
Generative Data Modeling with Networks Based
on Adversarial Learning and Denoising Diffusion

Lecture Notes on Deep Learning

Avi Kak and Charles Bouman

Purdue University

Tuesday 26th March, 2024 14:52

©2024 Avinash Kak, Purdue University

Purdue University 1

Preamble To TOC To HowTo

When you create a probabilistic model for your data, you acquire the power to
generate new samples of the data from the model. Depending on how good a job
you did of modeling the data, the new samples you generate from the model may
look deceptively similar to those in your data without being exactly the same as
any one of them.

In general, probabilistic modeling may involve fitting a parametric form to the
data, the choice of the form based on your understanding of the phenomenon
that produced the data. Obviously, you would want to choose the parameters
that can account for all of the observed data in a maximum-likelihood sense.

It may also happen that you are really NOT interested in fitting a parametric
model to your data, but you are interested in generating new samples from the
data nevertheless. In such cases, it is possible you could get away with just
constructing a multi-dimensional histogram from the data and using a generator
of some sort that would spit out new samples according to that histogram.

Purdue University 2

Preamble
Regardless of whether you have an analytic model for the data or just a
good-quality histogram, generating new samples is not easy. It has been the
subject of much research by probability theorists and statisticians the last several
decades. The best techniques fall under the label Markov-Chain Monte-Carlo
(MCMC) sampling and the most commonly used algorithm for MCMC sampling
is the Metropolis-Hastings algorithm.

The basic intuition in these algorithms is based on conducting a random walk
through the space in which the model is defined and subjecting each successive
randomly generated sample to an acceptance test that is based on the model
probability distribution. As you generate a candidate for the next sample at your
current point on the walk, you subject the acceptance of the candidate to the
ratio of the probabilities at the candidate point and the current point. In this
manner, you bias the acceptance of a candidate sample in such a way that you
end up with more samples in those portions of the model space where the
probabilities are relatively high. The generation of the new samples is according
to what is known as a proposal distribution. Since the acceptance of each sample
is predicated on just the previous sample that was already accepted, we obviously
have a Markov Chain. Hence the name MCMC for such algorithms.
Purdue University 3

Preamble (contd.)

The following link is to a Perl module I created several years ago for helping
generate positive and negative training samples for a machine learning algorithm
using the Metropolis-Hastings algorithm for sample selection:

https://metacpan.org/pod/Algorithm::RandomPointGenerator

The machine learning program in this case was for classifying land-cover data
obtained from wide-area satellite imagery as described in

https://engineering.purdue.edu/RVL/Publications/CVIU_2016_Chang_Comandur_Park_Kak.pdf

Fast forward to deep learning: Just as it has demolished so many of our
previous approaches to solving data engineering problems, probabilistic modeling
of data has suffered the same fate. The deep learning based approaches to data
modeling produce stunning results that nobody could have even dared dream just
a few years back. I am sure you have heard about what media refers to as “deep
fakes”. That’s what I am talking about. My goal in this lecture is to introduce
you to deep learning based approaches to probabilistic data modeling with neural
networks.
Purdue University 4

https://metacpan.org/pod/Algorithm::RandomPointGenerator
https://engineering.purdue.edu/RVL/Publications/CVIU_2016_Chang_Comandur_Park_Kak.pdf

Preamble (contd.)

Deep learning has given two fundamentally different approaches to generative data modeling:

(1) those that are based on Adversarial Learning; and (2) those that are based on Denoising

Diffusion.

Adversarial Learning based approaches for data modeling began with the 2014
publication “Generative Adversarial Nets” by Goodfellow, et al.:

https://arxiv.org/pdf/1406.2661.pdf

And the Denoising Diffusion based approaches for data modeling came into
prominence with the following three publications, the first entitled “Deep
Unsupervised Learning using Nonequilibrium Thermodynamics”by Sohl-Dickstein
et al. in 2015:

https://arxiv.org/pdf/1503.03585.pdf

the second entitled “Denoising Diffusion Probabilistic Models” by Ho et al. in
2020:

https://arxiv.org/pdf/2006.11239.pdf

and the third entitled “Improved Denoising Diffusion Probabilistic Models” by
Nichol and Dhariwal in 2021:

https://arxiv.org/pdf/2102.09672.pdf

Purdue University 5

https://arxiv.org/pdf/1406.2661.pdf
https://arxiv.org/pdf/1503.03585.pdf
https://arxiv.org/pdf/2006.11239.pdf
https://arxiv.org/pdf/2102.09672.pdf

Preamble (contd.)
In both approaches to generative data modeling, the main idea is to learn the
probability distribution that describes a training dataset and subsequently
transform a noise vector into an instance of the learned distribution.

With Adversarial Learning, you have a Generator network and a Discriminator
network. It is the Generator’s job to transform a noise-vector into an image that
would look like those in the training dataset. And it is the Discriminator’s job to
not trust the output of the Generator. Through the training iterations, the
Generator tries to continually improve its ability to fool the Discriminator and, at
the same, the Discriminator attempts to become better and better at telling the
difference the real images in the training dataset and the so-called fakes produced
by the Generator.

The data modeling approach with Denoising Diffusion is entirely different. It is best
understood in terms of two Markov processes: (1) You have a diffusion process in
which we add a bit of noise to a training image at each timestep until what you
get is isotropic Gaussian noise; and, (2) You have a denoising process in which
you start with zero-mean isotropic Gaussian noise and you remove from it a bit of
noise one timestep at a time until what you get is a recognizable image. Learning
consists of training a denoising neural network to remove the same amount of
noise that was added during the diffusion process for the same timestep transition.Purdue University 6

Preamble (contd.)

Essential to understanding both the approaches — those based on Adversarial
Learning and those based on Denoising Diffusion — is having a good grasp of
what’s meant by the ‘distance” or the “divergence” between two probability
distributions.

For that reason, I’ll start this lecture with a brief survey of the more popular
distances and divergences between two given distributions.

For any such distance to be useful in a deep learning context, you would want to
treat it as a loss for the backpropagation needed for updating the parameters θd
and θg that I defined previously. That places an important constraint on what
kinds of distances can actually be used a deep learning algorithm: the distance
must be differentiable so that we can calculate the gradients of the loss with
respect to the network parameters.

Over the years, for Adversarial Learning, the Wasserstein distance has emerged as
a strong candidate for such a differentiable distance function. And that has led to
a Generative Adversarial Network named WGAN that was presented by Arjovsky,
Chintala, and Bottou in the following 2017 publication:

https://arxiv.org/pdf/1701.07875.pdfPurdue University 7

https://arxiv.org/pdf/1701.07875.pdf

Preamble (contd.)

This lecture can be divided roughly into three parts:

Part 1 deals with the fundamental ideas related to measuring the distances and
the divergences between two probability distributions. This material is on Slides
11 through 51.

Part II deals with Adversarial Learning and it is on Slides 53 through 126.

Part III presents Denoising Diffusion. The material after Slide 126 deals with this
topic.

Purdue University 8

Preamble – How to Learn from These Slides

Since it is a large slide deck, you may need some help with how to digest all the
information that is presented here.

To that end, of the fundamental concepts covered in this lecture, you should
focus on just the following three at your first reading:

Fundamental to data modeling with adversarial learning and diffusion is understanding
how to measure the distance (or the divergence) between two probability distributions,
with one distribution representing the data you want to model and the other the “fakes”
you would like to generate. At your first reading, it would be sufficient if you focus on
understanding just the concept of KL-Divergence that’s presented on slides 17 through 22.

At your first reading, from the material I have presented on Adversarial Learning, try to
just understand the architecture of DCGAN that is presented in Section 7. That’s around
20 slides.

In addition, your first-reading focus should be on just the fundamentals of Denoising
Diffusion as described in Sections 11 and 12. That’s a total of 25 slides.

That makes for a total of just 50 slides you need to focus on at the beginning.
Only after you have understood the material in these 50 slides, you should take
the time to look over what’s in the rest of the slides. Most of that material covers
a few additional fundamental measures of distances between probability
distributions, network details, the dataset attributes, the results, etc.Purdue University 9

Outline
1 Distance Between Two Probability Distributions 11

2 Examples of Distance Functions for Probability Distributions: TV, KL, and JS 13

3 Earth Mover’s and Wasserstein Distances 26

4 A Random Experiment for Studying Differentiability 42

5 Differentiability of Distance Functions 45

6 PurdueShapes5GAN Dataset for Experimenting with Adversarial Learning and Diffusion 53

7 DCGAN Implementation in DLStudio 60

8 Making Small Changes to the DCGAN Architecture 82

9 Wasserstein GAN Implementation in DLStudio 88

10 Improving Wasserstein GAN with Gradient Penalty 104

11 Generative Modeling with Denoising Diffusion 127

12 Loss Function for Denoising Diffusion 135

13 Using Gaussian Noise for Diffusion 150

14 The GenerativeDiffusion Module in DLStudio 166

Purdue University 10

Distance Between Two Probability Distributions

Outline

1 Distance Between Two Probability Distributions 11

2 Examples of Distance Functions for Probability Distributions: TV, KL, and JS 13

3 Earth Mover’s and Wasserstein Distances 26

4 A Random Experiment for Studying Differentiability 42

5 Differentiability of Distance Functions 45

6 PurdueShapes5GAN Dataset for Experimenting with Adversarial Learning and Diffusion 53

7 DCGAN Implementation in DLStudio 60

8 Making Small Changes to the DCGAN Architecture 82

9 Wasserstein GAN Implementation in DLStudio 88

10 Improving Wasserstein GAN with Gradient Penalty 104

11 Generative Modeling with Denoising Diffusion 127

12 Loss Function for Denoising Diffusion 135

13 Using Gaussian Noise for Diffusion 150

14 The GenerativeDiffusion Module in DLStudio 166

Purdue University 11

Distance Between Two Probability Distributions

Estimating the Distance Between Two Distributions

Given two probability distributions, pdata and pg , the former
representing the training data and the latter an approximation to the
former as learned by some machine-learning framework, the question
is: As a measure of the dissimilarity of the two distributions, what is
the distance between the two?

Along the lines of a review of such distances that was presented in

https://arxiv.org/pdf/1701.07875.pdf

let’s briefly review the following popular distances and divergences
between a pair of probability distributions:

Total Variation Distance

Kullback-Liebler Divergence

Jensen-Shannon Divergence

Earth Mover’s Distance

Wasserstein Distance
Purdue University 12

https://arxiv.org/pdf/1701.07875.pdf

Examples of Distance Functions for Probability Distributions: TV,
KL, and JS

Outline

1 Distance Between Two Probability Distributions 11

2 Examples of Distance Functions for Probability Distributions: TV, KL, and JS 13

3 Earth Mover’s and Wasserstein Distances 26

4 A Random Experiment for Studying Differentiability 42

5 Differentiability of Distance Functions 45

6 PurdueShapes5GAN Dataset for Experimenting with Adversarial Learning and Diffusion 53

7 DCGAN Implementation in DLStudio 60

8 Making Small Changes to the DCGAN Architecture 82

9 Wasserstein GAN Implementation in DLStudio 88

10 Improving Wasserstein GAN with Gradient Penalty 104

11 Generative Modeling with Denoising Diffusion 127

12 Loss Function for Denoising Diffusion 135

13 Using Gaussian Noise for Diffusion 150

14 The GenerativeDiffusion Module in DLStudio 166

Purdue University 13

Examples of Distance Functions for Probability Distributions: TV,
KL, and JS

Total Variation (TV) Distance

We start with a continuous random variable {X | x ∈ Rn} and consider
two different probability distributions (densities, really), denoted f

and g , over X . The Total Variation (TV) distance between f and g is
given by

dTV (f , g) = sup
A

[∣∣∣ ∫
A
f (x)dx −

∫
A
g(x)dx

∣∣∣ : A ⊂ Rn

]
(1)

What that says is that we check every subset A of the domain Rn and
find the difference between the probability masses over that subset for
the f and g densities. The largest value for this difference is the TV
distance between the two.

The important thing here is that the TV distance is a metric, in the
sense that it satisfies all the conditions for a distance measure to be a
metric: Must never be negative; must be symmetric; and must obey the triangle

inequality.
Purdue University 14

Examples of Distance Functions for Probability Distributions: TV,
KL, and JS

TV for the Discrete Case

Let’s now consider the case when the random variable X is
discretized. That is, the observed values for X are confined to the set
shown below:

X = {x1, x2,, xN}

We are now interested in the distance between two discrete probability
distributions, to be denoted P and Q, over a countable set. These
distributions must obviously satisfy the unit summation condition:

N∑
i=1

P(xi) = 1
N∑
i=1

Q(xi) = 1 (2)

In this case, the Total Variation distance is given by:

dTV (P,Q) = sup
A

[∣∣∣ ∑
xi∈A

P(xi) −
∑
xi∈A

Q(xi)
∣∣∣ : A ⊂ X

]
(3)

Purdue University 15

Examples of Distance Functions for Probability Distributions: TV,
KL, and JS

TV for the Discrete Case (contd.)

Let’s now consider the following two subsets of the set X :

A1 = {xi ∈ X | P(xi) ≥ Q(xi}

A2 = {xi ∈ X | Q(xi) < P(xi} (4)

On account of the absolute value operator in Eq. (3), for the
optimizing set A, it must either be the case that P(xi) ≥ Q(xi) or that
Q(xi) ≥ P(xi). What that implies that both A1 and A2 are a part of
the optimizing set A. However, since A1 ∪ A2 = X , we can write for
the discretized case:

dTV (P,Q) =
1

2

∑
xi∈X

|P(xi) − Q(xi)|

=
1

2
L1(P,Q) (5)

where the L1 norm is the Minkowski norm Lp with p = 1.

Purdue University 16

Examples of Distance Functions for Probability Distributions: TV,
KL, and JS

Kullback-Liebler (KL) Divergence

Popularly known as KL-Divergence.

In this case, let’s start directly with the discrete case of a random
variable X as stated in the first two bullets on Slide 14. The
KL-Divergence between a true distribution P and its approximating
distribution Q is given by

dKL(P,Q) =
N∑
i=1

P(xi) log
P(xi)

Q(xi)
(6)

dKL(P,Q) is obviously the expectation of the ratios log P(xi)
Q(xi)

with respect
to the P distribution. For the ratios to be defined you must have
Q(xi) > 0 when P(xi) > 0. Q(xi) is allowed to be zero when P(xi) is zero
since x log x → 0 as x → 0+.

The logarithm shown above is taken to base 2 if the value of the
divergence is required in bits. For natural logarithms, the value
returned by KL Divergence is in nats.Purdue University 17

Examples of Distance Functions for Probability Distributions: TV,
KL, and JS

KL-Divergence (contd.)
Since, in general, log x can return negative and positive values as x

increases from 0 to +∞, and since a negative value for KL-divergence
makes no sense, how can we be sure that the value of dKL(P,Q) is
always non-negative?

To see that the formula for dKL(P,Q) always returns a non-negative
value, we first subject that formula to the following rewrites:

dKL(P,Q) =
N∑
i=1

P(xi) log
P(xi)

Q(xi)

= −
N∑
i=1

P(xi) log
Q(xi)

P(xi)

= −
N∑
i=1

P(xi) log
P(xi) + Q(xi) − P(xi)

P(xi)

= −
N∑
i=1

P(xi) log

[
1 +

Q(xi) − P(xi)

P(xi)

]

= −
N∑
i=1

P(xi) log(1 + a) (7)

Purdue University 18

Examples of Distance Functions for Probability Distributions: TV,
KL, and JS

KL-Divergence (contd.)

In the last equation on the previous slide, a = Q(xi)−P(xi)
P(xi)

. The factor a is
lower bounded by -1, which happens when P(xi) takes on the largest
possible value of 1 and Q(xi) takes on the smallest possible value of 0.

Using Jensen’s inequality to take advantage of the concavity of log x

over the interval (0,∞), one can show that for all a > −1, log(1 + a) ≤ a.
The derivation on the previous slide can therefore be extended as
follows:

dKL(P,Q) ≥ −
N∑
i=1

P(xi)
Q(xi) − P(xi)

P(xi)

= −
N∑
i=1

[Q(xi) − P(xi)]

= 0 (8)

which implies that we are guaranteed that dKL(P,Q) ≥ 0.

Purdue University 19

Examples of Distance Functions for Probability Distributions: TV,
KL, and JS

KL-Divergence (contd.)

KL-Divergence CANNOT be a metric distance, not the least because
what it calculates is asymmetric with respect to its two args.

Given its limitations — requiring Q(x) > 0 when P(x) > 0 and not being a
metric distance — students frequently want to know as to why KL-Divergence is

as “famous” as it is in the estimation-theoretic literature. One reason for that is
its interpretation as relative entropy:

dKL(P,Q) = HP (Q) − H(P) (9)

which follows straightforwardly from the definition in Eq. (6). H(P) is
the entropy associated with the probability distribution P and HP(Q)

the cross-entropy of an approximating distribution Q vis-a-vis the true
distribution P. [See the definitions for H(P) and HP (Q) on the next slide.]

Since dKL(P,Q) ≥ 0, it must be the case that HP(Q) ≥ H(P), which

constitutes a proof of the assertion made on Slide 17 of my Week 7 lecture that the

smallest possible value for HP(Q) is H(P).

Purdue University 20

Examples of Distance Functions for Probability Distributions: TV,
KL, and JS

KL-Divergence (contd.)

Whereas the entropy associated with a distribution P is defined as
H(P) = −

∑N
i=1 P(xi) logP(xi), the cross-entropy of an approximate

distribution Q with respect to a true distribution P is given by
HP(Q) = −

∑N
i=1 P(xi) logQ(xi).

[Entropy based interpretations of uncertainty are valuable for developing powerful algorithms for data engineering.
See Sections 2 through 4 of my Decision Trees tutorial at the clickable link
https://engineering.purdue.edu/kak/Tutorials/DecisionTreeClassifiers.pdf.]

The entropy based definition of KL-Divergence in Eq. (9) on the
previous slide implies that the divergence is a measure of the
uncertainty in the estimated distribution Q over and above what it is
in the original distribution P. [See Slides 20 and 21 of my Week 7 lecture for why the entropy is a

measure of uncertainty.]

Understanding KL-Divergence is a stepping stone to learning the
Jensen-Shannon divergence (and the closely related Jensen-Shannon
distance) that I present starting with the next section.

Purdue University 21

https://engineering.purdue.edu/kak/Tutorials/DecisionTreeClassifiers.pdf

Examples of Distance Functions for Probability Distributions: TV,
KL, and JS

KL-Divergence (contd.)

In Python, a call like:

import scipy.stats

scipy.stats.entropy(P,Q)

with P and Q standing for two normalized (or unnormalized)
histograms, returns the KL-Divergence of Q vis-a-vis P. If Q(x) is
zero where P(x) is not, it will throw an exception.

In the calls shown above, the two histogram arrays must be of equal
length. You can specify the base of the logarithm with an optional
3rd argument. The default for the base is e for the natural log.

Finally, note that a commonly used notation for KL-Divergence as
defined in Eq. (6) on Slide 17 is

dKL(P || Q) =
N∑
i=1

P(xi) log
P(xi)

Q(xi)
(10)

where you place two vertical bars between the two arguments of the
function name on the left hand side of the equality sign.

Purdue University 22

Examples of Distance Functions for Probability Distributions: TV,
KL, and JS

Jensen-Shannon (JS) Divergence and Distance

We again have a random variable X whose observed samples belong
to the set:

X = {x1, x2,, xN} (11)

And, as for the case of KL-Divergence, we consider a true probability
distribution P and its approximation Q over the values taken on by
the random variable. The Jensen-Shannon divergence, defined below,
is a symmetrisized version of the KL-Divergence presented earlier in
Eq. (6):

dJS (P,Q) = dKL(P,M) + dKL(Q,M) (12)

where M is the mean distribution for P and Q, as given by

M =
P + Q

2
(13)

We can also talk about Jensen-Shannon distance, which is given by
the square-root of the Jensen-Shannon Divergence:

distJS (P,Q) =
√

dJS (P,Q) (14)
Purdue University 23

Examples of Distance Functions for Probability Distributions: TV,
KL, and JS

JS Divergence and Distance (contd.)

Both the divergence dJS (P,Q) and the distance distJS (P,Q) are
symmetric with respect to the arguments P and Q. Additionally, they
do away with the “Q(x) > 0 when P(x) > 0” requirement of
KL-Divergence.

Since, as established earlier in these slides, the KL Divergence is
always non-negative, the JS-Divergence is also non-negative.

The value of dJS (P,Q) is always a real number in the closed interval
[0, 1]. When the value is 0, the two distributions P and Q are identical.
And when the value is 1, the two distributions are as different as they
can possibly be.

Most significantly, distJS (P,Q) is a valid metric distance.

Purdue University 24

Examples of Distance Functions for Probability Distributions: TV,
KL, and JS

JS Divergence and Distance (contd.)
Given two histogram arrays P and Q of equal length, normalized or
unnormalized, a call like the following in Python

from scipy.spatial import distance

distance.jensenshannon(P,Q)

directly returns the Jensen-Shannon distance between the two
histograms. If you wanted the Jensen-Shannon divergence, you would
need to square the answer returned. The function call implicitly
normalizes the histogram arrays if you supply them otherwise.

