Optimization of Deep Functions

- Intro to Deep Learning
- Deep Learning Structures
- Gradient of a Deep Network
- Forward and Back Propagation
Deep Learning Background

- **Shallow learning:**
 - Inference function formed by 1 or 2 layers.
 - For many years, this was thought to be enough [Cybenko 1989].

- **Deep learning:**
 - What is it?
 - Uses many layers of inference functions in a hierarchal structure.
 - Typically 10 to 100 layers.
 - Why do people use it?
 - Over the last decade, there has been overwhelming empirical evidence that deep learning dramatically outperforms shallow learning on a wide range of real applications.
 - Intuitively, it is easier to represent complex phenomena using a hierarchy of inference functions.
 - If it’s so great, then why did it take so long?
 - It was difficult to implement and no one was sure it would work, but now its easy to implement with modern software tools.
 - Must train all layers jointly ⇒ requires automatic differentiation
 - Many more parameters to model and the problem of “vanishing gradient”
 - Requires more training data.
Deep Learning Structure

- Inference function is hierarchical.
 - For $M = 4$, we have that $\theta = [\theta_0, \theta_1, \theta_2, \theta_3]$, and
 \[
 \hat{x} = f_\theta(y) = f_{3,\theta_3} \left(f_{2,\theta_2} \left(f_{1,\theta_1} \left(f_{0,\theta_0}(y) \right) \right) \right) \quad \text{(this is a mess)}
 \]
 - Instead write
 \[
 f_\theta y = f_{3,\theta_3} f_{2,\theta_2} f_{1,\theta_1} f_{0,\theta_0} y = [\prod_{m=0}^{M-1} f_{m,\theta_m}] y
 \]
Remember the Loss Gradient

- To compute the loss gradient

\[
\nabla L_{MSE}(\theta) = -\frac{2}{K} \sum_{k=0}^{K-1} (x_k - f_\theta(y_k))^\epsilon \nabla f_\theta(y_k)
\]

- For each training pair, we need to:
 - Compute the error vector
 - Multiply by the adjoint gradient \(\Leftarrow \text{This is the hard part!}\)
 - Sum them up

\[
1 \times P \quad \text{Loss gradient}
\]
\[
\frac{-2}{K} \sum_{k=0}^{K-1} 1 \times N_x \quad \text{error vector}
\]
\[
N_x \times P \quad \frac{\partial [f_\theta(y_k)]_i}{\partial \theta_j} \quad \text{function gradient}
\]
The Adjoint of the Loss Gradient

- To compute the loss gradient

\[
[\nabla L_{MSE}(\theta)]^t = \frac{-2}{K} \sum_{k=0}^{K-1} [\nabla f_\theta(y_k)]^t (x_k - f_\theta(y_k))
\]

- The adjoint gradient of the loss function:
 - Input and output are exchanged
 - Reverses flow of network
Example Deep Network

- For $M = 3$,
 - Inference function $f_{\theta} y = f_{2,\theta_2} f_{1,\theta_1} f_{0,\theta_0} y$
 - Parameter vectors is $\theta = [\theta_0, \theta_1, \theta_2]$
 - Hidden states $z_{m+1} = f_{\theta_m} z_m$ with dimension $z_m \in \mathbb{R}^{N_m}$

- How do we compute the gradient of this inference function?
Gradients of Deep Network

- By the chain rule:
 - Gradient with respect to z_0
 \[\nabla_{z_0} f_{\theta} = [\nabla_{z_2} f_2][\nabla_{z_1} f_1][\nabla_{z_0} f_0] \]
 - Adjoint gradient with respect to z_0
 \[[\nabla_{z_0} f_{\theta}]^t = [\nabla_{z_0} f_0]^t[\nabla_{z_1} f_1]^t[\nabla_{z_2} f_2]^t \]
 - Gradient with respect to θ_0
 \[\nabla_{\theta_0} f_{\theta} = [\nabla_{z_2} f_2][\nabla_{z_1} f_1][\nabla_{\theta_0} f_0] \]
 - Gradient with respect to θ_0
 \[[\nabla_{\theta_0} f_{\theta}]^t = [\nabla_{\theta_0} f_0]^t[\nabla_{z_1} f_1]^t[\nabla_{z_2} f_2]^t \]
Gradients for Each Node

- Input gradient of layer:
 \[A_m \leftarrow \nabla_z f_{\theta_m}(z_m) = \nabla \left[f_{\theta_m} \right]_i \frac{\partial [f_{\theta_m}]_i}{\partial [z_m]_j} \]

- Parameter gradient of layer:
 \[B_m \leftarrow \nabla_\theta f_{\theta_m}(z_m) = \nabla \left[f_{\theta_m} \right]_i \frac{\partial [f_{\theta_m}]_i}{\partial [\theta_m]_j} \]
Adjoint Gradients for Each Node

