Training and Generalization

- Overfitting, Underfitting, and Goldilocks Fitting
- Training, Validation, and Testing Data Sets
- Model Order, Model Capacity, Generalization Loss
Training and Generalization

- **Goal:**
 - Learn the “true relationship” from training data pairs $(x_k, y_k)|_{k=0}^{K-1}$.
 $$x = f_\theta(y) + \text{error}$$
 - What we learn needs to *generalize* beyond the training data.

- **Key parameters:**
 - $P = \text{Model Order} = \text{number of parameters} = \text{Dimension of } \theta \in \mathbb{R}^P$
 - $N_x \times K = \# \text{ training points} = (\text{Dimension of } x) \times (\# \text{ of training pairs})$

- **Key issues**
 - If $P \gg N_x \times K$: Model order is too high and there is a tendency to over fit.
 - If $P \ll N_x \times K$: Model order is too low, and there is a tendency to under fit.
Overfitting

- Training data

- Overfitting
 - Model order too high
 - Doesn’t generalize well
Underfitting

- Training data

- Underfitting
 - Model order too low
 - Doesn’t generalize well
Goldilocks Fitting

- Training data

- Best fitting
 - Model order “just right”
 - Best generalization
Partitioning of Labeled Data

- Let \((x_k, y_k)\) for \(k \in S = \{0, \cdots, K - 1\}\) be the full set data.
 - \(y_k\) is the input data.
 - \(x_k\) is the label or “ground truth” data.

- Typically, we **randomly** partition* the data into three subsets:
 - \(S_T\) is the training data
 - \(S_V\) is the validation data
 - \(S_E\) is the testing (evaluation) data

 * Note that “partition” means \(S = S_T \cup S_V \cup S_E\) and \(\emptyset = S_T \cap S_V = S_T \cap S_E = S_V \cap S_E\)

- For each partition, we define a loss function:

 \[
 L_T(\theta) = \frac{1}{|S_T|} \sum_{k \in S_T} \|y_k - f_\theta(x_k)\|^2
 \]

 \[
 L_V(\theta) = \frac{1}{|S_V|} \sum_{k \in S_V} \|y_k - f_\theta(x_k)\|^2
 \]

 \[
 L_E(\theta) = \frac{1}{|S_E|} \sum_{k \in S_E} \|y_k - f_\theta(x_k)\|^2
 \]
Roles of Data

- **Training data:**
 - Only data used to train model

\[\theta^* = \arg \min_{\theta} \{ L_T(\theta) \} \]

\[= \arg \min_{\theta} \left\{ \frac{1}{K} \sum_{k \in S_T} \| y_k - f_\theta(x_k) \|^2 \right\} \]

- **Validation data:**
 - Used to compare models of different order.

- **Testing data**
 - Used for final evaluation of model performance.
Loss Function Convergence

- Loss vs. iterations of gradient-based optimization

- Notice:
 - As training continues, the model is overfit to the data
 - Best to stop training when L_V is at a minimum
 - Model order is too high, but early termination of training can help fix problem
Loss vs. Model Order vs. # Training Pairs

- Loss vs. model order

 \[\mathcal{L}_V \] - validation loss

 \[\mathcal{L}_T \] - training loss

 \[P = \text{Model Order} \]

 best model order/capacity

- Loss vs. # of training pairs

 More training data is always better, but slower.

\[K = \# \text{Training Pairs} \]
What are L_T and L_V telling you?

- Model order/model capacity may be too low…

![Graph showing training and validation loss for small model capacity.]

“Everything should be made as simple as possible, but no simpler,”
-Inspired by Albert Einstein

- Model order/model capacity may be too high…

![Graph showing training and validation loss for large model capacity.]
Never Test on Training Data!

- Never report training loss, L_T, as your ML system accuracy!
 - This is like doing a homework problem after you have seen the solution.
 - The network has “memorized” the answers.

- Don’t ever report validation loss, L_V, as your ML system accuracy.
 - This is also biased by the fact that your tuned model order parameters.

- Only report testing loss, L_E, as your ML system accuracy.
 - This data is sequestered to ensure it is an unbiased estimate of loss.
Solutions to Parameter Overfitting

1. Early termination

2. Regularization
 - L_2 and L_1 weight regularization
 - Loss function is modified to be
 \[
 \tilde{L}(\theta) = L(\theta) + \beta \, S(\theta)
 \]
 - β larger \Rightarrow less overfitting

 L_2 norm - $S(\theta) = \|\theta\|^2$
 L_1 norm - $S(\theta) = \|\theta\|_1$

3. Dropout Method: Next slide
Regularization and Dropout

- Weight Regularization and Initialization
- Dropout Methods
Regularized Maximum Likelihood

- Regularize ML estimate:
 \[\hat{\theta} = \arg \min_{\theta} \{- \log p_{\theta}(x, y) + \beta S(\theta)\} \]

 where \(S(\theta) \) is a “regularizing” function, and \(\beta \) is the regularization weight.

 Typical choices are
 - \(S(\theta) = -\log p(\theta) \)
 - MAP estimate
 - \(S(\theta) = \|\theta\|^2 \)
 - Like a Gaussian Prior
 - Reduces amplitude of weights
 - \(S(\theta) = \|\theta\|_1 \)
 - Like a Laplacian Prior
 - Encourages weights to go to zero

- Modified Loss function
 \[\tilde{L}(\theta) = L(\theta) + \beta S(\theta) \]

 - Can be interpreted as MAP estimate with
 \[p(\theta) = \frac{1}{z} \exp\left\{-\frac{\beta}{2} S(\theta)\right\} \]
 - Introduces bias into the estimate of \(\theta \)
 - Reduces overfitting
 - Use regularization if training error \(\gg \) validation error
The Dropout Method*

- Drop nodes with probability $1 - p \approx 0.2$
- Retain nodes with probability $p \approx 0.8$
- Scale all node outputs by p:
 - To compute loss for validation and test
 - During inference

Dropout: Training Algorithm

For each batch{
 For each layer l {
 $r^{(l)} \leftarrow \text{Bernoulli}(p, \text{shape}(y^{(l)}))$
 }
 For $n = 0$ to $K_b - 1$ {
 For each layer l {
 $\tilde{y}^{(l)} \leftarrow r^{(l)} \cdot y^{(l)}$
 $z^{(l+1)} \leftarrow w^{(l+1)} \cdot \tilde{y}^{(l)}$
 $y^{(l+1)} \leftarrow f(z^{(l+1)})$
 }
 }
}

- Dropouts are:
 - Independent for each internal node in the network
 - A single set of Bernoulli weights are computed for each batch.
Training

For each batch{
For $n = 0$ to $K_b - 1$ {
For each layer l {
$\tilde{y}^{(l)} \leftarrow p \cdot y^{(l)}$
$z^{(l+1)} \leftarrow w^{(l+1)} \cdot \tilde{y}^{(l)}$
$y^{(l+1)} \leftarrow f(z^{(l+1)})$
}
}
}

- Scale output to account for increased number of nodes
Dropout: Stochastic Generator

- Dropouts can be used to generate stochastic outputs for generators described later in class.
 - Leave dropouts on during inference
 - Output of DNN is then a random vector

\[X = f_\theta(y) \]