Stochastic Gradient Descent

- Batches and Epochs
- o Learning Rate and Momentum
- Nesterov Momentum
- ADAM optimizer

Batches, Epochs, and Stochastic Gradient Descent (SGD)

Partition training set into <u>randomized</u> batches

$$S = \{1, \dots, K\} = \bigcup_{b=1}^{B} S_b$$

$$K_b = |S_b|$$

$$= (\text{# of sampler per batch})$$

- For each batch you compute a separate gradient $\nabla L(\theta; S_h) \Leftarrow \text{Gradient for } b^{th} \text{ batch of training data}$

```
Repeat until converged { Repeat b=1 to B { d \leftarrow -\nabla L(\theta; S_b) \theta \leftarrow \theta + \alpha d^t } One batch } \theta \leftarrow \theta + \alpha d^t } Stochastic Gradient Descent (SGD)
```

Theoretical Analysis of SGD

Assume simple sampling (sampling with replacement)

$$g_k = \nabla L_k(\theta) =$$
(gradient from k^{th} training sample)

- Each sample, g_{k_i} , is i.i.d. with distribution $p(g) = \frac{histogram(g)}{k_i}$

True gradient:

Noise

Effect of Batch Size on SGD

 g_{K-1}

- Then we have that:
 - As K_b → ∞ (batch size goes up) ⇒
 - Noise decreases and computation increases
 - As K_b → 0 (batch size goes down) \Rightarrow
 - Noise increases and computation decreases

Effect of Gradient Noise: Exploration

Effect of Gradient Noise: Exploitation

SGD Issues and Tradeoffs

• Why SGD works?

- The gradient for a small batch is much faster to compute and almost as good as the full gradient.
- If K = 10,000 and $K_b = |S_b| = 32$, then one iteration of SGD is approximately $\frac{10,000}{32} \approx 312$ times faster than GD.

Batch size

- Larger batches: less "noise" in gradient ⇒
 - *Worse*: slower updates; less exploration.
 - *Better:* better local convergence.
- Smaller batches: more "noise" in gradient ⇒
 - Worse: hunts around local minimum.
 - *Better:* faster updates; better exploration.

Patch size:

- Many algorithms train on image "patches"
- Apocryphal: Smaller patches speed training. Not true!!!!
- However, smaller patches might fit better into GPU cache

Step size α

- Too large \Rightarrow hunts around local minimum
- Too small \Rightarrow slow convergence

Training with Patches

Concept:

- Break training images into patches
- Often used in training denoising, deblurring, or reconstruction algorithms

- Typically, may be $N \times N$ where N = 80 patches (DNCNN)
- Typically, use a stride of $N_s = N/2$ so that patches overlap

•Patch size issues:

- Apocryphal:
 - Smaller patches increase amount of training data. Not true!!
 - Smaller patches speed training. Not true!!!!
- Advantages:
 - Smaller patches might fit better into GPU cache
- Disadvantages:
 - Valid region tends towards 0 for deep CNNs

Momentum

SGD with momentum

- α is step size, and γ is momentum typically with $\gamma = 0.9$

```
init v \leftarrow 0

Repeat until converged {

Repeat b = 1 to B {

d \leftarrow -\nabla L(\theta; S_b)

v \leftarrow \gamma v + \alpha (1 - \gamma) d

\theta \leftarrow \theta + v^t

}

Stochastic Gradient Descent (SGD)

with momentum
```

- Interpretation
 - θ is like position
 - *v* is like velocity
 - Friction = 1γ

Momentum

SGD with momentum

- α is step size, and γ is momentum typically with $\gamma = 0.9$

```
init v \leftarrow 0
Repeat until converged {

Repeat b = 1 to B {

d \leftarrow -\nabla L(\theta; S_b)

v \leftarrow \gamma v + \alpha (1 - \gamma) d

\theta \leftarrow \theta + v^t

}

Stochastic Gradient Descent (SGD)

with momentum
```

- Interpretation
 - θ is like position
 - *v* is like velocity
 - Friction = 1γ

Interpretation of Momentum

• Special case of impulsive input: If $d_n = \delta_n$

init
$$v \leftarrow 0$$
; $\theta_{-1} \leftarrow 0$
Repeat $n = 0$ to $N - 1$ {
$$v \leftarrow \gamma v + \alpha (1 - \gamma) \delta_n$$

$$\theta_n \leftarrow \theta_{n-1} + v^t$$
}
$$Momentum$$

-Then

$$\theta_n = \begin{cases} \alpha(1 - \gamma^{n+1}) & n \ge 0\\ 0 & n < 0 \end{cases}$$

$$\tau = -1 - \frac{1}{\log \gamma}$$
 $\gamma = \exp\left\{-\frac{1}{\tau + 1}\right\}$

