
Generative Adversarial Networks for Data
Modeling

Lecture Notes on Deep Learning

Avi Kak and Charles Bouman

Purdue University

Tuesday 28th March, 2023 09:33

©2023 A. C. Kak, Purdue University

Purdue University 1

Preamble

When you create a probabilistic model for your data, you acquire the power to
generate new samples of the data from the model. Depending on how good a job
you did of modeling the data, the new samples you generate from the model may
look deceptively similar to those in your data without being exactly the same as
any one of them.

In general, probabilistic modeling may involve fitting a parametric form to the
data, the choice of the form based on your understanding of the phenomenon
that produced the data. Obviously, you would want to choose the parameters
that can account for all of the observed data in a maximum-likelihood sense.

It may also happen that you are really NOT interested in fitting a parametric
model to your data, but you are interested in generating new samples from the
data nevertheless. In such cases, it is possible you could get away with just
constructing a multi-dimensional histogram from the data and using a generator
of some sort that would spit out new samples according to that histogram.

Purdue University 2

Preamble
Regardless of whether you have an analytic model for the data or just a
good-quality histogram, generating new samples is not easy. It has been the
subject of much research by probability theorists and statisticians the last several
decades. The best techniques fall under the label Markov-Chain Monte-Carlo
(MCMC) sampling and the most commonly used algorithm for MCMC sampling
is the Metropolis-Hastings algorithm.

The basic intuition in these algorithms is based on conducting a random walk
through the space in which the model is defined and subjecting each successive
randomly generated sample to an acceptance test that is based on the model
probability distribution. As you generate a candidate for the next sample at your
current point on the walk, you subject the acceptance of the candidate to the
ratio of the probabilities at the candidate point and the current point. In this
manner, you bias the acceptance of a candidate sample in such a way that you
end up with more samples in those portions of the model space where the
probabilities are relatively high. The generation of the new samples is according
to what is known as a proposal distribution. Since the acceptance of each sample
is predicated on just the previous sample that was already accepted, we obviously
have a Markov Chain. Hence the name MCMC for such algorithms.

Purdue University 3

Preamble (contd.)

The following link is to a Perl module I created several years ago for helping
generate positive and negative training samples for a machine learning algorithm
using the Metropolis-Hastings algorithm for sample selection:

https://metacpan.org/pod/Algorithm::RandomPointGenerator

The machine learning program in this case was for classifying land-cover data
obtained from wide-area satellite imagery as described in

https://engineering.purdue.edu/RVL/Publications/CVIU_2016_Chang_

Comandur_Park_Kak.pdf

Fast forward to deep learning: Just as it has demolished so many of our
previous approaches to solving data engineering problems, probabilistic modeling
of data has suffered the same fate. The deep learning based approaches to data
modeling produce stunning results that nobody could have even dared dream just
a few years back. I am sure you have heard about what media refers to as “deep
fakes”. That’s what I am talking about. My goal in this lecture is to introduce
you to deep learning based approaches to probabilistic data modeling with neural
networks.

Purdue University 4

https://metacpan.org/pod/Algorithm::RandomPointGenerator
https://engineering.purdue.edu/RVL/Publications/CVIU_2016_Chang_Comandur_Park_Kak.pdf
https://engineering.purdue.edu/RVL/Publications/CVIU_2016_Chang_Comandur_Park_Kak.pdf

Preamble (contd.)

The modern excitement in adversarial learning for data modeling began with the
2014 publication ”Generative Adversarial Nets” by Goodfellow, Pouget-Abadie,
Mirza, Xu, Warde-Farley, Ozair, Courville, and Bengio:

https://arxiv.org/pdf/1406.2661.pdf

Such learning involves two networks, a Discriminator network and a Generator
network:

We can think of the Discriminator network as a function D(x , θd) whose
output is the probability that a sample x comes from the training data. The
notation θd represents the learnable parameters in the Discriminator network.

Similarly, we can think of the Generator network as a function G (z , θg) that
maps noise vectors z to samples that we want to look like the samples in our
training data. The vector θg represents the learnable parameters in the
Generator network.

Purdue University 5

https://arxiv.org/pdf/1406.2661.pdf

Preamble (contd.)

If pdata represents the probability distribution that describes the training data and
pg represents the probability distribution that the Generator network has learned
so far, the goal of deep learning for probabilistic data modeling would be to
estimate the best values for the parameters θd and θg so that some measure of
the distance between distributions pdata and pg is minimized.

What’s interesting is that the deep learning framework that was actually
implemented by Goodfellow et al. did not directly minimize a distance between
pdata and pg . Nevertheless, the authors argued that if the Discriminator was
trained to an optimum level, it was guaranteed to yield a solution for pg that
would be a minimum Jensen-Shannon divergence approximation to pdata.

The above paragraph points to the following fact: In order to understand the
algorithms for probabilistic data modeling, you must first understand how
to measure the “distance” between two probability distributions.

Purdue University 6

Preamble (contd.)

For the reason stated at the bottom of the previous slide, I’ll start this lecture
with a brief survey of the more popular distances and divergences between two
given distributions.

For any such distance to be useful in a deep learning context, you would want to
treat it as a loss for the backpropagation needed for updating the parameters θd
and θg that I defined previously. That places an important constraint on what
kinds of distances can actually be used a deep learning algorithm: the distance
must be differentiable so that we can calculate the gradients of the loss with
respect to the network parameters.

Over the last couple of years, the Wasserstein distance has emerged as a strong
candidate for such a differentiable distance function. And that has led to a
Generative Adversarial Network named WGAN that was presented by Arjovsky,
Chintala, and Bottou in the following 2017 publication:

https://arxiv.org/pdf/1701.07875.pdf

Purdue University 7

https://arxiv.org/pdf/1701.07875.pdf

Preamble (contd.)

As I mentioned on the previous slide, I’ll start this lecture with a review of the
distance functions for probability distributions. That will get us ready to talk
about my implementation of DCGAN and WassersteinGAN in DLStudio:

https://engineering.purdue.edu/kak/distDLS/

If you are already familiar with the module and for whatever reason you just need
to “pip install” the latest version of the code, here is a link to its PyPi repository:

https://pypi.org/project/DLStudio/

The DCGAN that I mentioned above was first presented by Radford, Metz, and
Chintala in the following 2016 publication:

https://arxiv.org/pdf/1511.06434.pdf

It was the first fully convolutional implementation of a GAN.
Purdue University 8

https://engineering.purdue.edu/kak/distDLS/
https://pypi.org/project/DLStudio/
https://arxiv.org/pdf/1511.06434.pdf

Outline

1 Distance Between Two Probability Distributions 10

2 Total Variation (TV) Distance 12

3 Kullback-Leibler Divergence 16

4 Jensen-Shannon Divergence and Distance 23

5 Earth Mover’s Distance 27

6 Wasserstein Distance 37

7 A Random Experiment for Studying Differentiability 44

8 Differentiability of Distance Functions 47

9 PurdueShapes5GAN Dataset for Adversarial Learning 55

10 DCGAN Implementation in DLStudio 62

11 Making Small Changes to the DCGAN Architecture 84

12 Wasserstein GAN Implementation in DLStudio 90

13 Improving Wasserstein GAN with Gradient Penalty 106

Purdue University 9

Distance Between Two Probability Distributions

Outline

1 Distance Between Two Probability Distributions 10

2 Total Variation (TV) Distance 12

3 Kullback-Leibler Divergence 16

4 Jensen-Shannon Divergence and Distance 23

5 Earth Mover’s Distance 27

6 Wasserstein Distance 37

7 A Random Experiment for Studying Differentiability 44

8 Differentiability of Distance Functions 47

9 PurdueShapes5GAN Dataset for Adversarial Learning 55

10 DCGAN Implementation in DLStudio 62

11 Making Small Changes to the DCGAN Architecture 84

12 Wasserstein GAN Implementation in DLStudio 90

13 Improving Wasserstein GAN with Gradient Penalty 106

Purdue University 10

Distance Between Two Probability Distributions

Estimating the Distance Between Two Distributions

Given two probability distributions, pdata and pg , the former
representing the training data and the latter an approximation to the
former as learned by some ML framework, the question is: As a
measure of the dissimilarity of the two distributions, what is the
distance between the two?

Along the lines of a review of such distances that was presented in

https://arxiv.org/pdf/1701.07875.pdf

let’s briefly review the following popular distances and divergences
between a pair of probability distributions:

Total Variation Distance

Kullback-Liebler Divergence

Jensen-Shannon Divergence

Earth Mover’s Distance

Wasserstein Distance
Purdue University 11

https://arxiv.org/pdf/1701.07875.pdf

Total Variation (TV) Distance

Outline

1 Distance Between Two Probability Distributions 10

2 Total Variation (TV) Distance 12

3 Kullback-Leibler Divergence 16

4 Jensen-Shannon Divergence and Distance 23

5 Earth Mover’s Distance 27

6 Wasserstein Distance 37

7 A Random Experiment for Studying Differentiability 44

8 Differentiability of Distance Functions 47

9 PurdueShapes5GAN Dataset for Adversarial Learning 55

10 DCGAN Implementation in DLStudio 62

11 Making Small Changes to the DCGAN Architecture 84

12 Wasserstein GAN Implementation in DLStudio 90

13 Improving Wasserstein GAN with Gradient Penalty 106

Purdue University 12

Total Variation (TV) Distance

Total Variation (TV) Distance

We start with a continuous random variable {X | x ∈ Rn} and consider
two different probability distributions (densities, really), denoted f

and g , over X . The Total Variation (TV) distance between f and g is
given by

dTV (f , g) = sup
A

[∣∣∣ ∫
A
f (x)dx −

∫
A
g(x)dx

∣∣∣ : A ⊂ Rn

]
(1)

What that says is that we check every subset A of the domain Rn and
find the difference between the probability masses over that subset for
the f and g densities. The largest value for this difference is the TV
distance between the two.

The important thing here is that the TV distance is a metric, in the
sense that it satisfies all the conditions for a distance measure to be a
metric: Must never be negative; must be symmetric; and must obey the triangle

inequality.
Purdue University 13

Total Variation (TV) Distance

TV for the Discrete Case

Let’s now consider the case when the random variable X is
discretized. That is, the observed values for X are confined to the set
shown below:

X = {x1, x2,, xN}

We are now interested in the distance between two discrete probability
distributions, to be denoted P and Q, over a countable set. These
distributions must obviously satisfy the unit summation condition:

N∑
i=1

P(xi) = 1
N∑
i=1

Q(xi) = 1 (2)

In this case, the Total Variation distance is given by:

dTV (P,Q) = sup
A

[∣∣∣ ∑
xi∈A

P(xi)−
∑
xi∈A

Q(xi)
∣∣∣ : A ⊂ X

]
(3)

Purdue University 14

Total Variation (TV) Distance

TV for the Discrete Case (contd.)

Let’s now consider the following two subsets of the set X :

A1 = {xi ∈ X | P(xi) ≥ Q(xi}

A2 = {xi ∈ X | Q(xi) < P(xi} (4)

On account of the absolute value operator in Eq. (3), for the
optimizing set A, it must either be the case that P(xi) ≥ Q(xi) or that
Q(xi) ≥ P(xi). What that implies that both A1 and A2 are a part of
the optimizing set A. However, since A1 ∪ A2 = X , we can write for
the discretized case:

dTV (P,Q) =
1

2

∑
xi∈X

|P(xi)− Q(xi)|

=
1

2
L1(P,Q) (5)

where the L1 norm is the Minkowski norm Lp with p = 1.

Purdue University 15

Kullback-Leibler Divergence

Outline

1 Distance Between Two Probability Distributions 10

2 Total Variation (TV) Distance 12

3 Kullback-Leibler Divergence 16

4 Jensen-Shannon Divergence and Distance 23

5 Earth Mover’s Distance 27

6 Wasserstein Distance 37

7 A Random Experiment for Studying Differentiability 44

8 Differentiability of Distance Functions 47

9 PurdueShapes5GAN Dataset for Adversarial Learning 55

10 DCGAN Implementation in DLStudio 62

11 Making Small Changes to the DCGAN Architecture 84

12 Wasserstein GAN Implementation in DLStudio 90

13 Improving Wasserstein GAN with Gradient Penalty 106

Purdue University 16

Kullback-Leibler Divergence

Kullback-Liebler Divergence

Popularly known as KL-Divergence.

In this case, let’s start directly with the discrete case of a random
variable X as stated in the first two bullets on Slide 14. The
KL-Divergence between a true distribution P and its approximating
distribution Q is given by

dKL(P,Q) =
N∑
i=1

P(xi) log
P(xi)

Q(xi)
(6)

dKL(P,Q) is obviously the expectation of the ratios log P(xi)
Q(xi)

with respect
to the P distribution. For the ratios to be defined you must have
Q(xi) > 0 when P(xi) > 0. Q(xi) is allowed to be zero when P(xi) is zero
since x log x → 0 as x → 0+.

The logarithm shown above is taken to base 2 if the value of the
divergence is required in bits. For natural logarithms, the value
returned by KL Divergence is in nats.Purdue University 17

Kullback-Leibler Divergence

KL-Divergence (contd.)
Since, in general, log x can return negative and positive values as x

increases from 0 to +∞, and since a negative value for KL-divergence
makes no sense, how can we be sure that the value of dKL(P,Q) is
always non-negative?

To see that the formula for dKL(P,Q) always returns a non-negative
value, we first subject that formula to the following rewrites:

dKL(P,Q) =
N∑
i=1

P(xi) log
P(xi)

Q(xi)

= −
N∑
i=1

P(xi) log
Q(xi)

P(xi)

= −
N∑
i=1

P(xi) log
P(xi) + Q(xi)− P(xi)

P(xi)

= −
N∑
i=1

P(xi) log

[
1 +

Q(xi)− P(xi)

P(xi)

]

= −
N∑
i=1

P(xi) log(1 + a) (7)

Purdue University 18

Kullback-Leibler Divergence

KL-Divergence (contd.)

In the last equation on the previous slide, a = Q(xi)−P(xi)
P(xi)

. The factor a is
lower bounded by -1, which happens when P(xi) takes on the largest
possible value of 1 and Q(xi) takes on the smallest possible value of 0.

Using Jensen’s inequality to take advantage of the concavity of log x

over the interval (0,∞), one can show that for all a > −1, log(1 + a) ≤ a.
The derivation on the previous slide can therefore be extended as
follows:

dKL(P,Q) ≥ −
N∑
i=1

P(xi)
Q(xi)− P(xi)

P(xi)

= −
N∑
i=1

[Q(xi)− P(xi)]

= 0 (8)

which implies that we are guaranteed that dKL(P,Q) ≥ 0.

