Convolutional Neural Networks

- Convolution with Vector Input and Output
- Single and Multi-Layer CNNs
- Upsampling Pooling and Stride
Limitations of Dense Neural Networks

- **Too many parameters:**
 - Number of parameters scale roughly as N_x^2 for N-dimensional inputs.
 - Processing a 1024×1024 image, requires $\sim 10^{12}$ parameters per layer.
 - Both training and inference is slow.

- **The solution to many problems should be space-invariant:**
 - Object recognition: Recognition shouldn’t depend on object position in image.
 - Image denoising: Noise removal should depend on content, not absolute location in the image.
How did you set up the optimization for your CNN?
- I used Batch Normalization

Oh OK, but what did you actually do? Like how did you do the normalization.
- I used Batch Normalization

Yeah, I know you used batch normalization, but how did you store the normalization parameters for inference, and what values did you use?
- I used Batch Normalization

Can you say anything other than, “I used batch normalization”
- I used Batch Normalization

Warning: I don’t understand popular culture, and I didn’t check with my kids before writing this.
What is Convolution?

- Discrete-time convolution is defined as*

\[x(j) = z(j) * w(j) = \sum_{k=-\infty}^{\infty} z(j - k) w(k) \]

\[= w(j) * z(j) = \sum_{k=-\infty}^{\infty} w(j - k) z(k) \]

In 2D, convolution is given by

\[x(j_1, j_2) = w(j_1, j_2) * z(j_1, j_2) = z(j_1, j_2) * w(j_1, j_2) \]

\[= \sum_{k_1=-\infty}^{\infty} \sum_{k_2=-\infty}^{\infty} z(j_1 - k_1, j_2 - k_2) w(k_1, k_2) \]

*CNN sometimes use a non-standard definition of convolution, but you can just time reverse \(w \) to convert. However, the non-standard definition leads to issues. So, we will adopt the standard definition.
Convolution with Finite Kernels

- Discrete-time convolution is defined as:

\[x(j) = w(j) * z(j) = \sum_{k=-p}^{p} z(j - k) w(k) \]

where \(w \) is of length \(2p + 1 \)

- In 2D, convolution is given by:

\[x(j_1, j_2) = \sum_{k_1=-p}^{p} \sum_{k_2=-p}^{p} z(j_1 - k_1, j_2 - k_2) w(k_1, k_2) \]

where \(w \) is of size \(p \times p \)
2D Convolution with “Same” boundary

- For 3×3 filter is given by

\[
x(j_1, j_2) = \sum_{k_1=-1}^{1} \sum_{k_2=-1}^{1} z(j_1 - k_1, j_2 - k_2) w(k_1, k_2)
\]

Tensor notation

\[
x_{j_1,j_2} = w_{(j_1,j_2)} \ast z_{(j_1,j_2)}
\]

Assumes \(p \) is odd

Parenthesizes denote convolution

Assumes \(p \) is odd

(0,0) point

(0,0) points

zero pad
2D Convolution with “Valid” Boundary

- For 3×3 filter is given by

$$x(j_1, j_2) = \sum_{k_1 = -1}^{1} \sum_{k_2 = -1}^{1} z(j_1 + 1 - k_1, j_2 + 1 - k_2) w(k_1, k_2)$$

Tensor notation

$$x^{j_1, j_2} = w_{(j_1, j_2)} * z^{(j_1, j_2)}$$
2D Convolution with Vector Input

- Vector 2D convolution of depth $d_i = 2$ and $d_o = 1$

$$x(j_1, j_2) = \sum_{i=0}^{d-1} \sum_{k_1=p}^{p} \sum_{k_2=p}^{p} z(j_1 - k_1, j_2 - k_2, i) w(k_1, k_2, i)$$

Tensor notation

$$x^{j_1,j_2} = w_{(j_1,j_2),i} * z^{(j_1,j_2),i}$$

Tensor notation for convolution operation:

$$x(j_1, j_2) = w_{(j_1,j_2),i} * z(j_1,j_2)$$
2D Convolution with Vector Input/Output

- Vector 2D convolution of depth $d_i = 2$ and $d_o = 2$

$$x^{j_1,j_2,j_3} = w_{(j_1,j_2),i} \cdot j_3 \ast z_{(j_1,j_2),i}$$

Convolution Diagram

- **Sum notation**

\[
x(j_1, j_2, j_3) = \sum_{i=0}^{d_i-1} \sum_{k_1=-p}^{p} \sum_{k_2=-p}^{p} z(j_1 - k_1, j_2 - k_2, i) \cdot w(k_1, k_2, i, j_3)
\]

- **Tensor notation**

\[
x_{j_1, j_2, j_3} = w_{(j_1, j_2), i} \cdot j_3 \ast z_{(j_1, j_2), i}
\]

where

- \(w\) is \(5 \times 5 \times 16 \times 16 = 6,400\)
- \(y\) is \(512 \times 512 \times 16 = 4,194,304\)
- \(x\) is \(512 \times 512 \times 16 = 4,194,304\)
Single Layer CNN

