends itself to an actual implementation in which
you start with random entries in the Q table and, through repeated
trials, you converge to the table that reflects positive learning. I have
demonstrated this with the two implementations that follow in this
lecture, one based on a discrete state space and the other on a
continuous state space.

Purdue University 51

Solving the Cart-Pole Problem with Discrete States

Outline

1 RLHF Notation 9

2 Modeling the Reward for Proximal Policy Optimization 17

3 Proximal Policy Optimization (PPO) 22

4 Back to the Basics: The Vocabulary of Reinforcement Learning 33

5 Modelling RL as a Markov Decision Process 39

6 Q-Learning 45

7 Solving the Cart-Pole Problem with Discrete States 52

8 Neural Networks for a Continuous State Space 68

9 From Value-Function Methods to Policy Based Methods 81

10 Policy Gradient Methods 85

Purdue University 52

Solving the Cart-Pole Problem with Discrete States

The Cart-Pole Example

To explain Q-Learning with an example, consider what’s known as the
Cart Pole problem. The Cart-Pole problem is to RL what fruit-fly is
to genetics research.

In the Cart Pole problem, you have a cart that can move back and
forth on a linear track. Mounted on the cart is a hinged pole. The
hinge allows the pole to turn in the same plane that corresponds to
the translational motions of the cart.

The goal is to keep the pole standing upright and, should the pole
lean one way or the other, the cart should move in such a way that
counters the lean of the pole.

Considering how unstable the pole would be standing upright, it
would be difficult to construct a probabilistic framework for this
problem along the lines described earlier in this lecture.

Purdue University 53

Solving the Cart-Pole Problem with Discrete States

The Cart-Pole Example (contd.)

The state-space for the Cart Pole problem is obviously continuous
since the pole can lean to any degree.

The question we pursue in this section is whether it is possible to
discretize the state space and to then use the Q-Learning based RL as
described in the previous section.

Shown below for illustration is a 5-state discretization of the state
space. Each entry represents the lean of the pole one way or the
other, but within a range appropriate to the entry:

S = { hard_lean_left,

soft_lean_left,

soft_lean_right,

hard_lean_right,

fallen

}

Purdue University 54

Solving the Cart-Pole Problem with Discrete States

The Cart-Pole Example (contd.)

Here is a possible mapping between the next-state achieved and the
ensuing reward as required by the update formula shown on Slide 49:

fallen => -1

soft_lean_left => +1

soft_lean_right => +1

hard_lean_left => 0

hard_lean_right => 0

And here are the two actions the agent could invoke on the cart in
order to balance the pole:

A = { push_left,

push_right

}

Now that you can appreciate what I mean by the discretization of the
Cart-Pole’s state space, it’s time to actually look at some code that
implements this type of Q-Learning.

Purdue University 55

Solving the Cart-Pole Problem with Discrete States

A Python Implementation of Q-Learning for the Cart-Pole Problem

Starting with Slide 63, what you see is Rohan Sarkar’s Python
implementation of Q-Learning for solving a discretized version of the
Cart-Pole problem. Rohan is working on his Ph.D. in RVL.

In line (A), the code starts by initializing the various parameters and
the environment variables.

The function whose definition starts in line (B) creates a discretized
set of states for the Cart Pole. The discretization is a much finer
version of what I illustrated on the previous slide.

The purpose of the function optimal action() defined in line (C) is to
return the best choice of action when the agent is in a given state s.
This function implements what is known as the epsilon-greedy policy
for choosing the best action in any given state. [This policy says that the earlier phases of training

should make a choice between choosing an action randomly from all available actions in a given state, on the one hand, and the action offered by the Q table on the other.

Furthermore, the policy says that as the training progresses we want to increasingly depend on just the Q table for choosing the best action. The parameter eps rate in the header

of the function plays a key role in implementing the epsilon-greedy policy. What is commonly referred to as ’training’ in general machine learning is called ’exploration’ in RL. And,

what is commonly referred to as ’testing’ in general machine learning is referred to as ’exploitation’ in RL. During exploration, the value of eps rate changes with each episode as

follows: (1) we first multiply the current value of eps rate by EXPLORATION DECAY; and then (2) we assign to eps rate the larger of EXPLORATION MIN and the current value of

eps rate. When you see how eps rate is used in the logic of optimal action(), you will realize that that function is indeed implementing the epsilon-greedy policy. As eps rate

becomes ever smaller, it will become increasingly unlikely that the randomly generated value for p will be less than the current value for eps rate.]Purdue University 56

Solving the Cart-Pole Problem with Discrete States

Python Implementation of Q-Learning (contd.)

The function updateQValues() defined starting in line labeled (D) is
called by the exploration code that is between the lines labeled (F)
and (G). All of this code is for what’s known as Double Q Learning
(DQL) that was first proposed in the following famous paper:

https://arxiv.org/abs/1509.06461

DQL was created to counter the over-estimation bias in what’s
returned for the future expected reward by the Q table. [As you already know,

each row of the Q table designates the state of the agent and the different columns of the table correspond to the

different available actions in each state. The recommended action returned for each state is from that cell in the

corresponding row which contains the highest future expected reward. This entails carrying out a maximization

operation on the values stored in the different cells. In the presence of noise in the estimated rewards, this maximization

is biased in the sense that it is an overestimate of the future expected reward for the chosen action.]

DQL calls for using two Q tables, denoted Q1 and Q2 in the code
between the lines labeled E and F, that are trained simultaneously
with the idea that since the successive random training inputs are
likely to span the permissible range, updating Q1 and Q2 alternately
with the inputs will be such that the average of the rewards returned
by the two tables is likely to possess reduced bias.Purdue University 57

https://arxiv.org/abs/1509.06461

Solving the Cart-Pole Problem with Discrete States

Python Implementation of Q-Learning (contd.)