Purdue University 19

Kullback-Leibler Divergence

KL-Divergence (contd.)

KL-Divergence CANNOT be a metric distance, not the least because
what it calculates is asymmetric with respect to its two args.

Given its limitations — requiring Q(x) > 0 when P(x) > 0 and not being a
metric distance — students frequently want to know as to why KL-Divergence is

as “famous” as it is in the estimation-theoretic literature. One reason for that is
its interpretation as relative entropy:

dKL(P,Q) = HP (Q) − H(P) (9)

which follows straightforwardly from the definition in Eq. (6). H(P) is
the entropy associated with the probability distribution P and HP(Q)

the cross-entropy of an approximating distribution Q vis-a-vis the true
distribution P. [See the definitions for H(P) and HP (Q) on the next slide.]

Since dKL(P,Q) ≥ 0, it must be the case that HP(Q) ≥ H(P), which

constitutes a proof of the assertion made on Slide 17 of my Week 7 lecture that the

smallest possible value for HP(Q) is H(P).

Purdue University 20

Kullback-Leibler Divergence

KL-Divergence (contd.)

Whereas the entropy associated with a distribution P is defined as
H(P) = −

∑N
i=1 P(xi) log P(xi), the cross-entropy of an approximate

distribution Q with respect to a true distribution P is given by
HP(Q) = −

∑N
i=1 P(xi) log Q(xi). [Entropy based interpretations of uncertainty are valuable for

developing powerful algorithms for data engineering. See Sections 2 through 4 of my Decision Trees tutorial at the
clickable link https://engineering.purdue.edu/kak/Tutorials/DecisionTreeClassifiers.pdf.]

The entropy based definition of KL-Divergence in Eq. (9) on the
previous slide implies that the divergence is a measure of the
uncertainty in the estimated distribution Q over and above what it is
in the original distribution P. [See Slide 15 of my Week 7 lecture for why the entropy is a measure

of uncertainty.]

Perhaps the most important role that KL-Divergence plays in our
discussion on Adversarial Networks is that it is a stepping stone to
learning the Jensen-Shannon divergence (and the closely related
Jensen-Shannon distance) that I present starting with the next
section.

Purdue University 21

https://engineering.purdue.edu/kak/Tutorials/DecisionTreeClassifiers.pdf

Kullback-Leibler Divergence

KL-Divergence (contd.)

In Python, a call like:

import scipy.stats

scipy.stats.entropy(P,Q)

with P and Q standing for two normalized (or unnormalized)
histograms, returns the KL-Divergence of Q vis-a-vis P. If Q(x) is
zero where P(x) is not, it will throw an exception.

In the calls shown above, the two histogram arrays must be of equal
length. You can also specify the base of the logarithm with an
optional third argument. The default for the base is e for the natural
algorithm.

Purdue University 22

Jensen-Shannon Divergence and Distance

Outline

1 Distance Between Two Probability Distributions 10

2 Total Variation (TV) Distance 12

3 Kullback-Leibler Divergence 16

4 Jensen-Shannon Divergence and Distance 23

5 Earth Mover’s Distance 27

6 Wasserstein Distance 37

7 A Random Experiment for Studying Differentiability 44

8 Differentiability of Distance Functions 47

9 PurdueShapes5GAN Dataset for Adversarial Learning 55

10 DCGAN Implementation in DLStudio 62

11 Making Small Changes to the DCGAN Architecture 84

12 Wasserstein GAN Implementation in DLStudio 90

13 Improving Wasserstein GAN with Gradient Penalty 106

Purdue University 23

Jensen-Shannon Divergence and Distance

Jensen-Shannon Divergence and Distance

We again have a random variable X whose observed samples belong
to the set:

X = {x1, x2,, xN} (10)

And, as for the case of KL-Divergence, we consider a true probability
distribution P and its approximation Q over the values taken on by
the random variable. The Jensen-Shannon divergence, defined below,
is a symmetrisized version of the KL-Divergence presented earlier in
Eq. (6):

dJS (P,Q) = dKL(P,M) + dKL(Q,M) (11)

where M is the mean distribution for P and Q, as given by

M =
P + Q

2
(12)

We can also talk about Jensen-Shannon distance, which is given by
the square-root of the Jensen-Shannon Divergence:

distJS (P,Q) =
√

dJS (P,Q) (13)
Purdue University 24

Jensen-Shannon Divergence and Distance

JS Divergence and Distance (contd.)

Both the divergence dJS (P,Q) and the distance distJS (P,Q) are
symmetric with respect to the arguments P and Q. Additionally, they
do away with the “Q(x) > 0 when P(x) > 0” requirement of
KL-Divergence.

Since, as established earlier in these slides, the KL Divergence is
always non-negative, the JS-Divergence is also non-negative.

The value of dJS (P,Q) is always a real number in the closed interval
[0, 1]. When the value is 0, the two distributions P and Q are identical.
And when the value is 1, the two distributions are as different as they
can possibly be.

Most significantly, distJS (P,Q) is a valid metric distance.

Purdue University 25

Jensen-Shannon Divergence and Distance

JS Divergence and Distance (contd.)
Given two histogram arrays P and Q of equal length, normalized or
unnormalized, a call like the following in Python

from scipy.spatial import distance

distance.jensenshannon(P,Q)

directly returns the Jensen-Shannon distance between the two
histograms. If you wanted the Jensen-Shannon divergence, you would
need to square the answer returned. The function call implicitly
normalizes the histogram arrays if you supply them otherwise.

With regard to the role of the Jensen-Shannon divergence (and,
therefore, also of the KL-Divergence) in the context of this lecture,
the authors Goodfellow et el. of “Generative Adversarial Nets” have

argued that if the Discriminator in a GAN is trained to its optimum,

the distribution learned by the Generator is guaranteed to be the one

whose Jensen-Shannon divergence from the training-data distribution

is minimized.
Purdue University 26

Earth Mover’s Distance

Outline

1 Distance Between Two Probability Distributions 10

2 Total Variation (TV) Distance 12

3 Kullback-Leibler Divergence 16

4 Jensen-Shannon Divergence and Distance 23

5 Earth Mover’s Distance 27

6 Wasserstein Distance 37

7 A Random Experiment for Studying Differentiability 44

8 Differentiability of Distance Functions 47

9 PurdueShapes5GAN Dataset for Adversarial Learning 55

10 DCGAN Implementation in DLStudio 62

11 Making Small Changes to the DCGAN Architecture 84

12 Wasserstein GAN Implementation in DLStudio 90

13 Improving Wasserstein GAN with Gradient Penalty 106

Purdue University 27

Earth Mover’s Distance

Earth Mover’s Distance
The distance function that the DL community is all excited about at

the moment is the Wasserstein Distance. The reason has to with the
fact this is the only differentiable distance function and, because it is
differentiable, a loss based on this distance function can be
backpropagated directly for updating the weights in a network.

However, in order to fully appreciate what exactly is measured by the
Wasserstein Distance, you first have to understand what is known as
the Earth Mover’s Distance (EMD). Note that many researchers use

the two names interchangeably. I personally think of the Wasserstein

Distance as a stochastic version of EMD.

My goal in this section is to introduce you to EMD. My intro to EMD
is based on the following classic paper by Rubner, Tomasi, and
Guibas:

http://robotics.stanford.edu/~rubner/papers/rubnerIjcv00.pdf

Purdue University 28

http://robotics.stanford.edu/~rubner/papers/rubnerIjcv00.pdf

Earth Mover’s Distance

Earth Mover’s Distance (contd.)

To appreciate EMD, consider establishing similarity between two
images on the basis of the histograms of their graylevels.

Given two N-bin histograms f and g for the two images, you would
not be too far off the mark if the first idea that pops up in your head
would be to carry out a bin-by-bin comparison using a distance like:

dLr (f , g) =

(
N∑
i=1

|gi − hi |
r

) 1
r

(14)

With r = 1, you’d be computing the L1 distance between the two
histograms, and with r = 2 the Euclidean distance. You will see both
being used rather commonly, but you have to be careful as you will
soon see. As mentioned on Slide 15, the general form of the distance
shown above is known as the Minkowski distance.

Purdue University 29

Earth Mover’s Distance

Earth Mover’s Distance (contd.)

That a distance function of the sort shown on the previous slide

might give nonsensical answers for image similarity is made beautifully
clear by the following example from the Rubner et el. paper:

Comparing histograms

In the figure shown above, first focus on the (h1, k1) histograms
shown in the left column. The h1 image has half its pixels very dark
and the other half of the pixels very white. Perceptually, the k1 image
is going to look very similar to the h1 image since the two dominant
gray levels are merely shifted to the right by one unit. If the number
of bins is, say, greater than 64, you will not even notice the shift.

Purdue University 30

Earth Mover’s Distance

Earth Mover’s Distance (contd.)
Next, focus on the (h2, k2) histograms in the figure on the previous
slide. While the h2 image has half its pixels very dark and the other
half very white, the k2 image contains only dark pixels.

Therefore, to a human observer, the two images in the (h1, k1) pair
will look very similar, while the two images in the (h2, k2) pair will
look very different. However, the dLr distance in Eq. (14) will give

you exactly the opposite answer.

Since distances like dLr in Eq. (14) cannot be trusted to yield

meaningful results when comparing histograms for image similarity,

EMD has emerged as a powerful alternative.

EMD is based on associating a cost with moving pixels from one bin
to another in a hypothetical attempt that tries to make the two
histograms as similar looking as possible, constructing an overall cost
with all such pixel transfers, and then minimizing the overall cost.Purdue University 31

Earth Mover’s Distance

Earth Mover’s Distance (contd.)

Consider the following as an example of the cost associated with
moving a pixel from one bin to another in a one-dimensional grayscale
histogram whose bins are one-unit wide:

cij = 1 − e−α|i−j| (15)

where you can think of α > 0 as a heuristic parameter that is
approximately proportional to the overall variability in the bin
populations. It was shown by Rubner et al. that such a cost function
is a metric. What it says is that cost of moving pixels from a bin to
another close-by bins is close to zero. However, the costs go up if the
transfer is between more widely separated bins.

The problem of comparing two histograms can now be stated as an

instance of the classic “transportation simplex” problem in optimal

transport theory for resource distribution, as explained on the next

slide.

Purdue University 32

Earth Mover’s Distance

Earth Mover’s Distance (contd.)

You have M providers of some resource who possess different
quantities ({gi |i = 1, . . . ,M}) of the resource and N consumers of
the same resource whose needs vary according to ({hj |j = 1, . . . ,N}).

And you also have a cost estimate cij that is the cost of transporting
a unit of the resource from the i th provider to the j th consumer.

Our goal is to come up with with an optimum flow matrix F , whose
fij element tells us how much of the resource to transport from the i th

provider to the j th consumer. We must obviously solve the following
minimization problem for F :

min
F

M∑
i=1

N∑
j=1

cij fij (16)

with the minimization subject to the constraints shown on the next
slide.

Purdue University 33

Earth Mover’s Distance

Earth Mover’s Distance (contd.)

The minimization problem on the previous slide must be solved
subject to the constraints:

fij ≥ 0 i = 1, . . . ,M, j = 1, . . . ,N (17)

N∑
j=1

fij ≤ hi i = 1, . . . ,M (18)

M∑
i=1

fij ≤ gj j = 1, . . . ,N (19)

M∑
i=1

N∑
j=1

fij = min

{
M∑
i=1

gi ,
N∑
j=1

hj

}
(20)

All four constraints are straightforward because they are so intuitive.
[The constraints in Eqs. (17) and (18) are straightforward: The flow can never be negative and the total outgoing flow

from a provider cannot exceed what the provider has in stock. The constraint in Eq. (19) also makes sense since the

accumulated in-flows for the jth consumer should not exceed to total demand for that consumer. The constraint in Eq.

(20) is important only when the total supply provided by all the providers is not equal to the total demand at all the

consumers. Should there be such a disparity between total supply and total demand, summing all of elements of the

flow matrix should not exceed the smaller of the total supply and the total demand.]

Purdue University 34

Earth Mover’s Distance

Earth Mover’s Distance (contd.)

Having calculated the optimal transport by solving the minimization
problem described on the previous two slides, we use the following
formula to compute the EMD between the suppliers distribution for
the resource and the consumers distribution:

EMD(g, h) =

∑M
i=1

∑N
j=1 cij fij∑M

i=1

∑N
j=1 fij

(21)

where we normalize the cost of the optimal transport of the goods by
the total amount of the goods transported.

Such optimization problems have received much attention by the OR
(Operations Research) folks over the last several decades. We now
have polynomial-time solutions for the problem that fall under the
general category of “simplex algorithms for linear programming”.
Rubner et al. used such a solution in their work on retrieval from
image databases and showed impressive results.

Purdue University 35

Earth Mover’s Distance

Earth Mover’s Distance (contd.)

It was shown by Rubner et al. that EMD is a metric when the
supplier and the consumer distributions are normalized. For the case
of comparing image histograms, we can say that EMD between two
histograms is a metric for the case of normalized histograms.

With that as an intro to EMD, the issue that should come up next
would be whether it is possible to create a loss function directly from
EMD for adversarial learning. I’ll address this question later when I
get into the differentiability of the different distance functions.

For now, let’s move on to the Wasserstein distance. As mentioned

earlier, I consider the Wasserstein distance to be a stochastic version

of EMD.

Purdue University 36

Wasserstein Distance

Outline

1 Distance Between Two Probability Distributions 10

2 Total Variation (TV) Distance 12

3 Kullback-Leibler Divergence 16

4 Jensen-Shannon Divergence and Distance 23

5 Earth Mover’s Distance 27

6 Wasserstein Distance 37

7 A Random Experiment for Studying Differentiability 44

8 Differentiability of Distance Functions 47

9 PurdueShapes5GAN Dataset for Adversarial Learning 55

10 DCGAN Implementation in DLStudio 62

11 Making Small Changes to the DCGAN Architecture 84

12 Wasserstein GAN Implementation in DLStudio 90

13 Improving Wasserstein GAN with Gradient Penalty 106

Purdue University 37

Wasserstein Distance

Wasserstein Distance
Using dW (P,Q) to denote the Wasserstein distance between the
distributions P and Q, here is its definition:

dW (P,Q) = inf
γ(X,Y)∈Γ(P,Q)

E(X,Y) ∼ γ

[
‖x − y‖

]
(22)

In the above definition, Γ(P,Q) is the set of all possible joint
distributions γ(X ,Y) over two random variables X and Y such that the
marginal of γ(X ,Y) with respect to X is P and the marginal of γ(X ,Y)

with respect to Y is Q.