- Input gradient of layer:
 \[A_m^t \leftarrow [\nabla_Z f_{\theta_m}(z_m)]^t = \]

- Parameter gradient of layer:
 \[B_m^t \leftarrow [\nabla_\theta f_{\theta_m}(z_m)]^t = \]
By the chain rule, the gradients with respect to inputs are
\[
\nabla_{z_2} f_\theta = A_2 \\
\nabla_{z_1} f_\theta = A_2 A_1 \\
\nabla_{z_0} f_\theta = A_2 A_1 A_0
\]

By the chain rule, the gradients with respect to parameters are
\[
\nabla_{\theta_2} f_\theta = B_2 \\
\nabla_{\theta_1} f_\theta = A_2 B_1 \\
\nabla_{\theta_0} f_\theta = A_2 A_1 B_0
\]
Compute loss gradient by reversing network flow:

- For each training vector,
 \[g_{m,k} = \nabla_{\theta_m} \| y_k - f_\theta(x_k) \|^2 \]
- So then the gradient of the loss function is given by
 \[\nabla_{\theta_m} L(\theta) = g_m = \frac{1}{K} \sum_{k=0}^{K-1} g_{m,k} \]
BP Step 1: Forward Propagate States

- Forward propagation pseudo code:

\[
\begin{align*}
 z_0 & \leftarrow y \\
 \text{For } (m = 0 \text{ to } M - 1) \{ \\
 & \quad z_{m+1} \leftarrow f_{\theta_m} z_m \\
 \} \\
 \hat{x} & \leftarrow z_M
\end{align*}
\]

Forward Propagation
BP Step 2: Back Propagation

- Backpropagation pseudo code

For \(m = 0 \) to \(M - 1 \) \(g_m \leftarrow 0 \)

For \(k = 0 \) to \(K - 1 \) \{
 \epsilon_M \leftarrow -2(x_k - f_\theta(y_k))
 For (\(m = M - 1 \) to 0) \{
 A \leftarrow \nabla_z f_\theta_m(z_m)
 B \leftarrow \nabla_\theta f_\theta_m(z_m)
 \epsilon_m \leftarrow A^t \epsilon_{m+1}
 g_m \leftarrow g_m + B^t \epsilon_{m+1}
 \}
\}

For \(m = 0 \) to \(M - 1 \) \(g_m \leftarrow g_m/K \)

Return \(g_m \)
Back Propagation: Computational Efficiency

- Order of computation matters!!
 - Left to Right: Dense matrix products ⇒ $O(N^2K)$
 - Right to Left: Vector matrix products ⇒ $O(NK)$

This fast algorithm is sometimes referred to as adjoint differentiation.

$$g_o = \frac{1}{K} \sum_{k=0}^{K-1} \begin{pmatrix} P_0 \times 1 \\ \text{Loss gradient} \end{pmatrix} = \begin{pmatrix} P_0 \times N_1 \\ \text{parameter gradient} \end{pmatrix} B_0^t \begin{pmatrix} N_1 \times N_2 \\ \text{input gradient} \end{pmatrix} A_1^t \begin{pmatrix} N_2 \times N_3 \\ \text{input gradient} \end{pmatrix} A_2^t \begin{pmatrix} N_3 \times 1 \\ \text{error vector} \end{pmatrix}$$
GD on Acyclic Graph Structures

- Definition of DAG
- General Node Structure
- Back Propagation on Graphs
Define DAG

- Directed Acyclic Graph (DAG)
 - A directed graph with no loops.
 - Starting at any node, you will eventually hit a termination

- If you reverse the arrows (i.e., flow), it’s still a DAG
Define DL Node

- Assume that DL network is a DAG.
 - Then w.o.l.o.g for a fan-in of 2, each node is
 - And the back propagation is

\[
x = f_s,\theta(y_1, y_2)
\]
\[
A_{s,1} = \nabla_{y_1} f_s
\]
\[
A_{s,2} = \nabla_{y_2} f_s
\]
\[
B_s = \nabla_{\theta} f_s
\]

- And the back propagation is

Adjoint gradient propagation

More detailed view of adjoint gradient propagation
Step 1: Forward Propagation for DAG

- Forward propagation.

\[
\begin{bmatrix}
 x_{k,1} \\
 x_{k,2}
\end{bmatrix} = f_\theta \left(\begin{bmatrix}
 y_{k,1} \\
 y_{k,2}
\end{bmatrix} \right)
\]
Step 2: Back Propagation for DAG

- Back propagation using adjoint gradients.