The testing part of the code (the exploitation part) comes after line G.

I still have not said anything about how the agent interacts with the
“environment.” Actually, the role of the “environment” is a bit more
complicated than what was depicted on Slide 38. That depiction only
applies after an agent has been trained.

In the code that follows, you will see the following calls that stand for
the agent interacting with the environment:

env = gym.make(’CartPole-v0’) # at the beginning of the code file

action = env.action_space.sample() # in function optimal_action()

state = env.reset() # in __main__

next_state, reward, done, info = env.step(action) # in __main__

In order to convey what is accomplished by the above statements, you
need to understand how the Cart-Pole environment is actually
implemented in code:
https://github.com/openai/gym/blob/master/gym/envs/classic_control/cartpole.py

Purdue University 58

https://github.com/openai/gym/blob/master/gym/envs/classic_control/cartpole.py

Solving the Cart-Pole Problem with Discrete States

Python Implementation of Q-Learning (contd.)

The code at the link at the bottom of the previous slide actually
carries out a rudimentary physics based simulation of a Cart-Pole. It
makes certain assumptions about the mass of the cart vis-a-vis that of
the pole, about the dimensions of the cart and the pole, about the
movement of the cart being frictionless, etc. The state of the
cart-pole is a list of the following four elements:

[cart_position, cart_velocity, pole_angle, pole_angular_velocity]

In terms of these elements and also in terms of the number of
timesteps in any single episode during training or testing, the
cart-pole is considered to have reached the terminal state (that is,
when the pole is considered to have “fallen”) when any of the
following conditions is satisfied:

the pole angle is greater than 12 degrees
the cart position is greater than 2.4 units
the episode length is greater than 200 timesteps

Purdue University 59

Solving the Cart-Pole Problem with Discrete States

Python Implementation of Q-Learning (contd.)

An agent can invoke only two actions on the cart-pole: move left or
move right. In each action, 10 units of force is applied to the cart in
the desired direction of the movement.

The environment also assumes that the time interval between
successive interactions with it is 0.02 seconds regardless of the actual
clock time involved.

But what about the reward that is supposed to be issued by the
environment? The environment issues a reward of 1 for all
interactions with it. However, when the terminal condition is reached
(meaning when we may think of the pole as having fallen), the
environment returns that condition as “done”. It is for the user
program to translate “done” into a negative reward.

In the sense indicated above, the environment itself does not judge
the consequences of the actions called by the agent.

Purdue University 60

Solving the Cart-Pole Problem with Discrete States

Python Implementation of Q-Learning (contd.)

Regarding the rewards, it is for the RL logic being used by the agent
to decide what rewards to associate with the actions, including the
terminal action.

Going back to the statements that are used in the code shown next in
order to interact with the environment, the call
env.action space.sample() returns either 0 (which is the action for
“move left”) or 1 (which is the action for “move right”) by choosing
randomly between the two.

The call env.reset(), which is typically how you start an episode,
returns four random numbers for the four elements of the state, with
numbers being uniformly distributed between -0.05 and +0.05.

Finally, it is the call next state, reward, done, info = env.step(action)

that defines the interactions between the agent and the environment
on an on-going basis.

Purdue University 61

Solving the Cart-Pole Problem with Discrete States

Python Implementation of Q-Learning (contd.)

With regard to the call env.step(action) mentioned at the bottom of
the previous slide, at each time step during an episode, the agent calls
on the environment with an action, which in our case is either 0 or 1,
and the environment returns the 4-tuple [next state, reward, done,

info] where done would be set to the Boolean True if the cart-pole has
reached the terminal condition.

In the 4-tuple that is returned by env.step(action), the next state is
again a 4-tuple of numbers standing for the 4 real numbers in the list
[cart position, cart velocity, pole angle, pole angular velocity].

Purdue University 62

Solving the Cart-Pole Problem with Discrete States

Python Implementation of Q-Learning (contd.)

#!/usr/bin/env python3
-*- coding: utf-8 -*-

Cartpole_DQL.v2.py

Balancing a cartpole using Double Q-learning (without a neural network) and using
a discretized state space. The algorithm is trained using epsilon-greedy approach
with Replay Memory
##
@author: Rohan Sarkar (sarkarr@purdue.edu)

import gym
import numpy as np
import time
import matplotlib.pyplot as plt
import sys
import random

seed = 0
random.seed(seed)
np.random.seed(seed)

Initialize parameters and environment variables:
env = gym.make(’CartPole-v0’) ## (A)
GAMMA = 0.85
#MAX_ITER = 500
MAX_ITER = 1000
EXPLORATION_MAX = 1.0
EXPLORATION_MIN = 0.01
EXPLORATION_DECAY = 1+np.log(EXPLORATION_MIN)/MAX_ITER
REP_MEM_SIZE = 100000
MINIBATCH_SIZE = 64
N_states = 162
N_actions = 2
Q1 = np.zeros((N_states, N_actions))
Q2 = np.zeros((N_states, N_actions))
alpha = 0.001
eps_rate = EXPLORATION_MAX
cum_reward = 0
train_reward_history = []

Map the four dimensional continuous state-space to discretized state-space:
Credit: http://www.derongliu.org/adp/adp-cdrom/Barto1983.pdf.
def map_discrete_state(cs): ## (B)

ds_vector = np.zeros(4);
ds = -1
Discretize x (position)
if abs(cs[0]) <= 0.8:

ds_vector[0] = 1
elif cs[0] < -0.8:

ds_vector[0] = 0
elif cs[0] > 0.8:

ds_vector[0] = 2
Discretize x’ (velocity)
if abs(cs[1]) <= 0.5:

ds_vector[1] = 1
elif cs[1] < -0.5:

ds_vector[1] = 0
elif cs[1] > 0.5:

ds_vector[1] = 2

(Continued on the next slide)