Since the marginal of γ(X ,Y) with respect to X is P(x) and the
marginal of the same with respect to Y is Q(x), γ(X ,Y) encodes in it
the probability mass that must be shifted from the distribution P to
the distribution Q if for whatever reason we wanted them to become
identical. [If γ(X , Y) encodes in it the probability mass that must be shifted from the distribution P to the

distribution Q, is there any way to construct a ”cost” — a single number — associated with this transfer of mass? The

cost itself is proportional to the absolute difference between the value x for the random variable X and the value y for

the random variable Y if the joint distribution γ(X , Y) indicates there is a non-zero probability associated with mass

transfer from x to y . For vector random variables, this would be the same as the norm ‖x − y‖. In order to get a

single-number cost, we would need to average the norm ‖x − y‖ as indicated in Eq. (22) above.]
Purdue University 38

Wasserstein Distance

Wasserstein Distance (contd.)

The dW (P,Q) distance is a metric as it obeys the constraints on
metrics: its values are guaranteed to be non-negative, it is symmetric
with respect to its args, and it obeys the triangle inequality. Let’s now
focus on what it might take to compute the Wasserstein distance.

The infimum required on the right side of Eq. (22) says that from the
set Γ(P,Q) of all joint distributions defined in the second bullet on the
previous slide, we need to zero in on the joint distribution γ(X ,Y) that
minimizes the mean value of the normed difference ‖x − y‖ with the
sample pair (x , y) drawn from the joint distribution.

In a computation based on a literal interpretation of the definition in
Eq. (22), we are required to carry out a random experiment in which
we sample the (infinite) set Γ(P,Q) of the joint distributions for the
two random variables X and Y for a candidate distribution γ(X ,Y).

Purdue University 39

Wasserstein Distance

Wasserstein Distance (contd.)

Subsequently, in another random experiment, we sample the
distribution γ(X ,Y) for specific values x and y for the random variables
X and Y . We carry out the second random experiment repeatedly in
order to form a good estimate for the average value for ‖x − y‖.
Subsequently, we go back to the first random experiment and choose
a second candidate for γ(X ,Y), and so on. Such a computation is

obviously not feasible.

Fortunately, the infimum in the theoretical definition of Wasserstein
Distance in Eq. (22) can be converted into a computationally
tractable supremum calculated separately over the component
distributions P and Q as shown below

dW (P,Q) = sup
‖f ‖L≤1

[
Ex∼P{f (x)} − Ey∼Q{f (y)}

]
(23)

for ALL 1-Lipschitz functions f : X → R where X is the domain from
which the elements x and y mentioned above are drawn and R is the
set of all reals.

Purdue University 40

Wasserstein Distance

Wasserstein Distance (contd.)

The result shown in Eq. (23) is from a famous book in Optimal
Transport Theory by Cédric Villani:

https://cedricvillani.org/sites/dev/files/old_images/2012/08/preprint-1.pdf

Despite the use of ”ALL” for the family of 1-Lipschitz functions f () in
Eq. (23), a better way to state the same thing would be that there

exists a 1-Lipschitz function f () for which the maximization shown on

the right in Eq. (23) yields the value for the Wasserstein distance.

But what is a k-Lipschitz Function? A function f : X → R is a
k-Lipschitz function if |f (x1)− f (x2)| ≤ k.d(x1, x2) for every x1, x2 ∈ X . Note
that X is the domain of the function. In this definition, d(., .) is the
metric distance defined on the domain of f . So d(x1, x2) is the distance
between the points x1 and x2.

Purdue University 41

https://cedricvillani.org/sites/dev/files/old_images/2012/08/preprint-1.pdf

Wasserstein Distance

Wasserstein Distance (contd.)

In general, the Lipschitz functions allow us to prescribe functions with
“levels” of continuity properties. The larger the value of the integer k,
the more rapidly the function would be allowed to change when you
go from a point x1 to another point x2 in its domain.

In general, at all x in the domain X of f :

f (x) = inf
y∈X

[f (y) + k · d(x, y)] = sup
y∈X

[f (y)− k · d(x, y)] (24)

Note that the definition |f (x)− f (y)| ≤ k · d(x , y) implies
f (y)− k.d(x , y) ≤ f (x) ≤ f (y) + k · d(x , y) When you apply the definitions
of infimum and supremum to these inequalities, you get the form
shown in Eq. (24).

Purdue University 42

Wasserstein Distance

Wasserstein Distance (contd.)

We are faced with the following questions if we want to use the form
in Eq. (23) for computing the Wasserstein Loss in adversarial learning:

How do we find the function f () that would solve the maximization
problem in Eq. (23)?

The expectation operator E () in Eq. (23) is meant to be applied over
the entire domain of the distributions P and Q. How do we do that in
a practical setting?

I’ll address each of these issues separately in Section 12 on how to use
the Wasserstein distance for adversarial learning. That material
begins on Slide 90.

Purdue University 43

A Random Experiment for Studying Differentiability

Outline

1 Distance Between Two Probability Distributions 10

2 Total Variation (TV) Distance 12

3 Kullback-Leibler Divergence 16

4 Jensen-Shannon Divergence and Distance 23

5 Earth Mover’s Distance 27

6 Wasserstein Distance 37

7 A Random Experiment for Studying Differentiability 44

8 Differentiability of Distance Functions 47

9 PurdueShapes5GAN Dataset for Adversarial Learning 55

10 DCGAN Implementation in DLStudio 62

11 Making Small Changes to the DCGAN Architecture 84

12 Wasserstein GAN Implementation in DLStudio 90

13 Improving Wasserstein GAN with Gradient Penalty 106

Purdue University 44

A Random Experiment for Studying Differentiability

A Random Experiment for Studying Differentiability

The discussion in this section is an elaboration of the “learning
parallel lines” example in the paper

https://arxiv.org/pdf/1701.07875.pdf

We start with a random variable Z whose values, z, are uniformly
distributed over the unit interval [0, 1].

We assume that the ground-truth consists of Z-values on the y-axis in
R2 — this would presumably be our “training” data (to make an
analogy with GAN training). Now imagine a GAN Generator that is
also capable of producing the same kind of points in R2 but the points
produced by the Generator are offset horizontally by a learnable
parameter θ. The true value of θ is obviously 0, but the Generator has to

learn that during training.

We use X as the random variable to denote the points on the
ground-truth line in R2 and Y to denote the points being produced by
the Generator on another vertical line that is horizontally offset by θ.Purdue University 45

https://arxiv.org/pdf/1701.07875.pdf

A Random Experiment for Studying Differentiability

Studying Differentiability (contd.)

Let P denote the distribution for the ground-truth points X and Q the
distribution for the GAN-generated points Y .

Note again that the ground-truth points X are the set of all points
{(0, z) ∈ R2|z ∼ U[0, 1]} and the GAN-generated points Y form the set
{(θ, z) ∈ R2|z ∼ U[0, 1]}.

The following figure illustrates the relationship between X , Y , and the
sole learnable parameter θ.

^

(0,1) | |

| | R^2 space

| |

| |

|X |Y

| |

| |

| |

| |

(0,0) ------------------------------>

<----- \theta ---->
Purdue University 46

Differentiability of Distance Functions

Outline

1 Distance Between Two Probability Distributions 10

2 Total Variation (TV) Distance 12

3 Kullback-Leibler Divergence 16

4 Jensen-Shannon Divergence and Distance 23

5 Earth Mover’s Distance 27

6 Wasserstein Distance 37

7 A Random Experiment for Studying Differentiability 44

8 Differentiability of Distance Functions 47

9 PurdueShapes5GAN Dataset for Adversarial Learning 55

10 DCGAN Implementation in DLStudio 62

11 Making Small Changes to the DCGAN Architecture 84

12 Wasserstein GAN Implementation in DLStudio 90

13 Improving Wasserstein GAN with Gradient Penalty 106

Purdue University 47

Differentiability of Distance Functions

Differentiability of Distance Functions

Given the sets X and Y as defined on Slides 45 and 46, we start with

examining the differentiability of the Wasserstein Distance.

Given the definition that X is set of all points {x = (0, z) ∈ R2|z ∼ U[0, 1]}
and Y is the set of all points {y = (θ, z) ∈ R2|z ∼ U[0, 1]}, we can say that
the difference ‖x − y‖ needed for calculating the Wasserstein distance
using Eq. (22) on Slide 38 will always be equal to the value of the
parameter θ.

The same would be the case if we used the supremum based estimate
of the Wasserstein distance using Eq. (23). Therefore, for the
random experiment under consideration, we can claim:

dW (P,Q) = θ (25)

So we see that the Wasserstein distance is continuous and
differentiable with respect to the learnable parameter θ. That makes
it a good candidate as a loss function in a neural network.

Purdue University 48

Differentiability of Distance Functions

Differentiability of Distance Functions (contd.)
What is interesting is that the closely related EMD distance does not
possess the property of differentiability with respect to the learnable
parameters. That is because it involves comparing histograms directly.
Since a histogram is a discretization of continuous values, it is not
possible to backpropagate any partial derivatives through such a step.

Let’s now consider the differentiability of KL-Divergence.

The definition of KL-Divergence provided earlier in Eq. (6) is for the
case of random variables that take discrete values. But the “parallel
lines” example involves two continuous random variables X and Y .
Here is the definition of KL-Divergence for the continuous case:

dKL(P,Q) =

∫
P(x) log

P(x)

Q(x)
dx (26)

The scope of the variable x of integration is the space of all random
outcomes over which both the distributions P and Q are defined.

Purdue University 49

Differentiability of Distance Functions

Differentiability of Distance Functions (contd.)

The last bullet on the previous implies that x must span both the lines
X and Y for this integration. However, the sets X and Y are disjoint
except when the Generator parameter θ equals zero.

When X and Y are disjoint, we run headlong into the condition
Q(x) = 0 when P(x) > 0 that makes the divergence dKL become infinity.
Hence we can write:

dKL(P,Q) = 0 θ = 0

= +∞ θ 6= 0 (27)

Obviously, KL-Divergence is not differentiable with respect to the
learnable parameter θ.

Next we take up the case of differentiability of JS-Divergence.

Purdue University 50

Differentiability of Distance Functions

Differentiability of Distance Functions (contd.)
The formula for JS-Divergence was presented in Eq. (11) on Slide 24.
Given two distributions P and Q, the formula in that equation requires
that we first calculate the mean distribution M as defined in Eq. (12).

For what follows, recall the fact that JS-Divergence is a
symmetrization of KL-Divergence that is meant to get around the
main shortcoming of the latter in those regions of the probability
space where Q(x) = 0 whereas P(x) > 0.

Note that M in Eq. (12) is a mixture distribution. By definition, given
two separate distributions P and Q defined over the same set of
random outcomes, a mixture means merely that the next sample will
be drawn randomly either from P or from Q. Since the two
component distributions P and Q in the mixture M are weighted
equally (by a factor 1

2
), the individual distributions will be selected

with equal probability for the realizations of M.

On the next slide, we will consider the first term in the summation in
Eq. (11). The result for the second term would be the same.Purdue University 51

Differentiability of Distance Functions

Differentiability of Distance Functions (contd.)

Focusing on the case when the learnable parameter θ is nonzero, that
is, when we are going to encounter the condition Q(x) = 0 when
P(x) > 0 (which will happen on line X as explained previously for the
case of differentiability of KL-Divergence), let’s focus on the first
term on the RHS in Eq. (11) on Slide 24:

dKL(P,M) =

∫
P(x) log

P(x)

M(x)
dx

=

∫
P(x)

[
log P(x) − log

P(x) + Q(x)

2

]
dx

=

∫
P(x)

[
log P(x) − log(P(x) + Q(x)) + log 2

]
dx

=

∫
P(x) log 2 dx

= log2 (28)

As expected, the expressions on the RHS of Eq. (11) are now
inoculated against going to infinity under the condition Q(x) = 0 when
P(x) > 0.

Purdue University 52

Differentiability of Distance Functions

Differentiability of Distance Functions (contd.)

Since both the component expressions on the RHS of Eq. (11) lead
to exactly the same result that is shown above, we can say that
dJS (P,Q) = log 2 for the case θ 6= 0.

Therefore, we can write:

dJS (P,Q) = 0 θ = 0

= log2 θ 6= 0 (29)

which is again not differentiable with respect to the parameter θ.

We next take up the differentiability of the Total Variation Distance

The Total Variation (TV) distance for the continuous case was
defined in Eq. (1).

That definition calls for identifying a subset A of the probability space
defined by all possible outcomes that maximizes the difference
between P’s probability mass over A and Q’s probability mass over A.

Purdue University 53

Differentiability of Distance Functions

Differentiability of Distance Functions (contd.)

When θ 6= 0, we could choose for such an A the set X itself. Since the
probability mass of P over this set equals 1 whereas the probability
mass of Q over the same set equals 0. The difference of the two
integrals in Eq. (1) on Slide 13 for such an A is the largest it can be
— equal to 1.

On the other hand, when the Generator’s parameter θ equals 0, the
sets X and Y become congruent. In this case, the difference of the
two integrals in Eq. (1) would be zero.

So we can write:

dTV (P,Q) = 0 θ = 0

= 1 θ 6= 0 (30)

TV is obviously not a differentiable distance function.

Purdue University 54

PurdueShapes5GAN Dataset for Adversarial Learning

Outline

1 Distance Between Two Probability Distributions 10

2 Total Variation (TV) Distance 12

3 Kullback-Leibler Divergence 16

4 Jensen-Shannon Divergence and Distance 23

5 Earth Mover’s Distance 27

6 Wasserstein Distance 37

7 A Random Experiment for Studying Differentiability 44

8 Differentiability of Distance Functions 47

9 PurdueShapes5GAN Dataset for Adversarial Learning 55

10 DCGAN Implementation in DLStudio 62

11 Making Small Changes to the DCGAN Architecture 84

12 Wasserstein GAN Implementation in DLStudio 90

13 Improving Wasserstein GAN with Gradient Penalty 106

Purdue University 55

PurdueShapes5GAN Dataset for Adversarial Learning

PurdueShapes5GAN Dataset of Images

I have created a dataset, PurdueShapes5GAN, for experimenting with
the three GANs in version 2.0.3 (or higher) of the DLStudio module.
Each image in the dataset is of size 64× 64. The dataset consists of
20,000 images.

This dataset of rather small-sized images was created to make it

easier to give classroom demonstrations of the training code and also

for the students to be able to run the code on their laptops (at least

those that come equipped with a GPU for graphics rendering, as

many of them do these days).