- Single layer 2D CNN example:

\[x = f_\theta(z) = \sigma(w \ast z + b) \]

\[x^{j_1,j_2,j_3} = \sigma(w^{(j_1,j_2),i}^{j_3} \ast z^{(j_1,j_2),i} + b^{j_3}) \]

- Tensor structures

- Parameter Tensors

\[w \text{ is } 5 \times 5 \times 16 \times 16 = 6,400 \]
\[b \text{ is } 16 = 16 \]

- Feature or State Tensors

\[z \text{ is } 512 \times 512 \times 16 = 4,194,304 \]
\[x \text{ is } 512 \times 512 \times 16 = 4,194,304 \]
5 Layer CNN

- **Parameters:**
 - Layer 1: filter $5 \times 5 \times 1 \times 16$; offset 16; ReLU; #params 416
 - Layer 2: filter $5 \times 5 \times 16 \times 16$; offset 16; ReLU; #params 6,416
 - Layer 3: filter $5 \times 5 \times 16 \times 16$; offset 16; ReLU; #params 6,416
 - Layer 4: filter $5 \times 5 \times 16 \times 16$; offset 16; ReLU; #params 6,416
 - Layer 5: filter $5 \times 5 \times 16 \times 1$; offset 16; ReLU; #params 416
 - Total # params = 20,080
Good news:
- Dramatic reduction in number of parameters as compare to dense network
- Spatially invariant behavior (except for boundaries)
- For interior layers, each pixel is formed by a 16 dimensional feature vector
- Intuition: CNN can design its own features!

Bad news:
- Not very useful
- ReLUs are fast but can be difficult to train
- Spatial resolution of each layer is the same
- Output isn’t appropriate for classification

- Stride of \((d_v, d_h) = (2,2)\), results in

\[
x(j_1, j_2) = z(2j_1, 2j_2)
\]

- **Comments:**
 - Output has reduced dimensions of \([N_v/d_v], [N_h/d_h]\)
 - Also known as decimation
 - Can be used with most operators
CNN Upsampling

- Upsampling of \((L_v, L_h) = (2,2)\), results in

\[
x(j_1, j_2) = z(\lfloor j_1/2 \rfloor, \lfloor j_2/2 \rfloor)
\]

![Diagram showing upsampling process](image)

Comments:
- Also known as pixel replication
- Output has dimensions of \((L_v N_v, L_h N_h)\)
2D average pooling equation

\[x(j_1, j_2) = \sum_{k_1=0}^{p-1} \sum_{k_2=0}^{p-1} \frac{1}{p^2} z(j_1 + k_1, j_2 + k_2) \]

For \(p = 2 \), and stride of (1,1), we have

\[z(j_1, j_2) \]

\[x(j_1, j_2) \]
CNN Average Pooling with Stride

- 2D average pooling equation

\[x(j_1, j_2) = \sum_{k_1=0}^{p-1} \sum_{k_2=0}^{p-1} \frac{1}{p^2} z(d_1 j_1 + k_1, d_2 j_2 + k_2) \]

For \(p = 2 \) with stride of \((d_1, d_2) = (2,2) \), we have
CNN Max Pooling

- 2D max pooling equation

\[x(j_1, j_2) = \max_{0 \leq k_1 < p} \max_{0 \leq k_2 < p} z(j_1 + k_1, j_2 + k_2) \]

For \(p = 2 \) and stride of \((d_1, d_2) = (1,1)\), we have

\[
\begin{array}{cccccccccc}
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array}
\]

\[
\begin{array}{cccccccccc}
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array}
\]

\[
\begin{array}{cccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array}
\]

\[
\begin{array}{cccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array}
\]

\[
\begin{array}{cccccccccc}
z(j_1, j_2) \\
\Rightarrow \\
\end{array}
\]

\[
\begin{array}{cccccccccc}
x(j_1, j_2) \\
\end{array}
\]
CNN Max Pooling with Stride

- 2D max pooling with a stride equation

\[x(j_1, j_2) = \max_{0 \leq k_1 < p} \max_{0 \leq k_2 < p} z(d_1 j_1 + k_1, d_2 j_2 + k_2) \]

For \(p = 2 \) and stride of \((d_1, d_2) = (2, 2)\), we have

\[
\begin{bmatrix}
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix} \Rightarrow \begin{bmatrix}
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\end{bmatrix} \]

\[x(j_1, j_2) \]

\[z(j_1, j_2) \]
Adjoint Gradients for CNNs

- Implementation of a CNN node
- The fast adjoint gradient
- Computing the adjoint gradient for CNN nodes
Backpropagation for CNN Nodes