Purdue University 63

Solving the Cart-Pole Problem with Discrete States

Python Implementation of Q-Learning (contd.)
(...... continued from the previous slide)

Discretize theta (angle)
angle = 180/3.1428*cs[2]
if -12 < angle <= -6:

ds_vector[2] = 0
elif -6 < angle <= -1:

ds_vector[2] = 1
elif -1 < angle <= 0:

ds_vector[2] = 2
elif 0 < angle <= 1:

ds_vector[2] = 3
elif 1 < angle <= 6:

ds_vector[2] = 4
elif 6 < angle <= 12:

ds_vector[2] = 5
Discretize theta’ (angular velocity)
if abs(cs[3]) <= 50:

ds_vector[3] = 1
elif cs[3] < -50:

ds_vector[3] = 0
elif cs[3] > 50:

ds_vector[3] = 2
ds = int(ds_vector[0]*54+ds_vector[1]*18+ds_vector[2]*3+ds_vector[3])
return ds

Return the most optimal action and the corresponding Q value:
def optimal_action(Q, state, eps_rate, env): ## (C)

p = np.random.random()
Choose random action if in ’exploration’ mode
if p < eps_rate:

action = env.action_space.sample() # choose randomly between 0 and 1
else:

Choose optimal action based on learned weights if in ’exploitation’ mode
action = np.argmax(Q[state,:])

return action

Update Qvalues based on the logic of the Double Q-learning: ## (D)
def updateQValues(state, action, reward, next_state, alpha, eps_rate, env):

p = np.random.random()
if (p < .5):
Update Qvalues for Table Q1

next_action = optimal_action(Q1, next_state, eps_rate, env)
Q1[state][action] = Q1[state][action] + alpha * \

(reward + GAMMA * Q2[next_state][next_action] - Q1[state][action])
else:
Update Qvalues for Table Q2

next_action = optimal_action(Q2, next_state, eps_rate, env)
Q2[state][action] = Q2[state][action] + alpha * \

(reward + GAMMA * Q1[next_state][next_action] - Q2[state][action])
return next_action

class ReplayMemory: ## (E)
def __init__(self, capacity):

self.capacity = capacity
self.memory = []

def push(self, s, a , r, ns):
self.memory.append([s, a, r, ns])
if len(self.memory) > self.capacity:

del self.memory[0]
def sample(self, MINIBATCH_SIZE):

return random.sample(self.memory, MINIBATCH_SIZE)
def __len__(self):

return len(self.memory)

(Continued on the next slide)
Purdue University 64

Solving the Cart-Pole Problem with Discrete States

Python Implementation of Q-Learning (contd.)
(...... continued from the previous slide)

if __name__ == "__main__": ## (F)
Learn the weights for Double Q learning:
max_t = 0
duration_history = []
history = []
epsilon_history = []
repmemory = ReplayMemory(REP_MEM_SIZE)
for i_episode in range(MAX_ITER):

state is a 4-tuple: [cart_pos, cart_vel, pole_angle, pole_ang_vel]
state = env.reset() ### state set to uniformly dist random bet -0.05 and 0.05
done = False
Initial state and action selection when environment restarts
state = map_discrete_state(state)
action = optimal_action(0.5*(Q1+Q2), state, 0, env)
t = 0
Decay the exploration parameter in epsilon-greedy approach.
eps_rate *= EXPLORATION_DECAY
eps_rate = max(EXPLORATION_MIN, eps_rate)
while True:

#env.render()
next_state, reward, done, info = env.step(action)
if done:

reward = -10
next_state = map_discrete_state(next_state)
repmemory.push(state, action, reward, next_state)
Update Q table using Double Q learning and get the next optimal action.
next_action = updateQValues(state, action, reward, next_state, alpha, eps_rate, env)
Update Q values by randomly sampling experiences in Replay Memory
if len(repmemory)> MINIBATCH_SIZE:

experiences = repmemory.sample(MINIBATCH_SIZE)
for experience in experiences:

ts, ta, tr, tns = experience
updateQValues(ts, ta, tr, tns, alpha, eps_rate, env)

state = next_state
action = next_action
t += 1
if done:

break
history.append(t)
if i_episode > 50:

latest_duration = history[-50:]
else:

latest_duration = history
#print(latest_duration)
duration_run_avg = np.mean(latest_duration)
#print(duration_run_avg)
duration_history.append([t, duration_run_avg])
epsilon_history.append(eps_rate)
cum_reward += t
if(t>max_t):

max_t = t
train_reward_history.append([cum_reward/(i_episode+1), max_t])
print("\nEpisode: %d Episode duration: %d timesteps | epsilon %f" % (i_episode+1, t+1, eps_rate))

np.save(’Q1.npy’, Q1)
np.save(’Q2.npy’, Q2)
fig = plt.figure(1)
fig.canvas.set_window_title("DQL Training Statistics")
plt.clf()
plt.subplot(1, 2, 1)
plt.title("Training History")
plt.plot(np.asarray(duration_history))
plt.xlabel(’Episodes’)
plt.ylabel(’Episode Duration’)

(Continued on the next slide)Purdue University 65

Solving the Cart-Pole Problem with Discrete States

Python Implementation of Q-Learning (contd.)
(...... continued from the previous slide)

plt.subplot(1, 2, 2)
plt.title("Epsilon for Episode")
plt.plot(np.asarray(epsilon_history))
plt.xlabel(’Episodes’)
plt.ylabel(’Epsilon Value’)
plt.savefig(’Cartpole_DoubleQ_Learning.png’)
plt.show() ## (G)