The program that generates the PurdueShapes5GAN dataset is a
modification of the script I used for the PurdueShapes5MultiObject

dataset that I used previously in the lecture on semantic
segmentation.

Purdue University 56

PurdueShapes5GAN Dataset for Adversarial Learning

PurdueShapes5GAN Dataset (contd.)

Compared to its predecessor semantic-segmentation dataset, the
annotations that were needed for the semantic segmentation dataset
(the bounding boxes and masks) are no longer necessary for
adversarial learning of a probabilistic data model for a set of images.
That makes a GAN dataset much simpler compared to a
semantic-segmentation dataset.

Each image in the PurdueShapes5GAN dataset contains a random
number of up to five shapes: rectangle, triangle, disk, oval, and star.
Each shape is located randomly in the image, oriented randomly, and
assigned a random color. Since the orientation transformation is
carried out without bilinear interpolation, it is possible for a shape to
acquire holes in it. Shown in the next slide is a batchful of images
that is processed in each iteration of the training loop. The batch size
is 32.

Purdue University 57

PurdueShapes5GAN Dataset for Adversarial Learning

PurdueShapes5GAN Dataset (contd.)

A batch of images from the PurdueShapes5GAN dataset

Purdue University 58

PurdueShapes5GAN Dataset for Adversarial Learning

About the “Complexity”of the Dataset Images

I would not be surprised if your first reaction to the dataset images is
that they couldn’t possibly present a great challenge to a data
modeler.

Shown in the next slide are enlarged views of two of the images on
the previous slide. In addition to the sharp shape boundaries, you can
also small holes inside the shapes.

The holes that you see inside the shapes were caused by intentionally
suppressing bilinear interpolation as the shapes were randomly
reoriented.

So the challenge for the data modeler would be its ability to not only
reproduce the shapes while preserving the sharp edges, but also to
incorporate the tiny holes inside the shapes, and do so with the

probabilities that reflect the training data.

Purdue University 59

PurdueShapes5GAN Dataset for Adversarial Learning

About the “Complexity”of the Images (contd.)

Purdue University 60

PurdueShapes5GAN Dataset for Adversarial Learning

PurdueShapes5GAN Dataset (contd.)

You can download the dataset archive
datasets_for_AdversarialNetworks.tar.gz

through the link ”Download the image dataset for AdversarialNetworks” provided at
the top of the HTML version of the main webpage for the DLStudio
module (version 2.0.3 or higher). You would need to store it in the
ExamplesAdversarialLearning directory of the distribution. Subsequently, you
would need to execute the following command in that directory:

tar zxvf datasets_for_AdversarialNetworks.tar.gz

This command will create a dataGAN subdirectory and deposit the following
dataset archive in that subdirectory:

PurdueShapes5GAN-20000.tar.gz

Now execute the following in the dataGAN directory:
tar zxvf PurdueShapes5GAN-20000.tar.gz

With that, you should be able to execute the adversarial learning based
scripts in the ExamplesAdversarialLearning directory.

Purdue University 61

DCGAN Implementation in DLStudio

Outline

1 Distance Between Two Probability Distributions 10

2 Total Variation (TV) Distance 12

3 Kullback-Leibler Divergence 16

4 Jensen-Shannon Divergence and Distance 23

5 Earth Mover’s Distance 27

6 Wasserstein Distance 37

7 A Random Experiment for Studying Differentiability 44

8 Differentiability of Distance Functions 47

9 PurdueShapes5GAN Dataset for Adversarial Learning 55

10 DCGAN Implementation in DLStudio 62

11 Making Small Changes to the DCGAN Architecture 84

12 Wasserstein GAN Implementation in DLStudio 90

13 Improving Wasserstein GAN with Gradient Penalty 106

Purdue University 62

DCGAN Implementation in DLStudio

DCGAN Implementation in DLStudio

The main goal of this section is to tell you about the implementation
of DCGAN in DLStudio’s co-class AdversarialLearning.

DCGAN, short for ”Deep Convolutional Generative Adversarial Network”, was
presented in a paper that I cited in the Preamble to this lecture.

However, before actually getting into the DCGAN architecture, I need
to take you back to the first paper that started the modern
excitement in adversarial learning. I am talking about the 2014
publication ”Generative Adversarial Nets” by Goodfellow, Pouget-Abadie,
Mirza, Xu, Warde-Farley, Ozair, Courville, and Bengio that was also
cited in the Preamble.

The reason I need to take you back to this paper is because the basic
training logic in DCGAN is the same as that proposed in the above
cited publication by Goodfellow et al.

Purdue University 63

DCGAN Implementation in DLStudio

Adversarial Learning Requires Generator and
Discriminator

Adversarial learning as described in the Goodfellow et al. paper
involves two networks, a Discriminator and a Generator. We can think
of the Discriminator as a function D(x , θd) where x is the image and θd

the weights in the Discriminator network. The D(x , θd) function
returns the probability that the input x is from the probability

distribution that describes the training data.

Similarly, we can think of the Generator as a function G(z, θg) that
maps noise vectors to images that we want to look like the images in
our training data. The vector θg represents the learnable parameters
in the Generator network.

We assume that the training images are described by some probability
distribution that we denote pdata. The goal of the Generator is to
transform a noise vector, denoted z, into an image that should look
like a training image.

Purdue University 64

DCGAN Implementation in DLStudio

Discriminator and Generator (contd.)

Regarding z, we also assume that the noise vectors z are generated
with a probability distribution pZ (z). Obviously, z is a realization of a
vector random variable Z .

The output of the Generator consists of images that correspond to
some probability distribution that we will denote pG . So you can think

of the Generator as a function that transforms the probability distribution pZ

into the distribution pG .

The question now is how do we train the Discriminator and the
Generator networks.

The Discriminator is trained to maximize the probability of assigning
the correct label to an input image that looks like it came from the
same distribution as the training data.

Purdue University 65

DCGAN Implementation in DLStudio

Discriminator Training vs. Generator Training

That is, for Discriminator training, we want the parameters θd to
maximize the following expectation:

max
θd

Ex∼pdata
[log D(x)] (31)

The expression x ∼ pdata means that x was pulled from the distribution
pdata. In other words, x is one of the training images.

While we are training D to exhibit the above behavior, we train the
Generator for the following minimization:

min
θg

Ez∼pZ
[log(1− D(G(z)))] (32)

Combining the two expressions shown above, we can express the
combined optimization as:

min
θg

max
θd

[
Ex∼pdata

[log D(x)] + Ez∼pZ
[log(1− D(G(z)))

]
(33)

Purdue University 66

DCGAN Implementation in DLStudio

Discriminator Training vs. Generator Training (contd.)

We’ll translate the min-max form in Eq. (33) into a “protocol” for
training the two networks.

For each training batch of images, we will first update the parameters
in the Discriminator network and then we’ll do the same in the
Generator network.

If we use nn.BCELoss as the loss criterion for training the Discriminator,
that will automatically take care of the logarithms in the expression
shown on the previous slide.

We first train the Discriminator by subjecting it to a maximization
that involves the three steps listed on the next slide.

Subsequently, we train the Generator by a minimization to be
described on the slide that follows.

Purdue University 67

DCGAN Implementation in DLStudio

The Two Targets for Discriminator Training

The maximization steps required for the Discriminator training:

1 The maximization of the first term in the expression on the previous
slide requires that we use the target ”1” for the network output D(x).

2 The maximization of the second term in the same expression is a bit
more involved since it requires applying the Discriminator network to
the output of the Generator for noise input. The second term also
requires that we now use ”-1” as the target for the Discriminator.

The phrase “we now use -1 as the target for the Discriminator” is to be taken
figuratively. Since the Discriminator is a binary classifier (that’s what
you get with nn.BCELoss), its targets can only be 1 and 0. We use 1 as
the target in Step 1 and 0 as the target in Step 2.

3 After we have calculated the two losses for the Discriminator, we can
sum the losses and call backwards() on the sum for calculating the
gradients of the loss with respect to its weights. A subsequent call to
the step() of the optimizer would update the weights in the
Discriminator network.

Purdue University 68

DCGAN Implementation in DLStudio

The Target for Generator Training

For the training required for the Generator, only the second term
inside the square brackets in Eq. (33) matters. We proceed through
the following 4 steps:

1 We note that the logarithm is a monotonically increasing function and
also because the output D(G(z)) in the second term will always be
between 0 and 1.

2 Therefore, the needed minimization translates into maximizing D(G(z))

with respect to a target value of 1.

3 With 1 as the target, we again find the nn.BCELoss associated with
D(G(z)). We call backwards() on this loss — making sure that we have
turned off requires grad() on the Discriminator parameters as we
are updating the Generator parameters.

4 A subsequent call to the step() for the optimizer would update the
weights in the Generator network.

Purdue University 69

DCGAN Implementation in DLStudio

How the GAN Code is Organized in AdversarialLearning

Now that you have become familiar with the basic idea of Adversarial
Learning for data modeling, it’s time to get to know better the
AdversarialLearning co-class in the DLStudio platform.

All of the GAN related code is in the inner class DataModeling of the
AdversarialLearning class.

The code in the DataModeling class allows you to experiment with the
following Discriminator-Generator pairs and Critic-Generator pairs [I’ll

be talking about “Critics” in the next section on Wasserstein GANs.]:

DG1: This is a Discriminator-Generator pair that corresponds to the original
formulation of DCGAN.

DG2: This is a slight variant of the Discriminator-Generator pair in DG1.

CG1: This is a Critic-Generator pair for the Wasserstein GAN in Section 12.

CG2: This is another Critic-Generator pair for the Wasserstein GAN.
Purdue University 70

DCGAN Implementation in DLStudio

DG1: Discriminator and Generator Networks

Slides 74 and 75 show the DCGAN networks for the DG1
Discriminator-Generator pair.

Regarding the Discriminator network on Slide 74, I refer to the
DCGAN network topology as the 4-2-1 network. Each layer of the
Discriminator network carries out a strided convolution with a 4× 4

kernel, a 2× 2 stride, and a 1× 1 padding for all but the final layer.

The output of the final convolutional layer in the Discriminator is
pushed through a sigmoid to yield a scalar value as the final output
for each image in a batch.

Next, on Slide 75, is the implementation of the DCGAN Generator in
the example DG1. As was the case with the Discriminator network,
you again see the 4-2-1 topology here.

Purdue University 71

DCGAN Implementation in DLStudio

DG1: Discriminator and Generator (contd.)

Recall that a Generator’s job is to transform a random noise vector
into an image that is supposed to look like it came from the training
dataset. (Most people refer to the images constructed from noise
vectors in this manner as fakes.)

As you will see in run gan code(), the starting noise vector is a 1× 1

image with 100 channels. In order to output a 64× 64 output image
from the noise vector, the Generator code shown on Slide 75 uses the
Transpose Convolution operator nn.ConvTranspose2d with a stride of 2.

If (H in, W in) are the height and the width of the image at the input
to a nn.ConvTranspose2d layer and (H out, W out) the same at the output,
the input/output sizes are related by [See Slides 45 through 61 of my Week 9 Lecture on

Semantic Segmentation]:
H_out = (H_in - 1) * s + k - 2 * p
W_out = (W_in - 1) * s + k - 2 * p

Purdue University 72

DCGAN Implementation in DLStudio

DG1: Discriminator and Generator (contd.)

In the last bullet on the previous slide, s is the stride and k the size of
the kernel. (I am assuming square strides, kernels, and padding).

Therefore, each nn.ConvTranspose2d layer doubles the size of the input.

Purdue University 73

DCGAN Implementation in DLStudio

The Discriminator Network (DG1)

############################# Discriminator-Generator DG1 ##############################

class DiscriminatorDG1(nn.Module):

def __init__(self):

super(AdversarialLearning.DataModeling.DiscriminatorDG1, self).__init__()

self.conv_in = nn.Conv2d(3, 64, kernel_size=4, stride=2, padding=1)

self.conv_in2 = nn.Conv2d(64, 128, kernel_size=4, stride=2, padding=1)

self.conv_in3 = nn.Conv2d(128, 256, kernel_size=4, stride=2, padding=1)

self.conv_in4 = nn.Conv2d(256, 512, kernel_size=4, stride=2, padding=1)

self.conv_in5 = nn.Conv2d(512, 1, kernel_size=4, stride=1, padding=0)

self.bn1 = nn.BatchNorm2d(128)

self.bn2 = nn.BatchNorm2d(256)

self.bn3 = nn.BatchNorm2d(512)

self.sig = nn.Sigmoid()

def forward(self, x):

x = torch.nn.functional.leaky_relu(self.conv_in(x), negative_slope=0.2, inplace=True)

x = self.bn1(self.conv_in2(x))

x = torch.nn.functional.leaky_relu(x, negative_slope=0.2, inplace=True)

x = self.bn2(self.conv_in3(x))

x = torch.nn.functional.leaky_relu(x, negative_slope=0.2, inplace=True)

x = self.bn3(self.conv_in4(x))

x = torch.nn.functional.leaky_relu(x, negative_slope=0.2, inplace=True)

x = self.conv_in5(x)

x = self.sig(x)

return x

Purdue University 74

DCGAN Implementation in DLStudio

The Generator Network (DG1)

class GeneratorDG1(nn.Module):

def __init__(self):

super(AdversarialLearning.DataModeling.GeneratorDG1, self).__init__()

self.latent_to_image = nn.ConvTranspose2d(100, 512, kernel_size=4, stride=1, padding=0,bias=False)

self.upsampler2 = nn.ConvTranspose2d(512, 256, kernel_size=4, stride=2, padding=1, bias=False)

self.upsampler3 = nn.ConvTranspose2d (256, 128, kernel_size=4, stride=2, padding=1, bias=False)

self.upsampler4 = nn.ConvTranspose2d (128, 64, kernel_size=4, stride=2, padding=1, bias=False)

self.upsampler5 = nn.ConvTranspose2d(64, 3, kernel_size=4, stride=2, padding=1, bias=False)

self.bn1 = nn.BatchNorm2d(512)

self.bn2 = nn.BatchNorm2d(256)

self.bn3 = nn.BatchNorm2d(128)

self.bn4 = nn.BatchNorm2d(64)

self.tanh = nn.Tanh()

def forward(self, x):

x = self.latent_to_image(x)

x = torch.nn.functional.relu(self.bn1(x))

x = self.upsampler2(x)

x = torch.nn.functional.relu(self.bn2(x))

x = self.upsampler3(x)

x = torch.nn.functional.relu(self.bn3(x))

x = self.upsampler4(x)

x = torch.nn.functional.relu(self.bn4(x))

x = self.upsampler5(x)

x = self.tanh(x)

return x

Purdue University 75

DCGAN Implementation in DLStudio

The Training Loop for DCGAN (DG1)

The code shown on Slides 78 through 80 implements the training
logic presented on Slides 67 through 69. It is meant for training a
Discriminator-Generator based Adversarial Network. The
implementation shown has borrowed several programming constructs
from the ”official” DCGAN implementation at GitHub.