- For each node you need two functions:
 - Forward propagation function:

 $$ x \leftarrow f(z, \theta) $$

 You need a software implementation of the forward function.
 - Adjoint gradient function:

 $$ [\delta, g_w, g_b] \leftarrow G(\epsilon, z, \theta) $$

 You need a software implementation of this function that multiplies ϵ by the adjoint gradient.
Gradient for Single Layer CNN

- Single layer NN:

\[f_\theta(z) = \sigma(w \ast z + b) \]

- We will need the adjoint gradient w.r.t \(\theta = (w, b) \)

\[\nabla_\theta f_\theta(z) = [\nabla_w f_{(w,b)}(z), \nabla_b f_{(w,b)}(z)] \]

- And, we will also need:

\[\nabla_z f_\theta(z) \]
Each node needs a function to compute the adjoint gradient:

$$\delta, g_w, g_b \leftarrow G(\epsilon, z, \theta)$$

Conceptually, this is

$$A = \nabla_z f_\theta(z)$$

$$B_w = \nabla_w f_\theta(z)$$

$$B_b = \nabla_b f_\theta(z)$$
The Fast Adjoint Gradient

- Conceptually, the adjoint gradient function computes this

\[A = \nabla_z f_\theta(z) \]
\[B_w = \nabla_w f_\theta(z) \]
\[B_b = \nabla_b f_\theta(z) \]

- For input gradient, it computes

\[
\begin{align*}
\delta
\rightarrow & A^t \\
& \downarrow \\
B_w^t & \downarrow g_w \\
& \downarrow \\
B_b^t & \downarrow g_b \\
\downarrow & \rightarrow \epsilon
\end{align*}
\]

\[
\begin{align*}
A_{j,i} = & \frac{\partial [f_\theta(y_k)]_j}{\partial z_i} \\
& \text{adjoint gradient} \\
\text{You need this output.} \\
& \text{adjoint function} \\
& \text{gradient} \\
& N_y \times N_x \\
& \text{You’re given this input}
\end{align*}
\]

- But do you really need to compute this huge matrix? No!

- Big Idea: Directly compute output without computing gradient!
Adjoint Gradient of Convolution w.r.t. Input

- Gradient of output with input:

\[x_i = w_i * z_i = \sum_j w_{i-j} z_j \]

So \(x = A z \) where \(A_{i,j} = w_{i-j} \)

\[\frac{\partial x_i}{\partial z_j} = A_{i,j} = w_{i-j} \]

- Adjoint gradient:

\[[A^t]_{i,j} = A_{j,i} = w_{j-i} \]

\[\delta_i = \sum_j w_{j-i} \epsilon_j = w_{-i} * \epsilon_i \]
Adjoint Gradient of Convolution w.r.t. Weights

- **Gradient of output with weights:**
 \[x_i = z_i * w_i = \sum_j z_{i-j} w_j \]
 \[x = Aw \]
 where \(\frac{\partial x_i}{\partial w_j} = A_{i,j} = z_{i-j} \)

- **Adjoint gradient:**
 \[[A^t]_{i,j} = A_{j,i} = z_{j-i} \]
 \[\delta_i = \sum_j z_{j-i} \varepsilon_j \]

Autocorrelates \(\varepsilon_j \) with time reverse of \(y_j \)
Adjoint Gradient of w.r.t. Input

- **Forward function:**

 \[f(y) = \sigma(w_{(j_1,j_2),i}^j z^{(j_1,j_2),i} + b^j) \]

 - The adjoint gradient \([\nabla_z f]^t \epsilon\) is given by

 \[
 \delta_{j_1,j_2,i} = w_{(-j_1,-j_2),i}^j \left[\nabla \sigma \right]_{k_1,k_2,k_3}^{j_3} (j_1,j_2),j_3 \epsilon_{k_1,k_2,k_3}
 \]

Fast because it never computes \(A\)!
Adjoint Gradient w.r.t. b

- **Forward function:**
 \[
 f(y) = \sigma(w_{(j_1,j_2),i}^j z_{(j_1,j_2),i}^j + b^j)
 \]

 - The adjoint gradient $[\nabla_b f]^t \epsilon$ is given by
 \[
 [g_b]_{j_3} = 1_{j_1,j_2} [\nabla \sigma]^{k_1,k_2,k_3}_{j_1,j_2,j_3} \epsilon_{k_1,k_2,k_3}
 \]

Note: $1_{j_1,j_2} = 1$ for all j_1 and j_2
Adjoint Gradient w.r.t. w

- **Forward function:**

 $$f(y) = \sigma(w_{(j_1,j_2),i} \cdot j_3 * z_{(j_1,j_2),i} + b_{j_3})$$

- The adjoint gradient $[\nabla_w f]^t \epsilon$ is given by

 $[g_w]_{j_1,j_2,i,j_3} = z_{(-j_1,-j_2),i} \cdot [\nabla \sigma]^{k_1,k_2,k_3}_{(j_1,j_2),j_3} \epsilon_{k_1,k_2,k_3}$