Finished exploration. Start testing now.
import pymsgbox
response = pymsgbox.confirm("Finished learning the weights for the Double-Q Algorithm. Start testing?")
if response == "OK":

pass
else:

sys.exit("Exiting")

print("\n\n\nThe Testing Phase:\n\n")
Control the cartpole using the learned weights using Double Q learning
play_reward =0
for i_episode in range(100):

observation = env.reset()
done = False
Initial state and action selection when environment restarts
state = map_discrete_state(observation)
action = optimal_action(0.5*(Q1+Q2), state, 0, env)
t = 0
eps_rate = 0

time.sleep(0.25)
while not done:

env.render()
time.sleep(0.1)
next_state, reward, done, info = env.step(action)
next_state = map_discrete_state(next_state)
next_action = optimal_action(Q1, state, 0, env)
state = next_state
action = next_action
t += 1

play_reward += t
print("Episode ",i_episode," Episode duration: {} timesteps".format(t+1))

print("Episode ",i_episode," : Exploration rate = ", eps_rate, " Cumulative Average Reward = ", play_reward/(i_episode+1))

env.close()

Purdue University 66

Solving the Cart-Pole Problem with Discrete States

Visualizing the Training Phase for DoubleQ
Learning

Figure: The orange plot at left shows how the average duration of an episode (in terms of the timesteps until the pole falls)
increases as training proceeds. The value of epsilon as shown in the right plot controls the extent to which the agent chooses an
action randomly vis-a-vis choosing an action based on Double Q learning. Initially, the value of epsilon is 1, implying that the
actions will be chosen completely randomly. In the code, epsilon is represented by the variable eps rate.
Purdue University 67

Neural Networks for a Continuous State Space

Outline

1 RLHF Notation 9

2 Modeling the Reward for Proximal Policy Optimization 17

3 Proximal Policy Optimization (PPO) 22

4 Back to the Basics: The Vocabulary of Reinforcement Learning 33

5 Modelling RL as a Markov Decision Process 39

6 Q-Learning 45

7 Solving the Cart-Pole Problem with Discrete States 52

8 Neural Networks for a Continuous State Space 68

9 From Value-Function Methods to Policy Based Methods 81

10 Policy Gradient Methods 85

Purdue University 68

Neural Networks for a Continuous State Space

Why a Neural-Network Implementation of Q-Learning

The Q-Learning based solution shown earlier explicitly constructs a Q
table in which each row stands for a state and each column for an
action. When in reality the state space is continuous — as it is for
the cart-pole problem — the discretization will often introduce an
approximation that degrades the quality of learning.

There is an excellent way to evaluate the quality of learning for the
Cart-Pole problem: the duration of each episode, which is the number
of time-steps from the start of the episode (t = 0) until the time the
state fallen is reached during each episode.

If you execute the code shown in the previous section, the average
duration you will get with that implementation of Q-Learning is likely
to be around 100 time steps.

To improve the performance beyond this, you’d need to go to a still
finer discretization of the state space, or, better yet, to ditch the
discretization altogether by using a neural-network based solution.Purdue University 69

Neural Networks for a Continuous State Space

Q-Learning with a Neural Network

What is shown next is a neural-network based implementation of
Q-Learning that works with a continuous state space. This
implementation is also by Rohan Sarkar.

The neural-network is trained to take the continuous state value s at
its input and to output the values of Q(s, ai) for each action ai
available to the agent in the input state. For its next action, the agent
would obviously choose the action that has the largest Q(s, ai) value.

Should the action chosen as described above result in getting further
away from the desired goal, you would backpropagate a negative
reward to reflect the undesirability of what was predicted by the
neural network.

Purdue University 70

Neural Networks for a Continuous State Space

A Python Implementation of Q-Learning with a
Neural Network

The code shown next starts by initializing the hyperparameters in the
lines that start with the one labeled A on Slide 77.

By initializing EPISODES=1000, we are declaring that we only want to run
the code for 1000 episodes. And the setting EXPLORE EPI END =

int(0.1*EPISODES), we are telling the system to use 100 of the episodes
in the exploration phase. What does that mean?

As it turns out, in its common usage, the phase “Exploration Phase”
in neural Q-learning has a different meaning in relation to how I used
it in the previous section. The “Exploration Phase” here means for
the agent to figure out the next state and the reward just by
interacting with the environment.

Purdue University 71

Neural Networks for a Continuous State Space

Q-Learning with a Neural Network (contd.)
As to what we mean by the agent interacting with the environment,
let’s examine the following lines of code from the method run episode()

of QNetAgent. That method is defined at line G on Slide 78.
while True:

environment.render()

Select action based on epsilon-greedy approach

action = self.select_action(FloatTensor([state])) ## (a)

c_action = action.data.cpu().numpy()[0,0] ## (b)

Get next state and reward from environment based on current action

next_state, reward, done, _ = environment.step(c_action) ## (c)

negative reward (punishment) if agent is in a terminal state

if done: ## (d)

reward = -10 # negative reward for failing ## (e)

push experience into replay memory

self.memory.push(state,action, reward, next_state) ## (f)

if initial exploration is finished train the agent

if EXPLORE_EPI_END <= e <= TEST_EPI_START: ## (g)

self.learn() ## (h)

state = next_state ## (i)

steps += 1 ## (j)

The call in line (c) above is what’s meant by interacting with the
environment. The variable environment is set in the first line under
main on Slide 79 to gym.make(’CartPole-v0’) where gym is the very

popular OpenAI platform for research in RL.
Purdue University 72

Neural Networks for a Continuous State Space

Q-Learning with a Neural Network (contd.)

For the Cart-Pole problem, the gym library provides a very rudimentary
physics-based modeling of the Cart-Pole. The call in line (c) on the
previous slide asks this model as to what the next state and the next
reward should be if a given action is invoked in the current state.
Suppose the currently randomly chosen state of the pole is
soft lean right and the current randomly chosen action is move left

(which is represented by the integer 1 in the code), the environment
is likely to return hard lean right for the next state and a reward of 0 or
-1.