Sections of the training loop that begin in Lines (A) and (B) are for
the Discriminator part of the training in Eq. (33). The statements in
Part 1(a) implement the logic in the first bullet under Discriminator
training on Slide 68. In these statements we use the target of “1” for
the output of the Discriminator when it is invoked on a data image.

The statements in Part 1(b) that begin at Line (B) implement the
logic in the second bullet on the Slide 68. That is, now we subject the
output of the Discriminator after it is applied to the Generator images
to the target “-1”.

Purdue University 76

DCGAN Implementation in DLStudio

The Training Loop for DCGAN (DG1) (contd.)

The section of the code that begins in Line (C) is for Generator
training through the steps outlined on Slide 69. The min part in Eq.
(33) on Slide 66 requires that we minimize 1− D(G (z)) which, since
D is constrained to lie in the interval (0,1), requires that we maximize
D(G (z)). We accomplish that by applying the Discriminator to the
output of the Generator and use 1 as the target for each image, as
mentioned in the second bullet on Slide 69.

Purdue University 77

DCGAN Implementation in DLStudio

The Training Loop for DCGAN (DG1) (contd.)

def run_gan_code(self, dlstudio, advers, discriminator, generator, results_dir):

Set the number of channels for the 1x1 input noise vectors for the Generator:

nz = 100

netD = discriminator.to(advers.device)

netG = generator.to(advers.device)

Initialize the parameters of the Discriminator and the Generator networks according to the

definition of the "weights_init()" method:

netD.apply(self.weights_init)

netG.apply(self.weights_init)

We will use the same noise batch to periodically check on the progress made for the Generator:

fixed_noise = torch.randn(self.dlstudio.batch_size, nz, 1, 1, device=advers.device)

Establish convention for real and fake labels during training

real_label = 1

fake_label = 0

Adam optimizers for the Discriminator and the Generator:

optimizerD = optim.Adam(netD.parameters(), lr=dlstudio.learning_rate, betas=(advers.beta1, 0.999))

optimizerG = optim.Adam(netG.parameters(), lr=dlstudio.learning_rate, betas=(advers.beta1, 0.999))

Establish the criterion for measuring the loss at the output of the Discriminator network:

criterion = nn.BCELoss()

We will use these lists to store the results accumulated during training:

img_list = []

G_losses = []

D_losses = []

iters = 0

print("\n\nStarting Training Loop...\n\n")

start_time = time.perf_counter()

(Continued on the next slide)

Purdue University 78

DCGAN Implementation in DLStudio

The Training Loop for DCGAN (DG1) (contd.)
(...... continued from the previous slide)

for epoch in range(dlstudio.epochs):

g_losses_per_print_cycle = []

d_losses_per_print_cycle = []

for i, data in enumerate(self.train_dataloader, 0):

Part 1(a) of Training (maximization of minmax objective for the Discriminator): ## (A)

netD.zero_grad()

real_images_in_batch = data[0].to(advers.device)

Need to know how many images we pulled in since at the tailend of the dataset,

the number of images may not equal the user-specified batch size:

b_size = real_images_in_batch.size(0)

label = torch.full((b_size,), real_label, dtype=torch.float, device=advers.device)

output = netD(real_images_in_batch).view(-1)

errD_reals = criterion(output, label)

errD_reals.backward()

Part 1(b) of Training (maximization of the minmax object for the Discriminator

when applied to fakes): ## (B)

noise = torch.randn(b_size, nz, 1, 1, device=advers.device)

fakes = netG(noise)

label.fill_(fake_label)

The call to fakes.detach() in the next statement returns a copy of the ’fakes’ tensor

such that the copy that is returned does not exist in the computational graph. That is,

the copy of the tensor is removed from the computational graph. However, the original

’fakes’ tensor continues to remain in the computational graph. This ploy ensures that

a subsequent call to backward() in the 3rd statement below would only result in a

calculation of the gradients for the netD weights:

output = netD(fakes.detach()).view(-1)

errD_fakes = criterion(output, label)

errD_fakes.backward()

errD = errD_reals + errD_fakes

d_losses_per_print_cycle.append(errD)

optimizerD.step() ## Only the Discriminator weights are incremented

(Continued on the next slide)

Purdue University 79

DCGAN Implementation in DLStudio

The Training Loop for DCGAN (DG1) (contd.)
(...... continued from the previous slide)

Part 2 of Training (minimization of the minmax objective for learning

the Generator): ## (C)

##

The min part requires that we MINIMIZE "1 - D(G(z))" which, since D is constrained to

lie in the interval (0,1), requires that we maximize D(G(z)). We accomplish that by

applying the Discriminator to the output of the Generator and use 1 as the target:

netG.zero_grad()

label.fill_(real_label)

output = netD(fakes).view(-1)

errG = criterion(output, label)

g_losses_per_print_cycle.append(errG)

errG.backward()

optimizerG.step()

if i % 100 == 99:

current_time = time.perf_counter()

elapsed_time = current_time - start_time

mean_D_loss = torch.mean(torch.FloatTensor(d_losses_per_print_cycle))

mean_G_loss = torch.mean(torch.FloatTensor(g_losses_per_print_cycle))

print("[epoch=%d/%d iter=%4d elapsed_time=%5d secs] mean_D_loss=%7.4f

mean_G_loss=%7.4f" %

((epoch+1),dlstudio.epochs,(i+1),elapsed_time,mean_D_loss,mean_G_loss))

d_losses_per_print_cycle = []

g_losses_per_print_cycle = []

NOTES:
A statement like label = torch.full((b size,), real label) means that we want to set label to a single-axis
tensor of size b size and we want all its elements to be set to the value given by real label.

A statement like label.fill (value) means that the previously declared tensor label needs to be filled in-place with
the specified value.

Purdue University 80

DCGAN Implementation in DLStudio

Losses vs. Iterations for DG1

Discriminator and Generator losses over 30 epochs of training

Purdue University 81

DCGAN Implementation in DLStudio

Comparing Real and Fake Images for DG1

At the end of 30 epochs of training, shown at left is a batch of real images and, at right, the images produced by the Generator
from noise vectors

Purdue University 82

DCGAN Implementation in DLStudio

An Animated GIF of the Generator Output for DG1

The following animated GIF shows how the Generator’s output evolves
over 30 epochs using the same set of noise vectors.

https://engineering.purdue.edu/DeepLearn/pdf-kak/DG1_generation_animation.gif

Purdue University 83

https://engineering.purdue.edu/DeepLearn/pdf-kak/DG1_generation_animation.gif

Making Small Changes to the DCGAN Architecture

Outline

1 Distance Between Two Probability Distributions 10

2 Total Variation (TV) Distance 12

3 Kullback-Leibler Divergence 16

4 Jensen-Shannon Divergence and Distance 23

5 Earth Mover’s Distance 27

6 Wasserstein Distance 37

7 A Random Experiment for Studying Differentiability 44

8 Differentiability of Distance Functions 47

9 PurdueShapes5GAN Dataset for Adversarial Learning 55

10 DCGAN Implementation in DLStudio 62

11 Making Small Changes to the DCGAN Architecture 84

12 Wasserstein GAN Implementation in DLStudio 90

13 Improving Wasserstein GAN with Gradient Penalty 106

Purdue University 84

Making Small Changes to the DCGAN Architecture

Making Small Changes to the DCGAN Architecture (DG2)

My personal experience with the DCGAN architecture is that when it
works, it produces beautiful results. However, as you change the
initializations for the parameters, or as you make minor tweaks to the
Generator and/or the Discriminator network, more often than not,

what you get is what is known as mode collapse. Mode collapse
means that the different randomly chosen noise vectors for the input
to the Generator will yield the same garbage output.

To illustrate what I mean, The Discriminator network shown on the
next slide is the same as the one you saw earlier for the DCGAN
implementation, except for the additional layer self.extra that the
incoming image is routed through at the beginning of the network in
forward()

I have also defined a batch normalization layer self.bnX for the output
of the extra layer self.extra.

Purdue University 85

Making Small Changes to the DCGAN Architecture

##################################### Discriminator-Generator DG2 ######################################
class DiscriminatorDG2(nn.Module):

"""
This is essentially the same network as the DCGAN for DG1, except for the extra layer
"self.extra" shown below. We also declare a batchnorm for this extra layer in the form
of "self.bnX". In the implementation of "forward()", we invoke the extra layer at the
beginning of the network.
"""
def __init__(self, skip_connections=True, depth=16):

super(AdversarialLearning.DataModeling.DiscriminatorDG2, self).__init__()
self.conv_in = nn.Conv2d(3, 64, kernel_size=4, stride=2, padding=1)
self.extra = nn.Conv2d(64, 64, kernel_size=4, stride=1, padding=2)
self.conv_in2 = nn.Conv2d(64, 128, kernel_size=4, stride=2, padding=1)
self.conv_in3 = nn.Conv2d(128, 256, kernel_size=4, stride=2, padding=1)
self.conv_in4 = nn.Conv2d(256, 512, kernel_size=4, stride=2, padding=1)
self.conv_in5 = nn.Conv2d(512, 1, kernel_size=4, stride=1, padding=0)
self.bn1 = nn.BatchNorm2d(128)
self.bn2 = nn.BatchNorm2d(256)
self.bn3 = nn.BatchNorm2d(512)
self.bnX = nn.BatchNorm2d(64)
self.sig = nn.Sigmoid()

def forward(self, x):
x = torch.nn.functional.leaky_relu(self.conv_in(x), negative_slope=0.2, inplace=True)
x = self.bnX(self.extra(x))
x = torch.nn.functional.leaky_relu(x, negative_slope=0.2, inplace=True)
x = self.bn1(self.conv_in2(x))
x = torch.nn.functional.leaky_relu(x, negative_slope=0.2, inplace=True)
x = self.bn2(self.conv_in3(x))
x = torch.nn.functional.leaky_relu(x, negative_slope=0.2, inplace=True)
x = self.bn3(self.conv_in4(x))
x = torch.nn.functional.leaky_relu(x, negative_slope=0.2, inplace=True)
x = self.conv_in5(x)
x = self.sig(x)
return x

class GeneratorDG2(nn.Module):
"""
The Generator for DG2 is exactly the same as for the DG1. So please the comment block for that
Generator.
"""
def __init__(self):

super(AdversarialLearning.DataModeling.GeneratorDG2, self).__init__()
self.latent_to_image = nn.ConvTranspose2d(100, 512, kernel_size=4, stride=1, padding=0, bias=False)
self.upsampler2 = nn.ConvTranspose2d(512, 256, kernel_size=4, stride=2, padding=1, bias=False)
self.upsampler3 = nn.ConvTranspose2d (256, 128, kernel_size=4, stride=2, padding=1, bias=False)
self.upsampler4 = nn.ConvTranspose2d (128, 64, kernel_size=4, stride=2, padding=1, bias=False)
self.upsampler5 = nn.ConvTranspose2d(64, 3, kernel_size=4, stride=2, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(512)
self.bn2 = nn.BatchNorm2d(256)
self.bn3 = nn.BatchNorm2d(128)
self.bn4 = nn.BatchNorm2d(64)
self.tanh = nn.Tanh()

def forward(self, x):
x = self.latent_to_image(x)
x = torch.nn.functional.relu(self.bn1(x))
x = self.upsampler2(x)
x = torch.nn.functional.relu(self.bn2(x))
x = self.upsampler3(x)
x = torch.nn.functional.relu(self.bn3(x))
x = self.upsampler4(x)
x = torch.nn.functional.relu(self.bn4(x))
x = self.upsampler5(x)
x = self.tanh(x)
return x

DG2 Definition END

Purdue University 86

Making Small Changes to the DCGAN Architecture

Losses vs. Iterations for DG2

Discriminator and Generator losses over 30 epochs of training

Purdue University 87

Making Small Changes to the DCGAN Architecture

Comparing Real and Fake Images for DG2

At the end of 30 epochs of training, shown at left is a batch of real images and, at right, the images produced by the Generator
from noise vectors

Purdue University 88

Making Small Changes to the DCGAN Architecture

An Animated GIF of the Generator Output for DG2

The following animated GIF shows how the Generator’s output evolves
over 30 epochs using the same set of noise vectors for the case of a
DCGAN with relatively minor alterations.

https://engineering.purdue.edu/DeepLearn/pdf-kak/DG2_generation_animation.gif

Purdue University 89

https://engineering.purdue.edu/DeepLearn/pdf-kak/DG2_generation_animation.gif

Wasserstein GAN Implementation in DLStudio

Outline

1 Distance Between Two Probability Distributions 10

2 Total Variation (TV) Distance 12

3 Kullback-Leibler Divergence 16

4 Jensen-Shannon Divergence and Distance 23

5 Earth Mover’s Distance 27

6 Wasserstein Distance 37

7 A Random Experiment for Studying Differentiability 44

8 Differentiability of Distance Functions 47

9 PurdueShapes5GAN Dataset for Adversarial Learning 55

10 DCGAN Implementation in DLStudio 62

11 Making Small Changes to the DCGAN Architecture 84

12 Wasserstein GAN Implementation in DLStudio 90

13 Improving Wasserstein GAN with Gradient Penalty 106

Purdue University 90

Wasserstein GAN Implementation in DLStudio

Wasserstein GAN Implementation in DLStudio

This implementation is based on the paper ”Wasserstein GAN” by
Arjovsky, Chintala, and Bottou that I cited previously in the Preamble.

You will find my implementation of Wasserstein GAN (WGAN) in
DLStudio’s co-class AdversarialLearning.

As you would expect, WGAN is based on estimating the Wasserstein
distance between the distribution that corresponds to the training
images and the distribution that has been learned so far by the
Generator. This distance was defined in Eq. (23) on Slide 40.

The 1-Lipschitz function f () that is required by the definition in Eq.
(23) is implemented as a Critic — because, unlike what was the case
for the Discriminator, the job of the Critic is NOT to accept or reject
what is produced by the Generator, but to do what’s mentioned on
the next slide.

Purdue University 91

Wasserstein GAN Implementation in DLStudio

WGAN Implementation in DLStudio (contd.)

In a WGAN, a Critic’s job is to become adept at estimating the Wasserstein distance

between the distribution that corresponds to the training dataset and the distribution

that has been learned by the Generator so far.