Gradient is given by

\[
\begin{align*}
\left[\varepsilon_{k,1} \right] &= -2 (x_k - f_\theta (y_k)) \\
\left[\varepsilon_{k,2} \right] &= -2 \left[\nabla f_5 \right]^t \\
g_s &= \frac{1}{K} \sum_{k=0}^{K-1} g_{k,s}
\end{align*}
\]
Implementation of Each Node

- For each node you need two functions:
 - Function for forward propagation

\[x \leftarrow f(z_1, z_2, \theta) \]

You need a software implementation of this forward function.

- Function for adjoint gradient (i.e., back propagation)

\[[\delta_1, \delta_2, g] \leftarrow G(\epsilon, z_1, z_2, \theta) \]

You need a software implementation of this function that multiplies \(\epsilon \) by the adjoint gradient.

Very important: You don’t need to ever compute \([\nabla f_s]^t\)!!
General Loss Functions

- The Weakness of MSE Loss Functions
- MAE and Cross Correlation Loss Functions
- Back Propagating General Loss Functions
Weakness of MSE Loss

- MSE loss is given by

\[L_{MSE}(\theta) = \frac{1}{K} \sum_{k=0}^{K-1} \| x_k - f_\theta(y_k) \|^2 \]

- Excessively weights outliers
 - If training sample is wrong, then prediction error can be very large.
 - If a few bad training samples can dramatically degrade results.

\[[\nabla L_{MSE}(\theta)]^t = \frac{-2}{K} \sum_{k=0}^{K-1} [\nabla f_\theta(y_k)]^t(x_k - f_\theta(y_k)) \]
A General Class of Loss Functions

- General loss functions

\[L_{MSE}(\theta) = \frac{1}{K} \sum_{k=0}^{K-1} \rho(x_k, f_\theta(y_k)) \]

- where \(\rho \) is a distortion function s.t. \(\forall a, b, \rho(a, b) \geq \rho(a, a) \).

- Typical choices include
 - Mean Squared Error (MSE)
 \[\rho(a, b) = \|a - b\|^2 = \sum_i (a_i - b_i)^2 \]
 for \(\forall a, b \in \mathbb{R}^{N_x} \)
 - Mean Absolute Error (MAE)
 \[\rho(a, b) = \|a - b\|_1 = \sum_i |a_i - b_i| \]
 for \(\forall a, b \in \mathbb{R}^{N_x} \)
 - Multicategory Cross Entropy
 \[\rho(a, b) = -\sum_i a_i \log b_i \]
 for \(\forall a, b \in \mathbb{S}^{N_x} \)
Alternative loss functions

\[L_{\text{MSE}}(\theta) = \frac{1}{K} \sum_{k=0}^{K-1} \rho(x_k, f_\theta(y_k)) \]

Results in gradient

\[[\nabla L_{\text{MSE}}(\theta)]^t = \frac{1}{K} \sum_{k=0}^{K-1} [\nabla \theta f_\theta(y_k)]^t \epsilon_k^t \]

\[\epsilon_k = \nabla_b \rho(a, b) \bigg|_{a=x_k, b=f_\theta(y_k)} \]

\[P \times 1 \text{ Loss gradient} \]

\[= \frac{1}{K} \sum_{k=0}^{K-1} \]

\[P \times N_x \text{ function gradient} \]

\[\nabla \theta f_\theta(y_k) \]

\[N_x \times 1 \text{ error vector} \]

\[\epsilon_k^t \]
Error Vector for General Loss Functions

\[L(\theta) = \frac{1}{K} \sum_{k=0}^{K-1} \rho(x_k, f_\theta(y_k)) \]

General loss functions

- **MSE**
 Loss: \(\rho(a, b) = \|a - b\|^2 \)
 Error: \(\epsilon_k = -2(x_k - f_\theta(y_k)) \)

- **MAE**
 Loss: \(\rho(a, b) = \|a - b\|_1 \)
 Error: \(\epsilon_k = -\text{sign}(x_k - f_\theta(y_k)) \)

- **Cross entropy**
 Loss: \(\rho(a, b) = -\sum_i a_i \log b_i \)
 Error: \(\epsilon_k = -\frac{x_k}{f_\theta(y_k)} \)

General error function

Point-wise division
Back Propagation for Typical Loss Functions

- Loss gradient given by

\[\nabla_{\theta_m} L(\theta) = \frac{1}{K} \sum_{k=0}^{K-1} g_{m,k} \]

General: \(\epsilon_k = \nabla_b \rho(a, b)|_{a=x_k, b=f_\theta(y_k)} \)

MSE: \(\epsilon_k = -2(x_k - f_\theta(y_k)) \)

MAE: \(\epsilon_k = -\text{sign}(x_k - f_\theta(y_k)) \)

CE: \(\epsilon_k = -\frac{x_k}{f_\theta(y_k)} \)
DAG Back Propagation for General Loss

- Back propagation using adjoint gradients.

Gradient is given by

\[g_s = \frac{1}{K} \sum_{k=0}^{K-1} g_{k,s} \]