With regard to the role of the Jensen-Shannon divergence (and,
therefore, also of the KL-Divergence) in the context of this lecture,
the authors Goodfellow et al. of “Generative Adversarial Nets” have

argued that if the Discriminator in a GAN is trained to its optimum,

the distribution learned by the Generator is guaranteed to be the one

whose Jensen-Shannon divergence from the training-data distribution

is minimized.
Purdue University 25

Earth Mover’s and Wasserstein Distances

Outline

1 Distance Between Two Probability Distributions 11

2 Examples of Distance Functions for Probability Distributions: TV, KL, and JS 13

3 Earth Mover’s and Wasserstein Distances 26

4 A Random Experiment for Studying Differentiability 42

5 Differentiability of Distance Functions 45

6 PurdueShapes5GAN Dataset for Experimenting with Adversarial Learning and Diffusion 53

7 DCGAN Implementation in DLStudio 60

8 Making Small Changes to the DCGAN Architecture 82

9 Wasserstein GAN Implementation in DLStudio 88

10 Improving Wasserstein GAN with Gradient Penalty 104

11 Generative Modeling with Denoising Diffusion 127

12 Loss Function for Denoising Diffusion 135

13 Using Gaussian Noise for Diffusion 150

14 The GenerativeDiffusion Module in DLStudio 166

Purdue University 26

Earth Mover’s and Wasserstein Distances

Earth Mover’s Distance
The distance function that the DL community is all excited about at

the moment is the Wasserstein Distance. The reason has to with the
fact this is the only differentiable distance function and, because it is
differentiable, a loss based on this distance function can be
backpropagated directly for updating the weights in a network.

However, in order to fully appreciate what exactly is measured by the
Wasserstein Distance, you first have to understand what is known as
the Earth Mover’s Distance (EMD). Note that many researchers use

the two names interchangeably. I personally think of the Wasserstein

Distance as a stochastic version of EMD.

My goal in this section is to introduce you to EMD. My intro to EMD
is based on the following classic paper by Rubner, Tomasi, and
Guibas:

http://robotics.stanford.edu/~rubner/papers/rubnerIjcv00.pdf

Purdue University 27

http://robotics.stanford.edu/~rubner/papers/rubnerIjcv00.pdf

Earth Mover’s and Wasserstein Distances

Earth Mover’s Distance (contd.)

To appreciate EMD, consider establishing similarity between two
images on the basis of the histograms of their graylevels.

Given two N-bin histograms f and g for the two images, you would
not be too far off the mark if the first idea that pops up in your head
would be to carry out a bin-by-bin comparison using a distance like:

dLr (f , g) =

(
N∑
i=1

|gi − hi |
r

) 1
r

(15)

With r = 1, you’d be computing the L1 distance between the two
histograms, and with r = 2 the Euclidean distance. You will see both
being used rather commonly, but you have to be careful as you will
soon see. As mentioned on Slide 15, the general form of the distance
shown above is known as the Minkowski distance.

Purdue University 28

Earth Mover’s and Wasserstein Distances

Earth Mover’s Distance (contd.)

That a distance function of the sort shown on the previous slide

might give nonsensical answers for image similarity is made beautifully
clear by the following example from the Rubner et el. paper:

Comparing histograms

In the figure shown above, first focus on the (h1, k1) histograms
shown in the left column. The h1 image has half its pixels very dark
and the other half of the pixels very white. Perceptually, the k1 image
is going to look very similar to the h1 image since the two dominant
gray levels are merely shifted to the right by one unit. If the number
of bins is, say, greater than 64, you will not even notice the shift.

Purdue University 29

Earth Mover’s and Wasserstein Distances

Earth Mover’s Distance (contd.)
Next, focus on the (h2, k2) histograms in the figure on the previous
slide. While the h2 image has half its pixels very dark and the other
half very white, the k2 image contains only dark pixels.

Therefore, to a human observer, the two images in the (h1, k1) pair
will look very similar, while the two images in the (h2, k2) pair will
look very different. However, the dLr distance in Eq. (15) will give

you exactly the opposite answer.

Since distances like dLr in Eq. (15) cannot be trusted to yield

meaningful results when comparing histograms for image similarity,

EMD has emerged as a powerful alternative.

EMD is based on associating a cost with moving pixels from one bin
to another in a hypothetical attempt that tries to make the two
histograms as similar looking as possible, constructing an overall cost
with all such pixel transfers, and then minimizing the overall cost.Purdue University 30

Earth Mover’s and Wasserstein Distances

Earth Mover’s Distance (contd.)

Consider the following as an example of the cost associated with
moving a pixel from one bin to another in a one-dimensional grayscale
histogram whose bins are one-unit wide:

cij = 1 − e−α|i−j| (16)

where you can think of α > 0 as a heuristic parameter that is
approximately proportional to the overall variability in the bin
populations. It was shown by Rubner et al. that such a cost function
is a metric. What it says is that cost of moving pixels from a bin to
another close-by bins is close to zero. However, the costs go up if the
transfer is between more widely separated bins.

The problem of comparing two histograms can now be stated as an

instance of the classic “transportation simplex” problem in optimal

transport theory for resource distribution, as explained on the next

slide.

Purdue University 31

Earth Mover’s and Wasserstein Distances

Earth Mover’s Distance (contd.)

You have M providers of some resource who possess different
quantities ({gi |i = 1, . . . ,M}) of the resource and N consumers of
the same resource whose needs vary according to ({hj |j = 1, . . . ,N}).

And you also have a cost estimate cij that is the cost of transporting
a unit of the resource from the i th provider to the j th consumer.

Our goal is to come up with with an optimum flow matrix F , whose
fij element tells us how much of the resource to transport from the i th

provider to the j th consumer. We must obviously solve the following
minimization problem for F :

min
F

M∑
i=1

N∑
j=1

cij fij (17)

with the minimization subject to the constraints shown on the next
slide.

Purdue University 32

Earth Mover’s and Wasserstein Distances

Earth Mover’s Distance (contd.)

The minimization problem on the previous slide must be solved
subject to the constraints:

fij ≥ 0 i = 1, . . . ,M, j = 1, . . . ,N (18)

N∑
j=1

fij ≤ hi i = 1, . . . ,M (19)

M∑
i=1

fij ≤ gj j = 1, . . . ,N (20)

M∑
i=1

N∑
j=1

fij = min

{
M∑
i=1

gi ,
N∑
j=1

hj

}
(21)

All four constraints are straightforward because they are so intuitive.
[The constraints in Eqs. (18) and (19) are straightforward: The flow can never be negative and the total outgoing flow

from a provider cannot exceed what the provider has in stock. The constraint in Eq. (20) also makes sense since the

accumulated in-flows for the jth consumer should not exceed to total demand for that consumer. The constraint in Eq.

(21) is important only when the total supply provided by all the providers is not equal to the total demand at all the

consumers. Should there be such a disparity between total supply and total demand, summing all of elements of the

flow matrix should not exceed the smaller of the total supply and the total demand.]

Purdue University 33

Earth Mover’s and Wasserstein Distances

Earth Mover’s Distance (contd.)

Having calculated the optimal transport by solving the minimization
problem described on the previous two slides, we use the following
formula to compute the EMD between the suppliers distribution for
the resource and the consumers distribution:

EMD(g, h) =

∑M
i=1

∑N
j=1 cij fij∑M

i=1

∑N
j=1 fij

(22)

where we normalize the cost of the optimal transport of the goods by
the total amount of the goods transported.

Such optimization problems have received much attention by the OR
(Operations Research) folks over the last several decades. We now
have polynomial-time solutions for the problem that fall under the
general category of “simplex algorithms for linear programming”.
Rubner et al. used such a solution in their work on retrieval from
image databases and showed impressive results.

Purdue University 34

Earth Mover’s and Wasserstein Distances

Earth Mover’s Distance (contd.)

It was shown by Rubner et al. that EMD is a metric when the
supplier and the consumer distributions are normalized. For the case
of comparing image histograms, we can say that EMD between two
histograms is a metric for the case of normalized histograms.

With that as an intro to EMD, the issue that should come up next
would be whether it is possible to create a loss function directly from
EMD for adversarial learning. I’ll address this question later when I
get into the differentiability of the different distance functions.

For now, let’s move on to the Wasserstein distance. As mentioned

earlier, I consider the Wasserstein distance to be a stochastic version

of EMD.

Purdue University 35

Earth Mover’s and Wasserstein Distances

Wasserstein Distance
Using dW (P,Q) to denote the Wasserstein distance between the
distributions P and Q, here is its definition:

dW (P,Q) = inf
γ(X,Y)∈Γ(P,Q)

E(X,Y) ∼ γ

[
∥x − y∥

]
(23)

In the above definition, Γ(P,Q) is the set of all possible joint
distributions γ(X ,Y) over two random variables X and Y such that the
marginal of γ(X ,Y) with respect to X is P and the marginal of γ(X ,Y)

with respect to Y is Q.

Since the marginal of γ(X ,Y) with respect to X is P(x) and the
marginal of the same with respect to Y is Q(x), γ(X ,Y) encodes in it
the probability mass that must be shifted from the distribution P to
the distribution Q if for whatever reason we wanted them to become
identical. [If γ(X , Y) encodes in it the probability mass that must be shifted from the distribution P to the

distribution Q, is there any way to construct a ”cost” — a single number — associated with this transfer of mass? The

cost itself is proportional to the absolute difference between the value x for the random variable X and the value y for

the random variable Y if the joint distribution γ(X , Y) indicates there is a non-zero probability associated with mass

transfer from x to y . For vector random variables, this would be the same as the norm ∥x − y∥. In order to get a

single-number cost, we would need to average the norm ∥x − y∥ as indicated in Eq. (23) above.]
Purdue University 36

Earth Mover’s and Wasserstein Distances

Wasserstein Distance (contd.)

The dW (P,Q) distance is a metric as it obeys the constraints on
metrics: its values are guaranteed to be non-negative, it is symmetric
with respect to its args, and it obeys the triangle inequality. Let’s now
focus on what it might take to compute the Wasserstein distance.

The infimum required on the right side of Eq. (23) says that from the
set Γ(P,Q) of all joint distributions defined in the second bullet on the
previous slide, we need to zero in on the joint distribution γ(X ,Y) that
minimizes the mean value of the normed difference ∥x − y∥ with the
sample pair (x , y) drawn from the joint distribution.

In a computation based on a literal interpretation of the definition in
Eq. (23), we are required to carry out a random experiment in which
we sample the (infinite) set Γ(P,Q) of the joint distributions for the
two random variables X and Y for a candidate distribution γ(X ,Y).

Purdue University 37

Earth Mover’s and Wasserstein Distances

Wasserstein Distance (contd.)

Subsequently, in another random experiment, we sample the
distribution γ(X ,Y) for specific values x and y for the random variables
X and Y . We carry out the second random experiment repeatedly in
order to form a good estimate for the average value for ∥x − y∥.
Subsequently, we go back to the first random experiment and choose
a second candidate for γ(X ,Y), and so on. Such a computation is

obviously not feasible.

Fortunately, the infimum in the theoretical definition of Wasserstein
Distance in Eq. (23) can be converted into a computationally
tractable supremum calculated separately over the component
distributions P and Q as shown below

dW (P,Q) = sup
∥f ∥L≤1

[
Ex∼P{f (x)} − Ey∼Q{f (y)}

]
(24)

for ALL 1-Lipschitz functions f : X → R where X is the domain from
which the elements x and y mentioned above are drawn and R is the
set of all reals.

Purdue University 38

Earth Mover’s and Wasserstein Distances

Wasserstein Distance (contd.)

The result shown in Eq. (24) is from a famous book in Optimal
Transport Theory by Cédric Villani:

https://cedricvillani.org/sites/dev/files/old_images/2012/08/preprint-1.pdf

Despite the use of ”ALL” for the family of 1-Lipschitz functions f () in
Eq. (24), a better way to state the same thing would be that there

exists a 1-Lipschitz function f () for which the maximization shown on

the right in Eq. (24) yields the value for the Wasserstein distance.

But what is a k-Lipschitz Function? A function f : X → R is a
k-Lipschitz function if |f (x1)− f (x2)| ≤ k.d(x1, x2) for every x1, x2 ∈ X . Note
that X is the domain of the function. In this definition, d(., .) is the
metric distance defined on the domain of f . So d(x1, x2) is the distance
between the points x1 and x2.

Purdue University 39

https://cedricvillani.org/sites/dev/files/old_images/2012/08/preprint-1.pdf

Earth Mover’s and Wasserstein Distances

Wasserstein Distance (contd.)

In general, the Lipschitz functions allow us to prescribe functions with
“levels” of continuity properties. The larger the value of the integer k,
the more rapidly the function would be allowed to change when you
go from a point x1 to another point x2 in its domain.

In general, at all x in the domain X of f :

f (x) = inf
y∈X

[f (y) + k · d(x, y)] = sup
y∈X

[f (y) − k · d(x, y)] (25)

Note that the definition |f (x)− f (y)| ≤ k · d(x , y) implies
f (y)− k.d(x , y) ≤ f (x) ≤ f (y) + k · d(x , y) When you apply the definitions
of infimum and supremum to these inequalities, you get the form
shown in Eq. (25).

Purdue University 40

Earth Mover’s and Wasserstein Distances

Wasserstein Distance (contd.)

We are faced with the following questions if we want to use the form
in Eq. (24) for computing the Wasserstein Loss in adversarial learning:

How do we find the function f () that would solve the maximization
problem in Eq. (24)?

The expectation operator E () in Eq. (24) is meant to be applied over
the entire domain of the distributions P and Q. How do we do that in
a practical setting?

I’ll address each of these issues separately in Section 12 on how to use
the Wasserstein distance for adversarial learning. That material
begins on Slide 90.

Purdue University 41

A Random Experiment for Studying Differentiability

Outline

1 Distance Between Two Probability Distributions 11

2 Examples of Distance Functions for Probability Distributions: TV, KL, and JS 13

3 Earth Mover’s and Wasserstein Distances 26

4 A Random Experiment for Studying Differentiability 42

5 Differentiability of Distance Functions 45

6 PurdueShapes5GAN Dataset for Experimenting with Adversarial Learning and Diffusion 53

7 DCGAN Implementation in DLStudio 60

8 Making Small Changes to the DCGAN Architecture 82

9 Wasserstein GAN Implementation in DLStudio 88

10 Improving Wasserstein GAN with Gradient Penalty 104

11 Generative Modeling with Denoising Diffusion 127

12 Loss Function for Denoising Diffusion 135

13 Using Gaussian Noise for Diffusion 150

14 The GenerativeDiffusion Module in DLStudio 166

Purdue University 42

A Random Experiment for Studying Differentiability

A Random Experiment for Studying Differentiability

The discussion in this section is an elaboration of the “learning
parallel lines” example in the paper

https://arxiv.org/pdf/1701.07875.pdf

We start with a random variable Z whose values, z, are uniformly
distributed over the unit interval [0, 1].

We assume that the ground-truth consists of Z-values on the y-axis in
R2 — this would presumably be our “training” data (to make an
analogy with GAN training). Now imagine a GAN Generator that is
also capable of producing the same kind of points in R2 but the points
produced by the Generator are offset horizontally by a learnable
parameter θ. The true value of θ is obviously 0, but the Generator has to

learn that during training.

We use X as the random variable to denote the points on the
ground-truth line in R2 and Y to denote the points being produced by
the Generator on another vertical line that is horizontally offset by θ.Purdue University 43

https://arxiv.org/pdf/1701.07875.pdf

A Random Experiment for Studying Differentiability

Studying Differentiability (contd.)

Let P denote the distribution for the ground-truth points X and Q the
distribution for the GAN-generated points Y .

Note again that the ground-truth points X are the set of all points
{(0, z) ∈ R2|z ∼ U[0, 1]} and the GAN-generated points Y form the set
{(θ, z) ∈ R2|z ∼ U[0, 1]}.

The following figure illustrates the relationship between X , Y , and the
sole learnable parameter θ.

^

(0,1) | |

| | R^2 space

| |

| |

|X |Y

| |

| |

| |

| |

(0,0) ------------------------------>

<----- \theta ---->
Purdue University 44

Differentiability of Distance Functions

Outline

1 Distance Between Two Probability Distributions 11

2 Examples of Distance Functions for Probability Distributions: TV, KL, and JS 13

3 Earth Mover’s and Wasserstein Distances 26

4 A Random Experiment for Studying Differentiability 42

5 Differentiability of Distance Functions 45

6 PurdueShapes5GAN Dataset for Experimenting with Adversarial Learning and Diffusion 53

7 DCGAN Implementation in DLStudio 60

8 Making Small Changes to the DCGAN Architecture 82

9 Wasserstein GAN Implementation in DLStudio 88

10 Improving Wasserstein GAN with Gradient Penalty 104

11 Generative Modeling with Denoising Diffusion 127

12 Loss Function for Denoising Diffusion 135

13 Using Gaussian Noise for Diffusion 150

14 The GenerativeDiffusion Module in DLStudio 166

Purdue University 45

Differentiability of Distance Functions

Differentiability of Distance Functions

Given the sets X and Y as defined on Slides 45 and 46, we start with

examining the differentiability of the Wasserstein Distance.

Given the definition that X is set of all points {x = (0, z) ∈ R2|z ∼ U[0, 1]}
and Y is the set of all points {y = (θ, z) ∈ R2|z ∼ U[0, 1]}, we can say that
the difference ∥x − y∥ needed for calculating the Wasserstein distance
using Eq. (23) on Slide 38 will always be equal to the value of the
parameter θ.

The same would be the case if we used the supremum based estimate
of the Wasserstein distance using Eq. (24). Therefore, for the
random experiment under consideration, we can claim:

dW (P,Q) = θ (26)

So we see that the Wasserstein distance is continuous and
differentiable with respect to the learnable parameter θ. That makes
it a good candidate as a loss function in a neural network.

Purdue University 46

Differentiability of Distance Functions

Differentiability of Distance Functions (contd.)
What is interesting is that the closely related EMD distance does not
possess the property of differentiability with respect to the learnable
parameters. That is because it involves comparing histograms directly.
Since a histogram is a discretization of continuous values, it is not
possible to backpropagate any partial derivatives through such a step.

Let’s now consider the differentiability of KL-Divergence.

The definition of KL-Divergence provided earlier in Eq. (6) is for the
case of random variables that take discrete values. But the “parallel
lines” example involves two continuous random variables X and Y .
Here is the definition of KL-Divergence for the continuous case:

dKL(P,Q) =

∫
P(x) log

P(x)

Q(x)
dx (27)

The scope of the variable x of integration is the space of all random
outcomes over which both the distributions P and Q are defined.

Purdue University 47

Differentiability of Distance Functions

Differentiability of Distance Functions (contd.)

The last bullet on the previous implies that x must span both the lines
X and Y for this integration. However, the sets X and Y are disjoint
except when the Generator parameter θ equals zero.

When X and Y are disjoint, we run headlong into the condition
Q(x) = 0 when P(x) > 0 that makes the divergence dKL become infinity.
Hence we can write:

dKL(P,Q) = 0 θ = 0

= + ∞ θ ̸= 0 (28)

Obviously, KL-Divergence is not differentiable with respect to the
learnable parameter θ.

Next we take up the case of differentiability of JS-Divergence.

Purdue University 48

Differentiability of Distance Functions

Differentiability of Distance Functions (contd.)
The formula for JS-Divergence was presented in Eq. (12) on Slide 24.
Given two distributions P and Q, the formula in that equation requires
that we first calculate the mean distribution M as defined in Eq. (13).

For what follows, recall the fact that JS-Divergence is a
symmetrization of KL-Divergence that is meant to get around the
main shortcoming of the latter in those regions of the probability
space where Q(x) = 0 whereas P(x) > 0.

Note that M in Eq. (13) is a mixture distribution. By definition, given
two separate distributions P and Q defined over the same set of
random outcomes, a mixture means merely that the next sample will
be drawn randomly either from P or from Q. Since the two
component distributions P and Q in the mixture M are weighted
equally (by a factor 1

2
), the individual distributions will be selected

with equal probability for the realizations of M.

On the next slide, we will consider the first term in the summation in
Eq. (12). The result for the second term would be the same.Purdue University 49

Differentiability of Distance Functions

Differentiability of Distance Functions (contd.)

Focusing on the case when the learnable parameter θ is nonzero, that
is, when we are going to encounter the condition Q(x) = 0 when
P(x) > 0 (which will happen on line X as explained previously for the
case of differentiability of KL-Divergence), let’s focus on the first
term on the RHS in Eq. (12) on Slide 24:

dKL(P,M) =

∫
P(x) log

P(x)

M(x)
dx

=

∫
P(x)

[
log P(x) − log

P(x) + Q(x)

2

]
dx

=

∫
P(x)

[
log P(x) − log(P(x) + Q(x)) + log 2

]
dx

=

∫
P(x) log 2 dx

= log2 (29)

As expected, the expressions on the RHS of Eq. (12) are now
inoculated against going to infinity under the condition Q(x) = 0 when
P(x) > 0.

Purdue University 50

Differentiability of Distance Functions

Differentiability of Distance Functions (contd.)