It is such interactions that are carried out in the exploration phase. In
each episode, the agent makes state-to-state transitions with the help
of the environment until it reaches the terminal state fallen.

Going back to the beginning of this section, the second statement in
the hyperparameter initializations that start in line A on Slide 77
means that we want to use the first 100 episodes for exploration prior
to starting neural learning.Purdue University 73

Neural Networks for a Continuous State Space

Q-Learning with a Neural Network (contd.)

The main purpose of the “Exploration Phase” described above is to
fill the ReplayMemory, defined in line labeled D, with the state
transitions generated during that phase. What is actually stored in
the ReplayMemory are 4-tuples like [state, action, next state, reward]

that were generated during the exploration. These are stored in the
instance variable self.memory defined for the ReplayMemory class.

After the storage in ReplayMemory is initialized in the manner indicated
above, the agent starts up the Training Phase for training the neural
network that is defined in the section of the code that begins in the
line labeled C.

The function whose job is to train the neural network is called learn()

and it is defined starting with line H. That function creates batches of
randomly selected training samples from what is stored in ReplayMemory

and feeds those into the neural network.

Purdue University 74

Neural Networks for a Continuous State Space

Q-Learning with a Neural Network (contd.)

To continue with the description of the learn() function, from each
4-tuple [state, action, next state, reward] chosen from the replay
memory, the first two, meaning state and action, are used as input to
the network and the target at the output consists of next state and
reward.

The variable e in the code stands for the episode number. In the
following statements taken from the beginning portion of the
run episode() function defined starting at line G, note how the episode
number e is used to decide what phase the agent is in:

def run_episode(self, e, environment): ## (G)

state = environment.reset() # reset the environment at the beginning

done = False

steps = 0

Set the epsilon value for the episode

if e < EXPLORE_EPI_END:

self.epsilon = EPS_START

self.mode = "Exploring"

elif EXPLORE_EPI_END <= e <= TEST_EPI_START:

self.epsilon = self.epsilon*EPS_DECAY

self.mode = "Training"

elif e > TEST_EPI_START:

self.epsilon = 0.0

self.mode = "Testing"Purdue University 75

Neural Networks for a Continuous State Space

Q-Learning with a Neural Network (contd.)

For the parameter initializations shown in the code, the value of
EXPLORE EPI END in the code fragment shown on the previous slide will
be set to 100. Therefore, for episode number less than 100, the “if”
block shown above would set self.epsilon to EPS START, which is equal
to 1. And self.mode would be set to “Exploring” at the same time.

Setting self.epsilon to 1 causes the select action() method defined at
line F to return a purely randomly chosen action in whatever mode
the agent happens to be in at the moment. This is in keeping with
the expected behavior of the agent in the Exploration phase according
to the epsilon-greedy policy for agents.

Purdue University 76

Neural Networks for a Continuous State Space

Q-Learning with a Neural Network (contd.)
Solving the Cart-Pole problem with PyTorch
Code adapted from https://gist.github.com/Pocuston/13f1a7786648e1e2ff95bfad02a51521
Modified by Rohan Sarkar (sarkarr@purdue.edu)

QNet_pytorch_v5.py

import gym ## (A)
import random
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import matplotlib.pyplot as plt
import numpy as np
Set the hyperparameters for training:
EPISODES = 1000 # total number of episodes
EXPLORE_EPI_END = int(0.1*EPISODES) # initial exploration when agent will explore and no training
TEST_EPI_START = int(0.7*EPISODES) # agent will be tested from this episode
EPS_START = 1.0 # e-greedy threshold start value
EPS_END = 0.05 # e-greedy threshold end value
EPS_DECAY = 1+np.log(EPS_END)/(0.6*EPISODES) # e-greedy threshold decay
GAMMA = 0.8 # Q-learning discount factor
LR = 0.001 # NN optimizer learning rate
MINIBATCH_SIZE = 64 # Q-learning batch size
ITERATIONS = 40 # Number of iterations for training
REP_MEM_SIZE = 10000 # Replay Memory size

use_cuda = torch.cuda.is_available() ## (B)
FloatTensor = torch.cuda.FloatTensor if use_cuda else torch.FloatTensor
LongTensor = torch.cuda.LongTensor if use_cuda else torch.LongTensor
ByteTensor = torch.cuda.ByteTensor if use_cuda else torch.ByteTensor
Tensor = FloatTensor

class QNet(nn.Module): ## (C)
"""
Input to the network is a 4-dimensional state vector and the output a
2-dimensional vector of two possible actions: move-left or move-right
"""
def __init__(self, state_space_dim, action_space_dim):

nn.Module.__init__(self)
self.l1 = nn.Linear(state_space_dim, 24)
self.l2 = nn.Linear(24, 24)
self.l3 = nn.Linear(24, action_space_dim)

def forward(self, x):
x = F.relu(self.l1(x))
x = F.relu(self.l2(x))
x = self.l3(x)
return x

class ReplayMemory: ## (D)
"""
This class is used to store a large number, possibly say 10000, of the
4-tuples ’[State, Action, Next State, Reward]’ at the output, meaning even
before the nueral-network based learning kicks in. Subsequently, batches
are constructed from this storage for training. The dynamically updated
as each new 4-tuple becomes available.
"""
def __init__(self, capacity):

self.capacity = capacity
self.memory = []

def push(self, s, a , r, ns):
self.memory.append((FloatTensor([s]),

a, # action is already a tensor
FloatTensor([ns]),
FloatTensor([r])))

if len(self.memory) > self.capacity:
del self.memory[0]

def sample(self, MINIBATCH_SIZE):
return random.sample(self.memory, MINIBATCH_SIZE)

def __len__(self):
return len(self.memory)