Since the Wasserstein distance is known to be differentiable with
respect to the learnable weights in the Critic network, one can
backprop the distance and update the weights in an iterative training
loop. This is roughly the idea of the Wasserstein GAN that is incorporated as a

Critic-Generator pair CG1 in the Adversarial Networks class.

For the purpose of implementation, here is a rewrite of the
Wasserstein distance presented earlier in Eq. (23) on Slide 40:

dW (Pr , Pθ) = sup
‖f ‖L≤1

[
Ex∼Pr {fw (x)} − Ez∼Pz {fw (gθ(z))}

]
(34)

Purdue University 92

Wasserstein GAN Implementation in DLStudio

WGAN Implementation in DLStudio (contd.)

In the formula for Wasserstein distance shown on the previous slide,
Pr is the “real” distribution that describes the training data and Pz

describes the distribution of the noise vectors that are fed into the
Generator for the production of the fake images. The Generator
parameters are denoted θ and gθ() stands for the function that
describes the behavior of the Generator.

Now that we have interpreted the role of the function fw () as a Critic
— the Critic’s job being to learn the function fw () — the question is
how does the Critic make sure that the function being learned is
1-Lipschitz?

A heuristic answer to the vexing question posed above was provided
by the original authors the “Wasserstein GAN” paper. For lack of any
available well-principled approach as a solution to this issue, they
experimented with tightly clipping the values being learned for the
weights in the Critic network.

Purdue University 93

Wasserstein GAN Implementation in DLStudio

WGAN Implementation in DLStudio (contd.)

It stands to reason that the closer the clipping level is to zero from
both the positive and the negative sides, the less likely that the
gradient of the function being learned will exhibit large swings.

The calculation of the Wasserstein distance using Eq. (34) also calls
for averaging of the output of the Critic in order for the maximization
to yield the desired distance. This can be taken care of by having the
Critic go through multiple iterations of the update of its parameters
for each iteration for the Generator.

For implementation, the expression for the Wasserstein distance
shown in Eq. (34) can be rewritten as:

dW (P,Q) = max
‖f ‖L≤1

[
Ex∼P{f (x)} − Ey∼Q{f (y)}

]
(35)

Purdue University 94

Wasserstein GAN Implementation in DLStudio

WGAN Implementation in DLStudio (contd.)

Note that Eq. (35) can also be interpreted as: There is guaranteed to
exist a 1-Lipschitz continuous function f () that when applied to the
samples drawn from the distributions P and Q will yield the
Wasserstein distance between the two distributions.

Let C denote a Critic network that can learn the function f ().
Remember, our overarching goal remains that we need to also learn a
Generator network G that is capable of converting noise into samples
that look like those from the distribution P.

We seek to create a GAN that can learn a G that MINIMIZES the
Wasserstein distance between the true distribution P and its learned
approximation Q. At the same time, the GAN must discover a C that
seeks to maximize the same distance (in the sense that the Critic
learns how to maximally distrust the Generator G).

Purdue University 95

Wasserstein GAN Implementation in DLStudio

WGAN Implementation in DLStudio (contd.)

We thus end up with the following minimax objective for the learning
framework:

min
G

max
C

[
Ex∼P [C(x)] − Ez∼pZ

[C(G(z)]

]
(36)

In comparing this minimax objective with the one shown earlier in Eq.
(33) of Section 10, note that the two components of the argument to
the minimax in that equation were additive, whereas we subtract them
in the objective shown above. In Eq. (33), we had a Discriminator in
the GAN and our goal was to maximize its classification performance
for images that look like they came from the true distribution P. On
the other hand, the goal of the Critic here is to learn to maximize the
Wasserstein distance between the true distribution P and its learned
approximation Q. Note that the distribution Q is for the images that
are constructed by the Generator from the white-noise samples z
drawn from a distribution pz , as shown above.

Purdue University 96

Wasserstein GAN Implementation in DLStudio

WGAN Implementation in DLStudio (contd.)

As far as the Critic is concerned, the maximization needed in Eq. (36)
can be achieved by using the following loss function:

Critic Loss = Ey∼Q [C(y)] − Ex∼P [C(x)]

= Ez∼pz [C(G(z))] − Ex∼P [C(x)] (37)

In the WGAN code shown in what follows, this is accomplished by
using a ”gradient target” of +1 for the mean of the output of the
Critic when it sees the images produced by the Generator and the
”gradient target” of -1 for the output of the Critic when it sees the
training data directly.

As to why we use the gradient targets of +1 and -1, it was shown by
the original authors of WGAN that the optimal Critic C has unit
gradient norm almost everywhere under P and Q. That is, the
magnitude of the partial derivative of the output of the optimal C
with respect to its input will almost always be 1.

Purdue University 97

Wasserstein GAN Implementation in DLStudio

The Critic and the Generator in DLStudio’s WGAN

Critic-Generator CG1
class CriticCG1(nn.Module):

"""
I have used the SkipBlockDN as a building block for the Critic network. This I did with the hope
that when time permits I may want to study the effect of skip connections on the behavior of the
the critic vis-a-vis the Generator. The final layer of the network is the same as in the
"official" GitHub implementation of Wasserstein GAN. And, as in WGAN, I have used the leaky ReLU
for activation.
"""
def __init__(self):

super(AdversarialLearning.DataModeling.CriticCG1, self).__init__()
self.conv_in = AdversarialLearning.DataModeling.SkipBlockDN(3, 64, downsample=True, skip_connections=True)
self.conv_in2 = AdversarialLearning.DataModeling.SkipBlockDN(64, 128, downsample=True, skip_connections=False)
self.conv_in3 = AdversarialLearning.DataModeling.SkipBlockDN(128, 256, downsample=True, skip_connections=False)
self.conv_in4 = AdversarialLearning.DataModeling.SkipBlockDN(256, 512, downsample=True, skip_connections=False)
self.conv_in5 = AdversarialLearning.DataModeling.SkipBlockDN(512, 1, downsample=False, skip_connections=False)
self.bn1 = nn.BatchNorm2d(128)
self.bn2 = nn.BatchNorm2d(256)
self.bn3 = nn.BatchNorm2d(512)
self.final = nn.Linear(512, 1)

def forward(self, x):
x = torch.nn.functional.leaky_relu(self.conv_in(x), negative_slope=0.2, inplace=True)
x = self.bn1(self.conv_in2(x))
x = torch.nn.functional.leaky_relu(x, negative_slope=0.2, inplace=True)
x = self.bn2(self.conv_in3(x))
x = torch.nn.functional.leaky_relu(x, negative_slope=0.2, inplace=True)
x = self.bn3(self.conv_in4(x))
x = torch.nn.functional.leaky_relu(x, negative_slope=0.2, inplace=True)
x = self.conv_in5(x)
x = x.view(-1)
x = self.final(x)
x = x.mean(0)
x = x.view(1)
return x

class GeneratorCG1(nn.Module):
"""
The Generator code remains the same as for the DCGAN shown earlier.
"""
def __init__(self):

super(AdversarialLearning.DataModeling.GeneratorCG1, self).__init__()
self.latent_to_image = nn.ConvTranspose2d(100, 512, kernel_size=4, stride=1, padding=0, bias=False)
self.upsampler2 = nn.ConvTranspose2d(512, 256, kernel_size=4, stride=2, padding=1, bias=False)
self.upsampler3 = nn.ConvTranspose2d (256, 128, kernel_size=4, stride=2, padding=1, bias=False)
self.upsampler4 = nn.ConvTranspose2d (128, 64, kernel_size=4, stride=2, padding=1, bias=False)
self.upsampler5 = nn.ConvTranspose2d(64, 3, kernel_size=4, stride=2, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(512)
self.bn2 = nn.BatchNorm2d(256)
self.bn3 = nn.BatchNorm2d(128)
self.bn4 = nn.BatchNorm2d(64)
self.tanh = nn.Tanh()

def forward(self, x):
x = self.latent_to_image(x)
x = torch.nn.functional.relu(self.bn1(x))
x = self.upsampler2(x)
x = torch.nn.functional.relu(self.bn2(x))
x = self.upsampler3(x)
x = torch.nn.functional.relu(self.bn3(x))
x = self.upsampler4(x)
x = torch.nn.functional.relu(self.bn4(x))
x = self.upsampler5(x)
x = self.tanh(x)
return x

Purdue University 98

Wasserstein GAN Implementation in DLStudio

Training the WGAN

The code for training the Critic-Generator based WGAN shown next
is based on the logic of a Wasserstein GAN as proposed by the
original authors of WGAN. The implementation shown uses several
programming constructs from the WGAN implementation at GitHub.
I have also used several programming constructs from the DCGAN
code at GitHub.

The noise batch that is generated in Line (D) is used periodically
check on the progress made by the Generator.

The ’one’ and ’minus one’ you see in Lines (E) and (F) are for
training the Critic, ’minus one’ is for the part of the training with
actual training images, and ’one’ is for the part based on the images
produced by the Generator.

The inner ’while’ loop in Line (G) is for updating the Critic in such a
way that the discrimination function learned by the Critic satisfies the
1-Lipschitz condition.Purdue University 99

Wasserstein GAN Implementation in DLStudio

Training the WGAN (contd.)

The 1-Lipschitz condition is enforced by the clipping statements in
Lines (H) and (I) along with the smoothing action of the inner ’while’
loop.

As mentioned previously, a minimization of the Wasserstein distance
between the distribution that describes the training data and the
distribution that has been learned so far by the Generator can be
translated into a maximization of the difference of the average
outputs of a 1-Lipschitz function as applied to the training images
and as applied to the output of the Generator. Learning this
1-Lipschitz function is the job of the Critic.

Training the Critic consists of two parts. In the first part that begins
in Line (J), we apply the target ’one’ to the training images and, in
the second part that begins in Line (K), we use the target ’minus one’
for the output of the Critic when its input is the output of the
Generator.

Purdue University 100

Wasserstein GAN Implementation in DLStudio

Training the WGAN (contd.)

That brings us to the training of the Generator that begins in Line
(L). We must start by turning off the requires grad of the Critic
parameters since the Critic and the Generator are meant to be
updated independently.

Purdue University 101

Wasserstein GAN Implementation in DLStudio

Training the WGAN
def run_wgan_code(self, dlstudio, adversarial, critic, generator, results_dir):

nz = 100 # Set the number of channels for the 1x1 input noise vectors for the Generator ## (A)
netC = critic.to(advers.device)
netG = generator.to(advers.device)
netC.apply(self.weights_init) # initialize Critic network parameters ## (B)
netG.apply(self.weights_init) # initialize Generator network parameters ## (C)
fixed_noise = torch.randn(self.dlstudio.batch_size, nz, 1, 1, device=advers.device) ## (D)
one = torch.FloatTensor([1]).to(advers.device) ## (E)
minus_one = torch.FloatTensor([-1]).to(advers.device) ## (F)
Adam optimizers for the Critic and the Generator:
optimizerC = optim.Adam(netC.parameters(), lr=dlstudio.learning_rate, betas=(adversarial.beta1, 0.999))
optimizerG = optim.Adam(netG.parameters(), lr=dlstudio.learning_rate, betas=(adversarial.beta1, 0.999))
img_list = []
Gen_losses = []
Cri_losses = []
iters = 0
gen_iterations = 0
start_time = time.perf_counter()
dataloader = self.train_dataloader
clipping_thresh = self.adversarial.clipping_threshold
for epoch in range(dlstudio.epochs):

data_iter = iter(dataloader)
i = 0
ncritic = 5
while i < len(dataloader):

for p in netC.parameters():
p.requires_grad = True

if gen_iterations < 25 or gen_iterations % 500 == 0: # the choices 25 and 500 are from WGAN
ncritic = 100

ic = 0
The inner ’while’ loop shown below calculates the expectations in Eq. (8) in the doc section
at the beginning of this file:
while ic < ncritic and i < len(dataloader): ## (G)

ic += 1
for p in netC.parameters(): ## (H)

p.data.clamp_(-clipping_thresh, clipping_thresh) ## (I)
Training the Critic with real images (Part 1):
netC.zero_grad() ## (J)
real_images_in_batch = data_iter.next()
i += 1
real_images_in_batch = real_images_in_batch[0].to(self.device)
Need to know how many images we pulled in since at the tailend of the dataset, the
number of images may not equal the user-specified batch size:
b_size = real_images_in_batch.size(0)
Note that a single scalar is produced for all the data in a batch. This is probably
the reason why what the Generator learns is somewhat fuzzy.
critic_for_reals_mean = netC(real_images_in_batch)
’minus_one’ is the gradient target:
critic_for_reals_mean.backward(minus_one)

Training the Critic with fake images (Part 2): ## (K)
noise = torch.randn(b_size, nz, 1, 1, device=self.device)
fakes = netG(noise)
Again, a single number is produced for the whole batch:
critic_for_fakes_mean = netC(fakes)
’one’ is the gradient target:
critic_for_fakes_mean.backward(one)
wasser_dist = critic_for_reals_mean - critic_for_fakes_mean
loss_critic = critic_for_fakes_mean - critic_for_reals_mean
Update the Critic
optimizerC.step()

Training the Generator: ## (L)
for p in netC.parameters():

p.requires_grad = False
netG.zero_grad()
This is again a single scalar based characterization of the whole batch of the Generator images:
noise = torch.randn(b_size, nz, 1, 1, device=self.device)
fakes = netG(noise)
critic_for_fakes_mean = netC(fakes)
loss_gen = critic_for_fakes_mean
critic_for_fakes_mean.backward(minus_one)
Update the Generator
optimizerG.step()
gen_iterations += 1Purdue University 102

Wasserstein GAN Implementation in DLStudio

Losses vs. Iterations for WGAN

Critic and Generator losses over 500 epochs of training

Purdue University 103

Wasserstein GAN Implementation in DLStudio

Comparing Real and Fake Images for WGAN

At the end of 500 epochs of training, shown at left is a batch of real images and, at right, the images produced by the Generator
from noise vectors

Purdue University 104

Wasserstein GAN Implementation in DLStudio

An Animated GIF of the Generator Output for
WGAN

The following animated GIF shows how the Generator’s output evolves
over 30 epochs using the same set of noise vectors for the case of a
DCGAN with relatively minor alterations.

https://engineering.purdue.edu/DeepLearn/pdf-kak/WGAN_generation_animation.gif

Purdue University 105

https://engineering.purdue.edu/DeepLearn/pdf-kak/WGAN_generation_animation.gif

Improving Wasserstein GAN with Gradient Penalty

Outline

1 Distance Between Two Probability Distributions 10

2 Total Variation (TV) Distance 12

3 Kullback-Leibler Divergence 16

4 Jensen-Shannon Divergence and Distance 23

5 Earth Mover’s Distance 27

6 Wasserstein Distance 37

7 A Random Experiment for Studying Differentiability 44

8 Differentiability of Distance Functions 47

9 PurdueShapes5GAN Dataset for Adversarial Learning 55

10 DCGAN Implementation in DLStudio 62

11 Making Small Changes to the DCGAN Architecture 84

12 Wasserstein GAN Implementation in DLStudio 90

13 Improving Wasserstein GAN with Gradient Penalty 106

Purdue University 106

Improving Wasserstein GAN with Gradient Penalty

WGAN-GP: Improving WGAN with Gradient
Penalty

As you would guess, the name extension ”-GP” stands for ”Gradient
Penalty”.