Since both the component expressions on the RHS of Eq. (12) lead
to exactly the same result that is shown above, we can say that
dJS (P,Q) = log 2 for the case θ ̸= 0.

Therefore, we can write:

dJS (P,Q) = 0 θ = 0

= log2 θ ̸= 0 (30)

which is again not differentiable with respect to the parameter θ.

We next take up the differentiability of the Total Variation Distance

The Total Variation (TV) distance for the continuous case was
defined in Eq. (1).

That definition calls for identifying a subset A of the probability space
defined by all possible outcomes that maximizes the difference
between P’s probability mass over A and Q’s probability mass over A.

Purdue University 51

Differentiability of Distance Functions

Differentiability of Distance Functions (contd.)

When θ ̸= 0, we could choose for such an A the set X itself. Since the
probability mass of P over this set equals 1 whereas the probability
mass of Q over the same set equals 0. The difference of the two
integrals in Eq. (1) on Slide 13 for such an A is the largest it can be
— equal to 1.

On the other hand, when the Generator’s parameter θ equals 0, the
sets X and Y become congruent. In this case, the difference of the
two integrals in Eq. (1) would be zero.

So we can write:

dTV (P,Q) = 0 θ = 0

= 1 θ ̸= 0 (31)

TV is obviously not a differentiable distance function.

Purdue University 52

PurdueShapes5GAN Dataset for Experimenting with Adversarial
Learning and Diffusion

Outline

1 Distance Between Two Probability Distributions 11

2 Examples of Distance Functions for Probability Distributions: TV, KL, and JS 13

3 Earth Mover’s and Wasserstein Distances 26

4 A Random Experiment for Studying Differentiability 42

5 Differentiability of Distance Functions 45

6 PurdueShapes5GAN Dataset for Experimenting with Adversarial Learning and Diffusion 53

7 DCGAN Implementation in DLStudio 60

8 Making Small Changes to the DCGAN Architecture 82

9 Wasserstein GAN Implementation in DLStudio 88

10 Improving Wasserstein GAN with Gradient Penalty 104

11 Generative Modeling with Denoising Diffusion 127

12 Loss Function for Denoising Diffusion 135

13 Using Gaussian Noise for Diffusion 150

14 The GenerativeDiffusion Module in DLStudio 166

Purdue University 53

PurdueShapes5GAN Dataset for Experimenting with Adversarial
Learning and Diffusion

PurdueShapes5GAN Dataset of Images

I have created a dataset, PurdueShapes5GAN, for experimenting with
the three GANs in version 2.0.3 (or higher) of the DLStudio module.
Each image in the dataset is of size 64× 64. The dataset consists of
20,000 images.

This dataset of rather small-sized images was created to make it

easier to give classroom demonstrations of the training code and also

for the students to be able to run the code on their laptops (at least

those that come equipped with a GPU for graphics rendering, as

many of them do these days).

The program that generates the PurdueShapes5GAN dataset is a
modification of the script I used for the PurdueShapes5MultiObject

dataset that I used previously in the lecture on semantic
segmentation.

Purdue University 54

PurdueShapes5GAN Dataset for Experimenting with Adversarial
Learning and Diffusion

PurdueShapes5GAN Dataset (contd.)

Compared to its predecessor semantic-segmentation dataset, the
annotations that were needed for the semantic segmentation dataset
(the bounding boxes and masks) are no longer necessary for
adversarial learning of a probabilistic data model for a set of images.
That makes a GAN dataset much simpler compared to a
semantic-segmentation dataset.

Each image in the PurdueShapes5GAN dataset contains a random
number of up to five shapes: rectangle, triangle, disk, oval, and star.
Each shape is located randomly in the image, oriented randomly, and
assigned a random color. Since the orientation transformation is
carried out without bilinear interpolation, it is possible for a shape to
acquire holes in it. Shown in the next slide is a batchful of images
that is processed in each iteration of the training loop. The batch size
is 32.

Purdue University 55

PurdueShapes5GAN Dataset for Experimenting with Adversarial
Learning and Diffusion

PurdueShapes5GAN Dataset (contd.)

A batch of images from the PurdueShapes5GAN dataset

Purdue University 56

PurdueShapes5GAN Dataset for Experimenting with Adversarial
Learning and Diffusion

About the “Complexity”of the Dataset Images

I would not be surprised if your first reaction to the dataset images is
that they couldn’t possibly present a great challenge to a data
modeler.

Shown in the next slide are enlarged views of two of the images on
the previous slide. In addition to the sharp shape boundaries, you can
also small holes inside the shapes.

The holes that you see inside the shapes were caused by intentionally
suppressing bilinear interpolation as the shapes were randomly
reoriented.

So the challenge for the data modeler would be its ability to not only
reproduce the shapes while preserving the sharp edges, but also to
incorporate the tiny holes inside the shapes, and do so with the

probabilities that reflect the training data.

Purdue University 57

PurdueShapes5GAN Dataset for Experimenting with Adversarial
Learning and Diffusion

About the “Complexity”of the Images (contd.)

Purdue University 58

PurdueShapes5GAN Dataset for Experimenting with Adversarial
Learning and Diffusion

PurdueShapes5GAN Dataset (contd.)

You can download the dataset archive
datasets_for_AdversarialNetworks.tar.gz

through the link ”Download the image dataset for Adversarial Learning” provided at
the top of the HTML version of the main webpage for the DLStudio
module (version 2.0.3 or higher). You would need to store it in the
ExamplesAdversarialLearning directory of the distribution. Subsequently, you
would need to execute the following command in that directory:

tar zxvf datasets_for_AdversarialNetworks.tar.gz

This command will create a dataGAN subdirectory and deposit the following
dataset archive in that subdirectory:

PurdueShapes5GAN-20000.tar.gz

Now execute the following in the dataGAN directory:
tar zxvf PurdueShapes5GAN-20000.tar.gz

With that, you should be able to execute the adversarial learning based
scripts in the ExamplesAdversarialLearning directory.
Purdue University 59

DCGAN Implementation in DLStudio

Outline

1 Distance Between Two Probability Distributions 11

2 Examples of Distance Functions for Probability Distributions: TV, KL, and JS 13

3 Earth Mover’s and Wasserstein Distances 26

4 A Random Experiment for Studying Differentiability 42

5 Differentiability of Distance Functions 45

6 PurdueShapes5GAN Dataset for Experimenting with Adversarial Learning and Diffusion 53

7 DCGAN Implementation in DLStudio 60

8 Making Small Changes to the DCGAN Architecture 82

9 Wasserstein GAN Implementation in DLStudio 88

10 Improving Wasserstein GAN with Gradient Penalty 104

11 Generative Modeling with Denoising Diffusion 127

12 Loss Function for Denoising Diffusion 135

13 Using Gaussian Noise for Diffusion 150

14 The GenerativeDiffusion Module in DLStudio 166

Purdue University 60

DCGAN Implementation in DLStudio

DCGAN Implementation in DLStudio

The main goal of this section is to tell you about the implementation
of DCGAN in DLStudio’s co-class AdversarialLearning.

DCGAN, short for ”Deep Convolutional Generative Adversarial Network”, was
presented in a paper that I cited in the Preamble to this lecture.

However, before actually getting into the DCGAN architecture, I need
to take you back to the first paper that started the modern
excitement in adversarial learning. I am talking about the 2014
publication ”Generative Adversarial Nets” by Goodfellow, Pouget-Abadie,
Mirza, Xu, Warde-Farley, Ozair, Courville, and Bengio that was also
cited in the Preamble.

The reason I need to take you back to this paper is because the basic
training logic in DCGAN is the same as that proposed in the above
cited publication by Goodfellow et al.

Purdue University 61

DCGAN Implementation in DLStudio

Adversarial Learning Requires Generator and
Discriminator

Adversarial learning as described in the Goodfellow et al. paper
involves two networks, a Discriminator and a Generator. We can think
of the Discriminator as a function D(x , θd) where x is the image and θd

the weights in the Discriminator network. The D(x , θd) function
returns the probability that the input x is from the probability

distribution that describes the training data.

Similarly, we can think of the Generator as a function G(z, θg) that
maps noise vectors to images that we want to look like the images in
our training data. The vector θg represents the learnable parameters
in the Generator network.

We assume that the training images are described by some probability
distribution that we denote pdata. The goal of the Generator is to
transform a noise vector, denoted z, into an image that should look
like a training image.

Purdue University 62

DCGAN Implementation in DLStudio

Discriminator and Generator (contd.)

Regarding z, we also assume that the noise vectors z are generated
with a probability distribution pZ (z). Obviously, z is a realization of a
vector random variable Z .

The output of the Generator consists of images that correspond to
some probability distribution that we will denote pG . So you can think

of the Generator as a function that transforms the probability distribution pZ

into the distribution pG .

The question now is how do we train the Discriminator and the
Generator networks.

The Discriminator is trained to maximize the probability of assigning
the correct label to an input image that looks like it came from the
same distribution as the training data.

Purdue University 63

DCGAN Implementation in DLStudio

Discriminator Training vs. Generator Training

That is, for Discriminator training, we want the parameters θd to
maximize the following expectation:

max
θd

Ex∼pdata
[logD(x)] (32)

The expression x ∼ pdata means that x was pulled from the distribution
pdata. In other words, x is one of the training images.

While we are training D to exhibit the above behavior, we train the
Generator for the following minimization:

min
θg

Ez∼pZ
[log(1 − D(G(z)))] (33)

Combining the two expressions shown above, we can express the
combined optimization as:

min
θg

max
θd

[
Ex∼pdata

[logD(x)] + Ez∼pZ
[log(1 − D(G(z)))

]
(34)

Purdue University 64

DCGAN Implementation in DLStudio

Discriminator Training vs. Generator Training (contd.)

We’ll translate the min-max form in Eq. (34) into a “protocol” for
training the two networks.

For each training batch of images, we will first update the parameters
in the Discriminator network and then we’ll do the same in the
Generator network.

If we use nn.BCELoss as the loss criterion for training the Discriminator,
that will automatically take care of the logarithms in the expression
shown on the previous slide.

We first train the Discriminator by subjecting it to a maximization
that involves the three steps listed on the next slide.

Subsequently, we train the Generator by a minimization to be
described on the slide that follows.

Purdue University 65

DCGAN Implementation in DLStudio

The Two Targets for Discriminator Training

The maximization steps required for the Discriminator training:

1 The maximization of the first term in Eq. (34) requires that we use the
target ”1” for the network output D(x).

2 The maximization of the second term in the same expression is a bit
more involved since it requires applying the Discriminator network to
the output of the Generator for noise input. The second term also
requires that we now use ”-1” as the target for the Discriminator.

The phrase “we now use -1 as the target for the Discriminator” is to be taken
figuratively. Since the Discriminator is a binary classifier (that’s what
you get with nn.BCELoss), its targets can only be 1 and 0. We use 1 as
the target in Step 1 and 0 as the target in Step 2.

3 After we have calculated the two losses for the Discriminator, we can
sum the losses and call backwards() on the sum for calculating the
gradients of the loss with respect to its weights. A subsequent call to
the step() of the optimizer would update the weights in the
Discriminator network.

Purdue University 66

DCGAN Implementation in DLStudio

The Target for Generator Training

For the training required for the Generator, only the second term
inside the square brackets in Eq. (34) matters. We proceed through
the following 4 steps:

1 We note that the logarithm is a monotonically increasing function and
also because the output D(G(z)) in the second term will always be
between 0 and 1.

2 Therefore, the needed minimization translates into maximizing D(G(z))

with respect to a target value of 1.

3 With 1 as the target, we again find the nn.BCELoss associated with
D(G(z)). We call backwards() on this loss.

4 As you will see on Slide 78, subsequently we call the step() function
of the optimizer to update the parameters ONLY in the Generator
network.

Purdue University 67

DCGAN Implementation in DLStudio

How the GAN Code is Organized in AdversarialLearning

Now that you have become familiar with the basic idea of Adversarial
Learning for data modeling, it’s time to get to know better the
AdversarialLearning co-class in the DLStudio platform.

All of the GAN related code is in the inner class DataModeling of the
AdversarialLearning class.

The code in the DataModeling class allows you to experiment with the
following Discriminator-Generator pairs and Critic-Generator pairs [I’ll
be talking about “Critics” in the next section on Wasserstein GANs.]:

DG1: This is a Discriminator-Generator pair that corresponds to the original
formulation of DCGAN.

DG2: This is a slight variant of the Discriminator-Generator pair in DG1.

CG1: This is a Critic-Generator pair for the Wasserstein GAN in Section 12.

CG2: This is another Critic-Generator pair for the Wasserstein GAN.
Purdue University 68

DCGAN Implementation in DLStudio

DG1: Discriminator and Generator Networks

Slides 72 and 73 show the DCGAN networks for the DG1
Discriminator-Generator pair.

Regarding the Discriminator network on Slide 72, I refer to the
DCGAN network topology as the 4-2-1 network. Each layer of the
Discriminator network carries out a strided convolution with a 4× 4

kernel, a 2× 2 stride, and a 1× 1 padding for all but the final layer.

The output of the final convolutional layer in the Discriminator is
pushed through a sigmoid to yield a scalar value as the final output
for each image in a batch.

Next, on Slide 73, is the implementation of the DCGAN Generator in
the example DG1. As was the case with the Discriminator network,
you again see the 4-2-1 topology here.

Purdue University 69

DCGAN Implementation in DLStudio

DG1: Discriminator and Generator (contd.)

Recall that a Generator’s job is to transform a random noise vector
into an image that is supposed to look like it came from the training
dataset. (Most people refer to the images constructed from noise
vectors in this manner as fakes.)

As you will see in run gan code(), the starting noise vector is a 1× 1

image with 100 channels. In order to output a 64× 64 output image
from the noise vector, the Generator code shown on Slide 73 uses the
Transpose Convolution operator nn.ConvTranspose2d with a stride of 2.

If (H in, W in) are the height and the width of the image at the input
to a nn.ConvTranspose2d layer and (H out, W out) the same at the output,
the input/output sizes are related by [See Slides 46 through 62 of my Week 8 Lecture on

Semantic Segmentation]:
H_out = (H_in - 1) * s + k - 2 * p
W_out = (W_in - 1) * s + k - 2 * p

Purdue University 70

DCGAN Implementation in DLStudio

DG1: Discriminator and Generator (contd.)

In the last bullet on the previous slide, s is the stride and k the size of
the kernel. (I am assuming square strides, kernels, and padding).

Therefore, each nn.ConvTranspose2d layer doubles the size of the input.

Purdue University 71

DCGAN Implementation in DLStudio

The Discriminator Network (DG1)

############################# Discriminator-Generator DG1 ##############################

class DiscriminatorDG1(nn.Module):

def __init__(self):

super(AdversarialLearning.DataModeling.DiscriminatorDG1, self).__init__()

self.conv_in = nn.Conv2d(3, 64, kernel_size=4, stride=2, padding=1)

self.conv_in2 = nn.Conv2d(64, 128, kernel_size=4, stride=2, padding=1)

self.conv_in3 = nn.Conv2d(128, 256, kernel_size=4, stride=2, padding=1)

self.conv_in4 = nn.Conv2d(256, 512, kernel_size=4, stride=2, padding=1)

self.conv_in5 = nn.Conv2d(512, 1, kernel_size=4, stride=1, padding=0)

self.bn1 = nn.BatchNorm2d(128)

self.bn2 = nn.BatchNorm2d(256)

self.bn3 = nn.BatchNorm2d(512)

self.sig = nn.Sigmoid()

def forward(self, x):

x = torch.nn.functional.leaky_relu(self.conv_in(x), negative_slope=0.2, inplace=True)

x = self.bn1(self.conv_in2(x))

x = torch.nn.functional.leaky_relu(x, negative_slope=0.2, inplace=True)

x = self.bn2(self.conv_in3(x))

x = torch.nn.functional.leaky_relu(x, negative_slope=0.2, inplace=True)

x = self.bn3(self.conv_in4(x))

x = torch.nn.functional.leaky_relu(x, negative_slope=0.2, inplace=True)

x = self.conv_in5(x)

x = self.sig(x)

return x

Purdue University 72

DCGAN Implementation in DLStudio

The Generator Network (DG1)

class GeneratorDG1(nn.Module):

def __init__(self):

super(AdversarialLearning.DataModeling.GeneratorDG1, self).__init__()

self.latent_to_image = nn.ConvTranspose2d(100, 512, kernel_size=4, stride=1, padding=0,bias=False)

self.upsampler2 = nn.ConvTranspose2d(512, 256, kernel_size=4, stride=2, padding=1, bias=False)

self.upsampler3 = nn.ConvTranspose2d (256, 128, kernel_size=4, stride=2, padding=1, bias=False)

self.upsampler4 = nn.ConvTranspose2d (128, 64, kernel_size=4, stride=2, padding=1, bias=False)

self.upsampler5 = nn.ConvTranspose2d(64, 3, kernel_size=4, stride=2, padding=1, bias=False)

self.bn1 = nn.BatchNorm2d(512)

self.bn2 = nn.BatchNorm2d(256)

self.bn3 = nn.BatchNorm2d(128)

self.bn4 = nn.BatchNorm2d(64)

self.tanh = nn.Tanh()

def forward(self, x):

x = self.latent_to_image(x)

x = torch.nn.functional.relu(self.bn1(x))

x = self.upsampler2(x)

x = torch.nn.functional.relu(self.bn2(x))

x = self.upsampler3(x)

x = torch.nn.functional.relu(self.bn3(x))

x = self.upsampler4(x)

x = torch.nn.functional.relu(self.bn4(x))

x = self.upsampler5(x)

x = self.tanh(x)

return x

Purdue University 73

DCGAN Implementation in DLStudio

The Training Loop for DCGAN (DG1)

The code shown on Slides 76 through 78 implements the training
logic presented on Slides 65 through 67. It is meant for training a
Discriminator-Generator based Adversarial Network. The
implementation shown has borrowed several programming constructs
from the ”official” DCGAN implementation at GitHub.

Sections of the training loop that begin in Lines (A) and (B) are for
the Discriminator part of the training in Eq. (33). The statements in
Part 1(a) implement the logic in the first bullet under Discriminator
training on Slide 66. In these statements we use the target of “1” for
the output of the Discriminator when it is invoked on a data image.

The statements in Part 1(b) that begin at Line (B) implement the
logic in the second bullet on the Slide 66. That is, now we subject the
output of the Discriminator after it is applied to the Generator images
to the target “-1”.

Purdue University 74

DCGAN Implementation in DLStudio

The Training Loop for DCGAN (DG1) (contd.)

The section of the code that begins in Line (C) is for Generator
training through the steps outlined on Slide 67. The min part in Eq.
(33) on Slide 64 requires that we minimize 1− D(G (z)) which, since
D is constrained to lie in the interval (0,1), requires that we maximize
D(G (z)). We accomplish that by applying the Discriminator to the
output of the Generator and use 1 as the target for each image, as
mentioned in the second bullet on Slide 67.