(Continued on the next slide)Purdue University 77

Neural Networks for a Continuous State Space

Q-Learning with a Neural Network (contd.)
(...... continued from the previous slide)

class QNetAgent: ## (E)
def __init__(self, stateDim, actionDim):

self.sDim = stateDim
self.aDim = actionDim
self.model = QNet(self.sDim, self.aDim) # Instantiate the NN model, loss and optimizer for training the agent
if use_cuda:

self.model.cuda()
self.optimizer = optim.Adam(self.model.parameters(), LR)
self.lossCriterion = torch.nn.MSELoss()
self.memory = ReplayMemory(REP_MEM_SIZE) # Instantiate the Replay Memory for storing agent’s experiences
Initialize internal variables
self.steps_done = 0
self.episode_durations = []
self.avg_episode_duration = []
self.epsilon = EPS_START
self.epsilon_history = []
self.mode = ""

def select_action(self, state): ## (F)
""" Select action based on epsilon-greedy approach """
p = random.random() # generate a random number between 0 and 1
self.steps_done += 1
if p > self.epsilon:

if the agent is in ’exploitation mode’ select optimal action
based on the highest Q value returned by the trained NN
with torch.no_grad():

return self.model(FloatTensor(state)).data.max(1)[1].view(1, 1)
else:

if the agent is in the ’exploration mode’ select a random action
return LongTensor([[random.randrange(2)]])

def run_episode(self, e, environment): ## (G)
state = environment.reset() # reset the environment at the beginning
done = False
steps = 0
Set the epsilon value for the episode
if e < EXPLORE_EPI_END:

self.epsilon = EPS_START
self.mode = "Exploring"

elif EXPLORE_EPI_END <= e <= TEST_EPI_START:
self.epsilon = self.epsilon*EPS_DECAY
self.mode = "Training"

elif e > TEST_EPI_START:
self.epsilon = 0.0
self.mode = "Testing"

self.epsilon_history.append(self.epsilon)
while True: # Iterate until episode ends (i.e. a terminal state is reached)

environment.render()
action = self.select_action(FloatTensor([state])) # Select action based on epsilon-greedy approach
c_action = action.data.cpu().numpy()[0,0]
Get next state and reward from environment based on current action
next_state, reward, done, _ = environment.step(c_action)
if done: # negative reward (punishment) if agent is in a terminal state

reward = -10 # negative reward for failing
push experience into replay memory
self.memory.push(state,action, reward, next_state)
if initial exploration is finished train the agent
if EXPLORE_EPI_END <= e <= TEST_EPI_START:

self.learn()
state = next_state
steps += 1
if done: # Print information after every episode

print("{2} Mode: {4} | Episode {0} Duration {1} steps | epsilon {3}"
.format(e, steps, ’\033[92m’ if steps >= 195 else ’\033[99m’, self.epsilon, self.mode))

self.episode_durations.append(steps)
self. plot_durations(e)
break

(Continued on the next slide)Purdue University 78

Neural Networks for a Continuous State Space

Q-Learning with a Neural Network (contd.)
(...... continued from the previous slide)

def learn(self): ## (H)
"""
Train the neural newtwork using the randomly selected 4-tuples
’[State, Action, Next State, Reward]’ from the ReplayStore storage.
"""
if len(self.memory) < MINIBATCH_SIZE:

return
for i in range(ITERATIONS):

minibatch is generated by random sampling from experience replay memory
experiences = self.memory.sample(MINIBATCH_SIZE)
batch_state, batch_action, batch_next_state, batch_reward = zip(*experiences)
extract experience information for the entire minibatch
batch_state = torch.cat(batch_state)
batch_action = torch.cat(batch_action)
batch_reward = torch.cat(batch_reward)
batch_next_state = torch.cat(batch_next_state)
current Q values are estimated by NN for all actions
current_q_values = self.model(batch_state).gather(1, batch_action)
expected Q values are estimated from actions which gives maximum Q value
max_next_q_values = self.model(batch_next_state).detach().max(1)[0]
expected_q_values = batch_reward + (GAMMA * max_next_q_values)
loss is measured from error between current and newly expected Q values
loss = self.lossCriterion(current_q_values, expected_q_values.unsqueeze(1))
backpropagation of loss for NN training
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()

def plot_durations(self,epi): # Update the plot at the end of each episode ## (I)
fig = plt.figure(1)
fig.canvas.set_window_title("DQN Training Statistics")
plt.clf()
durations_t = torch.FloatTensor(self.episode_durations)
plt.subplot(1,2,1)
if epi<EXPLORE_EPI_END:

plt.title(’Agent Exploring Environment’)
elif EXPLORE_EPI_END <= e <= TEST_EPI_START:

plt.title(’Training Agent’)
else:

plt.title(’Testing Agent’)
plt.xlabel(’Episode’)
plt.ylabel(’Duration’)
plt.plot(self.episode_durations)
Plot cumulative mean
if len(durations_t) >= EXPLORE_EPI_END:

means = durations_t.unfold(0, EXPLORE_EPI_END, 1).mean(1).view(-1)
means = torch.cat((torch.zeros(EXPLORE_EPI_END-1), means))
plt.plot(means.numpy())

plt.subplot(1,2,2)
plt.title("Epsilon per Episode")
plt.xlabel(’Episode’)
plt.ylabel(’Epsilon’)
plt.plot(self.epsilon_history)
plt.show(block=False)
plt.draw()
plt.pause(0.0001)

if __name__ == "__main__": ## (J)
environment = gym.make(’CartPole-v0’) # creating the OpenAI Gym Cartpole environment
state_size = environment.observation_space.shape[0]
action_size = environment.action_space.n
Instantiate the RL Agent
agent = QNetAgent(state_size, action_size)
for e in range(EPISODES): # Train the agent

agent.run_episode(e, environment)
print(’Complete’)
test_epi_duration = agent.episode_durations[TEST_EPI_START-EPISODES+1:]
print("Average Test Episode Duration",np.mean(test_epi_duration))
environment.close()
plt.ioff()
plt.show()

Purdue University 79

Neural Networks for a Continuous State Space

Visualizing the Training Phase

Figure: See how the average duration of an episode, shown in orange in the plot at left, increases as training proceeds. The
value of epsilon as shown in the right plot controls the extent to which the agent chooses an action randomly vis-a-vis choosing
an action based on neural learning. Initially, the value of epsilon is 1, implying that the actions will be chosen completely
randomly. In the code, epsilon is represented by the variable ’self.epsilon’. The small flat part of the curve at the beginning of
the plot at right is for the episodes when the replay memory is initialized by interacting with the environment prior to the start
of neural learning.

