Stochastic Gradient Descent

- Batches and Epochs
- Learning Rate and Momentum
- Nesterov Momentum
- ADAM optimizer
Batches, Epochs, and Stochastic Gradient Descent (SGD)

- Partition training set into randomized batches

$$S = \{1, \ldots, K\} = \bigcup_{b=1}^{B} S_b \quad K_b = |S_b|$$

- For each batch you compute a separate gradient

$$\nabla L(\theta; S_b) \Leftarrow \text{Gradient for } b^{th} \text{ batch of training data}$$

Repeat until converged \{
Repeat \(b = 1 \) to \(B \) \{
\(d \leftarrow -\nabla L(\theta; S_b) \)
\(\theta \leftarrow \theta + \alpha d^t \)
\}
\}
Theoretical Analysis of SGD

- Assume simple sampling (sampling with replacement)

\[g_k = \nabla L_k(\theta) = \text{(gradient from } k^{th} \text{ training sample)} \]

- Each sample, \(g_k \), is i.i.d. with distribution \(p(g) = \frac{\text{histogram}(g)}{K} \)

\[
g = \frac{1}{K} \sum_{k=0}^{K-1} g_k
\]

True gradient:

Batch gradient:

\[
\hat{g} = \frac{1}{K_b} \sum_{i=0}^{K_b-1} g_{k_i}
\]

\[
\hat{g} = g + \frac{w}{\sqrt{K_b}}
\]

Then

Batch Gradient

True Gradient

Noise

where

\[
E[w] = 0
\]

\[
\text{Var}[w] \approx \frac{1}{K} \sum_{k=0}^{K-1} (g_k - g)(g_k - g)^t
\]
Effect of Batch Size on SGD

\[\hat{g} = g + \frac{w}{\sqrt{K_b}} \]

- **Batch Gradient**
- **True Gradient**
- **Noise**

Then we have that:

- As \(K_b \to \infty \) (batch size goes up) \(\Rightarrow \)
 - Noise decreases and computation increases
- As \(K_b \to 0 \) (batch size goes down) \(\Rightarrow \)
 - Noise increases and computation decreases

True gradient:
\[g = \frac{1}{K} \sum_{k=0}^{K-1} g_k \]

Batch gradient:
\[\hat{g} = \frac{1}{K} \sum_{i=0}^{K_{b-1}} g_{k_i} \]
Effect of Gradient Noise: Exploration

\[\hat{g} = g + \frac{w}{\sqrt{K_b}} \]

- **Batch Gradient**
- **True Gradient**
- **Noise**

Large Batch
- \(-g(\theta)\) very good, but slow

Small Batch
- \(-\hat{g}(\theta)\) good, and fast

Smooth Function
- \(-g(\theta)\) very bad, and slow

Bumpy Function
- \(-\hat{g}(\theta)\) better, and fast
Effect of Gradient Noise: Exploitation

\[\hat{g} = g + \frac{w}{\sqrt{K_b}} \]

- **Large Batch**: Slow, but perfect.
- **Small Batch**: Not so good, but fast.

Smooth Function:

- True Gradient
- Batch Gradient
- Noise
SGD Issues and Tradeoffs

- Why SGD works?
 - The gradient for a small batch is much faster to compute and almost as good as the full gradient.
 - If $K = 10,000$ and $K_b = |S_b| = 32$, then one iteration of SGD is approximately $\frac{10,000}{32} \approx 312$ times faster than GD.

- Batch size
 - Larger batches: less “noise” in gradient ⇒
 - *Worse*: slower updates; less exploration.
 - *Better*: better local convergence.
 - Smaller batches: more “noise” in gradient ⇒
 - *Worse*: hunts around local minimum.
 - *Better*: faster updates; better exploration.

- Patch size:
 - Many algorithms train on image “patches”
 - Apocryphal: Smaller patches speed training. Not true!!!!
 - However, smaller patches might fit better into GPU cache

- Step size α
 - Too large ⇒ hunts around local minimum
 - Too small ⇒ slow convergence
Training with Patches

- **Concept:**
 - Break training images into patches
 - Often used in training denoising, deblurring, or reconstruction algorithms
 - Typically, may be $N \times N$ where $N = 80$ patches (DNCNN)
 - Typically, use a stride of $N_s = N/2$ so that patches overlap

- **Patch size issues:**
 - Apocryphal:
 - Smaller patches increase amount of training data. Not true!!
 - Smaller patches speed training. Not true!!!!
 - Advantages:
 - Smaller patches might fit better into GPU cache
 - Disadvantages:
 - Valid region tends towards 0 for deep CNNs

![Network Diagram](image)
Momentum

- SGD with momentum
 - α is step size, and γ is momentum typically with $\gamma = 0.9$

\[
\text{init } v \leftarrow 0 \\
\text{Repeat until converged } \{ \\
\quad \text{Repeat } b = 1 \text{ to } B \{ \\
\quad\quad d \leftarrow -\nabla L(\theta; S_b) \\
\quad\quad v \leftarrow \gamma v + \alpha d \\
\quad\quad \theta \leftarrow \theta + v^t \\
\quad \} \\
\} \\
\text{Stochastic Gradient Descent (SGD) with momentum}
\]

- Interpretation
 - θ is like position
 - v is like velocity
 - Friction $= 1 - \gamma$
Momentum