Purdue University 75

DCGAN Implementation in DLStudio

The Training Loop for DCGAN (DG1) (contd.)

def run_gan_code(self, dlstudio, advers, discriminator, generator, results_dir):

Set the number of channels for the 1x1 input noise vectors for the Generator:

nz = 100

netD = discriminator.to(advers.device)

netG = generator.to(advers.device)

Initialize the parameters of the Discriminator and the Generator networks according to the

definition of the "weights_init()" method:

netD.apply(self.weights_init)

netG.apply(self.weights_init)

We will use the same noise batch to periodically check on the progress made for the Generator:

fixed_noise = torch.randn(self.dlstudio.batch_size, nz, 1, 1, device=advers.device)

Establish convention for real and fake labels during training

real_label = 1

fake_label = 0

Adam optimizers for the Discriminator and the Generator:

optimizerD = optim.Adam(netD.parameters(), lr=dlstudio.learning_rate, betas=(advers.beta1, 0.999))

optimizerG = optim.Adam(netG.parameters(), lr=dlstudio.learning_rate, betas=(advers.beta1, 0.999))

Establish the criterion for measuring the loss at the output of the Discriminator network:

criterion = nn.BCELoss()

We will use these lists to store the results accumulated during training:

img_list = []

G_losses = []

D_losses = []

iters = 0

print("\n\nStarting Training Loop...\n\n")

start_time = time.perf_counter()

(Continued on the next slide)

Purdue University 76

DCGAN Implementation in DLStudio

The Training Loop for DCGAN (DG1) (contd.)
(...... continued from the previous slide)

for epoch in range(dlstudio.epochs):

g_losses_per_print_cycle = []

d_losses_per_print_cycle = []

for i, data in enumerate(self.train_dataloader, 0):

Part 1(a) of Training (maximization of minmax objective for the Discriminator): ## (A)

netD.zero_grad()

real_images_in_batch = data[0].to(advers.device)

Need to know how many images we pulled in since at the tailend of the dataset,

the number of images may not equal the user-specified batch size:

b_size = real_images_in_batch.size(0)

label = torch.full((b_size,), real_label, dtype=torch.float, device=advers.device)

output = netD(real_images_in_batch).view(-1)

errD_reals = criterion(output, label)

errD_reals.backward()

Part 1(b) of Training (maximization of the minmax object for the Discriminator

when applied to fakes): ## (B)

noise = torch.randn(b_size, nz, 1, 1, device=advers.device)

fakes = netG(noise)

label.fill_(fake_label)

The call to fakes.detach() in the next statement returns a copy of the ’fakes’ tensor

such that the copy that is returned does not exist in the computational graph. That is,

the copy of the tensor is removed from the computational graph. However, the original

’fakes’ tensor continues to remain in the computational graph. This ploy ensures that

a subsequent call to backward() in the 3rd statement below would only result in a

calculation of the gradients for the netD weights:

output = netD(fakes.detach()).view(-1)

errD_fakes = criterion(output, label)

errD_fakes.backward()

errD = errD_reals + errD_fakes ## This is only for the display of losses. Not for learning.

d_losses_per_print_cycle.append(errD)

optimizerD.step() ## Only the Discriminator weights are incremented

(Continued on the next slide)

Purdue University 77

DCGAN Implementation in DLStudio

The Training Loop for DCGAN (DG1) (contd.)
(...... continued from the previous slide)

Part 2 of Training (minimization of the minmax objective for learning

the Generator): ## (C)

##

The min part requires that we MINIMIZE "1 - D(G(z))" which, since D is constrained to

lie in the interval (0,1), requires that we maximize D(G(z)). We accomplish that by

applying the Discriminator to the output of the Generator and use 1 as the target:

netG.zero_grad()

label.fill_(real_label)

output = netD(fakes).view(-1)

errG = criterion(output, label)

g_losses_per_print_cycle.append(errG)

errG.backward()

optimizerG.step()

if i % 100 == 99:

current_time = time.perf_counter()

elapsed_time = current_time - start_time

mean_D_loss = torch.mean(torch.FloatTensor(d_losses_per_print_cycle))

mean_G_loss = torch.mean(torch.FloatTensor(g_losses_per_print_cycle))

print("[epoch=%d/%d iter=%4d elapsed_time=%5d secs] mean_D_loss=%7.4f

mean_G_loss=%7.4f" %

((epoch+1),dlstudio.epochs,(i+1),elapsed_time,mean_D_loss,mean_G_loss))

d_losses_per_print_cycle = []

g_losses_per_print_cycle = []

NOTES:
A statement like label = torch.full((b size,), real label) means that we want to set label to a single-axis
tensor of size b size and we want all its elements to be set to the value given by real label.

A statement like label.fill (value) means that the previously declared tensor label needs to be filled in-place with
the specified value.

Purdue University 78

DCGAN Implementation in DLStudio

Losses vs. Iterations for DG1

Discriminator and Generator losses over 30 epochs of training

Purdue University 79

DCGAN Implementation in DLStudio

Comparing Real and Fake Images for DG1

At the end of 30 epochs of training, shown at left is a batch of real images and, at right, the images produced by the Generator
from noise vectors

Purdue University 80

DCGAN Implementation in DLStudio

An Animated GIF of the Generator Output for DG1

The following animated GIF shows how the Generator’s output evolves
over 30 epochs using the same set of noise vectors.

https://engineering.purdue.edu/DeepLearn/pdf-kak/DG1_generation_animation.gif

Purdue University 81

https://engineering.purdue.edu/DeepLearn/pdf-kak/DG1_generation_animation.gif

Making Small Changes to the DCGAN Architecture

Outline

1 Distance Between Two Probability Distributions 11

2 Examples of Distance Functions for Probability Distributions: TV, KL, and JS 13

3 Earth Mover’s and Wasserstein Distances 26

4 A Random Experiment for Studying Differentiability 42

5 Differentiability of Distance Functions 45

6 PurdueShapes5GAN Dataset for Experimenting with Adversarial Learning and Diffusion 53

7 DCGAN Implementation in DLStudio 60

8 Making Small Changes to the DCGAN Architecture 82

9 Wasserstein GAN Implementation in DLStudio 88

10 Improving Wasserstein GAN with Gradient Penalty 104

11 Generative Modeling with Denoising Diffusion 127

12 Loss Function for Denoising Diffusion 135

13 Using Gaussian Noise for Diffusion 150

14 The GenerativeDiffusion Module in DLStudio 166

Purdue University 82

Making Small Changes to the DCGAN Architecture

Making Small Changes to the DCGAN Architecture (DG2)

My personal experience with the DCGAN architecture is that when it
works, it produces beautiful results. However, as you change the
initializations for the parameters, or as you make minor tweaks to the
Generator and/or the Discriminator network, more often than not,

what you get is what is known as mode collapse. Mode collapse
means that the different randomly chosen noise vectors for the input
to the Generator will yield the same garbage output.

To illustrate what I mean, The Discriminator network shown on the
next slide is the same as the one you saw earlier for the DCGAN
implementation, except for the additional layer self.extra that the
incoming image is routed through at the beginning of the network in
forward()

I have also defined a batch normalization layer self.bnX for the output
of the extra layer self.extra.

Purdue University 83

Making Small Changes to the DCGAN Architecture

##################################### Discriminator-Generator DG2 ######################################
class DiscriminatorDG2(nn.Module):

"""
This is essentially the same network as the DCGAN for DG1, except for the extra layer
"self.extra" shown below. We also declare a batchnorm for this extra layer in the form
of "self.bnX". In the implementation of "forward()", we invoke the extra layer at the
beginning of the network.
"""
def __init__(self, skip_connections=True, depth=16):

super(AdversarialLearning.DataModeling.DiscriminatorDG2, self).__init__()
self.conv_in = nn.Conv2d(3, 64, kernel_size=4, stride=2, padding=1)
self.extra = nn.Conv2d(64, 64, kernel_size=4, stride=1, padding=2)
self.conv_in2 = nn.Conv2d(64, 128, kernel_size=4, stride=2, padding=1)
self.conv_in3 = nn.Conv2d(128, 256, kernel_size=4, stride=2, padding=1)
self.conv_in4 = nn.Conv2d(256, 512, kernel_size=4, stride=2, padding=1)
self.conv_in5 = nn.Conv2d(512, 1, kernel_size=4, stride=1, padding=0)
self.bn1 = nn.BatchNorm2d(128)
self.bn2 = nn.BatchNorm2d(256)
self.bn3 = nn.BatchNorm2d(512)
self.bnX = nn.BatchNorm2d(64)
self.sig = nn.Sigmoid()

def forward(self, x):
x = torch.nn.functional.leaky_relu(self.conv_in(x), negative_slope=0.2, inplace=True)
x = self.bnX(self.extra(x))
x = torch.nn.functional.leaky_relu(x, negative_slope=0.2, inplace=True)
x = self.bn1(self.conv_in2(x))
x = torch.nn.functional.leaky_relu(x, negative_slope=0.2, inplace=True)
x = self.bn2(self.conv_in3(x))
x = torch.nn.functional.leaky_relu(x, negative_slope=0.2, inplace=True)
x = self.bn3(self.conv_in4(x))
x = torch.nn.functional.leaky_relu(x, negative_slope=0.2, inplace=True)
x = self.conv_in5(x)
x = self.sig(x)
return x

class GeneratorDG2(nn.Module):
"""
The Generator for DG2 is exactly the same as for the DG1. So please the comment block for that
Generator.
"""
def __init__(self):

super(AdversarialLearning.DataModeling.GeneratorDG2, self).__init__()
self.latent_to_image = nn.ConvTranspose2d(100, 512, kernel_size=4, stride=1, padding=0, bias=False)
self.upsampler2 = nn.ConvTranspose2d(512, 256, kernel_size=4, stride=2, padding=1, bias=False)
self.upsampler3 = nn.ConvTranspose2d (256, 128, kernel_size=4, stride=2, padding=1, bias=False)
self.upsampler4 = nn.ConvTranspose2d (128, 64, kernel_size=4, stride=2, padding=1, bias=False)
self.upsampler5 = nn.ConvTranspose2d(64, 3, kernel_size=4, stride=2, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(512)
self.bn2 = nn.BatchNorm2d(256)
self.bn3 = nn.BatchNorm2d(128)
self.bn4 = nn.BatchNorm2d(64)
self.tanh = nn.Tanh()

def forward(self, x):
x = self.latent_to_image(x)
x = torch.nn.functional.relu(self.bn1(x))
x = self.upsampler2(x)
x = torch.nn.functional.relu(self.bn2(x))
x = self.upsampler3(x)
x = torch.nn.functional.relu(self.bn3(x))
x = self.upsampler4(x)
x = torch.nn.functional.relu(self.bn4(x))
x = self.upsampler5(x)
x = self.tanh(x)
return x

DG2 Definition END

Purdue University 84

Making Small Changes to the DCGAN Architecture

Losses vs. Iterations for DG2

Discriminator and Generator losses over 30 epochs of training

Purdue University 85

Making Small Changes to the DCGAN Architecture

Comparing Real and Fake Images for DG2

At the end of 30 epochs of training, shown at left is a batch of real images and, at right, the images produced by the Generator
from noise vectors

Purdue University 86

Making Small Changes to the DCGAN Architecture

An Animated GIF of the Generator Output for DG2

The following animated GIF shows how the Generator’s output evolves
over 30 epochs using the same set of noise vectors for the case of a
DCGAN with relatively minor alterations.

https://engineering.purdue.edu/DeepLearn/pdf-kak/DG2_generation_animation.gif

Purdue University 87

https://engineering.purdue.edu/DeepLearn/pdf-kak/DG2_generation_animation.gif

Wasserstein GAN Implementation in DLStudio

Outline

1 Distance Between Two Probability Distributions 11

2 Examples of Distance Functions for Probability Distributions: TV, KL, and JS 13

3 Earth Mover’s and Wasserstein Distances 26

4 A Random Experiment for Studying Differentiability 42

5 Differentiability of Distance Functions 45

6 PurdueShapes5GAN Dataset for Experimenting with Adversarial Learning and Diffusion 53

7 DCGAN Implementation in DLStudio 60

8 Making Small Changes to the DCGAN Architecture 82

9 Wasserstein GAN Implementation in DLStudio 88

10 Improving Wasserstein GAN with Gradient Penalty 104

11 Generative Modeling with Denoising Diffusion 127

12 Loss Function for Denoising Diffusion 135

13 Using Gaussian Noise for Diffusion 150

14 The GenerativeDiffusion Module in DLStudio 166

Purdue University 88

Wasserstein GAN Implementation in DLStudio

Wasserstein GAN Implementation in DLStudio

This implementation is based on the paper ”Wasserstein GAN” by
Arjovsky, Chintala, and Bottou that I cited previously in the Preamble.

You will find my implementation of Wasserstein GAN (WGAN) in
DLStudio’s co-class AdversarialLearning.

As you would expect, WGAN is based on estimating the Wasserstein
distance between the distribution that corresponds to the training
images and the distribution that has been learned so far by the
Generator. This distance was defined in Eq. (24) on Slide 38.

The 1-Lipschitz function f () that is required by the definition in Eq.
(24) is implemented as a Critic — because, unlike what was the case
for the Discriminator, the job of the Critic is NOT to accept or reject
what is produced by the Generator, but to do what’s mentioned on
the next slide.

Purdue University 89

Wasserstein GAN Implementation in DLStudio

WGAN Implementation in DLStudio (contd.)

In a WGAN, a Critic’s job is to become adept at estimating the Wasserstein distance

between the distribution that corresponds to the training dataset and the distribution

that has been learned by the Generator so far.

Since the Wasserstein distance is known to be differentiable with
respect to the learnable weights in the Critic network, one can
backprop the distance and update the weights in an iterative training
loop. This is roughly the idea of the Wasserstein GAN that is incorporated as a

Critic-Generator pair CG1 in the Adversarial Networks class.

For the purpose of implementation, here is a rewrite of the
Wasserstein distance presented earlier in Eq. (24) on Slide 38:

dW (Pr , Pθ) = sup
∥f ∥L≤1

[
Ex∼Pr {fw (x)} − Ez∼Pz {fw (gθ(z))}

]
(35)

Purdue University 90

Wasserstein GAN Implementation in DLStudio

WGAN Implementation in DLStudio (contd.)

In the formula for Wasserstein distance shown on the previous slide,
Pr is the “real” distribution that describes the training data and Pz

describes the distribution of the noise vectors that are fed into the
Generator for the production of the fake images. The Generator
parameters are denoted θ and gθ() stands for the function that
describes the behavior of the Generator.

Now that we have interpreted the role of the function fw () as a Critic
— the Critic’s job being to learn the function fw () — the question is
how does the Critic make sure that the function being learned is
1-Lipschitz?

A heuristic answer to the vexing question posed above was provided
by the original authors the “Wasserstein GAN” paper. For lack of any
available well-principled approach as a solution to this issue, they
experimented with tightly clipping the values being learned for the
weights in the Critic network.

Purdue University 91

Wasserstein GAN Implementation in DLStudio

WGAN Implementation in DLStudio (contd.)

It stands to reason that the closer the clipping level is to zero from
both the positive and the negative sides, the less likely that the
gradient of the function being learned will exhibit large swings.

The calculation of the Wasserstein distance using Eq. (35) also calls
for averaging of the output of the Critic in order for the maximization
to yield the desired distance. This can be taken care of by having the
Critic go through multiple iterations of the update of its parameters
for each iteration for the Generator.

For implementation, the expression for the Wasserstein distance
shown in Eq. (35) can be rewritten as:

dW (P,Q) = max
∥f ∥L≤1

[
Ex∼P{f (x)} − Ey∼Q{f (y)}

]
(36)

Purdue University 92

Wasserstein GAN Implementation in DLStudio

WGAN Implementation in DLStudio (contd.)

Note that Eq. (36) can also be interpreted as: There is guaranteed to
exist a 1-Lipschitz continuous function f () that when applied to the
samples drawn from the distributions P and Q will yield the
Wasserstein distance between the two distributions.

Let C denote a Critic network that can learn the function f ().
Remember, our overarching goal remains that we need to also learn a
Generator network G that is capable of converting noise into samples
that look like those from the distribution P.

We seek to create a GAN that can learn a G that MINIMIZES the
Wasserstein distance between the true distribution P and its learned
approximation Q. At the same time, the GAN must discover a C that
seeks to maximize the same distance (in the sense that the Critic
learns how to maximally distrust the Generator G).

Purdue University 93

Wasserstein GAN Implementation in DLStudio

WGAN Implementation in DLStudio (contd.)

We thus end up with the following minimax objective for the learning
framework:

min
G

max
C

[
Ex∼P [C(x)] − Ez∼pZ

[C(G(z)]

]
(37)

In comparing this minimax objective with the one shown earlier in Eq.
(34) of Section 10, note that the two components of the argument to
the minimax in that equation were additive, whereas we subtract them
in the objective shown above. In Eq. (34), we had a Discriminator in
the GAN and our goal was to maximize its classification performance
for images that look like they came from the true distribution P. On
the other hand, the goal of the Critic here is to learn to maximize the
Wasserstein distance between the true distribution P and its learned
approximation Q. Note that the distribution Q is for the images that
are constructed by the Generator from zero-mean isotropic Gaussian
noise samples z drawn from a distribution pz , as shown above.

Purdue University 94

Wasserstein GAN Implementation in DLStudio

WGAN Implementation in DLStudio (contd.)

As far as the Critic is concerned, the maximization needed in Eq. (37)
can be achieved by using the following loss function:

Critic Loss = Ey∼Q [C(y)] − Ex∼P [C(x)]

= Ez∼pz [C(G(z))] − Ex∼P [C(x)] (38)

In the WGAN code shown in what follows, this is accomplished by
using a ”gradient target” of +1 for the mean of the output of the
Critic when it sees the images produced by the Generator and the
”gradient target” of -1 for the output of the Critic when it sees the
training data directly.

As to why we use the gradient targets of +1 and -1, it was shown by
the original authors of WGAN that the optimal Critic C has unit
gradient norm almost everywhere under P and Q. That is, the
magnitude of the partial derivative of the output of the optimal C
with respect to its input will almost always be 1.

Purdue University 95

Wasserstein GAN Implementation in DLStudio

The Critic and the Generator in DLStudio’s WGAN

Critic-Generator CG1
class CriticCG1(nn.Module):

"""
I have used the SkipBlockDN as a building block for the Critic network. This I did with the hope
that when time permits I may want to study the effect of skip connections on the behavior of the
the critic vis-a-vis the Generator. The final layer of the network is the same as in the
"official" GitHub implementation of Wasserstein GAN. And, as in WGAN, I have used the leaky ReLU
for activation.
"""
def __init__(self):

super(AdversarialLearning.DataModeling.CriticCG1, self).__init__()
self.conv_in = AdversarialLearning.DataModeling.SkipBlockDN(3, 64, downsample=True, skip_connections=True)
self.conv_in2 = AdversarialLearning.DataModeling.SkipBlockDN(64, 128, downsample=True, skip_connections=False)
self.conv_in3 = AdversarialLearning.DataModeling.SkipBlockDN(128, 256, downsample=True, skip_connections=False)
self.conv_in4 = AdversarialLearning.DataModeling.SkipBlockDN(256, 512, downsample=True, skip_connections=False)
self.conv_in5 = AdversarialLearning.DataModeling.SkipBlockDN(512, 1, downsample=False, skip_connections=False)
self.bn1 = nn.BatchNorm2d(128)
self.bn2 = nn.BatchNorm2d(256)
self.bn3 = nn.BatchNorm2d(512)
self.final = nn.Linear(512, 1)

def forward(self, x):
x = torch.nn.functional.leaky_relu(self.conv_in(x), negative_slope=0.2, inplace=True)
x = self.bn1(self.conv_in2(x))
x = torch.nn.functional.leaky_relu(x, negative_slope=0.2, inplace=True)
x = self.bn2(self.conv_in3(x))
x = torch.nn.functional.leaky_relu(x, negative_slope=0.2, inplace=True)
x = self.bn3(self.conv_in4(x))
x = torch.nn.functional.leaky_relu(x, negative_slope=0.2, inplace=True)
x = self.conv_in5(x)
x = x.view(-1)
x = self.final(x)
x = x.mean(0)
x = x.view(1)
return x

class GeneratorCG1(nn.Module):
"""
The Generator code remains the same as for the DCGAN shown earlier.
"""
def __init__(self):

super(AdversarialLearning.DataModeling.GeneratorCG1, self).__init__()
self.latent_to_image = nn.ConvTranspose2d(100, 512, kernel_size=4, stride=1, padding=0, bias=False)
self.upsampler2 = nn.ConvTranspose2d(512, 256, kernel_size=4, stride=2, padding=1, bias=False)
self.upsampler3 = nn.ConvTranspose2d (256, 128, kernel_size=4, stride=2, padding=1, bias=False)
self.upsampler4 = nn.ConvTranspose2d (128, 64, kernel_size=4, stride=2, padding=1, bias=False)
self.upsampler5 = nn.ConvTranspose2d(64, 3, kernel_size=4, stride=2, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(512)
self.bn2 = nn.BatchNorm2d(256)
self.bn3 = nn.BatchNorm2d(128)
self.bn4 = nn.BatchNorm2d(64)
self.tanh = nn.Tanh()

def forward(self, x):
x = self.latent_to_image(x)
x = torch.nn.functional.relu(self.bn1(x))
x = self.upsampler2(x)
x = torch.nn.functional.relu(self.bn2(x))
x = self.upsampler3(x)
x = torch.nn.functional.relu(self.bn3(x))
x = self.upsampler4(x)
x = torch.nn.functional.relu(self.bn4(x))
x = self.upsampler5(x)
x = self.tanh(x)
return x

Purdue University 96

Wasserstein GAN Implementation in DLStudio

Training the WGAN

The code for training the Critic-Generator based WGAN shown next
is based on the logic of a Wasserstein GAN as proposed by the
original authors of WGAN. The implementation shown uses several
programming constructs from the WGAN implementation at GitHub.
I have also used several programming constructs from the DCGAN
code at GitHub.

The noise batch that is generated in Line (D) is used periodically
check on the progress made by the Generator.

The ’one’ and ’minus one’ you see in Lines (E) and (F) are for
training the Critic, ’minus one’ is for the part of the training with
actual training images, and ’one’ is for the part based on the images
produced by the Generator.

The inner ’while’ loop in Line (G) is for updating the Critic in such a
way that the discrimination function learned by the Critic satisfies the
1-Lipschitz condition.Purdue University 97

Wasserstein GAN Implementation in DLStudio

Training the WGAN (contd.)

The 1-Lipschitz condition is enforced by the clipping statements in
Lines (H) and (I) along with the smoothing action of the inner ’while’
loop.

As mentioned previously, a minimization of the Wasserstein distance
between the distribution that describes the training data and the
distribution that has been learned so far by the Generator can be
translated into a maximization of the difference of the average
outputs of a 1-Lipschitz function as applied to the training images
and as applied to the output of the Generator. Learning this
1-Lipschitz function is the job of the Critic.

Training the Critic consists of two parts. In the first part that begins
in Line (J), we apply the target ’one’ to the training images and, in
the second part that begins in Line (K), we use the target ’minus one’
for the output of the Critic when its input is the output of the
Generator.

Purdue University 98

Wasserstein GAN Implementation in DLStudio

Training the WGAN (contd.)

