Convolutional Neural Networks

- Convolution with Vector Input and Output
- Single and Multi-Layer CNNs
- Upsampling Pooling and Stride
Limitations of Dense Neural Networks

- Too many parameters:
 - Number of parameters scale roughly as N_x^2 for N-dimensional inputs.
 - Processing a 1024×1024 image, requires $\sim 10^{12}$ parameters per layer.
 - Both training and inference is slow.

- The solution to many problems should be space-invariant:
 - Object recognition: Recognition shouldn’t depend on object position in image.
 - Image denoising: Noise removal should depend on content, not absolute location in the image.
Don’t be a Jumanji NPC*

Warning: I don’t understand popular culture, and I didn’t check with my kids before writing this.

- **How did you set up the optimization for your CNN?**
 - I used Batch Normalization

- **Oh OK, but what did you actually do? Like how did you do the normalization.**
 - I used Batch Normalization

- **Yeah, I know you used batch normalization, but how did you store the normalization parameters for inference, and what values did you use?**
 - I used Batch Normalization

- **Can you say anything other than, “I used batch normalization”**
 - I used Batch Normalization

Nigel
What is Convolution?

- Discrete-time convolution is defined as:

\[
x(j) = z(j) * w(j) = \sum_{k=-\infty}^{\infty} z(j - k) w(k)
\]

\[
= w(j) * z(j) = \sum_{k=-\infty}^{\infty} w(j - k) z(k)
\]

In 2D, convolution is given by

\[
x(j_1, j_2) = w(j_1, j_2) * z(j_1, j_2) = z(j_1, j_2) * w(j_1, j_2)
\]

\[
= \sum_{k_1=-\infty}^{\infty} \sum_{k_2=-\infty}^{\infty} z(j_1 - k_1, j_2 - k_2) w(k_1, k_2)
\]

*CNN sometimes use a non-standard definition of convolution, but you can just time reverse w to convert. However, the non-standard definition leads to issues. So, we will adopt the standard definition.
Convolution with Finite Kernels

- Discrete-time convolution is defined as:

\[x(j) = w(j) * z(j) = \sum_{k=-p}^{p} z(j - k) w(k) \]

where \(w \) is of length \(2p + 1 \)

- In 2D, convolution is given by:

\[x(j_1, j_2) = \sum_{k_1=-p}^{p} \sum_{k_2=-p}^{p} z(j_1 - k_1, j_2 - k_2) w(k_1, k_2) \]

where \(w \) is of size \(p \times p \)
2D Convolution with “Same” boundary

- For 3×3 filter is given by

\[x(j_1, j_2) = \sum_{k_1=-1}^{1} \sum_{k_2=-1}^{1} z(j_1 - k_1, j_2 - k_2) w(k_1, k_2) \]

Tensor notation

\[x_{j_1,j_2} = w_{(j_1,j_2)} * z_{(j_1,j_2)} \]

Parentheses denote convolution

zero pad

Assumes \(p \) is odd

(0,0) point

(0,0) points
2D Convolution with “Valid” Boundary

- For 3×3 filter is given by

$$x(j_1, j_2) = \sum_{k_1=-1}^{1} \sum_{k_2=-1}^{1} z(j_1 + 1 - k_1, j_2 + 1 - k_2) w(k_1, k_2)$$

Tensor notation

$$x^{j_1,j_2} = w_{(j_1,j_2)} \ast z^{(j_1,j_2)}$$
2D Convolution with Vector Input

- Vector 2D convolution of depth $d_i = 2$ and $d_o = 1$

$$x(j_1, j_2) = \sum_{i=0}^{d-1} \sum_{k_1=p} \sum_{k_2=p} z(j_1 - k_1, j_2 - k_2, i) w(k_1, k_2, i)$$

Tensor notation

$$x^{j_1, j_2} = w^{(j_1, j_2), i} * z^{(j_1, j_2), i}$$

\[\begin{array}{ccccccc}
1 & 1 & 1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}\]

\[\begin{array}{cccccccc}
-4 & 0 & 0 & 4 & 4 & 0 & 0 & 0 \\
-6 & 0 & 0 & 6 & 6 & 0 & 0 & 0 \\
-6 & 0 & 0 & 6 & 6 & 0 & 0 & 0 \\
-4 & 0 & 0 & 4 & 4 & 0 & 0 & 0 \\
-2 & 0 & 0 & 2 & 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}\]
2D Convolution with Vector Input/Output

- Vector 2D convolution of depth $d_i = 2$ and $d_o = 2$

\[x^{j_1,j_2,j_3} = w_{(j_1,j_2),i}^{j_3} \ast z_{(j_1,j_2),i} \]