- SGD with momentum
 - α is step size, and γ is momentum typically with $\gamma = 0.9$

  ```
  init $v \leftarrow 0$
  Repeat until converged {
    Repeat $b = 1$ to $B$ {
      $d \leftarrow -\nabla L(\theta; S_b)$
      $v \leftarrow \gamma v + \alpha d$
      $\theta \leftarrow \theta + v^t$
    }
  }

  Stochastic Gradient Descent (SGD) with momentum
  ```

- Interpretation
 - θ is like position
 - v is like velocity
 - Friction $= 1 - \gamma$
Interpretation of Momentum

- Special case of impulsive input: If \(d_n = \delta_n \)

\[
\text{init } v \leftarrow 0; \ \theta_{-1} \leftarrow 0
\]

Repeat \(n = 0 \) to \(N - 1 \) {
\[
v \leftarrow \gamma v + \alpha \delta_n
\]
\[
\theta_n \leftarrow \theta_{n-1} + v^t
\]
}

\(
\theta_n = \begin{cases} \left(\frac{\alpha}{1 - \gamma} \right) (1 - \gamma^{n+1}) & n \geq 0 \\ 0 & n < 0 \end{cases}
\)

Then

\[
\text{Asymptotic value } = \frac{\alpha}{1 - \gamma}
\]

\[
\text{Time constant } = -1 / \log \gamma
\]
Intuition

\[Friction = 1 - \gamma \]

Time constant
\[\approx -1/ \log \gamma \]
Nesterov Momentum*

- SGD with momentum
 - α is step size, and γ is momentum typically with $\gamma \approx 0.9$

init $v \leftarrow 0$
Repeat until converged {
 Repeat $b = 1$ to B {
 $d \leftarrow -\nabla L(\theta + \gamma v^t; S_b)$
 $v \leftarrow \gamma v + \alpha d$
 $\theta \leftarrow \theta + v^t$
 }
}

Stochastic Gradient Descent (SGD) with Nesterov momentum

- Intuition:
 - Even if $d_n = 0$, we have that $\theta_{n+1} = \theta_n + \gamma v^t$ because of momentum
 - So compute the gradient at $\theta_n + \gamma v^t$

ADAM (Adaptive Moment Estimation)*

- SGD with ADAM optimization = Momentum + Preconditioning

\[
\text{init } v \leftarrow 0; \ r \leftarrow 0; \\
\text{init } t \leftarrow 0 \\
\text{Repeat until converged} \{ \\
\quad \text{Repeat } b = 1 \text{ to } B \{ \\
\quad \quad t \leftarrow t + 1 \\
\quad \quad d \leftarrow -\nabla L(\theta; S_b) \\
\quad \quad v \leftarrow \beta_1 v + (1 - \beta_1)d \\
\quad \quad r \leftarrow \beta_2 r + (1 - \beta_2)d^2 \\
\quad \quad \hat{v} \leftarrow v / (1 - \beta_1^t) \\
\quad \quad \hat{r} \leftarrow r / (1 - \beta_2^t) \\
\quad \quad \theta \leftarrow \theta + \alpha (\sqrt{\hat{r}} + \epsilon)^{-1} \hat{v} \\
\quad \} \\
\} \\
\]

ADAM Optimization

- Typical parameters: \(\alpha = 0.001; \ \beta_1 = 0.9; \ \beta_2 = 0.999; \ \epsilon = 10^{-8} \)

ADAM (Adaptive Moment Estimation)*

- SGD with ADAM optimization = Momentum + Preconditioning

\[
\text{init } v \leftarrow 0; \ r \leftarrow 0; \\
\text{init } t \leftarrow 0 \\
\text{Repeat until converged} \{ \\
\text{Repeat } b = 1 \text{ to } B \{ \\
\ t \leftarrow t + 1 \\
\ d \leftarrow -\nabla L(\theta; S_b) \\
\ v \leftarrow \beta_1 v + (1 - \beta_1)d \\
\ r \leftarrow \beta_2 r + (1 - \beta_2)d^2 \\
\ \hat{v} \leftarrow v/(1 - \beta_1^t) \\
\ \hat{r} \leftarrow r/(1 - \beta_2^t) \\
\ \theta \leftarrow \theta + \alpha (\sqrt{\hat{r}} + \epsilon)^{-1} \hat{v} \\
\} \\
\} \\
\text{ADAM Optimization}
\]

- Typical parameters: \(\alpha = 0.001; \ \beta_1 = 0.9; \ \beta_2 = 0.999; \ \epsilon = 10^{-8} \)

ADAM (Adaptive Moment Estimation)*

- SGD with ADAM optimization = Momentum + Preconditioning

init $v \leftarrow 0$; $r \leftarrow 0$;
init $t \leftarrow 0$
Repeat until converged {
 Repeat $b = 1$ to B {
 $t \leftarrow t + 1$
 $d \leftarrow -\nabla L(\theta; S_b)$
 $v \leftarrow \beta_1 v + (1 - \beta_1)d$
 $r \leftarrow \beta_2 r + (1 - \beta_2)d^2$
 $\hat{v} \leftarrow v/(1 - \beta_1^t)$
 $\hat{r} \leftarrow r/(1 - \beta_2^t)$
 $\theta \leftarrow \theta + \alpha (\sqrt{\hat{r}} + \epsilon)^{-1} \hat{v}$
 }
}

Typical parameters: $\alpha = 0.001$; $\beta_1 = 0.9$; $\beta_2 = 0.999$; $\epsilon = 10^{-8}$