That brings us to the training of the Generator that begins in Line
(L). We must start by turning off the requires grad of the Critic
parameters since the Critic and the Generator are meant to be
updated independently.

Purdue University 99

Wasserstein GAN Implementation in DLStudio

Training the WGAN
def run_wgan_code(self, dlstudio, adversarial, critic, generator, results_dir):

nz = 100 # Set the number of channels for the 1x1 input noise vectors for the Generator ## (A)
netC = critic.to(advers.device)
netG = generator.to(advers.device)
netC.apply(self.weights_init) # initialize Critic network parameters ## (B)
netG.apply(self.weights_init) # initialize Generator network parameters ## (C)
fixed_noise = torch.randn(self.dlstudio.batch_size, nz, 1, 1, device=advers.device) ## (D)
one = torch.FloatTensor([1]).to(advers.device) ## (E)
minus_one = torch.FloatTensor([-1]).to(advers.device) ## (F)
Adam optimizers for the Critic and the Generator:
optimizerC = optim.Adam(netC.parameters(), lr=dlstudio.learning_rate, betas=(adversarial.beta1, 0.999))
optimizerG = optim.Adam(netG.parameters(), lr=dlstudio.learning_rate, betas=(adversarial.beta1, 0.999))
img_list = []
Gen_losses = []
Cri_losses = []
iters = 0
gen_iterations = 0
start_time = time.perf_counter()
dataloader = self.train_dataloader
clipping_thresh = self.adversarial.clipping_threshold
for epoch in range(dlstudio.epochs):

data_iter = iter(dataloader)
i = 0
ncritic = 5
while i < len(dataloader):

for p in netC.parameters():
p.requires_grad = True

if gen_iterations < 25 or gen_iterations % 500 == 0: # the choices 25 and 500 are from WGAN
ncritic = 100

ic = 0
The inner ’while’ loop shown below calculates the expectations in Eq. (8) in the doc section
at the beginning of this file:
while ic < ncritic and i < len(dataloader): ## (G)

ic += 1
for p in netC.parameters(): ## (H)

p.data.clamp_(-clipping_thresh, clipping_thresh) ## (I)
Training the Critic with real images (Part 1):
netC.zero_grad() ## (J)
real_images_in_batch = data_iter.next()
i += 1
real_images_in_batch = real_images_in_batch[0].to(self.device)
Need to know how many images we pulled in since at the tailend of the dataset, the
number of images may not equal the user-specified batch size:
b_size = real_images_in_batch.size(0)
Note that a single scalar is produced for all the data in a batch. This is probably
the reason why what the Generator learns is somewhat fuzzy.
critic_for_reals_mean = netC(real_images_in_batch)
’minus_one’ is the gradient target:
critic_for_reals_mean.backward(minus_one)

Training the Critic with fake images (Part 2): ## (K)
noise = torch.randn(b_size, nz, 1, 1, device=self.device)
fakes = netG(noise)
Again, a single number is produced for the whole batch:
critic_for_fakes_mean = netC(fakes)
’one’ is the gradient target:
critic_for_fakes_mean.backward(one)
wasser_dist = critic_for_reals_mean - critic_for_fakes_mean
loss_critic = critic_for_fakes_mean - critic_for_reals_mean
Update the Critic
optimizerC.step()

Training the Generator: ## (L)
for p in netC.parameters():

p.requires_grad = False
netG.zero_grad()
This is again a single scalar based characterization of the whole batch of the Generator images:
noise = torch.randn(b_size, nz, 1, 1, device=self.device)
fakes = netG(noise)
critic_for_fakes_mean = netC(fakes)
loss_gen = critic_for_fakes_mean
critic_for_fakes_mean.backward(minus_one)
Update the Generator
optimizerG.step()
gen_iterations += 1Purdue University 100

Wasserstein GAN Implementation in DLStudio

Losses vs. Iterations for WGAN

Critic and Generator losses over 500 epochs of training

Purdue University 101

Wasserstein GAN Implementation in DLStudio

Comparing Real and Fake Images for WGAN

At the end of 500 epochs of training, shown at left is a batch of real images and, at right, the images produced by the Generator
from noise vectors

Purdue University 102

Wasserstein GAN Implementation in DLStudio

An Animated GIF of the Generator Output for
WGAN

The following animated GIF shows how the Generator’s output evolves
over 30 epochs using the same set of noise vectors for the case of a
DCGAN with relatively minor alterations.

https://engineering.purdue.edu/DeepLearn/pdf-kak/WGAN_generation_animation.gif

Purdue University 103

https://engineering.purdue.edu/DeepLearn/pdf-kak/WGAN_generation_animation.gif

Improving Wasserstein GAN with Gradient Penalty

Outline

1 Distance Between Two Probability Distributions 11

2 Examples of Distance Functions for Probability Distributions: TV, KL, and JS 13

3 Earth Mover’s and Wasserstein Distances 26

4 A Random Experiment for Studying Differentiability 42

5 Differentiability of Distance Functions 45

6 PurdueShapes5GAN Dataset for Experimenting with Adversarial Learning and Diffusion 53

7 DCGAN Implementation in DLStudio 60

8 Making Small Changes to the DCGAN Architecture 82

9 Wasserstein GAN Implementation in DLStudio 88

10 Improving Wasserstein GAN with Gradient Penalty 104

11 Generative Modeling with Denoising Diffusion 127

12 Loss Function for Denoising Diffusion 135

13 Using Gaussian Noise for Diffusion 150

14 The GenerativeDiffusion Module in DLStudio 166

Purdue University 104

Improving Wasserstein GAN with Gradient Penalty

WGAN-GP: Improving WGAN with Gradient
Penalty

As you would guess, the name extension ”-GP” stands for ”Gradient
Penalty”.

It was shown by the authors Gulrajani, Ahmed, Arjovsky, Dumouli,
and Courville of the paper ”Improved Training of Wasserstein GANs”
that implementing a 1-Lipschitz constraint with weight clipping as
discussed in the previous section biases the Critic towards learning
rather simple probability distribution functions.

In WGAN-GP, the performance of a WGAN is improved by putting to
use the theoretical property that the optimal WGAN critic C has unit
gradient norm almost everywhere under P and Q. [See Proposition 1,
Corollary 1 of the paper cited above.]

Purdue University 105

Improving Wasserstein GAN with Gradient Penalty

WGAN-GP (contd.)

On the basis of the property mentioned at the bottom of the previous
slide, in a WGAN-GP, we add a Gradient Penalty term to the Critic
Loss that was shown earlier in Eq. (38):

Critic Loss = Ez∼pz [C(G(z))] − Ex∼P [C(x)]︸ ︷︷ ︸
The original critic loss

+ λ[∥∇x̂C(x̂)∥2 − 1]2︸ ︷︷ ︸
The Gradient Penalty (GP)

(39)

To explain what the symbol x̂ is doing in the GP term, note that the
gradient is of the output of the 1-Lipschitz function (meaning the
output of the Critic network) with respect to its input. Since the
Critic network sees both the training samples and those produced by
the Generator at its input, for the purpose of calculating this gradient,
we first construct a fictitious sample by taking a weighted sum of a
sample drawn from the training data and one produced by the
Generator using a randomly chosen fractional number ϵ:

x̂ = ϵx + (1− ϵ)x̃ (40)

Purdue University 106

Improving Wasserstein GAN with Gradient Penalty

WGAN-GP (contd.)

Shown below is the Tensorflow code for calculating the Gradient
Penalty as posted by the authors of the ”Improved Training of
Wasserstein GANs” paper:

if MODE == ’wgan-gp’:

epsilon = tf.random_uniform(shape=[BATCH_SIZE,1], minval=0., maxval=1.)

interpolates = epsilon*real_data + ((1-epsilon)*fake_data)

disc_interpolates = Discriminator(interpolates)

gradients = tf.gradients(disc_interpolates, [interpolates])[0]

slopes = tf.sqrt(tf.reduce_sum(tf.square(gradients), reduction_indices=[1]))

gradient_penalty = tf.reduce_mean((slopes-1)**2)

Shown below is the PyTorch version of the same code as posted by
Marvin Cao (caogang) at GitHub:

def calc_gradient_penalty(netC, real_data, fake_data):

epsilon = torch.rand(batch_size, 1).cuda()

epsilon = epsilon.expand(real_data.size())

interpolates = epsilon * real_data + ((1 - epsilon) * fake_data)

interpolates = interpolates.requires_grad_(True).cuda()

critic_interpolates = netC(interpolates)

gradients = autograd.grad(outputs=critic_interpolates, inputs=interpolates,

grad_outputs=torch.ones(critic_interpolates.size()).cuda(),

create_graph=True, retain_graph=True, only_inputs=True)[0]

gradient_penalty = ((gradients.norm(2, dim=1) - 1) ** 2).mean() * LAMBDA

return gradient_penalty

Purdue University 107

Improving Wasserstein GAN with Gradient Penalty

WGAN-GP for Learning a Point Distribution in 2D

In order to demonstrate how effective the gradient penalty is in
improving the performance of a WGAN, I’ll use the 8-Gaussian
example from the ”Improved Training of Wasserstein GANs” paper.
8-Gaussian refers to a multi-Gaussian distribution of points in an
xy-plane. The centers of the eight Gaussians are equispaced on a unit
circle around the origin of the plane. The width of each Gaussian is
specified by the user. The code snippet shown below returns a batch
of 256 points in the xy-plane each time the function
multi gaussian source() is called:

def multi_gaussian_source():
"""
A Python ’generator’ function: Each call to this function with the built-in "next()" will yield
a fresh BATCH_SIZE (typically 256) number of points in the xy-plane.
"""
scale = 2.
centers = [(1, 0), (-1, 0), (0, 1), (0, -1), (1. / np.sqrt(2), 1. / np.sqrt(2)),

(1. / np.sqrt(2), -1. / np.sqrt(2)), (-1. / np.sqrt(2), 1. / np.sqrt(2)),
(-1. / np.sqrt(2), -1. / np.sqrt(2))

]
centers = [(scale * x, scale * y) for x, y in centers]
while True:

dataset = []
#spread = 0.02
spread = 0.1 ## controls the spread of each Gaussian
for i in range(BATCH_SIZE):

point = np.random.randn(2) * spread
center = random.choice(centers)
point[0] += center[0]
point[1] += center[1]
dataset.append(point)

dataset = np.array(dataset, dtype=’float32’)
dataset /= 1.414 # stdev
yield dataset

Purdue University 108

Improving Wasserstein GAN with Gradient Penalty

WGAN-GP for Learning a Point Distro (contd.)

Given the data source shown on the previous slide for the
ground-truth, we want to train a WGAN so that its Generator would
transform noise into data samples (points in the xy-plane) that look
like they came from the 8-Gaussians distribution. For the WGAN, we
will use the Generator and the Critic classes as shown below:

class Generator(nn.Module):
def __init__(self):

super(Generator, self).__init__()
main = nn.Sequential(

nn.Linear(2, DIM),
nn.ReLU(True),
nn.Linear(DIM, DIM),
nn.ReLU(True),
nn.Linear(DIM, DIM),
nn.ReLU(True),
nn.Linear(DIM, 2),

)
self.main = main

def forward(self, noise):
output = self.main(noise)
return output

class Critic(nn.Module):
def __init__(self):

super(Critic, self).__init__()
main = nn.Sequential(

nn.Linear(2, DIM),
nn.ReLU(True),
nn.Linear(DIM, DIM),
nn.ReLU(True),
nn.Linear(DIM, DIM),
nn.ReLU(True),
nn.Linear(DIM, 1),

)
self.main = main

def forward(self, inputs):
output = self.main(inputs)
return output

Purdue University 109

Improving Wasserstein GAN with Gradient Penalty

WGAN-GP for Learning a Point Distro (contd.)

As you can see on the previous slide, except for the last layer, the
network layout for both the Generator and the Critic are identical.
The output of the Generator is 2D because it is supposed to generate
points in the xy-plane. On the other hand, the output of the Critic is
a 1D value that expresses the Critic’s confidence that the input is
genuine or fake.

The next code segment that follows is about the training of the
WGAN. A highlight of the code shown is three calls to backward() for
estimating the gradients of the Critic weights in lines (F), (K), and
(M) and one call to the same for the Generator in line (U).

To elaborate the code shown for WGAN training, the main loop starts
in line (A). Each iteration of the main training loop involves training
the Generator network once. At the same time, it requires that the
Critic be taken through multiple updates in keeping with the
requirements of the expectation operator in Eq. (38) and Eq. (39).

Purdue University 110

Improving Wasserstein GAN with Gradient Penalty

WGAN-GP for Learning a Point Distro (contd.)

The multiple updates of the Critic in the inner loop start in line (B).
The needs of the expectation operator in Eq. (39) are met by
averaging both over multiple iterations of the inner loop that starts in
line (B) and, in each of those iterations, by averaging over all the
samples in a batch, as you will soon see.

Each inner-loop update of the Critic entails first feeding it a batch of
real data (typically 256 points in the xy-plane) in line (D). In keeping
with the requirements of the expectation in Eq. (39), we find the
mean of the output of the Critic for all the samples in the batch in
line (E). The call to backward() in line (F) updates the gradients of the
Critic weights for this phase of learning for the Critic. Note the target
gradient of “-1” in the call to backward() in line (F).

For the next phase of Critic learning, we feed it a batch of the fakes
produced by the Generator in line (H).

Purdue University 111

Improving Wasserstein GAN with Gradient Penalty

WGAN-GP for Learning a Point Distro (contd.)

With regard to phase of Critic learning at the bottom of the previous
slide, for the same reason as mentioned earlier, this output of the
Critic is averaged over the batch in line (J) and subject to a call to
backward() in line (K).

For the third and final phase of Critic learning, using the
implementation shown earlier, we first estimate the gradient penalty
in line (L) and then make the call on backward() in line (M) for the
final updating the gradients of the Critic weights in this iteration of
the inner loop for Critic training.

for iteration in range(ITERS): ## (A)
Update the Critic network:
for p in netC.parameters(): # reset the requires_grad attribute

p.requires_grad = True # this attribute is set to False in netG update

for iter_d in range(CRITIC_ITERS): ## (B)
The data_source supplies one BATCH_SIZE of 2D points from true distribution
real_data = next(data_source) ## (C)
real_data = torch.Tensor(real_data).requires_grad_(True).cuda()
netC.zero_grad()
Train Critic network with real data:
critic_for_reals = netC(real_data) ## (D)
critic_for_reals_mean = critic_for_reals.mean() ## (E)
critic_for_reals_mean = torch.unsqueeze(critic_for_reals_mean, 0)
critic_for_reals_mean.backward(minus_one) ## (F)
Train Critic with Generator output:
noise = torch.randn(BATCH_SIZE, 2).requires_grad_(True).cuda() ## (G)
fakes = netG(noise) ## (H)
critic_for_fakes = netC(fakes) ## (I)
critic_for_fakes_mean = critic_for_fakes.mean() ## (J)
critic_for_fakes_mean = torch.unsqueeze(critic_for_fakes_mean,0)
critic_for_fakes_mean.backward(one) ## (K)

(Continued on the next slide)
Purdue University 112

Improving Wasserstein GAN with Gradient Penalty

WGAN-GP for Learning a Point Distro (contd.)

(...... continued from the previous slide)
if MODE == "wgan-gp":

Train Critic with gradient penalty:
gradient_penalty = calc_gradient_penalty(netC, real_data, fakes.data) ## (L)
gradient_penalty.backward() ## (M)
lossCritic = critic_for_fakes_mean - critic_for_reals_mean + gradient_penalty ## (N)

elif MODE == "wgan":
lossCritic = critic_for_fakes_mean - critic_for_reals_mean ## (O)

wasser_dist = critic_for_reals_mean - critic_for_fakes_mean ## (P)
optim_critic.step()

Update the Generator network:
for p in netC.parameters(): ## (Q)

p.requires_grad = False
netG.zero_grad()
noise = torch.randn(BATCH_SIZE, 2).requires_grad_(True).cuda() ## (R)
A BATCH_SIZE of fakes coming from the Generator
fakes = netG(noise) ## (S)
critic_for_fakes_g = netC(fakes)
critic_for_fakes_g_mean = critic_for_fakes_g.mean() ## (T)
critic_for_fakes_g_mean = torch.unsqueeze(critic_for_fakes_g_mean,0)
critic_for_fakes_g_mean.backward(minus_one) ## (U)
lossGen = -critic_for_fakes_g_mean
optim_gen.step()

• The code file that follows is the full implementation of the WGAN
code. On the code shown, what remains unexplained is the
implementation of the function display distributions() that plays an
important role in depicting the effectiveness of using gradient penalty
for training a WGAN. That implementation will be explained later in
this section.

Purdue University 113

Improving Wasserstein GAN with Gradient Penalty

Implementation of wgan for point distros.py

wgan_for_point_distros.py

import random
import matplotlib
matplotlib.use(’Agg’)
import matplotlib.pyplot as plt
import numpy as np
import torch
import torch.autograd as autograd
import torch.nn as nn
import torch.optim as optim
import sys, os, glob, time

MODE = ’wgan-gp’ # Choose one of the two
#MODE = ’wgan’

DIM = 512 # Dimensionality of nn.Linear layers
LAMBDA = .1 # For estimating the contribution of GP to overall loss
CRITIC_ITERS = 5 # How many critic iterations per generator iteration
BATCH_SIZE = 256 # Batch size
ITERS = 100000 # how many generator iterations to train for
#ITERS = 10000 # how many generator iterations to train for
dir_name_for_results = ’results’ + "_" + MODE

=============================== Refresh directory for results ===============================
if os.path.exists(dir_name_for_results):

files = glob.glob(dir_name_for_results + "/*")
for file in files:

if os.path.isfile(file):
os.remove(file)

else:
files = glob.glob(file + "/*")
list(map(lambda x: os.remove(x), files))

else:
os.mkdir(dir_name_for_results)

since_beginning_dict = {’critic_loss’ : [], ’wasser_dist’: [], ’gen_loss’: []}
since_last_flush_dict = {’critic_loss’ : [], ’wasser_dist’: [], ’gen_loss’: []}

=================================== Class Definitions ==
class Generator(nn.Module):

def __init__(self):
super(Generator, self).__init__()
main = nn.Sequential(

nn.Linear(2, DIM),
nn.ReLU(True),
nn.Linear(DIM, DIM),
nn.ReLU(True),
nn.Linear(DIM, DIM),
nn.ReLU(True),
nn.Linear(DIM, 2),

)
self.main = main

def forward(self, noise):
output = self.main(noise)
return output

class Critic(nn.Module):
def __init__(self):

super(Critic, self).__init__()
main = nn.Sequential(

nn.Linear(2, DIM),
nn.ReLU(True),
nn.Linear(DIM, DIM),
nn.ReLU(True),
nn.Linear(DIM, DIM),
nn.ReLU(True),
nn.Linear(DIM, 1),

)
self.main = main

def forward(self, inputs):
output = self.main(inputs)
return output

(Continued on the next slide)
Purdue University 114

Improving Wasserstein GAN with Gradient Penalty

wgan for point distros.py (contd.)
(...... continued from the previous slide)

def weights_init(m):
"""
This function is used to initialize the learnable weights in the Critic and
the Generator networks
"""
classname = m.__class__.__name__
if classname.find(’Linear’) != -1:

m.weight.data.normal_(0.0, 0.02)
m.bias.data.fill_(0)

frame_index = [0]

================================= Utility Functions =====================================
def display_distributions(real_data, netC, netG):

"""
This very useful visualization function, written originally by the authors
of the celebrated paper "Improved Training of Wasserstein GANs", does the
following three things simultaneously:

1) Creates a 128x128 array of points in a [-3,3]x[-3x3] box in the xy-plane.
These points can subsequently be fed into the Critic for the values it
would yield at each point in the array. The value returned by the Critic
at point (x,y) in the array would be Critic’s confidence whether that
(x,y) point belongs to the probability distribution for the training data.
The surface formed by such Critic values is best visualized through
equi-valued contours.

2) The ’real_data’ that is the first argument to this function is a batch-full
(typically 256) points in the xy-plane that were produced by the function
multi_gaussian_source(). This source represents the true training data
for training the GAN. These points are shown in the xy-plane by orange

’+’ points.

3) It takes a batch-full (typically 256) 2D noise vectors and sends them
through the Generator network netG. The Generator network produces a
2D point in the xy-plane for each 2D noise input. The 256 points returned
by the Generator are displayed as green ’x’ points in the same xy-plane
that is used for the above two items.