- Beautiful animations at https://pathmind.com/wiki/convolutional-network
- **Sum notation**

\[x(j_1,j_2,j_3) = \sum_{i=0}^{d_i-1} \sum_{k_1=-p}^{p} \sum_{k_2=-p}^{p} z(j_1 - k_1,j_2 - k_2,i) w(k_1,k_2,i,j_3) \]

- **Tensor notation**

\[x_{j_1,j_2,j_3} = w_{(j_1,j_2),i} j_3 * z_{(j_1,j_2),i} \]

where

- \(w \) is \(5 \times 5 \times 16 \times 16 = 6,400 \)
- \(y \) is \(512 \times 512 \times 16 = 4,194,304 \)
- \(x \) is \(512 \times 512 \times 16 = 4,194,304 \)
Single Layer CNN

- Single layer 2D CNN example:
 \[x = f_\theta(z) = \sigma(w \ast z + b) \]

\[x^{j_1, j_2, j_3} = \sigma(w_{(j_1, j_2), i}^{j_3} \ast z^{(j_1, j_2), i} + b^{j_3}) \]

- Tensor structures

\[w \text{ is } 5 \times 5 \times 16 \times 16 = 6,400 \]
\[b \text{ is } 16 = 16 \]

\[z \text{ is } 512 \times 512 \times 16 = 4,194,304 \]
\[x \text{ is } 512 \times 512 \times 16 = 4,194,304 \]
5 Layer CNN

- **Parameters:**
 - Layer 1: filter $5 \times 5 \times 1 \times 16$; offset 16; ReLU; #params 416
 - Layer 2: filter $5 \times 5 \times 16 \times 16$; offset 16; ReLU; #params 6,416
 - Layer 3: filter $5 \times 5 \times 16 \times 16$; offset 16; ReLU; #params 6,416
 - Layer 4: filter $5 \times 5 \times 16 \times 16$; offset 16; ReLU; #params 6,416
 - Layer 5: filter $5 \times 5 \times 16 \times 1$; offset 16; ReLU; #params 416
 - Total # params = 20,080

![Diagram of 5 Layer CNN with Image input and Image output markers.](image-url)
Simpler Diagram for 5 Layer CNN

- **Good news:**
 - Dramatic reduction in number of parameters as compared to dense network
 - Spatially invariant behavior (except for boundaries)
 - For interior layers, each pixel is formed by a 16 dimensional feature vector
 - Intuition: CNN can design its own features!

- **Bad news:**
 - Not very useful
 - ReLUs are fast but can be difficult to train
 - Spatial resolution of each layer is the same
 - Output isn’t appropriate for classification
CNN Stride

- Stride of \((d_v, d_h) = (2,2)\), results in

\[x(j_1, j_2) = z(2j_1, 2j_2) \]

- Comments:
 - Output has reduced dimensions of \((\lfloor N_v/d_v \rfloor, \lfloor N_h/d_h \rfloor)\)
 - Also known as decimation
 - Can be used with most operators
CNN Upsampling

- Upsampling of $(L_v, L_h) = (2,2)$, results in

$$x(j_1, j_2) = z([j_1/2], [j_2/2])$$

Comments:
- Also known as pixel replication
- Output has dimensions of (L_vN_v, L_hN_h)
CNN Average Pooling

- 2D average pooling equation

\[x(j_1, j_2) = \sum_{k_1 = 0}^{p-1} \sum_{k_2 = 0}^{p-1} \frac{1}{p^2} z(j_1 + k_1, j_2 + k_2) \]

For \(p = 2 \), and stride of (1,1), we have

\[z(j_1, j_2) \Rightarrow x(j_1, j_2) \]

(0,0) point
CNN Average Pooling with Stride

- 2D average pooling equation

\[
x(j_1, j_2) = \sum_{k_1=0}^{p-1} \sum_{k_2=0}^{p-1} \frac{1}{p^2} z(d_1 j_1 + k_1, d_2 j_2 + k_2)
\]

For \(p = 2 \) with stride of \((d_1, d_2) = (2, 2) \), we have

\[
\begin{array}{cccccccc}
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\]

\[
\begin{array}{cccc}
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\end{array}
\]

\(z(j_1, j_2) \)

\(x(j_1, j_2) \)
CNN Max Pooling

- **2D max pooling equation**

\[
x(j_1, j_2) = \max_{0 \leq k_1 < p} \max_{0 \leq k_2 < p} z(j_1 + k_1, j_2 + k_2)
\]

For \(p = 2 \) and stride of \((d_1, d_2) = (1,1)\), we have

\[
z(j_1, j_2)
\]

\[
\Rightarrow
\]

\[
x(j_1, j_2)
\]
CNN Max Pooling with Stride

- 2D max pooling with a stride equation

\[x(j_1, j_2) = \max_{0 \leq k_1 < p} \max_{0 \leq k_2 < p} z(d_1 j_1 + k_1, d_2 j_2 + k_2) \]

For \(p = 2 \) and stride of \((d_1, d_2) = (2,2) \), we have

\[z(j_1, j_2) \quad \Rightarrow \quad x(j_1, j_2) \]
Adjoint Gradients for CNNs

- Implementation of a CNN node
- The fast adjoint gradient
- Computing the adjoint gradient for CNN nodes
For each node you need two functions:

- Forward propagation function:

\[x \leftarrow f(z, \theta) \]

You need a software implementation of the forward function.