Intuition

Nesterov Momentum*

"I skate to where the puck is going to be, not where it has been." - Wayne Gretzky

- SGD with momentum
 - α is step size, and γ is momentum typically with $\gamma \approx 0.9$

```
init v \leftarrow 0
Repeat until converged {
    Repeat b = 1 to B {
    d \leftarrow -\nabla L(\theta + \gamma v^t; S_b)
v \leftarrow \gamma v + \alpha d
\theta \leftarrow \theta + v^t
}

Stochastic Gradient Descent (SGD)
with Nesterov momentum
```

- Intuition:
 - Even if $d_n = 0$, we have that $\theta_{n+1} = \theta_n + \gamma v^t$ because of momentum
 - So compute the gradient at $\theta_n + \gamma v^t$

^{*}Yu. E. Nesterov, "A method of solving a convex programming problem with convergence rate O(1/k^2)", Doklady ANSSSR (translated as Soviet.Math.Docl.), vol. 269, no. 3, pp. 543–547.

Preconditioned Gradient Descent

- •Pick any positive definite matrix, *M*.
- Then Preconditioned Gradient Descent is

```
Repeat until converged { g \leftarrow -[\nabla L(\theta)]^t \\ d \leftarrow Mg \\ \theta \leftarrow \theta + \alpha d }
```

Notice that then

$$\langle d,g\rangle = \langle Mg,g\rangle = (Mg)^tg = g^tMg > 0$$

- This means that the angle between d and g is $< 90^{\circ}$
- So we see that PGD always goes down hill!
- •How to pick *M*?
 - $-M = B^t B$
 - $M = diag(a_0, ..., a_{N-1})$ where $a_i > 0$

ADAM (Adaptive Moment Estimation)*

SGD with ADAM optimization = Momentum + Preconditioning

```
init v \leftarrow 0: r \leftarrow 0:
init t \leftarrow 0
Repeat until converged {
    Repeat b = 1 to B {
       t \leftarrow t + 1
       d \leftarrow -\nabla L(\theta; S_h)
       v \leftarrow \beta_1 v + (1 - \beta_1) d
       r \leftarrow \beta_2 r + (1 - \beta_2) d^2
       \hat{v} \leftarrow v/(1-\beta_1^t)
       \hat{r} \leftarrow r/(1-\beta_2^t)
       \theta \leftarrow \theta + \alpha (\sqrt{\hat{r}} + \epsilon)^{-1} \hat{v}
        ADAM Optimization
```

- Typical parameters: $\alpha = 0.001$; $\beta_1 = 0.9$; $\beta_2 = 0.999$; $\epsilon = 10^{-8}$

^{*}Diederik P. Kingma and Jimmy Ba, "Adam: A Method for Stochastic Optimization", The 3rd International Conference for Learning Representations (ICLR), San Diego, 2015.

ADAM (Adaptive Moment Estimation)*

SGD with ADAM optimization = Momentum + Preconditioning

```
init v \leftarrow 0: r \leftarrow 0:
init t \leftarrow 0
Repeat until converged {
   Repeat b = 1 to B {
      t \leftarrow t + 1
      d \leftarrow -\nabla L(\theta; S_h)
                                                            These are all
      v \leftarrow \beta_1 v + (1 - \beta_1) d
                                                     interpreted as element-
      r \leftarrow \beta_2 r + (1 - \beta_2) d^2
                                                       wise operations on
      \hat{v} \leftarrow v/(1-\beta_1^t)
                                                                vectors
      \hat{r} \leftarrow r/(1-\beta_2^t)
      \theta \leftarrow \theta + \alpha (\sqrt{\hat{r}} + \epsilon)^{-1} \hat{v}
     ADAM Optimization
```

- Typical parameters: $\alpha = 0.001$; $\beta_1 = 0.9$; $\beta_2 = 0.999$; $\epsilon = 10^{-8}$

^{*}Diederik P. Kingma and Jimmy Ba, "Adam: A Method for Stochastic Optimization", The 3rd International Conference for Learning Representations (ICLR), San Diego, 2015.

ADAM (Adaptive Moment Estimation)*

SGD with ADAM optimization = Momentum + Preconditioning

- Typical parameters: $\alpha = 0.001$; $\beta_1 = 0.9$; $\beta_2 = 0.999$; $\epsilon = 10^{-8}$

^{*}Diederik P. Kingma and Jimmy Ba, "Adam: A Method for Stochastic Optimization", The 3rd International Conference for Learning Representations (ICLR), San Diego, 2015.