"""
NPOINTS = 128
RANGE = 3
points = np.zeros((NPOINTS, NPOINTS, 2), dtype=’float32’)
points[:,:,0] = np.linspace(-RANGE, RANGE, NPOINTS)[:,None]
points[:,:,1] = np.linspace(-RANGE, RANGE, NPOINTS)[None,:]
points = points.reshape((-1, 2))
points = torch.Tensor(points).requires_grad_(False).cuda()
Generate the Critic’s value at each point at each (x,y) point
created above:
critic_map = netC(points).cpu().data.numpy()
Now we need a batch-full of 2D noise vectors for feeding into
the Generator:
noise = torch.randn(BATCH_SIZE, 2).requires_grad_(False).cuda()
fakes = netG(noise).cpu().detach().numpy()
plt.clf()
x = y = np.linspace(-RANGE, RANGE, NPOINTS)
Display the Critic output value surface through contours:
plt.contour(x, y, critic_map.reshape((len(x), len(y))).transpose())
Display the 256 first-arg real_data points that were previously
generated by the ground-truth source multi_gaussian_source():
plt.scatter(real_data[:,0], real_data[:,1], c=’orange’, marker=’+’)
Now display the 256 ’fake’ points returned by the Generator:
plt.scatter(fakes[:,0], fakes[:,1], c=’green’, marker=’x’)
plt.savefig(dir_name_for_results + "/" + ’frame’ + str(frame_index[0]) + ’.jpg’)
frame_index[0] += 1

(Continued on the next slide)Purdue University 115

Improving Wasserstein GAN with Gradient Penalty

wgan for point distros.py (contd.)
(...... continued from the previous slide)

def multi_gaussian_source():
"""
A Python ’generator’ function: Each call to this function with the built-in "next()" will yield
a fresh BATCH_SIZE (typically 256) number of points in the xy-plane.
"""
scale = 2.
centers = [

(1, 0),
(-1, 0),
(0, 1),
(0, -1),
(1. / np.sqrt(2), 1. / np.sqrt(2)),
(1. / np.sqrt(2), -1. / np.sqrt(2)),
(-1. / np.sqrt(2), 1. / np.sqrt(2)),
(-1. / np.sqrt(2), -1. / np.sqrt(2))

]
centers = [(scale * x, scale * y) for x, y in centers]
while True:

dataset = []
spread = 0.02

spread = 0.1 ## controls the spread of each Gaussian
for i in range(BATCH_SIZE):

point = np.random.randn(2) * spread
center = random.choice(centers)
point[0] += center[0]
point[1] += center[1]
dataset.append(point)

dataset = np.array(dataset, dtype=’float32’)
dataset /= 1.414 # stdev
yield dataset

def calc_gradient_penalty(netC, real_data, fake_data):
"""
Implementation by Marvin Cao at GitHub
"""
epsilon = torch.rand(BATCH_SIZE, 1).cuda()
epsilon = epsilon.expand(real_data.size())
interpolates = epsilon * real_data + ((1 - epsilon) * fake_data)
interpolates = interpolates.requires_grad_(True).cuda()
critic_interpolates = netC(interpolates)
gradients = autograd.grad(outputs=critic_interpolates, inputs=interpolates,

grad_outputs=torch.ones(critic_interpolates.size()).cuda(),
create_graph=True, retain_graph=True, only_inputs=True)[0]

gradient_penalty = ((gradients.norm(2, dim=1) - 1) ** 2).mean() * LAMBDA
return gradient_penalty

========================== Create Network Instances and Train WGAN ==============================
netG = Generator().cuda()
netC = Critic().cuda()
netC.apply(weights_init)
netG.apply(weights_init)

print(netG)
print(netC)

optim_critic = optim.Adam(netC.parameters(), lr=1e-4, betas=(0.5, 0.9))
optim_gen = optim.Adam(netG.parameters(), lr=1e-4, betas=(0.5, 0.9))

one = torch.FloatTensor([1])
minus_one = one * -1

one = one.cuda()
minus_one = minus_one.cuda()

data_source = multi_gaussian_source() ## returns one BATCH_SIZE collection 2D points

start_time = time.perf_counter()

(Continued on the next slide)Purdue University 116

Improving Wasserstein GAN with Gradient Penalty

wgan for point distros.py (contd.)
(...... continued from the previous slide)

for iteration in range(ITERS):
Update the Critic network
for p in netC.parameters(): # reset the requires_grad attribute

p.requires_grad = True # this attribute is set to False in netG update

for iter_d in range(CRITIC_ITERS):
The data_source supplies one BATCH_SIZE of 2D points from true distribution
real_data = next(data_source)
real_data = torch.Tensor(real_data).requires_grad_(True).cuda()
netC.zero_grad()
train Critic network with real data
critic_for_reals = netC(real_data)
critic_for_reals_mean = critic_for_reals.mean()
critic_for_reals_mean = torch.unsqueeze(critic_for_reals_mean, 0)
critic_for_reals_mean.backward(minus_one)
train Critic with fakes
noise = torch.randn(BATCH_SIZE, 2).requires_grad_(True).cuda()
fakes = netG(noise)
critic_for_fakes = netC(fakes)
critic_for_fakes_mean = critic_for_fakes.mean()
critic_for_fakes_mean = torch.unsqueeze(critic_for_fakes_mean,0)
critic_for_fakes_mean.backward(one)

if MODE == "wgan-gp":
train with gradient penalty
gradient_penalty = calc_gradient_penalty(netC, real_data, fakes.data)
gradient_penalty.backward()
lossCritic = critic_for_fakes_mean - critic_for_reals_mean + gradient_penalty

elif MODE == "wgan":
lossCritic = critic_for_fakes_mean - critic_for_reals_mean

wasser_dist = critic_for_reals_mean - critic_for_fakes_mean
optim_critic.step()

Update the Generator network
for p in netC.parameters():

p.requires_grad = False
netG.zero_grad()
noise = torch.randn(BATCH_SIZE, 2).requires_grad_(True).cuda()
A BATCH_SIZE of fakes coming from the Generator
fakes = netG(noise)
critic_for_fakes_g = netC(fakes)
critic_for_fakes_g_mean = critic_for_fakes_g.mean()
critic_for_fakes_g_mean = torch.unsqueeze(critic_for_fakes_g_mean,0)
critic_for_fakes_g_mean.backward(minus_one)
lossGen = -critic_for_fakes_g_mean
optim_gen.step()

Update the dicts for the losses and distance:
since_last_flush_dict[’critic_loss’].append(lossCritic.cpu().data.numpy()[0])
since_last_flush_dict[’wasser_dist’].append(wasser_dist.cpu().data.numpy()[0])
since_last_flush_dict[’gen_loss’].append(lossGen.cpu().data.numpy()[0])

if iteration % 100 == 99:
current_time = time.perf_counter()
elapsed_time = int(current_time - start_time)
prints = []
for name, vals in since_last_flush_dict.items():

prints.append("{} {:.3f}".format(name, np.mean(vals)))
since_beginning_dict[name] += vals

print("[iter: {:5d} time: {:5d} secs]\t\t{}".format(iteration+1, elapsed_time, "\t".join(prints)))
since_last_flush_dict = {’critic_loss’ : [], ’wasser_dist’: [], ’gen_loss’: []}
real_data = next(data_source)
display_distributions(real_data, netC, netG)

iteration += 1

(Continued on the next slide)Purdue University 117

Improving Wasserstein GAN with Gradient Penalty

wgan for point distros.py (contd.)
(...... continued from the previous slide)

for name,vals in since_beginning_dict.items():
x_vals = np.array(range(iteration))
y_vals = [since_beginning_dict[name][x] for x in x_vals]
plt.clf()
plt.plot(x_vals, y_vals)
plt.xlabel(’iteration’)
plt.ylabel(name)
plt.savefig(dir_name_for_results + "/" + name.replace(’ ’, ’_’)+’.jpg’)

Shown on the next slide are the Critic Loss, the Generator Loss, and
the Wasserstein Distance calculated in the main training loop of the
code.

Purdue University 118

Improving Wasserstein GAN with Gradient Penalty

Losses vs. Iterations for WGAN-GP

Critic Loss Generator Loss Wasserstein Distance

Losses and distance based on 100,000 of training

Purdue University 119

Improving Wasserstein GAN with Gradient Penalty

Comparing GP with No-GP in Training a WGAN

As to how effective using the Gradient Penalty is in improving the
performance is of a WGAN is best visualized by using the function
display distributions() whose implementation is presented next. The
code for this function is as provided by the original authors of the
paper ”Improved Training of Wasserstein GANs”. This function does
the following three things simultaneously:

Creates a 128× 128 array of points in a [−3, 3]× [−3x3] box in the
xy-plane. These points can subsequently be fed into the Critic for the
values it would yield at each point. The value returned by the Critic at
point (x,y) is Critic’s confidence whether that point belongs to the
probability distribution for the training data. The surface formed by
such Critic values is best visualized through equi-valued contours.

The real data that is the first argument to this function is a batch-full
(typically 256) points in the xy-plane that were produced by the
function multi gaussian source(). This source represents the
ground-truth data for training the GAN. These points are shown in the
xy-plane by orange ’+’ points.Purdue University 120

Improving Wasserstein GAN with Gradient Penalty

Comparing GP with No-GP (contd.)

It takes a batch-full (typically 256) 2D noise vectors and sends them
through the Generator network netG. The Generator network produces
a 2D point in the xy-plane for each 2D noise input. The 256 points
returned by the Generator are displayed as green ’x’ points in the same
xy-plane that is used for the above two items.

• Shown below is the implementation of display distributions():
def display_distributions(real_data, netC, netG):

NPOINTS = 128
RANGE = 3
points = np.zeros((NPOINTS, NPOINTS, 2), dtype=’float32’)
points[:,:,0] = np.linspace(-RANGE, RANGE, NPOINTS)[:,None]
points[:,:,1] = np.linspace(-RANGE, RANGE, NPOINTS)[None,:]
points = points.reshape((-1, 2))
points = torch.Tensor(points).requires_grad_(False).cuda()
Generate the Critic’s value at each point at each (x,y) point
created above:
critic_map = netC(points).cpu().data.numpy()
Now we need a batch-full of 2D noise vectors for feeding into
the Generator:
noise = torch.randn(BATCH_SIZE, 2).requires_grad_(False).cuda()
fakes = netG(noise).cpu().detach().numpy()
plt.clf()
x = y = np.linspace(-RANGE, RANGE, NPOINTS)
Display the Critic output value surface through contours:
plt.contour(x, y, critic_map.reshape((len(x), len(y))).transpose())
Display the 256 first-arg real_data points that were previously
generated by the ground-truth source multi_gaussian_source():
plt.scatter(real_data[:,0], real_data[:,1], c=’orange’, marker=’+’)
Now display the 256 ’fake’ points returned by the Generator:
plt.scatter(fakes[:,0], fakes[:,1], c=’green’, marker=’x’)
plt.savefig(dir_name_for_results + "/" + ’frame’ + str(frame_index[0]) + ’.jpg’)
frame_index[0] += 1

Purdue University 121

Improving Wasserstein GAN with Gradient Penalty

Comparing GP with No-GP (contd.)

Shown in the next few slides is a side-by-side comparison of GP vs.
no-GP on WGAN training at the same iteration index. The plots were
produced by the function display distributions() during a training
session that consisted of 100,000 iterations.

As mentioned earlier, the orange ’+’ marks denote the points in the
xy-plane as produced by the true 8-Gaussian distribution and the
green ’x’ marks denote the points that the Generator produced from
purely noise input. The greater the overlap between the green ’x’
points and the orange ’+’ points, the superior the performance of the
Generator. In addition, you would want the clusters formed by the
green ’x’ points to be as tight as those formed by the orange ’+’
points. Finally, you would want all the green ’x’ points to fall inside
the [−3, 3]× [−3, 3] box in the xy-plane.

The contours depict the value surface for the Critic.
Purdue University 122

Improving Wasserstein GAN with Gradient Penalty

GP vs. No-GP Performance Comparison

(a) With GP at iteration 10,000 (b) Without GP at iteration 10,000

(a) With GP at iteration 20,000 (b) Without GP at iteration 20,000

Purdue University 123

Improving Wasserstein GAN with Gradient Penalty

GP vs. No-GP Performance Comparison

(a) With GP at iteration 30,000 (b) Without GP at iteration 30,000

(a) With GP at iteration 40,000 (b) Without GP at iteration 40,000

Purdue University 124

Improving Wasserstein GAN with Gradient Penalty

GP vs. No-GP Performance Comparison

(a) With GP at iteration 50,000 (b) Without GP at iteration 50,000

(a) With GP at iteration 60,000 (b) Without GP at iteration 60,000

Purdue University 125

Improving Wasserstein GAN with Gradient Penalty

GP vs. No-GP Performance Comparison

(a) With GP at iteration 70,000 (b) Without GP at iteration 70,000

(a) With GP at iteration 80,000 (b) Without GP at iteration 80,000

Purdue University 126

Generative Modeling with Denoising Diffusion

Outline

1 Distance Between Two Probability Distributions 11

2 Examples of Distance Functions for Probability Distributions: TV, KL, and JS 13

3 Earth Mover’s and Wasserstein Distances 26

4 A Random Experiment for Studying Differentiability 42

5 Differentiability of Distance Functions 45

6 PurdueShapes5GAN Dataset for Experimenting with Adversarial Learning and Diffusion 53

7 DCGAN Implementation in DLStudio 60

8 Making Small Changes to the DCGAN Architecture 82

9 Wasserstein GAN Implementation in DLStudio 88

10 Improving Wasserstein GAN with Gradient Penalty 104

11 Generative Modeling with Denoising Diffusion 127

12 Loss Function for Denoising Diffusion 135

13 Using Gaussian Noise for Diffusion 150

14 The GenerativeDiffusion Module in DLStudio 166

Purdue University 127

Generative Modeling with Denoising Diffusion

A Markov Chain Based Generative Model for Images

Let the variable x denote an image. You could think of x as a tensor
of shape (3,H,W) where 3 stands for the number of color channels,
and H and W for the height and the width of the image.

Assume x is the output of a stochastic process and p(x) represents
the probability that the process will output a specific image x.

About the stochastic process that would lead to the production of a
given x, we will assume for it to be a Markov Chain (which is a

discrete-time version of a continuous-time Markov Process) that takes zero-mean
isotropic Gaussian noise for its input and, by denoising the input in

stages, leads to the output x. By “stages”, I mean one step at a
time, which would allow for the extent of denoising to be carried out
at each time step to be relatively small.

For noise to be isotropic Gaussian, its covariance matrix must be σ2I
where I is the d × d Identity Matrix and σ a scalar that represents
the isotropic variance in the d-dimensional data.Purdue University 128

Generative Modeling with Denoising Diffusion

Markov Chain Based Generative Modeling (contd.)

So if we want to generate images by denoising isotropic Gaussian

noise one small step at a time, one is faced with the question of

deciding how much denoising to carry out at each time step.

The question posed above is answered by creating another Markov

chain that does the opposite of what’s accomplished by the previous

Markov chain — it will convert an image into isotropic Gaussian

noise, again one small step at a time.

For the second Markov chain, let’s assume for a moment that, by trial
and error, we can figure out the “extent of noise to inject” at each
time step such that, after T time steps, an image is converted into
isotropic Gaussian noise. If we confine ourselves to using only
isotropic Gaussian noise, the “extent of noise to inject” at each time
step would be completely characterized by just two parameters: β for
the variance and α for the mean. So all that we would need to know
would be the values for these two parameters at each of the T time
steps for the purpose of converting an image into noise.Purdue University 129

Generative Modeling with Denoising Diffusion

Markov Chain Based Generative Modeling (contd.)

At this point you might ask: How does knowing a value for α and β
needed for the second Markov chain that progressively converts an
image into noise help us figure out how much denoising to carry out
at each time step in the first Markov chain?

This is where you need a neural network. Using the known
(α, β)-noise in going from one timestep to the next in the second
Markov chain that progressively turns the image into isotropic
Gaussian noise, the job assigned to the neural network would be to
predict how much noise to take out during the transition for the
corresponding time step in the first Markov chain for the purpose of
denoising. I’ll make this idea more precise in what follows.

For creating a more precise description of what I have described so
far, we need to do two things: (1) set the direction of the arrow of
time for the two Markov chains; and (2) what mathematical notation
to use for the two chains.

Purdue University 130

Generative Modeling with Denoising Diffusion

Markov Chain Based Generative Modeling (contd.)

In order to conform to the notation used in the foundational papers,
I’ll refer to the two Markov processes as the Forward Markov Chain,
denoted q-chain, and the Reverse Markov Chain, denoted p-chain.

The Forward Markov Chain will start at timestep 0 with an image
from the training data and, by taking the image through
noise-diffusing transitions, end up with isotropic Gaussian noise at
timestep T . The Reverse Markov Chain will start at timestep T with
zero-mean isotropic noise, take it through denoising Markov
transitions to end up at timestep 0 in a recognizable image.

I will use q(xt |xt−1) for the transition probabilities for the Forward
Markov Chain, and the notation p(xt−1|xt) for the transition
probabilities for the Reverse Markov Chain. Remember, that, despite

its appearance, the transition probability p(xt−1|xt) conforms to the

usual notation of prob(next state | current state) for Markov chains

because for this chain the arrow of time starts at t = T and

progresses to t = 0.Purdue University 131

Generative Modeling with Denoising Diffusion

Markov Chain Based Generative Modeling (contd.)

Shown below are the two Markov chains, the p-chain for denoising
and the q-chain for diffusion. Ah, I almost forgot to mention that
the process of making the input image more and more like isotropic
Gaussian noise in the q-chain is called diffusion.

Next, I’ll discuss how to link the state transition probabilities in the
two chains and how to exploit that linkage through a neural network
for effective denoising.

The q-chain is for diffusion, that is, for the purpose of making the image represented by x0 at right look more and more like
isotropic Gaussian noise that is represented by xT at left. And the p-chain is for learning how to progressively denoise the
isotropic Gaussian noise at the left end of the pipeline in order to turn it into an image at the right end of the pipeline.Purdue University 132

Generative Modeling with Denoising Diffusion

Markov Chain Based Generative Modeling (contd.)

With the additional notation in place, I now go back to the question
on Slide 130: How to figure out how much denoising to carry out at

each step in the p-chain? As I mentioned there, we want a neural
network to predict how much denoising to carry in going from time t
to time t − 1 in the p-chain based on how much noise was added in
the q-chain when going from time t − 1 to time t.

Ideally, the extent of denoising in the p-chain in going from time t
to time t − 1 will equal the noise added in the q-chain in diffusing
the image from time t − 1 to time t.

What that says that, at least notionally, in each cycle of training the
neural network, we know what we want the neural network to predict.
In other words, at least conceptually, we can define a “target” in each
iteration of neural learning. As you know, in general, it is the
“distance” between the target and what the neural network predicts
that serves as the loss for the backpropagation step of SGD.

Purdue University 133

Generative Modeling with Denoising Diffusion

Markov Chain Based Generative Modeling (contd.)

As it turns out, formulation of the loss function that has yielded high
quality results with diffusion networks is more elaborate than what
would be suggested by the previous bullet. The next section goes into
formulating the loss function.

Purdue University 134

Loss Function for Denoising Diffusion

Outline

1 Distance Between Two Probability Distributions 11

2 Examples of Distance Functions for Probability Distributions: TV, KL, and JS 13

3 Earth Mover’s and Wasserstein Distances 26

4 A Random Experiment for Studying Differentiability 42

5 Differentiability of Distance Functions 45

6 PurdueShapes5GAN Dataset for Experimenting with Adversarial Learning and Diffusion 53

7 DCGAN Implementation in DLStudio 60

8 Making Small Changes to the DCGAN Architecture 82

9 Wasserstein GAN Implementation in DLStudio 88

10 Improving Wasserstein GAN with Gradient Penalty 104

11 Generative Modeling with Denoising Diffusion 127

12 Loss Function for Denoising Diffusion 135

13 Using Gaussian Noise for Diffusion 150

14 The GenerativeDiffusion Module in DLStudio 166

Purdue University 135

Loss Function for Denoising Diffusion

Starting with Maximum-Likelihood Estimation of the Parameters

Since our goal is to generate images that appear to come from the
same probability distribution that describes those in the training
dataset, one could argue that our ultimate criterion for the training of
the denoising p-chain defined in the previous section is the
maximization of the probability associated with x0 emerging at the
output of the p-chain when this image is fed at the input to the
diffusing q-chain.

That is, assuming that the image x0 is at the input to the q-chain, we
want the learnable parameters in the denoising p-chain to be such that
they associate the highest log-likelihood with the output of the p-chain

to also be x0:

Θ̂ML = argmax
Θ

log p(x0) (41)

As to why such a criterion would constitute a maximum-likelihood
estimate for the learnable parameters, see my “Holy Trinity” tutorial:

https://engineering.purdue.edu/kak/Tutorials/Trinity.pdf

Purdue University 136

https://engineering.purdue.edu/kak/Tutorials/Trinity.pdf

Loss Function for Denoising Diffusion

Maximum-Likelihood Estimation of the Parameters (contd.)

If we had to translate the maximum-likelihood criterion of Eq. (41)
directly into a loss function, we would need to change the RHS into
something that would lend itself to achieving the same with a
minimization (as opposed to a maximization) since that’s what you
do with neural learning – you minimize the loss.

The standard way to do that is to express the RHS as negative log of
the probability:

L = − log p(x0) (42)

Θ̂ML = argmin
Θ

L (43)

where L is the loss.

You might think of the negative-log-likelihood on the RHS in the first
equation above as minimizing the logarithm of one minus the
probability, which is the same thing as maximizing the probability.
Recall that the logarithm is a monotonic function of its argument.Purdue University 137

Loss Function for Denoising Diffusion

Maximum-Likelihood Estimation of the Parameters (contd.)