- Adjoint gradient function:

\[[\delta, g_w, g_b] \leftarrow G(\epsilon, z, \theta) \]

You need a software implementation of this function that multiplies \(\epsilon \) by the adjoint gradient.
Gradient for Single Layer CNN

- Single layer NN:

\[f_\theta(z) = \sigma(w \ast z + b) \]

- We will need the adjoint gradient w.r.t \(\theta = (w, b) \)

\[\nabla_\theta f_\theta(z) = \left[\nabla_w f_{(w,b)}(z), \nabla_b f_{(w,b)}(z) \right] \]

- And, we will also need:

\[\nabla_z f_\theta(z) \]
Each node needs a function to compute the adjoint gradient:

\[[\nabla f]^t \leftarrow G(\epsilon, z, \theta) \]

Conceptually, this is

\[A = \nabla_z f_\theta(z) \]
\[B_w = \nabla_w f_\theta(z) \]
\[B_b = \nabla_b f_\theta(z) \]
The Fast Adjoint Gradient

- Conceptually, the adjoint gradient function computes this:
 \[A = \nabla_z f_\theta(z) \]
 \[B_w = \nabla_w f_\theta(z) \]
 \[B_b = \nabla_b f_\theta(z) \]

- For input gradient, it computes:
 \[A_{j,i} = \frac{\partial [f_\theta(y_k)]_j}{\partial z_i} \]

- **Big Idea**: Directly compute output without computing gradient!

You're given this input.

You need this output.

But do you really need to compute this huge matrix? No!

But how??
Adjoint Gradient of Convolution w.r.t. Input

- Gradient of output with input:
 \[x_i = w_i \ast z_i = \sum_j w_{i-j} z_j \]
 So \(x = Az \) where \(A_{i,j} = w_{i-j} \)
 \[\frac{\partial x_i}{\partial z_j} = A_{i,j} = w_{i-j} \]

- Adjoint gradient:
 \[[A^t]_{i,j} = A_{j,i} = w_{j-i} \]
 \[\delta_i = \sum_j w_{j-i} \epsilon_j = w_{-i} \ast \epsilon_i \]
Adjoint Gradient of Convolution w.r.t. Weights

- Gradient of output with weights:

\[x_i = z_i \ast w_i = \sum_j z_{i-j} w_j \]

\[x = Aw \]

where \(\frac{\partial x_i}{\partial w_j} = A_{i,j} = z_{i-j} \)

- Adjoint gradient:

\[
[A^t]_{i,j} = A_{j,i} = z_{j-i} \\
\delta_i = \sum_j z_{j-i} \epsilon_j
\]
Adjoint Gradient of w.r.t. Input

- Forward function:

\[f(y) = \sigma \left(w_{(j_1,j_2),i}^j z_{(j_1,j_2),i}^j + b^j \right) \]

- The adjoint gradient \([\nabla_z f]^t\) is given by

\[\delta_{j_1,j_2,i} = w_{(-j_1,-j_2),i}^j \left[\nabla \sigma \right]^{k_1,k_2,k_3}_{(j_1,j_2),j_3} \epsilon_{k_1,k_2,k_3} \]

Fast because it never computes A!
Adjoint Gradient w.r.t. b

- **Forward function:**

$$f(y) = \sigma(w_{(j_1,j_2),i}j_3 \ast y_{(j_1,j_2),i} + b_j^3)$$

- The adjoint gradient $[\nabla_b f]^t \epsilon$ is given by

$$[g_b]_{j_3} = 1^{j_1,j_2} [\nabla \sigma]^{k_1,k_2,k_3}_{j_1,j_2,j_3} \epsilon_{k_1,k_2,k_3}$$

Note: $1^{j_1,j_2} = 1$ for all j_1 and j_2
Adjoint Gradient w.r.t. w

- **Forward function:**

$$f(y) = \sigma(w_{(j_1,j_2),i} y^{(j_1,j_2),i} + b^{j_3})$$

- The adjoint gradient $[\nabla_w f]^t \epsilon$ is given by

$$[g_w]_{j_1,j_2,j_3} = y^{(-j_1,-j_2)} [\nabla \sigma]^{k_1,k_2,k_3}_{(j_1,j_2),j_3} \epsilon_{k_1,k_2,k_3}$$