It was shown by the authors Gulrajani, Ahmed, Arjovsky, Dumouli,
and Courville of the paper ”Improved Training of Wasserstein GANs”
that implementing a 1-Lipschitz constraint with weight clipping as
discussed in the previous section biases the Critic towards learning
rather simple probability distribution functions.

In WGAN-GP, the performance of a WGAN is improved by putting to
use the theoretical property that the optimal WGAN critic C has unit
gradient norm almost everywhere under P and Q. [See Proposition 1,
Corollary 1 of the paper cited above.]

Purdue University 107

Improving Wasserstein GAN with Gradient Penalty

WGAN-GP (contd.)

On the basis of the property mentioned at the bottom of the previous
slide, in a WGAN-GP, we add a Gradient Penalty term to the Critic
Loss that was shown earlier in Eq. (37):

Critic Loss = Ez∼pz [C(G(z))] − Ex∼P [C(x)]︸ ︷︷ ︸
The original critic loss

+ λ[‖∇x̂C(x̂)‖2 − 1]2︸ ︷︷ ︸
The Gradient Penalty (GP)

(38)

To explain what the symbol x̂ is doing in the GP term, note that the
gradient is of the output of the 1-Lipschitz function (meaning the
output of the Critic network) with respect to its input. Since the
Critic network sees both the training samples and those produced by
the Generator at its input, for the purpose of calculating this gradient,
we first construct a fictitious sample by taking a weighted sum of a
sample drawn from the training data and one produced by the
Generator using a randomly chosen fractional number ε:

x̂ = εx + (1− ε)x̃ (39)

Purdue University 108

Improving Wasserstein GAN with Gradient Penalty

WGAN-GP (contd.)

Shown below is the Tensorflow code for calculating the Gradient
Penalty as posted by the authors of the ”Improved Training of
Wasserstein GANs” paper:

if MODE == ’wgan-gp’:

epsilon = tf.random_uniform(shape=[BATCH_SIZE,1], minval=0., maxval=1.)

interpolates = epsilon*real_data + ((1-epsilon)*fake_data)

disc_interpolates = Discriminator(interpolates)

gradients = tf.gradients(disc_interpolates, [interpolates])[0]

slopes = tf.sqrt(tf.reduce_sum(tf.square(gradients), reduction_indices=[1]))

gradient_penalty = tf.reduce_mean((slopes-1)**2)

Shown below is the PyTorch version of the same code as posted by
Marvin Cao (caogang) at GitHub:

def calc_gradient_penalty(netC, real_data, fake_data):

epsilon = torch.rand(batch_size, 1).cuda()

epsilon = epsilon.expand(real_data.size())

interpolates = epsilon * real_data + ((1 - epsilon) * fake_data)

interpolates = interpolates.requires_grad_(True).cuda()

critic_interpolates = netC(interpolates)

gradients = autograd.grad(outputs=critic_interpolates, inputs=interpolates,

grad_outputs=torch.ones(critic_interpolates.size()).cuda(),

create_graph=True, retain_graph=True, only_inputs=True)[0]

gradient_penalty = ((gradients.norm(2, dim=1) - 1) ** 2).mean() * LAMBDA

return gradient_penalty

Purdue University 109

Improving Wasserstein GAN with Gradient Penalty

WGAN-GP for Learning a Point Distribution in 2D

In order to demonstrate how effective the gradient penalty is in
improving the performance of a WGAN, I’ll use the 8-Gaussian
example from the ”Improved Training of Wasserstein GANs” paper.
8-Gaussian refers to a multi-Gaussian distribution of points in an
xy-plane. The centers of the eight Gaussians are equispaced on a unit
circle around the origin of the plane. The width of each Gaussian is
specified by the user. The code snippet shown below returns a batch
of 256 points in the xy-plane each time the function
multi gaussian source() is called:

def multi_gaussian_source():
"""
A Python ’generator’ function: Each call to this function with the built-in "next()" will yield
a fresh BATCH_SIZE (typically 256) number of points in the xy-plane.
"""
scale = 2.
centers = [(1, 0), (-1, 0), (0, 1), (0, -1), (1. / np.sqrt(2), 1. / np.sqrt(2)),

(1. / np.sqrt(2), -1. / np.sqrt(2)), (-1. / np.sqrt(2), 1. / np.sqrt(2)),
(-1. / np.sqrt(2), -1. / np.sqrt(2))

]
centers = [(scale * x, scale * y) for x, y in centers]
while True:

dataset = []
#spread = 0.02
spread = 0.1 ## controls the spread of each Gaussian
for i in range(BATCH_SIZE):

point = np.random.randn(2) * spread
center = random.choice(centers)
point[0] += center[0]
point[1] += center[1]
dataset.append(point)

dataset = np.array(dataset, dtype=’float32’)
dataset /= 1.414 # stdev
yield dataset

Purdue University 110

Improving Wasserstein GAN with Gradient Penalty

WGAN-GP for Learning a Point Distro (contd.)

Given the data source shown on the previous slide for the
ground-truth, we want to train a WGAN so that its Generator would
transform noise into data samples (points in the xy-plane) that look
like they came from the 8-Gaussians distribution. For the WGAN, we
will use the Generator and the Critic classes as shown below:

class Generator(nn.Module):
def __init__(self):

super(Generator, self).__init__()
main = nn.Sequential(

nn.Linear(2, DIM),
nn.ReLU(True),
nn.Linear(DIM, DIM),
nn.ReLU(True),
nn.Linear(DIM, DIM),
nn.ReLU(True),
nn.Linear(DIM, 2),

)
self.main = main

def forward(self, noise):
output = self.main(noise)
return output

class Critic(nn.Module):
def __init__(self):

super(Critic, self).__init__()
main = nn.Sequential(

nn.Linear(2, DIM),
nn.ReLU(True),
nn.Linear(DIM, DIM),
nn.ReLU(True),
nn.Linear(DIM, DIM),
nn.ReLU(True),
nn.Linear(DIM, 1),

)
self.main = main

def forward(self, inputs):
output = self.main(inputs)
return output

Purdue University 111

Improving Wasserstein GAN with Gradient Penalty

WGAN-GP for Learning a Point Distro (contd.)

As you can see on the previous slide, except for the last layer, the
network layout for both the Generator and the Critic are identical.
The output of the Generator is 2D because it is supposed to generate
points in the xy-plane. On the other hand, the output of the Critic is
a 1D value that expresses the Critic’s confidence that the input is
genuine or fake.

The next code segment that follows is about the training of the
WGAN. A highlight of the code shown is three calls to backward() for
estimating the gradients of the Critic weights in lines (F), (K), and
(M) and one call to the same for the Generator in line (U).

To elaborate the code shown for WGAN training, the main loop starts
in line (A). Each iteration of the main training loop involves training
the Generator network once. At the same time, it requires that the
Critic be taken through multiple updates in keeping with the
requirements of the expectation operator in Eq. (37) and Eq. (38).

Purdue University 112

Improving Wasserstein GAN with Gradient Penalty

WGAN-GP for Learning a Point Distro (contd.)

The multiple updates of the Critic in the inner loop start in line (B).
The needs of the expectation operator in Eq. (38) are met by
averaging both over multiple iterations of the inner loop that starts in
line (B) and, in each of those iterations, by averaging over all the
samples in a batch, as you will soon see.

Each inner-loop update of the Critic entails first feeding it a batch of
real data (typically 256 points in the xy-plane) in line (D). In keeping
with the requirements of the expectation in Eq. (38), we find the
mean of the output of the Critic for all the samples in the batch in
line (E). The call to backward() in line (F) updates the gradients of the
Critic weights for this phase of learning for the Critic. Note the target
gradient of “-1” in the call to backward() in line (F).

For the next phase of Critic learning, we feed it a batch of the fakes
produced by the Generator in line (H).

Purdue University 113

Improving Wasserstein GAN with Gradient Penalty

WGAN-GP for Learning a Point Distro (contd.)

With regard to phase of Critic learning at the bottom of the previous
slide, for the same reason as mentioned earlier, this output of the
Critic is averaged over the batch in line (J) and subject to a call to
backward() in line (K).

For the third and final phase of Critic learning, using the
implementation shown earlier, we first estimate the gradient penalty
in line (L) and then make the call on backward() in line (M) for the
final updating the gradients of the Critic weights in this iteration of
the inner loop for Critic training.

for iteration in range(ITERS): ## (A)
Update the Critic network:
for p in netC.parameters(): # reset the requires_grad attribute

p.requires_grad = True # this attribute is set to False in netG update

for iter_d in range(CRITIC_ITERS): ## (B)
The data_source supplies one BATCH_SIZE of 2D points from true distribution
real_data = next(data_source) ## (C)
real_data = torch.Tensor(real_data).requires_grad_(True).cuda()
netC.zero_grad()
Train Critic network with real data:
critic_for_reals = netC(real_data) ## (D)
critic_for_reals_mean = critic_for_reals.mean() ## (E)
critic_for_reals_mean = torch.unsqueeze(critic_for_reals_mean, 0)
critic_for_reals_mean.backward(minus_one) ## (F)
Train Critic with Generator output:
noise = torch.randn(BATCH_SIZE, 2).requires_grad_(True).cuda() ## (G)
fakes = netG(noise) ## (H)
critic_for_fakes = netC(fakes) ## (I)
critic_for_fakes_mean = critic_for_fakes.mean() ## (J)
critic_for_fakes_mean = torch.unsqueeze(critic_for_fakes_mean,0)
critic_for_fakes_mean.backward(one) ## (K)

(Continued on the next slide)
Purdue University 114

Improving Wasserstein GAN with Gradient Penalty

WGAN-GP for Learning a Point Distro (contd.)

(...... continued from the previous slide)
if MODE == "wgan-gp":

Train Critic with gradient penalty:
gradient_penalty = calc_gradient_penalty(netC, real_data, fakes.data) ## (L)
gradient_penalty.backward() ## (M)
lossCritic = critic_for_fakes_mean - critic_for_reals_mean + gradient_penalty ## (N)

elif MODE == "wgan":
lossCritic = critic_for_fakes_mean - critic_for_reals_mean ## (O)

wasser_dist = critic_for_reals_mean - critic_for_fakes_mean ## (P)
optim_critic.step()

Update the Generator network:
for p in netC.parameters(): ## (Q)

p.requires_grad = False
netG.zero_grad()
noise = torch.randn(BATCH_SIZE, 2).requires_grad_(True).cuda() ## (R)
A BATCH_SIZE of fakes coming from the Generator
fakes = netG(noise) ## (S)
critic_for_fakes_g = netC(fakes)
critic_for_fakes_g_mean = critic_for_fakes_g.mean() ## (T)
critic_for_fakes_g_mean = torch.unsqueeze(critic_for_fakes_g_mean,0)
critic_for_fakes_g_mean.backward(minus_one) ## (U)
lossGen = -critic_for_fakes_g_mean
optim_gen.step()

• The code file that follows is the full implementation of the WGAN
code. On the code shown, what remains unexplained is the
implementation of the function display distributions() that plays an
important role in depicting the effectiveness of using gradient penalty
for training a WGAN. That implementation will be explained later in
this section.

Purdue University 115

Improving Wasserstein GAN with Gradient Penalty

Implementation of wgan for point distros.py

wgan_for_point_distros.py

import random
import matplotlib
matplotlib.use(’Agg’)
import matplotlib.pyplot as plt
import numpy as np
import torch
import torch.autograd as autograd
import torch.nn as nn
import torch.optim as optim
import sys, os, glob, time

MODE = ’wgan-gp’ # Choose one of the two
#MODE = ’wgan’

DIM = 512 # Dimensionality of nn.Linear layers
LAMBDA = .1 # For estimating the contribution of GP to overall loss
CRITIC_ITERS = 5 # How many critic iterations per generator iteration
BATCH_SIZE = 256 # Batch size
ITERS = 100000 # how many generator iterations to train for
#ITERS = 10000 # how many generator iterations to train for
dir_name_for_results = ’results’ + "_" + MODE

=============================== Refresh directory for results ===============================
if os.path.exists(dir_name_for_results):

files = glob.glob(dir_name_for_results + "/*")
for file in files:

if os.path.isfile(file):
os.remove(file)

else:
files = glob.glob(file + "/*")
list(map(lambda x: os.remove(x), files))

else:
os.mkdir(dir_name_for_results)

since_beginning_dict = {’critic_loss’ : [], ’wasser_dist’: [], ’gen_loss’: []}
since_last_flush_dict = {’critic_loss’ : [], ’wasser_dist’: [], ’gen_loss’: []}

=================================== Class Definitions ==
class Generator(nn.Module):

def __init__(self):
super(Generator, self).__init__()
main = nn.Sequential(

nn.Linear(2, DIM),
nn.ReLU(True),
nn.Linear(DIM, DIM),
nn.ReLU(True),
nn.Linear(DIM, DIM),
nn.ReLU(True),
nn.Linear(DIM, 2),

)
self.main = main

def forward(self, noise):
output = self.main(noise)
return output

class Critic(nn.Module):
def __init__(self):

super(Critic, self).__init__()
main = nn.Sequential(

nn.Linear(2, DIM),
nn.ReLU(True),
nn.Linear(DIM, DIM),
nn.ReLU(True),
nn.Linear(DIM, DIM),
nn.ReLU(True),
nn.Linear(DIM, 1),

)
self.main = main

def forward(self, inputs):
output = self.main(inputs)
return output

(Continued on the next slide)
Purdue University 116

Improving Wasserstein GAN with Gradient Penalty

wgan for point distros.py (contd.)
(...... continued from the previous slide)

def weights_init(m):
"""
This function is used to initialize the learnable weights in the Critic and
the Generator networks
"""
classname = m.__class__.__name__
if classname.find(’Linear’) != -1:

m.weight.data.normal_(0.0, 0.02)
m.bias.data.fill_(0)

frame_index = [0]

================================= Utility Functions =====================================
def display_distributions(real_data, netC, netG):

"""
This very useful visualization function, written originally by the authors
of the celebrated paper "Improved Training of Wasserstein GANs", does the
following three things simultaneously:

1) Creates a 128x128 array of points in a [-3,3]x[-3x3] box in the xy-plane.
These points can subsequently be fed into the Critic for the values it
would yield at each point in the array. The value returned by the Critic
at point (x,y) in the array would be Critic’s confidence whether that
(x,y) point belongs to the probability distribution for the training data.
The surface formed by such Critic values is best visualized through
equi-valued contours.

