Training and Generalization

- Overfitting, Underfitting, and Goldilocks Fitting
- o Training, Validation, and Testing Data Sets
- Model Order, Model Capacity, Generalization Loss

Training and Generalization

• Goal:

- Learn the "true relationship" from training data pairs $(x_k, y_k)|_{k=0}^{K-1}$.

$$x = f_{\theta}(y) + error$$

- What we learn needs to *generalize* beyond the training data.

• Key parameters:

- $P = \underline{\text{Model Order}} = \text{number of parameters} = \underline{\text{Dimension of } \theta} \in \Re^P$
- $N_x \times K = \#$ training points = (Dimension of x) × (# of training pairs)

Key issues

- If $P \gg N_x \times K$: Model order is too high and there is a tendency to over fit.
- If $P \ll N_x \times K$: Model order is too low, and there is a tendency to under fit.

Overfitting

Training data

Overfitting

- Model order too high
- Doesn't generalize well

Underfitting

Training data

Underfitting

- Model order too low
- Doesn't generalize well

Goldilocks Fitting

Training data

Best fitting

- Model order "just right"
- Best generalization

Partitioning of Labeled Data

- Let (x_k, y_k) for $k \in S = \{0, \dots, K-1\}$ be the full set data.
 - y_k is the input data.
 - x_k is the label or "ground truth" data.
- Typically, we <u>randomly</u> partition* the data into three subsets:
 - $S_{\rm T}$ is the <u>training</u> data
 - S_V is the <u>validation</u> data
 - S_E is the <u>testing (evaluation)</u> data * Note that "partition" means $S = S_T \cup S_V \cup S_E$ and $\emptyset = S_T \cap S_V = S_T \cap S_E = S_V \cap S_E$
- For each partition, we define a loss function:

$$L_{T}(\theta) = \frac{1}{|S_{T}|} \sum_{k \in S_{T}} ||x_{k} - f_{\theta}(y_{k})||^{2}$$

$$L_{V}(\theta) = \frac{1}{|S_{V}|} \sum_{k \in S_{V}} ||x_{k} - f_{\theta}(y_{k})||^{2}$$

$$L_{E}(\theta) = \frac{1}{|S_{E}|} \sum_{k \in S_{T}} ||x_{k} - f_{\theta}(y_{k})||^{2}$$

Roles of Data

- Training data:
 - Only data used to train model

$$\theta^* = \arg\min_{\theta} \{L_T(\theta)\}$$

$$= \arg\min_{\theta} \left\{ \frac{1}{K} \sum_{k \in S_T} ||x_k - f_{\theta}(y_k)||^2 \right\}$$

- Validation data:
 - Used to compare models of different order.
- Testing data
 - Used for final evaluation of model performance.

Loss Function Convergence

Loss vs. iterations of gradient-based optimization

- Notice:
 - As training continues, the model is <u>overfit</u> to the data
 - Best to stop training when L_V is at a minimum
 - Model order is too high, but early termination of training can help fix problem

Loss vs. Model Order vs. # Training Pairs

Loss vs. model order

Loss vs. # of training pairs

What are L_T and L_V telling you?

Model order/model <u>capacity</u> may be too low...

• Model order/model <u>capacity</u> may be too high...

Never Test on Training Data!

• Never report training loss, L_T , as your ML system accuracy!

- This is like doing a homework problem after you have seen the solution.
- The network has "memorized" the answers.
- Don't ever report validation loss, L_V , as your ML system accuracy.
 - This is also biased by the fact that your tuned model order parameters.
- Only report <u>testing loss</u>, L_E , as your ML system accuracy.
 - This data is sequestered to ensure it is an unbiased estimate of loss.

Solutions to Parameter Overfitting

1. Early termination

2. Regularization

- L_2 and L_1 weight regularization
- Loss function is modified to be

$$\tilde{L}(\theta) = L(\theta) + \beta S(\theta)$$

- β larger \Rightarrow less overfitting

$$L_2$$
 norm - $S(\theta) = \|\theta\|^2$

$$L_1$$
 norm - $S(\theta) = \|\theta\|_1$

3. Dropout Method: Next slide

Regularization and Dropout

- Weight Regularization and Initialization
- Dropout Methods

Regularized Maximum Likelihood

Regularize ML estimate:

$$\hat{\theta} = \arg\min_{\theta} \{-\log p_{\theta}(x, y) + \beta S(\theta)\}$$

where $S(\theta)$ is a "regularizing" function, and β is the regularization weight.

Typical choices are

Modified Loss function

$$\tilde{L}(\theta) = L(\theta) + \beta S(\theta)$$

- Can be interpreted as MAP estimate with $p(\theta) = \frac{1}{z} \exp\left\{-\frac{\beta}{2}S(\theta)\right\}$
- Introduces bias into the estimate of θ
- Reduces overfitting
- Use regularization if training error >> validation error

The Dropout Method*

- Drop nodes with probability $1 p \approx 0.2$
- Retain nodes with probability $p \approx 0.8$
- Scale all node outputs by *p*:
 - To compute loss for validation and test
 - During inference

During Training: Done independently for each batch

During Validation, Testing, and Inference

^{*}Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, Ruslan Salakhutdinov, "Dropout: A Simple Way to Prevent Neural Networks from Overfitting", vol. 15, no. 56, pp. 1929–1958, 2014.

Dropout: Training Algorithm

```
For each batch{
   For each layer l {
      r^{(l)} \leftarrow Bernoulli(p, shape(y^{(l)}))
   For n = 0 to K_h - 1 {
                                                                  Dropout
       For each layer l {
         \tilde{y}^{(l)} \leftarrow r^{(l)} \cdot y^{(l)} \stackrel{\checkmark}{\leftarrow}
          z^{(l+1)} \leftarrow w^{(l+1)} * \tilde{v}^{(l)}
          y^{(l+1)} \leftarrow f(z^{(l+1)})
                    Training
```

Dropouts are:

- Independent for each internal node in the network
- A single set of Bernoulli weights are computed for each batch.

Dropout: Validation and Testing

```
For each batch { For n=0 to K_b-1 { For each layer l { \tilde{y}^{(l)}\leftarrow p*y^{(l)} \\ z^{(l+1)}\leftarrow w^{(l+1)}*\tilde{y}^{(l)} \\ y^{(l+1)}\leftarrow f(z^{(l+1)})  } } } Training
```

Scale output to account for increased number of nodes

Dropout: Stochastic Generator

- •Dropouts can be used to generate stochastic outputs for generators described later in class.
 - Leave dropouts on during inference
 - Output of DNN is then a random vector