Now we need to translate the log-likelihood criterion in the previous
equation into something that is computationally feasible. Right off
the bat, we realize that x0 is the final denoised image produced in the
p-chain and its production depends obviously on all the preceding
values x1, x2, . . . , xT . More precisely speaking, the likelihood p(x0) is
a marginal of the joint probability distribution over all the data
elements in the p-chain:

p(x0) =

∫
p
(
x0, x1, . . . , xT

)
dx1dx2 . . . dxT (44)

The above can be expressed more compactly using the ’:’ notation as
shown below, where the colon ’:’ has almost the same semantics as in
Python:

p(x0) =

∫
p
(
x0:T

)
dx1:T (45)

As you will see, we can use the Markov property of the data to
translate the joint distro shown above and also its role in the integral
into a computational framework that actually works.Purdue University 138

Loss Function for Denoising Diffusion

Joint Distros Over the Data in the Two Chains

We first arrange the data sequences in the two Markov chains,
p-chain and q-chain, in a temporal order that starts with the last
item produced first:

q-chain: : xT , xT−1, . . . , x1, x0
p-chain: : x0, x1, . . . , xT−1, xT

As shown in the Figure on Slide 131, in the q-chain, the last item

produced is xT and, in the p-chain, the last item produced is x0.

In each chain, the last item produced depends probabilistically on all

the preceding items. Focusing first on the q-chain, we can express
this dependence through the right-hand-side in the following equation:

q(xT , xT−1, . . . , x1, x0) = q(xT | xT−1, . . . , x1, x0) · q(xT−1, . . . , x1, x0) (46)

The rewrite on the right-hand-side in the above equation follows
directly from the Bayes’ Theorem.

Purdue University 139

Loss Function for Denoising Diffusion

Joint Distros in the Two Chains (contd.)

Invoking the Markov property that the conditional probability of a
data element at time t given all the temporally preceding data
elements at times t − 1 through 0 depends only the data at the time
instant t − 1 and invoking the Bayes’ rule recursively, we can write

q(xT , xT−1, . . . , x1, x0) = q(xT | xT−1, . . . , x1, x0) · q(xT−1, . . . , x1, x0)

= q(xT | xT−1) · q(xT−1 | xT−2, . . . , x1, x0)

= q(xT | xT−1) · q(xT−1 | xT−2), . . . , q(x1|x0) · q(x0)

= q(x0)
1∏

t=T

q(xt | xt−1)

= q(x0)
T∏
t=1

q(xt | xt−1) (47)

For the p-chain, recognizing that its last element produced is x0
which depends on all of the preceding elements x1, x2, . . . , xT−1, xT ,
in that order, and using the Baye’s rule we have the following rewrite
for the joint probability over all the samples sequentially denoised:

p(x0, x1, . . . , xT−1, xT) = p(x0 | x1, . . . , xT−1, xT) · p(x1, . . . , xT−1, xT) (48)Purdue University 140

Loss Function for Denoising Diffusion

Joint Distros in the Two Chains (contd.)

Applying the Markov property to the first conditional probability on
the RHS of the previous equation and the Bayes’ rule to the second,
and doing so recursively, we get

p(x0, x1, . . . , xT−1, xT) = p(x0 | x1, . . . , xT−1, xT) · p(x1, . . . , xT−1, xT)

= p(x0 | x1) · p(x1 | x2, . . . , xT−1, xT)

= p(x0 | x1) · p(x1 | x2, . . . , xT−1|xT) · p(xT)

= p(xT)
T∏
t=1

p(xt−1 | xt) (49)

Using the same ’:’ notation you saw earlier in Eq. (45), the two joint
probabilities can be expressed more compactly as

q(x0:T) = q(x0)
T∏
t=1

q(xt | xt−1) (50)

p(x0:T) = p(xT)
T∏
t=1

p(xt−1 | xt) (51)

Purdue University 141

Loss Function for Denoising Diffusion

Bringing the q-chain into the Marginal-Joint Distro

Relationship for the p-chain

What I have shown in the last three slides is extremely elementary for

Markov chains: Expressing the join distro as a product of the

transition probabilities. I did that mostly to refamiliarize you with the
notation involved.

Now I am going back to the relationship between the marginal and
the joint in Eq. (45) and bring in the probabilities in the q-chain
through what may seem like a backdoor (but with no liberties with
the math involved). Eq. (45) can be rewritten as follows where we
are multiplying and dividing by the same thing:

p(x0) =

∫
p
(
x0:T

)
·
q
(
x1:T |x0

)
q
(
x1:T |x0

) · dx1:T (52)

This rewrite will allow us to express the likelihood value on the left in

a form that will have profound computational implications.
Purdue University 142

Loss Function for Denoising Diffusion

Bringing in the q-chain (contd.)

We new express Eq. (52) in the following form:

p(x0) =

∫
q
(
x1:T |x0

)
·

p
(
x0:T

)
q
(
x1:T |x0

) · dx1:T (53)

Substituting for the joints from Eq. (50) and (51), we can now write

p(x0) =

∫
q
(
x1:T |x0

)
·
p(xT)

∏T
t=1 p(xt−1 | xt)∏T

t=1 q(xt | xt−1)
· dx1:T

=

∫
q
(
x1:T |x0

)
· p(xT) ·

T∏
t=1

p(xt−1 | xt)
q(xt | xt−1)

· dx1:T (54)

In case you are wondering as to what happened to the q(x0) term in
Eq. (50), note that the denominator in Eq. (53) is calling for the
conditional-joint q(x1:T |x0) and NOT just the joint q(x0:T). Using Bayes’
Theorem, we know that q(x0:T |x0) = q(x0:T)/q(x0).

Purdue University 143

Loss Function for Denoising Diffusion

Computational Ramifications of the New Form for the

Likelihood

In terms of computational feasibility, there is a sea change between
the form for the likelihood shown in Eq. (44) and the form shown in
Eq. (54).

Eq. (44) was NOT computationally feasible. The joint and the
transition probabilities in the p-chain depend on how much
denoising is carried out at each time step. However, those decisions

cannot be made in a vacuum.

Eq. (54), on the other hand, is a probabilistic integral of the sort I
have described in my “Monte-Carlo” tutorial:

https://engineering.purdue.edu/kak/Tutorials/MonteCarloInBayesian.pdf

Since the image diffusion in q-chain is directly under our control, we
get to decide what value we want to use for the transition
probabilities q(xt | xt−1) and, therefore, also for the joint q(x1:T |x0).

Purdue University 144

https://engineering.purdue.edu/kak/Tutorials/MonteCarloInBayesian.pdf

Loss Function for Denoising Diffusion

Computational Ramifications (contd.)

Representing the likelihood in the manner shown in Eq. (54) has
another hugely important ramification whose exact nature depends on
how you plan to carry out the denoising steps in the p-chain.

We could carry out denoising with a neural network whose job is to
predict the next denoised version from the current denoised version
according to the transition probability p(xt−1 | xt). Remember, as
shown on Slide 131, for the p-chain, the time step t − 1 comes after
the time step t.

Now if assume that the neural network can come pretty close to
matching the prediction probability p(xt−1 | xt) given what we have
used for the diffusion transition probability q(xt | xt−1) at every time
step, one can show that the integral in Eq. (54) can be computed
exactly by using just one of the T time steps. [Under these conditions, the q-chain

and the p-chain constitute a quasi-static reversible process in statistical physics. I believe that stipulates that all
the transition probabilities will be the same and, since the joint q-distribution in Eq. (54) can be expressed as a
product of transition probabilities with the help of the Markovian assumption, that integration can be carried out
exactly using only one of the T time steps. See the discussion by Sohl-Dickstein et al. (2015). They base their
arguments on the papers by Jarzynski (2011) and Spinney and Ford (2012).]

Purdue University 145

Loss Function for Denoising Diffusion

Expressing the Loss with KL-Divergence

Substituting Eq. (54) in the RHS of Eq. (42) gives us a Loss function
for the neural learning required in the p-chain. For computational
reasons, it is more convenient to express the loss using KL-Divergence.

To derive the KL-Divergence based expression for the loss, we first
note that the integral in Eq. (54) is nothing but the expectation of
the product of the second and the third terms with respect to the
q-distribution. Therefore, Eq. (54) can be expressed more compactly
as

p(x0) = Eq

[
p(xT) ·

T∏
t=1

p(xt−1 | xt)
q(xt | xt−1)

]
(55)

Substituting the above in Eq. (42) for the loss, we can write

L = Eq

[
− log p(xT) −

T∑
t=1

log
p(xt−1 | xt)
q(xt | xt−1)

]
(56)

Purdue University 146

Loss Function for Denoising Diffusion

Expressing the Loss with KL-Divergence (contd.)

I’ll now follow the steps in Appendix A of the 2020 paper “Denoising
Diffusion Probabilistic Models” by Ho et al. to convert the formula
shown above into the loss function we need. To that end, we first
separate out the timestep t = 1 from the summation:

L = Eq

[
− log p(xT) −

T∑
t=2

log
p(xt−1 | xt)
q(xt | xt−1)

− log
p(x0 | x1)
q(x1 | x0)

]
(57)

Let’s now focus on the denominator q(xt |xt−1) in the second term.
We take advantage of the fact that x0 stands for an image from the
training dataset and that the noise added at any time step in the
q-chain is independent of the image itself. Therefore we can write:

q(xt |xt−1) =
q(xt , xt−1)

q(xt−1)
=

q(xt−1, xt)

q(xt−1)

=
q(xt−1, xt |x0)
q(xt−1|x0)

=
q(xt−1|xt , x0) · q(xt |x0)

q(xt−1|x0)
(58)

Purdue University 147

Loss Function for Denoising Diffusion

Expressing the Loss with KL-Divergence (contd.)

Substituting Eq. (58) in Eq. (57), we can write

L = Eq

[
− log p(xT) −

T∑
t=2

log
p(xt−1 | xt)
q(xt−1|xt , x0)

·
q(xt−1|x0)
q(xt |x0)

− log
p(x0|x1)
q(x1|x0)

]

= Eq

[
− log p(xT) −

T∑
t=2

log
p(xt−1 | xt)
q(xt−1|xt , x0)

−
T∑
t=2

log
q(xt−1|x0)
q(xt |x0)

− log
p(x0|x1)
q(x1|x0)

]

= Eq

[
− log p(xT) −

T∑
t=2

log
p(xt−1 | xt)
q(xt−1|xt , x0)

−
T∑
t=2

log q(xt−1|x0) +
T∑
t=2

log q(xt |x0) − log
p(x0|x1)
q(x1|x0)

]

= Eq

[
− log p(xT) −

T∑
t=2

log
p(xt−1 | xt)
q(xt−1|xt , x0)

− log q(x1|x0) + log q(xT |x0) − log
p(x0|x1)
q(x1|x0)

]

= Eq

[
− log

p(xT)

q(xT | x0)
−

T∑
t=2

log
p(xt−1 | xt)
q(xt−1|xt , x0)

− log p(x0|x1)
]

(59)

[Of the five RHS expressions, in going from the first to the second, all we have done is to use the identity

log A · B = log A + log B in the 2nd term of the first. Along the same lines, in going from the second expression to
the third, all we have done is to express log A/B as log A − log B in the third term of the second expression. In

going from the third expression to the fourth on the RHS, when you expand out the 3rd and the 4th summations in
the third expression, only the two items that are shown survive. In going from the fourth RHS expression to the

last, we notice that the 3rd term in the fourth expression is canceled out by the denominator in the last term and

the 4th term is merged with the first.]

Purdue University 148

Loss Function for Denoising Diffusion

Expressing the Loss with KL-Divergence (contd.)

Now we are ready to express the loss through KL-Divergence. Let me
first recall the definition of KL-Divergence presented in the second
section of this lecture: Given two distributions P and Q, one of them
to be construed as the true distribution and the other as an estimate
for the true, the KL-Divergence between the two is given by:

dKL(P,Q) =
N∑
i=1

P(xi) log
P(xi)

Q(xi)
= −

N∑
i=1

P(xi) log
Q(xi)

P(xi)
(60)

dKL(P,Q) is obviously the expectation of the ratios log P(xi)
Q(xi)

with
respect to the P distribution (putatively, the true distro in this def).

Drawing a parallel between the Loss expression in Eq. (59) and the
definition of KL-divergence shown above, in the loss expression we are
averaging the ratio of the two distributions p and q with respect to q.
So we treat q as the true and p as an approximation to q. Therefore,
we can express the loss in Eq. (59) as

L = Eq

[
dKL

(
q(xT |x0), p(xT)

)
+

T∑
t=2

dKL

(
q(xt−1|xt , x0), p(xt−1|xt)

)
− log p(x0|x1)

]
(61)

Purdue University 149

Using Gaussian Noise for Diffusion

Outline

1 Distance Between Two Probability Distributions 11

2 Examples of Distance Functions for Probability Distributions: TV, KL, and JS 13

3 Earth Mover’s and Wasserstein Distances 26

4 A Random Experiment for Studying Differentiability 42

5 Differentiability of Distance Functions 45

6 PurdueShapes5GAN Dataset for Experimenting with Adversarial Learning and Diffusion 53

7 DCGAN Implementation in DLStudio 60

8 Making Small Changes to the DCGAN Architecture 82

9 Wasserstein GAN Implementation in DLStudio 88

10 Improving Wasserstein GAN with Gradient Penalty 104

11 Generative Modeling with Denoising Diffusion 127

12 Loss Function for Denoising Diffusion 135

13 Using Gaussian Noise for Diffusion 150

14 The GenerativeDiffusion Module in DLStudio 166

Purdue University 150

Using Gaussian Noise for Diffusion

Using Gaussian Noise for Diffusion

A multivariate Gaussian distribution (also known as a Normal distribution) for
data points that reside in a d-dimensional space is given by

p(x) =
1

(2π)d/2 |Σ|1/2
e
− 1

2
(x−µ)T Σ−1(x−µ)

(62)

where |Σ| is the determinant of the d × d covariance matrix Σ, which
must be symmetric and positive definite. We think of each data point
x⃗ as a d-dimensional column vector and µ as a similar vector for the
mean of all the data.

A commonly used notation for a Gaussian distribution is

p(x) = N (x;µ,Σ) (63)

and the fact of drawing a random vector x from a Gaussian
distribution expressed as

x ∼ N (x;µ,Σ) (64)

A Gaussian distribution is referred to as a Standard Normal
distribution if all its component dimensions are independent and, for
each dimension, we have zero mean and unit variance, as shown next.

Purdue University 151

Using Gaussian Noise for Diffusion

Using Gaussian Noise for Diffusion (contd.)

Here is an analytic form for a Standard Normal Distribution for a
d-dimensional space:

p(x) =
1

(2π)d/2
e
− 1

2
xT x

= N (x; 0, I) (65)

We’ll assume that the noise that is added at each forward transition
in the q-chain is described by the following Gaussian:

q(xt |xt−1) = N (xt ;
√

1 − βtxt−1, βt I) (66)

Recall that the forward transitions constitute the Diffusion Markov
Process in which we start adding noise to the training image at
timestep 0, continue this noise additions through the Markov
transitions, until at timestep T the image is completely transformed
into isotropic unit variance Gaussian noise N (x; 0, I).

Note βt for the variance of the noise added at each transition. This is
referred to as the Noise Schedule for the Diffusion Process. Also note
that the mean value of the added noise at each transition depends
both on Noise Schedule at that t and also the previous value of xt−1.Purdue University 152

Using Gaussian Noise for Diffusion

Using Gaussian Noise for Diffusion (contd.)

If you are wondering about the mysterious sounding Noise Schedule
defined by the noise variances {βt |t = 1, . . . ,T − 1}, the idea is that,
starting at t = 0, these variances would be sufficient to transform the
distribution that describes the training images into an isotropic
Gaussian distribution N (xT ; 0, I). If we succeed in doing so, then there
is a chance that, for the Denoising Process in the reverse direction,
we could incrementally transform pure isotropic Gaussian noise at
timestep T and turn it into an image at timestep 0.

For a deeper understanding of the relationship between the means
and the variances in Eq. (66) used for the Forward Transitions, and of
the Noise Schedule values used typically for βt , you’ll have to look
through the three diffusion related papers on Slide 5 in Preamble.

While the amount of noise we add during the forward diffusion
process at each transition is under our control and would be given by
Eq. (66), how much noise to subtract at each corresponding reverse transition would

be the job of a neural network.Purdue University 153

Using Gaussian Noise for Diffusion

Computational Ramifications of Using Gaussian Noise

Continuing with the thought in the last bullet on the previous slide,
from the amount of noise added during the forward process, it will be
the neural network’s job to figure out how much noise to “subtract”
in the reverse process in order to minimize the overall loss defined in
Eq. (61) on Slide 149.

From the standpoint of practical implementation, we now take
advantage of the fact that, with Gaussian noise, an arbitrary number
of forward diffusion transitions, each given by Eq. (66), can be
combined into a single calculation. That is, starting with t = 0,
instead of making several q(xt |xt−1) transitions up to some arbitrary
timestep t , we can do directly from t = 0 to the timestep t with the
help of the following formula:

q(xt |x0) = N (xt ;
√

ᾱtx0, (1 − ᾱt)I) (67)

xt =
√
ᾱtx0 +

√
1 − ᾱtϵ (68)

See the next slide for what the symbols ϵ, αt , ᾱt stand for.
Purdue University 154

Using Gaussian Noise for Diffusion

Computational Ramifications of Gaussian Noise (Contd.)

In Eq. (67) and (68) shown on the previous slide, we have

ϵ ∼ N (0, I) (69)

αt = 1 − βt (70)

ᾱt =
t∏

s=0

αs (71)

In the formulas shown above and on the previous slide, x0 is the
training image and ϵ is the Gaussian noise added to this image at
timestep t = 0, meaning at the beginning of the diffusion process.

Eq. (68) is a thing of beauty unto itself. It makes explicit what
exactly happens to an input image as it is subject to successive
applications of diffusion.

[In casual conversations about diffusion it is not uncommon to hear that diffusion means “adding more and more
noise” to a training image. But there is a serious problem with that mental imagery: Literally adding random noise
to an image will not destroy the “structure” of the pixel-to-pixel variations in the values of the color in the input
training image. It may become difficult to see those variations with the naked eye as more and more noise is
“added”, but they would always be there. On the other hand, Eq. (68) tells us that the input image is being
progressively destroyed by its multiplication with a coefficient that becomes ever smaller as the timestep approaches
T . Also note that the relationship between the mean and variance in Eq. (67) is dictated by the fact that as we
take the “signal” away from the input image by the multiplicative effect in Eq. (68), we want to transfer that
energy into the variance of the noise so that, on the average, the overall variance remains unchanged.]Purdue University 155

Using Gaussian Noise for Diffusion

Computational Ramifications of Gaussian Noise (Contd.)

Previously, we expressed the Noise Schedule in terms of βt , the
variance of the noise to be added at each timestep t. From the
relationship in Eq. (71), we could also express the Noise Schedule
directly in terms of α values.

So far we have the forward diffusion process under control. We know
know that, if we so wished, we could choose a random timestep in the
(1,T) range and directly estimate the diffused version xt of the
training image at that point.

The question now is: How does the reverse denoising process learn
from the forward process especially if we want each iteration of
training to involve a single arbitrarily chosen timestep t at which we
want to calculate the result of forward diffusion? We want the reverse
denoising process to learn from the forward diffusion process how
much noise to subtract at the corresponding transition going in the
opposite direction so that, ultimately, the final denoised result at
t = 0 would be a recognizable image.Purdue University 156

Using Gaussian Noise for Diffusion

Computational Ramifications of Gaussian Noise (Contd.)

Keep in mind that when the forward diffusion process transitions from
timestep t − 1 to t in the q-chain, that corresponds to the reverse
denoising process transitioning from t to t − 1 in the p-chain. Let the
job of the neural network be to learn the network parameters θ to help
us estimate the mean µθ(xt) and the covariance Σθ(xt) that would
allow us to predict the following transition probability in the p-chain:

pθ(xt−1|xt) = N (xt−1;µθ(xt),Σθ(xt)) (72)

Obviously, the parameters µθ(xt) and Σθ(xt) must be learned subject
to the minimization of the loss in Eq. (61) on Slide 149. Relevant to
the transition in question, that requires to minimize the
KL-Divergence between the conditional probability shown above and
the posterior conditional probability q(xt−1|xt) in the q-chain.

If the forward transition probabilities in the q-chain are given by Eq.
(67), one can use the Bayes’ Rule to write the formula on the next
slide for the posterior conditional probability q(xt−1|xt).Purdue University 157

Using Gaussian Noise for Diffusion

Computational Ramifications of Gaussian Noise (Contd.)

Here is a formula for the posterior in the q-chain:

q(xt−1|xt , x0) = N
(
xt−1; µ̃t (xt , x0), β̃t I

)
(73)

where
µ̃t (xt , x0) =

√
ᾱt−1βt

1 − ᾱt
· x0 +

√
αt (1 − ᾱt−1)

(1 − ᾱt)
(74)

β̃t =
1 − ᾱt−1

1 − ᾱt
· βt (75)

Note that the parameters with the tildes, µ̃t and β̃t are for “going
backwards” in the q-chain itself, in the sense that these parameters
help us create an estimate for posterior probability for a given
transition probability in the forward direction.