Purdue University 80

From Value-Function Methods to Policy Based Methods

Outline

1 RLHF Notation 9

2 Modeling the Reward for Proximal Policy Optimization 17

3 Proximal Policy Optimization (PPO) 22

4 Back to the Basics: The Vocabulary of Reinforcement Learning 33

5 Modelling RL as a Markov Decision Process 39

6 Q-Learning 45

7 Solving the Cart-Pole Problem with Discrete States 52

8 Neural Networks for a Continuous State Space 68

9 From Value-Function Methods to Policy Based Methods 81

10 Policy Gradient Methods 85

Purdue University 81

From Value-Function Methods to Policy Based Methods

RL with Policy Based Methods

So far I have talked about the Q-Learning based approaches to RL. A
most important characteristic of Q-Learning was that it estimated
explicitly the expected future reward for each possible action in every
state of the environment.

The Q-Learning based methods for RL are also called value-function
based methods, the term value-function referring to the function that
returns an approximation to the future expected rewards for any given
action that the agent may consider applying to the environment in
any given state that the environment finds itself in.

Modern alternatives to Q-Learning methods for RL consist of policy
based methods that bypass the need for an explicit estimation of the

future expected rewards.

Policy based methods directly estimate a probability distribution over
all available actions in any given state of the environment to help the
Agent choose the action in that state.Purdue University 82

From Value-Function Methods to Policy Based Methods

Policy Based Methods

Going back to the Pole-Cart problem in which the agent has a choice
of exactly two possible actions to choose from — move left or move
right — a policy based method would directly estimate a probability
distribution over these two actions for the agent to invoke in every
state of the pole-cart.

Let θ represent the parameters in the RL framework for learning to
balance the pole-cart. Since policy means what action the framework
chooses when the pole-cart is in a given state, we can say θ itself
represents the policy at the current moment — if the goal of the
framework is to directly predict the best choice for the next action.

That raises the question of how to train such a framework so that it
continually improves its policy. [Remember, the goal of Policy Based methods is the same as it
is for the value-function based methods: Maximization of the future expected rewards.]

RL frameworks that implement policy-based methods are trained with
what’s known as the hill-climbing approach explained next.

Purdue University 83

From Value-Function Methods to Policy Based Methods

Hill Climbing for Policy Based Methods

In the hill climbing approach, the learning framework starts with a
random choice for the individual parameters in θ and executes an
episode while collecting the rewards with the execution of the
recommended actions in each state of the environment until the end
of the episode.

For a simple explanation of hill climbing, let’s say that the values of
the parameters in θ are perturbed randomly and another episode
attempted in the same manner as before. We again collect the
rewards for the episode. If the rewards this time exceed the rewards in
the previous attempt, we retain the new values for θ as the new best
policy. Should the opposite be true, we go back to the previous value
of θ as the current best policy.

In this manner, with each episode, we seek to improve the policy as
represented by the parameter vector θ. We are engaged in
hill-climbing because at the core of the algorithm we constantly seek
to maximize the rewards reaped in each episode.Purdue University 84

Policy Gradient Methods

Outline

1 RLHF Notation 9

2 Modeling the Reward for Proximal Policy Optimization 17

3 Proximal Policy Optimization (PPO) 22

4 Back to the Basics: The Vocabulary of Reinforcement Learning 33

5 Modelling RL as a Markov Decision Process 39

6 Q-Learning 45

7 Solving the Cart-Pole Problem with Discrete States 52

8 Neural Networks for a Continuous State Space 68

9 From Value-Function Methods to Policy Based Methods 81

10 Policy Gradient Methods 85

Purdue University 85

Policy Gradient Methods

RL with Policy Gradients

The most successful of the current applications of RL employ
policy-based methods through Policy Gradients.

At the heart of a policy-gradient based approach to RL is a formula
that directly expresses the future expected rewards as a function of
the parameters θ. In such formulas, the future expected reward is
typically represented by the notation J(θ). Since the goal of all RL
frameworks is to maximize the future expected rewards when deciding
which action to invoke in the current state, as you can imagine, the
gradient ∇θJ(θ) would directly tell us how to update the parameter
vector θ with the choice made for the action in the current state.

For a deeper explanation of the policy-gradient approach, I’ll consider
the application of RL as reported in “Reinforcement Learning to Rank in

E-Commerce Search Engine: Formalization, Analysis, and Application”, by
Hu et al. at

https://arxiv.org/pdf/1803.00710.pdf

Purdue University 86

https://arxiv.org/pdf/1803.00710.pdf

Policy Gradient Methods

A Case Study in Policy Gradients for RL

The publication mentioned on the previous slide presents an
e-commerce search engine that is trained to rank the items returned
for a query by keeping track of the interaction between the consumer
and the search engine and using that interaction in an RL algorithm
to improve the search engine.

As you can imagine, the reward function in such a search engine is as
simple as it can be: The reward is 1 if the consumer ends up ordering
one of the items shown by the search engine, and 0 if the consumer
leaves the search engine.

