BME/ECE 695 Deep Learning Midterm I February 27, Spring 2020

Name:	

Instructions:

This is a 75 minute exam containing five (5) problems.

- You may only use your brain and a pencil (or pen) to complete this exam.
- You may not use or have access to your book, notes, any supplementary reference, a calculator, or any communication device including a cell-phone, computer, smart watch, etc.
- You may not communicate with any person other than the official proctors during the exam.

Good Luck.

Problem 1) (20 pt)

For each of the following, check the **one** box that **best** corresponds to the function's properties.

- a) $f(x) = e^{-x}$ for $x \in \Re$ Convex Concave
 - neither Both
- b) f(x) = x for $x \in \Re$ Convex Concave
 - neither Both
- c) $f(x) = x^2$ for $x \in \Re$ Convex Concave
 - neither Both
- d) $f(x) = x^3$ for $x \in \Re$ Convex Concave
 - neither Both
- e) f(x) = |x| for $x \in \Re$ Convex Concave
 - neither Both
- f) $f(x) = |x|^3$ for $x \in \Re$ for $x \in \Re$ Convex Concave
 - neither Both
- g) $f(x) = \sum_{k=0}^{K} (x \mu_k)^2$ for $x \in \Re$, $\mu_k \in \Re$ Convex Concave
 - neither Both
- h) $f(x) = \sum_{k=0}^K \{a_k e^{-x} + b_k x + c_k (x \mu_k)^2\}$ for $x \in \Re$, $a_k \ge 0$, $b_k \ge 0$, $c_k \ge 0$, $\mu_k \in \Re$
 - Convex Concave
 - neither Both

Problem 2) (20 pt)

Mark each of the following statements as **only one** of the three following labels:

T-"true"; F-"false"; or U-"Undecidable given the information that is provided".

- a) Gobbly gook is always blue.
- b) Let f(x) be a function of $x \in \Re$. For all x^* , if x^* is a global minimum of f(x), then x^* must also be a local minimum of f(x).
- c) Let f(x) be a function of $x \in \Re$. For all x^* , if x^* is a local minimum of f(x), then x^* must also be a global minimum of f(x).
- c) Let f(x) be a continuously differentiable function for $x \in \Re$. If $\frac{d}{dx}f(x^*) = 0$, then x^* is a local minimum.
- d) Let f(x) be a continuously differentiable and convex function for $x \in \Re$. If $\frac{d}{dx}f(x^*) = 0$, then x^* is a global minimum.

Problem 3) (20 pt)

Consider the following convolutional neural network (see diagram on next page) with a color image as input, and a gray-scale image as output. Each layer uses a ReLu activation function, and denote the convolution kernel by w and the offsets by b.

`		1	4	•
a١	HAT	laver		OIVA.
a,	TOI	layer	1,	give.

- 1. The shape of the tensor w;
- 2. The number of parameters in w;
- 3. The shape of the vector *b*;
- 4. The number of parameters in b.
- 5. The total number of parameters in the layer.

b) For layer 2, give:

- The shape of the tensor *w*;
- The number of parameters in w;
- The shape of the vector *b*;
- The number of parameters in *b*.
- The total number of parameters in the layer.
- c) The total number of parameters in the model.

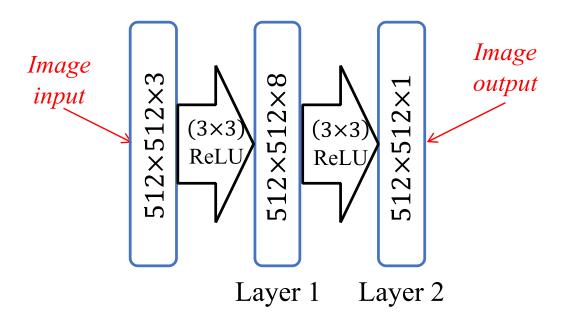


Figure 1: Convolutional Neural Network for Problem 3

Problem 4) (20 pt)

Consider the following tensor operation where z^{i_1,i_2} is the input, x^j is the output, and $w^j_{i_1,i_2}$ is the kernel.

$$x^j = w^j{}_{i_1, i_2} z^{i_1, i_2}$$

a) What is the rank of the tensor z^{i_1,i_2} ?

(Hint: The rank of a tensor is the number of axes in the tensor.)

- b) What is the rank of the tensor x^j ?
- c) What is the rank of the tensor $w^{j}_{i_1,i_2}$?
- d) Draw a 3D picture illustrating this operation.

Problem 5) (20 pt)

Consider a machine learning (ML) system,

$$\hat{x} = f_{\theta}(y) = Ay + b ,$$

where $y \in \Re^{N_y}$, $\hat{x} \in \Re^{N_x}$, and $\theta = [A, b]$ where $A \in \Re^{N_x \times N_y}$ and $b \in \Re^{N_x}$. Assume we have training data pairs given by $(x_k, y_k)|_{k=0}^{K-1}$, and a loss function given by

$$l(\theta) = \frac{1}{K} \sum_{k=0}^{K-1} ||x_k - f_{\theta}(y_k)||^2.$$

- a) What is the commonly used name for this loss function?
- b) How many scalar parameters are in this model, i.e., what is the dimension of θ ?
- c) Calculate a theoretical expression for $\nabla_b l(\theta)$, the gradient of the loss function w.r.t. b. You can express this in the form $g_{1,i} = [\nabla_b l(\theta)]_i$ for $0 \le i < N_x$.
- d) Calculate a theoretical expression for $\nabla_A l(\theta)$, the gradient of the loss function w.r.t. A. You can express this in the form $g_{2,i,j} = [\nabla_A l(\theta)]_{i,j}$ for $0 \le i < N_x$ and $0 \le j < N_y$.
- e) Write a pseudo-code algorithm for gradient descent of the parameter $\theta = [A, b]$.