On the other hand, the barred parameter, ᾱt , as defined earlier in Eq.
(71) on Slide 155 is a measure of cumulative variances of the noise
transitions in the forward chain over the timesteps 0 through t.

The loss for training the network is the KL-Divergence between two
Gaussians, one for the predicted form in the p-chain as given by Eq.
(72) and the other for the posterior in the q-chain as given by Eq.
(73).

Purdue University 158

Using Gaussian Noise for Diffusion

Computational Ramifications of Gaussian Noise (Contd.)

Note that the loss form shown in Eq. (61) on Slide 149 also requires
this KL-Divergence to be averaged with respect to the q-probabilities.
In practice, that can be done by averaging over the instances in a
batch.

For a derivation of the posterior probability shown in Eqs. (73)
through (75) and for a discussion of several importance practical
aspects that go into the minimization of the loss, see the paper
“Improved Denoising Diffusion Probabilistic Models” Nichol and
Dhariwal.

Asking a neural network to just predict the mean and the variance in
a probability distribution is strongly evocative of how a VAE works.
[But there is a very important difference between a VAE neural network and the network we need for diffusion based
modeling: A VAE is typically used for creating a reduced dimensional representation of an input image and it
assumes that we can model each input image by a Gaussian distribution whose mean µ is the reduced-dimensionality
output that you want and that, naturally, has an associated standard-deviation σ. Although a user of VAE will
typically throw away the σ, it has a critical role to play during the training of the VAE network: In each cycle of
training, you draw an ϵ from a standard normal distribution and you construct “µ + ϵ · σ” as an exemplar of the
output that should look like the input. The difference between the input and the exemplar output thus constructed
can be turned into a loss. On the other hand, for diffusion based modeling, during training, we do NOT construct a
putative exemplar for an image-like output using Eq. (68). All we do is to make the network better at estimating the
means and the standard deviations of the p-chain transition probs through the minimization of the loss in Eq. (61).]Purdue University 159

Using Gaussian Noise for Diffusion

Computational Ramifications of Gaussian Noise (Contd.)

To summarize, during each iteration of training in which we focus on
a single randomly chosen timestep in the (1,T − 1) range, all we
want to do is to estimate the mean and the variance in the p-chain
transition probability corresponding to that timestep.

In other words, the training iterations do not involve reconstructing
the denoised versions of xt that you see in Eq. (68). It is only after a
network has been trained in the manner described above that we can
deploy the p-chain using all of its T timesteps to convert Gaussian
isotropic noise at its input into a recognizable image at the other end.

We still have the issue of how to set a value for T , the number of
timesteps allowed. In general, the larger the value of T , the greater
the ability of the trained model to represent a larger diversity in the
training dataset. For a given T , the rate at which the the model
achieves convergence also depends on the Noise Schedule.

Purdue University 160

Using Gaussian Noise for Diffusion

α-β Related Quantities in the Calculations

Calculation of the forward transition probabilities in the q-chain in Eq.
(67), drawing a sample from it in Eq. (68), and, subsequently,
computing the posteriors in Eq. (73) in the q-chain again, involves
calculating various forms involving β and α = 1− β coefficients in
Eqs. (70), (71), (74) and (75).

As mentioned earlier, each training cycle involves randomly choosing
a value for the timestep t. For that timestep chosen, you must
calculate the α-β forms required Eqs. (70), (71), (74) and (75).
Shown on the next slide is a sample calculation of these forms.

The calculation of the α-β related values begins with first setting the
values of the β coefficients. Recall that beta is the variance of the
noise sample drawn from a standard normal distribution. Using the
recommended values for βstart and βend as shown at the beginning of
the script, we set the values of β’s by diving the β-range by the
number of timesteps.

Purdue University 161

Using Gaussian Noise for Diffusion

α-β Related Quantities in the Calculations (contd.)

Subsequently, we set the values for the α’s as 1− β. The values of
the products of α’s, as required by Eq. (71), are obtained by invoking
the numpy.cumprod function, which stands for “cumulative product of
elements along the specified axis”.

alpha_beta_calc.py

import numpy as np
np.set_printoptions(precision=3) ## just for showing the values on this slide

num_timesteps = 10 ## IMPORTANT: This is just for demo purposes here. Typically, num_timesteps = 1000

beta_start = 0.0001
beta_end = 0.02
betas = np.linspace(beta_start, beta_end, num_timesteps)
print("\n\nbetas: ", betas) ## [0.000 0.002 0.005 0.007 0.009 0.011 0.013 0.016 0.018 0.02]

print("\n\n\n\nSome basic alpha related values:")
alphas = 1.0 - betas
alphas_cumprod = np.cumprod(alphas, axis=0)
alphas_cumprod_prev = np.append(1.0, alphas_cumprod[:-1])
alphas_cumprod_next = np.append(alphas_cumprod[1:], 0.0)

print("\nalphas: ", alphas) ## [1.000 0.998 0.995 0.993 0.991 0.989 0.987 0.984 0.982 0.98]
print("\nalphas_cumprod: ", alphas_cumprod) ## [1.000 0.998 0.993 0.986 0.978 0.967 0.954 0.939 0.922 0.904]
print("\nalphas_cumprod_prev: ", alphas_cumprod_prev) ## [1.000 1.000 0.998 0.993 0.986 0.978 0.967 0.954 0.939 0.922]
print("\nalphas_cumprod_next: ", alphas_cumprod_next) ## [0.998 0.993 0.986 0.978 0.967 0.954 0.939 0.922 0.904 0.000]

print("\n\n\n\nalpha related values needed for calculating q-chain transitions q(x_t | x_{t-1})")
sqrt_alphas_cumprod = np.sqrt(alphas_cumprod)
sqrt_one_minus_alphas_cumprod = np.sqrt(1.0 - alphas_cumprod)
log_one_minus_alphas_cumprod = np.log(1.0 - alphas_cumprod)
sqrt_recip_alphas_cumprod = np.sqrt(1.0 / alphas_cumprod)
sqrt_recipm1_alphas_cumprod = np.sqrt(1.0 / alphas_cumprod - 1)

print("\nsqrt_alphas_cumprod: ", sqrt_alphas_cumprod) ## [1. 0.999 0.997 0.993 0.989 0.983 0.977 0.969 0.96 0.951]
print("\nsqrt_one_minus_alphas_cumprod: ", sqrt_one_minus_alphas_cumprod) ## [0.01 0.049 0.083 0.117 0.15 0.183 0.215 0.247 0.279 0.31]
print("\nlog_one_minus_alphas_cumprod: ", log_one_minus_alphas_cumprod) ## [-9.21 -6.028 -4.973 -4.297 -3.797 -3.401 -3.074 -2.795 -2.553 -2.341]
print("\nsqrt_recip_alphas_cumprod: ", sqrt_recip_alphas_cumprod) ## [1. 1.001 1.003 1.007 1.011 1.017 1.024 1.032 1.041 1.052]
print("\nsqrt_recipm1_alphas_cumprod: ", sqrt_recipm1_alphas_cumprod) ## [0.01 0.049 0.083 0.117 0.151 0.186 0.22 0.255 0.29 0.326]

(Continued on the next slide)
Purdue University 162

Using Gaussian Noise for Diffusion

α-β Related Quantities in the Calculations (contd.)

(...... continued from the previous slide)
print("\n\n\n\nalpha calculations for posterior q(x_{t-1} | x_t, x_0):")
posterior_variance = (betas * (1.0 - alphas_cumprod_prev) / (1.0 - alphas_cumprod))
log calculation clipped because the posterior variance is 0 at the
beginning of the diffusion chain.
posterior_log_variance_clipped = np.log(np.append(posterior_variance[1], posterior_variance[1:]))
posterior_mean_coef1 = (betas * np.sqrt(alphas_cumprod_prev) / (1.0 - alphas_cumprod))
posterior_mean_coef2 = ((1.0 - alphas_cumprod_prev) * np.sqrt(alphas) / (1.0 - alphas_cumprod))

print("\nposterior_variance: ", posterior_variance)
[0.000e+00 9.586e-05 1.575e-03 3.425e-03 5.426e-03 7.506e-03 9.633e-03 1.179e-02 1.397e-02 1.617e-02]

print("\nposterior_log_variance_clipped: ", posterior_log_variance_clipped) ## [-9.253 -9.253 -6.453 -5.677 -5.216 -4.892 -4.643 -4.44 -4.271 -4.125]
print("\nposterior_mean_coef1: ", posterior_mean_coef1) ## [1. 0.959 0.653 0.493 0.396 0.331 0.284 0.249 0.222 0.2]
print("\nposterior_mean_coef2: ", posterior_mean_coef2) ## [0. 0.041 0.347 0.507 0.604 0.669 0.716 0.751 0.778 0.8]

Purdue University 163

Using Gaussian Noise for Diffusion

Calculating the Forward Transitions in the q-Chain

The second function shown below is the function in the DDPM code library
at GitHub that implements Eq. (68) on Slide 154 for calculating the sample
xt at a given timestamp t and for a given starting x0 represented by x start

in the code. Remember, x0 is the training image that is fed into the q-chain
at timestep 0. The value of the parameter noise in the header of the second
function is ϵ in Eq. (68). The first function, extract into tensor() is called
by the second function.

def _extract_into_tensor(arr, timesteps, broadcast_shape):
"""
Source: https://github.com/lucidrains/denoising-diffusion-pytorch
Extract values from a 1-D numpy array for a batch of indices.
:param arr: the 1-D numpy array.
:param timesteps: a tensor of indices into the array to extract.
:param broadcast_shape: a larger shape of K dimensions with the batch

dimension equal to the length of timesteps.
:return: a tensor of shape [batch_size, 1, ...] where the shape has K dims.
"""
res = torch.from_numpy(arr).to(device=timesteps.device)[timesteps].float()
while len(res.shape) < len(broadcast_shape):

res = res[..., None]
return res.expand(broadcast_shape)

def q_sample(self, x_start, t, noise=None):
"""
Source: https://github.com/lucidrains/denoising-diffusion-pytorch
The value returned is a sample from q(x_t | x_0)
"""
if noise is None:

noise = torch.randn_like(x_start)
assert noise.shape == x_start.shape
return (_extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +

_extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise
)

Purdue University 164

Using Gaussian Noise for Diffusion

Calculating the Posterior Probabilities in the q-Chain

Shown below is the function in the same DDPM library that
calculates the estimates for the posterior mean, µ̃t , and the posterior
variance, β̃t , in the q-chain based on the formulas in Eqs. (74) and
(75) on Slide 158. The function extract into tensor() is the same as
defined on the previous slide.

def q_posterior_mean_variance(self, x_start, x_t, t):
"""
Source: https://github.com/lucidrains/denoising-diffusion-pytorch

Compute the mean and variance associated with the posterior in the q-chain:
q(x_{t-1} | x_t, x_0)

In the q-chain, the forward transitions look like q(x_t | q_{t-1}). We can use
Bayes’ Rule to derive an expression for the posterior q(x_{t-1} | x_t, x_0) from
the forward transition probabilities. See Slide 158.
"""

assert x_start.shape == x_t.shape
posterior_mean = (

_extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start
+ _extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t

)
posterior_variance = _extract_into_tensor(self.posterior_variance, t, x_t.shape)
posterior_log_variance_clipped = _extract_into_tensor(self.posterior_log_variance_clipped, t, x_t.shape)
assert (

posterior_mean.shape[0]
== posterior_variance.shape[0]
== posterior_log_variance_clipped.shape[0]
== x_start.shape[0]

)
return posterior_mean, posterior_variance, posterior_log_variance_clipped

Purdue University 165

The GenerativeDiffusion Module in DLStudio

Outline

1 Distance Between Two Probability Distributions 11

2 Examples of Distance Functions for Probability Distributions: TV, KL, and JS 13

3 Earth Mover’s and Wasserstein Distances 26

4 A Random Experiment for Studying Differentiability 42

5 Differentiability of Distance Functions 45

6 PurdueShapes5GAN Dataset for Experimenting with Adversarial Learning and Diffusion 53

7 DCGAN Implementation in DLStudio 60

8 Making Small Changes to the DCGAN Architecture 82

9 Wasserstein GAN Implementation in DLStudio 88

10 Improving Wasserstein GAN with Gradient Penalty 104

11 Generative Modeling with Denoising Diffusion 127

12 Loss Function for Denoising Diffusion 135

13 Using Gaussian Noise for Diffusion 150

14 The GenerativeDiffusion Module in DLStudio 166

Purdue University 166

The GenerativeDiffusion Module in DLStudio

The GenerativeDiffusion Module in DLStudio

The diffusion based modeling code in DLStudio is in its co-class
GenerativeDiffusion. Most of the code you see in this file was drawn
from the sources at OpenAI’s GitHub project ”Improved Diffusion”:

https://github.com/openai/improved-diffusion

[The source code at the above website is the implementation for the work described in the paper “Improved
Denoising Diffusion Probabilistic Models” by Nichol and Dhariwal that you can download from:
https://arxiv.org/pdf/2102.09672.pdf]

The GitHub code library consists of roughly 3900 lines of Python
distributed over 10 files in three different directories. The code you’ll
see in GenerativeDiffusion contains around 750 lines of that code.

Despite the fact that the class and function names in the 750 lines of
OpenAI code presented in GenerativeDiffusion are the same as in the
original code, some of them have undergone significant refactoring.

[For example, the OpenAI code uses GaussianDiffusion class through a subclass named
SpacedDiffusion that is defined in a utility file called script util.py. I got rid of the
SpacedDiffusion class and incorporated that functionality in a rather small function inside the
GaussianDiffusion class.]

Purdue University 167

https://github.com/openai/improved-diffusion
https://arxiv.org/pdf/2102.09672.pdf

The GenerativeDiffusion Module in DLStudio

DLStudio’s GenerativeDiffusion (contd.)

If you just want to look at the code in GenerativeDiffusion:

https://engineering.purdue.edu/kak/distDLS/GenerativeDiffusion-2.4.2_CodeOnly.html

The main classes in GenerativeDiffusion are:

GaussianDiffusion: This provides the basic functionality for invoking the
forward Markov transitions on the training images by
incrementally injecting isotropic Gaussian noise into them.

AttentionBlock: This class in GenerativeDiffusion is probably has the most
detailed comments that explain each of the steps. For that
reason, I am not going to say anything further about it here.

UNetModel: The is the workhorse class in GenerativeDiffusion for learning.

mUNet: The is a “remote possibility” replacement for UNetModel. I’d
like to give it a try for educational purposes. However, its
hyperparameter tuning for its usage will take time.

The UNetModel class contains the following as its inner classes: TimestepBlock,
Upsample, Downsample, and ResBlock.

Purdue University 168

https://engineering.purdue.edu/kak/distDLS/GenerativeDiffusion-2.4.2_CodeOnly.html

The GenerativeDiffusion Module in DLStudio

The GaussianDiffusion Class

The main functions in the GaussianDiffusion class are:

q sample() This function returns xt as defined in Eq. (68) on Slide 154.

q posterior mean and variance() After you have carried out in the q-chain a
forward calculation of xt for timestep t, you must use the Bayes’
Rule to estimate the parameters of the posterior conditional
probability q(xt−1|xt) so that it can be used for setting up the
target for training the neural network in the p-chain. This function
returns the mean and the variance of the posterior distribution
according to the formulas in Eqs. (73) - (75) on Slide 158.

predict xstart in pchain() Using the posterior distribution as returned by the
previous function, this function constructs a posterior estimate for
x0 for the t − 1 to t transition in the p-chain. Note that xstart in
the code is the same thing as the training image x0. Therefore, this
function gives us the best possible timestep t approximation to the
input training image.

Purdue University 169

The GenerativeDiffusion Module in DLStudio

The GaussianDiffusion Class (contd.)

training losses This function calculates the mean-square error between the
expected value for x0 as provided for the posterior
distribution at timestep t and the output of the neural
network for the same.

The following additional functions in the GaussianDiffusion class are used for
image generation after the model has been trained.

p sampler for image generation() After the model is trained, you call this
function that takes for input isotropic Gaussian noise and
takes it through each of the T − 1 transitions to generate a
new image.

p sample() This is a helper function called by the previous function.

The first four functions are used in the script RunCodeForDiffusion.py in the
ExamplesDiffusion directory. And the last two in the script
GenerateNewImageSamples.py in the same directory.
Purdue University 170

The GenerativeDiffusion Module in DLStudio

The UNetModel Class

As stated previously, the job of the neural network is to learn from
each t − 1 to t transition in the q-chain how to reverse the diffusing
effect through a corresponding denoising t to t − 1 transition in the
p-chain.

The neural network used for that purpose is UNetModel. For a
description of the network, see the OpenAI paper cited on Slide 167.

For a brief summary of the network description, it is obviously a UNet
as its name implies. Each layer of the UNet is made up a
user-specified number of ResBlock units. The ResBlock itself is patterned
after the building-block elements in the famous ResNet.

As is commonly the case with UNets, the input image is progressively
downsampled in the Encoder side of the UNet, as more and more
information is thrown into the channel dimensions, and subsequently
upsampled in the Decoder side with a corresponding reduction in the
number of channels.Purdue University 171

The GenerativeDiffusion Module in DLStudio

The ExamplesDiffusion Directory

The ExamplesDiffusion directory in the DLStudio distro contains the
three scripts listed below that you can use for your own experiments
in denoising diffusion. You have to run all three scripts for any single

demonstration. Make sure you have read the README in that
directory for a description of how to execute the scripts.

RunCodeForDiffusion.py This is the script that starts the training of the
neural network. The training will spit out a checkpoint every
so often depending on what value you specified for the
constructor parameter save interval in the script
RunCodeForDiffusion.py.

GenerateNewImageSamples.py You will execute this script when you want
to test a checkpoint for its ability to generate new images.
See the doc section of the script for how to call it. This script
deposits all the generated images in a numpy ndarray archive.

VisualizeSamples.py You must execute this script to extract the individual
images from the numpy archive mentioned above.,

Purdue University 172

The GenerativeDiffusion Module in DLStudio

The Dataset Used for the Demos in the ExamplesDiffusion

Directory

Unless you change the pathname that the constructor option data dir

points to in the script RunCodeForDiffusion.py, the code in the
ExamplesDiffusion directory is meant to be run with the same dataset
that I used earlier in this lecture for data modeling with Adversarial
Learning. As you may recall, the name of that dataset if
PurdueShapes5GAN.

See the Slides 53 through 59 for a description of that dataset. In
particular, Slide 59 lists the steps for how to install the dataset.

As implied by the first bullet above, you should be able to run the
diffusion code on any image dataset just by changing the pathname
setting of the data dir constructor parameter in the script
RunCodeForDiffusion.py.

Purdue University 173

The GenerativeDiffusion Module in DLStudio

Diffusion Modeling Results Obtained with the PurdueShapes5GAN Dataset

This slide shows the results I obtain with the training based on the
PurdueShapes5GAN dataset using the scripts in the ExamplesDiffusion

directory of the DLStudio. Compare this result with that shown on
Slide 80 for Adversarial Learning.
[IMPORTANT: This is NOT an apples-to-apples comparison between Adversarial Learning and Diffusion based
modeling. With more epochs and additional hyperparameter tuning, the result shown on Slide 80 would be just as
impressive as the one shown here.]

These are the images generated by the p-chain at the checkpoint created at timestep 60,000
using the training batch-size of 32.
Purdue University 174

The GenerativeDiffusion Module in DLStudio

Diffusion Modeling Results Obtained with the CelebA Dataset

On this and the next few slides I will show some results obtained by Aditya
Chauhan using the DLStudio code for diffusion modeling. These were
again obtained using the scripts in the ExamplesDiffusion directory. Aditya is
working on his Ph.D in RVL.

These are the images generated by the p-chain at the checkpoint created at timestep 10,000
using the training batch-size of 32.

Purdue University 175

The GenerativeDiffusion Module in DLStudio

Diffusion Modeling Results Obtained with CelebA (contd.)

These are the images generated by the p-chain at the checkpoint created at timestep 40,000
using the training batch-size of 32.

Purdue University 176

The GenerativeDiffusion Module in DLStudio

Diffusion Modeling Results Obtained with CelebA (contd.)

These are the images generated by the p-chain at the checkpoint created at timestep 80,000
using the training batch-size of 32.

Purdue University 177

The GenerativeDiffusion Module in DLStudio

Diffusion Modeling Results Obtained with CelebA (contd.)

These are the images generated by the p-chain at the checkpoint created at timestep 120,000
using the training batch-size of 32.

Purdue University 178

	Distance Between Two Probability Distributions
	Examples of Distance Functions for Probability Distributions: TV, KL, and JS
	Earth Mover's and Wasserstein Distances
	A Random Experiment for Studying Differentiability
	Differentiability of Distance Functions
	PurdueShapes5GAN Dataset for Experimenting with Adversarial Learning and Diffusion
	DCGAN Implementation in DLStudio
	Making Small Changes to the DCGAN Architecture
	Wasserstein GAN Implementation in DLStudio
	Improving Wasserstein GAN with Gradient Penalty
	Generative Modeling with Denoising Diffusion
	Loss Function for Denoising Diffusion
	Using Gaussian Noise for Diffusion
	The GenerativeDiffusion Module in DLStudio