Let θ represent the parameters of a learning framework that maps the
current state of the environment to a probability distribution over the
actions. We use the symbol π to denote the policy that maps the
states to actions. That is, we have π : S → A, where S is the set of
all states and A the set of all actions. Since the policy at any given
moment will depend on θ, we can also use the notation πθ to denote
the current policy.Purdue University 87

Policy Gradient Methods

A Case Study in Policy Gradients for RL (contd.)

For a more general understanding of what I mentioned in the last
bullet of the previous slide, consider RL in a stochastic context. For
stochastic RL, we can define a policy by πθ(s, a) = Pr(at = a|st = s, θ) for
∀s ∈ S and ∀a ∈ A where S is the set of all states and A the set of all
actions. For a specific current state s, the expression Pr(at = a|st = s, θ)

returns a probability distribution over all the actions for the agent. As
to which specific action the agent chooses to execute while the
environment is in state s is a different issue.

On the other hand, in a deterministic context, it is simpler to express
the policy by πθ(s) = a for ∀s ∈ S.
[To remind again, we refer to π as policy because it’s about a deliberate decision to invoke a specific action a when
the environment is in a given state s. Initially, the choice of the action will be random. The goal of RL would be to
learn θ so that “smart” choices for the actions will help achieve the overall goal to which RL is being applied.]

Our goal is to learn the optimum policy, that is, the policy that maximizes

the future expected rewards.

Purdue University 88

Policy Gradient Methods

RL with Policy Gradients (contd.)

We consider a T -step interaction between the consumer and the
search engine for driving the RL algorithm. The values of the
parameters at iteration t in this T -step interaction will be denoted θt .

When we go from iteration t to the next iteration t + 1, we want the
parameters θt to change to θt+1 in such a way that we maximize the
total expected rewards at the end of each T -step interaction — which
would be the goal of any optimum policy.

We now define J(θ) as the expectation of the T -step reward over all
possible trajectories τ : s0, a0, r0, s1, a1, r1, . . . , sT−1, aT−1, rT−1, sT :

J(θ) = Eτ∼ρθ
{R(τ)} = Eτ∼ρθ

{ T−1∑
t=0

rt
}

In the above equation, R(τ) is the expected reward on the trajectory
τ and the expectation is over all possible trajectories.

Purdue University 89

Policy Gradient Methods

RL with Policy Gradients (contd.)

In the expression for J(θ) on the previous slide, if the terminal state
of a trajectory is reached in under T decision steps, the summation
over t is truncated to that state. Also note that ρθ is the distribution
of trajectories like τ under the policy parameters θ.

The gradient of J(θ) with respect to the policy parameters θ is given
by:

∇θJ(θ) = Eτ∼ρ
θ

{ T−1∑
t=0

∇θπθ(st) · RT
t (τ)

}
where RT

t =
∑T−1

t ′=t rt ′ involves the future expected rewards only from the
step t until the end of the T -step decision process.

Assuming that the partial J(θ) exists, when we go from iteration
index t to the iteration index t + 1, we can update the parameter
vector θ by

θt+1 = θt + α · ∇J(θ)

where α is a non-negative number that controls the step size for
updating the parameters.Purdue University 90

Policy Gradient Methods

RL with Policy Gradients (contd.)

In the parameter update equation on the previous slide, note that,
unlike how gradients of loss are used for training a typical deep
learning neural network, the step in the parameter hyperplane would
be in the direction of maximizing the future expected reward. In other

words, our meandering in the parameter hyperplane could be construed as

hill climbing.

The expression shown for ∇J(θ) on the previous slide involves a
summation at all the time steps t of the gradient of the policy πθ with
respect to the parameters θ — recall that the policy πθ is a mapping
from the states to the actions. This is multiplied by the expected
rewards from that time step until the end of the T time steps.

The e-commerce paper cited at the beginning of this section only
considered deterministic policies in their application of the policy
gradient method for RL. This leads to the simplification shown on the
next slide.

Purdue University 91

Policy Gradient Methods

RL with Policy Gradients (contd.)

For the case of deterministic policies πθ (meaning that the policy returns

a specific action for each state) and when the Q values can be estimated
for the the (s, a) pairs, the above formula for the gradient can be
expressed as:

∇θJ(θ) = Eτ∼ρθ

{ T−1∑
t=0

∇θπθ(st) · ∇aQ
π

θ (st , a)
∣∣∣
a=πθ(st)

}

In general, though, we are more interested in stochastic policies in
which πθ returns a probability distribution over the action space.

Nonetheless, it is good to know that a deterministic policy on which
the above formula is based is a limiting case of a stochastic policy as
the variance of the latter goes to zero. Recall the definition given
earlier for the policy πθ(s, a) for the stochastic case.

Purdue University 92

Policy Gradient Methods

RL with Policy Gradients (contd.)

The challenge in the deterministic implementation based on the
gradient formula shown on the previous slide is in estimating the
value function Qπθ(st , a), the difficulties being caused by (according
to the authors) high variance and unbalanced distribution of the
immediate rewards in each state.

The authors say that above mentioned high variance is a result of the
fact that for most action pairs (s, a) the rewards tend to be zero since
a non-zero reward, when it is given, occurs only at the last step in the
T -step interaction between the consumer and the search engine.

See the paper at the link provided at the beginning of this section for
further information.

Purdue University 93

	RLHF Notation
	Modeling the Reward for Proximal Policy Optimization
	Proximal Policy Optimization (PPO)
	Back to the Basics: The Vocabulary of Reinforcement Learning
	Modelling RL as a Markov Decision Process
	Q-Learning
	Solving the Cart-Pole Problem with Discrete States
	Neural Networks for a Continuous State Space
	From Value-Function Methods to Policy Based Methods
	Policy Gradient Methods