2) The ’real_data’ that is the first argument to this function is a batch-full
(typically 256) points in the xy-plane that were produced by the function
multi_gaussian_source(). This source represents the true training data
for training the GAN. These points are shown in the xy-plane by orange

’+’ points.

3) It takes a batch-full (typically 256) 2D noise vectors and sends them
through the Generator network netG. The Generator network produces a
2D point in the xy-plane for each 2D noise input. The 256 points returned
by the Generator are displayed as green ’x’ points in the same xy-plane
that is used for the above two items.

"""
NPOINTS = 128
RANGE = 3
points = np.zeros((NPOINTS, NPOINTS, 2), dtype=’float32’)
points[:,:,0] = np.linspace(-RANGE, RANGE, NPOINTS)[:,None]
points[:,:,1] = np.linspace(-RANGE, RANGE, NPOINTS)[None,:]
points = points.reshape((-1, 2))
points = torch.Tensor(points).requires_grad_(False).cuda()
Generate the Critic’s value at each point at each (x,y) point
created above:
critic_map = netC(points).cpu().data.numpy()
Now we need a batch-full of 2D noise vectors for feeding into
the Generator:
noise = torch.randn(BATCH_SIZE, 2).requires_grad_(False).cuda()
fakes = netG(noise).cpu().detach().numpy()
plt.clf()
x = y = np.linspace(-RANGE, RANGE, NPOINTS)
Display the Critic output value surface through contours:
plt.contour(x, y, critic_map.reshape((len(x), len(y))).transpose())
Display the 256 first-arg real_data points that were previously
generated by the ground-truth source multi_gaussian_source():
plt.scatter(real_data[:,0], real_data[:,1], c=’orange’, marker=’+’)
Now display the 256 ’fake’ points returned by the Generator:
plt.scatter(fakes[:,0], fakes[:,1], c=’green’, marker=’x’)
plt.savefig(dir_name_for_results + "/" + ’frame’ + str(frame_index[0]) + ’.jpg’)
frame_index[0] += 1

(Continued on the next slide)Purdue University 117

Improving Wasserstein GAN with Gradient Penalty

wgan for point distros.py (contd.)
(...... continued from the previous slide)

def multi_gaussian_source():
"""
A Python ’generator’ function: Each call to this function with the built-in "next()" will yield
a fresh BATCH_SIZE (typically 256) number of points in the xy-plane.
"""
scale = 2.
centers = [

(1, 0),
(-1, 0),
(0, 1),
(0, -1),
(1. / np.sqrt(2), 1. / np.sqrt(2)),
(1. / np.sqrt(2), -1. / np.sqrt(2)),
(-1. / np.sqrt(2), 1. / np.sqrt(2)),
(-1. / np.sqrt(2), -1. / np.sqrt(2))

]
centers = [(scale * x, scale * y) for x, y in centers]
while True:

dataset = []
spread = 0.02

spread = 0.1 ## controls the spread of each Gaussian
for i in range(BATCH_SIZE):

point = np.random.randn(2) * spread
center = random.choice(centers)
point[0] += center[0]
point[1] += center[1]
dataset.append(point)

dataset = np.array(dataset, dtype=’float32’)
dataset /= 1.414 # stdev
yield dataset

def calc_gradient_penalty(netC, real_data, fake_data):
"""
Implementation by Marvin Cao at GitHub
"""
epsilon = torch.rand(BATCH_SIZE, 1).cuda()
epsilon = epsilon.expand(real_data.size())
interpolates = epsilon * real_data + ((1 - epsilon) * fake_data)
interpolates = interpolates.requires_grad_(True).cuda()
critic_interpolates = netC(interpolates)
gradients = autograd.grad(outputs=critic_interpolates, inputs=interpolates,

grad_outputs=torch.ones(critic_interpolates.size()).cuda(),
create_graph=True, retain_graph=True, only_inputs=True)[0]

gradient_penalty = ((gradients.norm(2, dim=1) - 1) ** 2).mean() * LAMBDA
return gradient_penalty

========================== Create Network Instances and Train WGAN ==============================
netG = Generator().cuda()
netC = Critic().cuda()
netC.apply(weights_init)
netG.apply(weights_init)

print(netG)
print(netC)

optim_critic = optim.Adam(netC.parameters(), lr=1e-4, betas=(0.5, 0.9))
optim_gen = optim.Adam(netG.parameters(), lr=1e-4, betas=(0.5, 0.9))

one = torch.FloatTensor([1])
minus_one = one * -1

one = one.cuda()
minus_one = minus_one.cuda()

data_source = multi_gaussian_source() ## returns one BATCH_SIZE collection 2D points

start_time = time.perf_counter()

(Continued on the next slide)Purdue University 118

Improving Wasserstein GAN with Gradient Penalty

wgan for point distros.py (contd.)
(...... continued from the previous slide)

for iteration in range(ITERS):
Update the Critic network
for p in netC.parameters(): # reset the requires_grad attribute

p.requires_grad = True # this attribute is set to False in netG update

for iter_d in range(CRITIC_ITERS):
The data_source supplies one BATCH_SIZE of 2D points from true distribution
real_data = next(data_source)
real_data = torch.Tensor(real_data).requires_grad_(True).cuda()
netC.zero_grad()
train Critic network with real data
critic_for_reals = netC(real_data)
critic_for_reals_mean = critic_for_reals.mean()
critic_for_reals_mean = torch.unsqueeze(critic_for_reals_mean, 0)
critic_for_reals_mean.backward(minus_one)
train Critic with fakes
noise = torch.randn(BATCH_SIZE, 2).requires_grad_(True).cuda()
fakes = netG(noise)
critic_for_fakes = netC(fakes)
critic_for_fakes_mean = critic_for_fakes.mean()
critic_for_fakes_mean = torch.unsqueeze(critic_for_fakes_mean,0)
critic_for_fakes_mean.backward(one)

if MODE == "wgan-gp":
train with gradient penalty
gradient_penalty = calc_gradient_penalty(netC, real_data, fakes.data)
gradient_penalty.backward()
lossCritic = critic_for_fakes_mean - critic_for_reals_mean + gradient_penalty

elif MODE == "wgan":
lossCritic = critic_for_fakes_mean - critic_for_reals_mean

wasser_dist = critic_for_reals_mean - critic_for_fakes_mean
optim_critic.step()

Update the Generator network
for p in netC.parameters():

p.requires_grad = False
netG.zero_grad()
noise = torch.randn(BATCH_SIZE, 2).requires_grad_(True).cuda()
A BATCH_SIZE of fakes coming from the Generator
fakes = netG(noise)
critic_for_fakes_g = netC(fakes)
critic_for_fakes_g_mean = critic_for_fakes_g.mean()
critic_for_fakes_g_mean = torch.unsqueeze(critic_for_fakes_g_mean,0)
critic_for_fakes_g_mean.backward(minus_one)
lossGen = -critic_for_fakes_g_mean
optim_gen.step()

Update the dicts for the losses and distance:
since_last_flush_dict[’critic_loss’].append(lossCritic.cpu().data.numpy()[0])
since_last_flush_dict[’wasser_dist’].append(wasser_dist.cpu().data.numpy()[0])
since_last_flush_dict[’gen_loss’].append(lossGen.cpu().data.numpy()[0])

if iteration % 100 == 99:
current_time = time.perf_counter()
elapsed_time = int(current_time - start_time)
prints = []
for name, vals in since_last_flush_dict.items():

prints.append("{} {:.3f}".format(name, np.mean(vals)))
since_beginning_dict[name] += vals

print("[iter: {:5d} time: {:5d} secs]\t\t{}".format(iteration+1, elapsed_time, "\t".join(prints)))
since_last_flush_dict = {’critic_loss’ : [], ’wasser_dist’: [], ’gen_loss’: []}
real_data = next(data_source)
display_distributions(real_data, netC, netG)

iteration += 1

(Continued on the next slide)Purdue University 119

Improving Wasserstein GAN with Gradient Penalty

wgan for point distros.py (contd.)
(...... continued from the previous slide)

for name,vals in since_beginning_dict.items():
x_vals = np.array(range(iteration))
y_vals = [since_beginning_dict[name][x] for x in x_vals]
plt.clf()
plt.plot(x_vals, y_vals)
plt.xlabel(’iteration’)
plt.ylabel(name)
plt.savefig(dir_name_for_results + "/" + name.replace(’ ’, ’_’)+’.jpg’)

Shown on the next slide are the Critic Loss, the Generator Loss, and
the Wasserstein Distance calculated in the main training loop of the
code.

Purdue University 120

Improving Wasserstein GAN with Gradient Penalty

Losses vs. Iterations for WGAN-GP

Critic Loss Generator Loss Wasserstein Distance

Losses and distance based on 100,000 of training

Purdue University 121

Improving Wasserstein GAN with Gradient Penalty

Comparing GP with No-GP in Training a WGAN

As to how effective using the Gradient Penalty is in improving the
performance is of a WGAN is best visualized by using the function
display distributions() whose implementation is presented next. The
code for this function is as provided by the original authors of the
paper ”Improved Training of Wasserstein GANs”. This function does
the following three things simultaneously:

Creates a 128× 128 array of points in a [−3, 3]× [−3x3] box in the
xy-plane. These points can subsequently be fed into the Critic for the
values it would yield at each point. The value returned by the Critic at
point (x,y) is Critic’s confidence whether that point belongs to the
probability distribution for the training data. The surface formed by
such Critic values is best visualized through equi-valued contours.

The real data that is the first argument to this function is a batch-full
(typically 256) points in the xy-plane that were produced by the
function multi gaussian source(). This source represents the
ground-truth data for training the GAN. These points are shown in the
xy-plane by orange ’+’ points.Purdue University 122

Improving Wasserstein GAN with Gradient Penalty

Comparing GP with No-GP (contd.)

It takes a batch-full (typically 256) 2D noise vectors and sends them
through the Generator network netG. The Generator network produces
a 2D point in the xy-plane for each 2D noise input. The 256 points
returned by the Generator are displayed as green ’x’ points in the same
xy-plane that is used for the above two items.

• Shown below is the implementation of display distributions():
def display_distributions(real_data, netC, netG):

NPOINTS = 128
RANGE = 3
points = np.zeros((NPOINTS, NPOINTS, 2), dtype=’float32’)
points[:,:,0] = np.linspace(-RANGE, RANGE, NPOINTS)[:,None]
points[:,:,1] = np.linspace(-RANGE, RANGE, NPOINTS)[None,:]
points = points.reshape((-1, 2))
points = torch.Tensor(points).requires_grad_(False).cuda()
Generate the Critic’s value at each point at each (x,y) point
created above:
critic_map = netC(points).cpu().data.numpy()
Now we need a batch-full of 2D noise vectors for feeding into
the Generator:
noise = torch.randn(BATCH_SIZE, 2).requires_grad_(False).cuda()
fakes = netG(noise).cpu().detach().numpy()
plt.clf()
x = y = np.linspace(-RANGE, RANGE, NPOINTS)
Display the Critic output value surface through contours:
plt.contour(x, y, critic_map.reshape((len(x), len(y))).transpose())
Display the 256 first-arg real_data points that were previously
generated by the ground-truth source multi_gaussian_source():
plt.scatter(real_data[:,0], real_data[:,1], c=’orange’, marker=’+’)
Now display the 256 ’fake’ points returned by the Generator:
plt.scatter(fakes[:,0], fakes[:,1], c=’green’, marker=’x’)
plt.savefig(dir_name_for_results + "/" + ’frame’ + str(frame_index[0]) + ’.jpg’)
frame_index[0] += 1

Purdue University 123

Improving Wasserstein GAN with Gradient Penalty

Comparing GP with No-GP (contd.)

Shown in the next few slides is a side-by-side comparison of GP vs.
no-GP on WGAN training at the same iteration index. The plots were
produced by the function display distributions() during a training
session that consisted of 100,000 iterations.

As mentioned earlier, the orange ’+’ marks denote the points in the
xy-plane as produced by the true 8-Gaussian distribution and the
green ’x’ marks denote the points that the Generator produced from
purely noise input. The greater the overlap between the green ’x’
points and the orange ’+’ points, the superior the performance of the
Generator. In addition, you would want the clusters formed by the
green ’x’ points to be as tight as those formed by the orange ’+’
points. Finally, you would want all the green ’x’ points to fall inside
the [−3, 3]× [−3, 3] box in the xy-plane.

The contours depict the value surface for the Critic.
Purdue University 124

Improving Wasserstein GAN with Gradient Penalty

GP vs. No-GP Performance Comparison

(a) With GP at iteration 10,000 (b) Without GP at iteration 10,000

(a) With GP at iteration 20,000 (b) Without GP at iteration 20,000

Purdue University 125

Improving Wasserstein GAN with Gradient Penalty

GP vs. No-GP Performance Comparison

(a) With GP at iteration 30,000 (b) Without GP at iteration 30,000

(a) With GP at iteration 40,000 (b) Without GP at iteration 40,000

Purdue University 126

Improving Wasserstein GAN with Gradient Penalty

GP vs. No-GP Performance Comparison

(a) With GP at iteration 50,000 (b) Without GP at iteration 50,000

(a) With GP at iteration 60,000 (b) Without GP at iteration 60,000

Purdue University 127

Improving Wasserstein GAN with Gradient Penalty

GP vs. No-GP Performance Comparison

(a) With GP at iteration 70,000 (b) Without GP at iteration 70,000

(a) With GP at iteration 80,000 (b) Without GP at iteration 80,000

Purdue University 128

	Distance Between Two Probability Distributions
	Total Variation (TV) Distance
	Kullback-Leibler Divergence
	Jensen-Shannon Divergence and Distance
	Earth Mover's Distance
	Wasserstein Distance
	A Random Experiment for Studying Differentiability
	Differentiability of Distance Functions
	PurdueShapes5GAN Dataset for Adversarial Learning
	DCGAN Implementation in DLStudio
	Making Small Changes to the DCGAN Architecture
	Wasserstein GAN Implementation in DLStudio
	Improving Wasserstein GAN with Gradient Penalty

