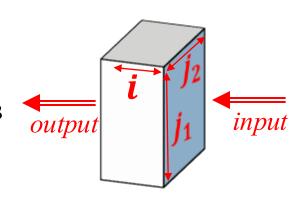
Tensors

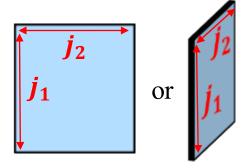
- Contravariant and covariant tensors
- Einstein notation
- Interpretation

What is a Tensor?

- It is the generalization of a:
 - Matrix operator for >2 dimensions



Vector data to >1 dimension

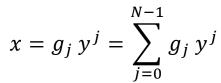


- Why do we need it?
 - Came out of differential geometry.
 - Was used by Albert Einstein to formulate the theory of General Relativity.
 - It's useful for many problems, including Deep NNs.

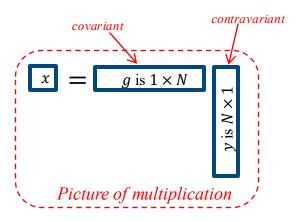
Contravariant and Covariant Vectors

$$x = gy$$

- Contravariant vectors:
 - "Column Vectors" that represent data
 - Vectors that describe the position of something
 - y^j for $0 \le j < N$ and $x \in \Re$
- Covariant vector:
 - "Row vectors" that operate on data
 - Gradient vectors
 - g_j for $0 \le j < N$
- Einstein notation



- Leave out the sum to make notation cleaner
- Always sum over any two indices that appear twice



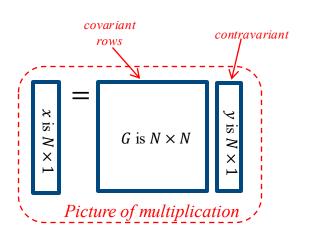
Vector-Matrix Products as Tensors

$$x = Gy$$

- Rank 1 Contravariant vectors:
 - y^j for $0 \le j < N_y$
 - x^j for $0 \le j < N_x$
- Rank 2 tensor (i.e., matrix):
 - G_j^i for $0 \le i < N_x$ and $0 \le j < N_y$
 - There is a gradient for each component x^i
- Einstein notation

$$x^{i} = G^{i}_{j} y^{j} = \sum_{i=0}^{N_{y}-1} G^{i}_{j} y^{j}$$

- Leave out the sum to make notation cleaner
- Always sum over any two indices that appear twice



Tensor Products

Einstein notation

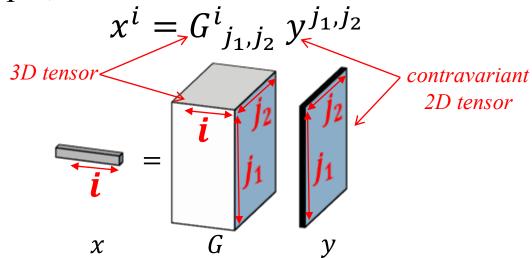
Sum over pairs of indices

$$x^{i_1,i_2} = G^{i_1,i_2} y^{j_1,j_2} y^{j_1,j_2}$$

- 2-D Contravariant Tensors:
 - $-y^{j_1,j_2}$ for $0 \le j_1, j_2 < N_y$
 - x^{i_1, i_2} for $0 \le i_1, i_2 < N_x$
- 4-D Tensor:
 - $G^{i_1,i_2}_{j_1,j_2}$ for $0 \le i_1$, $i_2 < N_x$ and $0 \le j_1$, $j_2 < N_y$
 - G is known as a tensor
 - 2D covariant input
 - 2D contravariant output

Picture of a Tensor Product

• For example, if we have



- Tensor 3-D tensor G has

Input: 2D image indexed by (j_1, j_2) Output: 1D vector indexed by i

- General idea: G ∈ $\Re^{N_o \times N_i}$

Some Useful Definitions

Delta functions:

$$\delta^{i}_{j} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

So then we have that

$$G^{k}{}_{j} = G^{k}{}_{i} \, \delta^{i}{}_{j}$$

•Gradient w.r.t. vector

$$\nabla_{\mathcal{V}}(Ay) = A$$

In tensor notation, we have that

$$\left[\nabla_{y}(Ay)\right]^{i}_{j} = A^{i}_{j}$$

•Gradient w.r.t. matrix

$$\nabla_A(Ay) = ??$$

First, it must have 1 output dimension and 2 input dimensions. So we have that

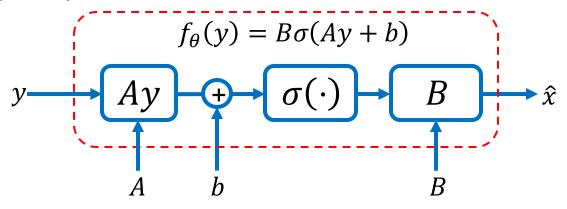
$$[\nabla_A(Ay)]^i_{j_1,j_2} = \delta^i_{j_1} y^{j_2}$$

GD for Single Layer NN

- Structure of the Gradient
- Gradients for NN parameters
- Updates for NN parameters

Gradient Direction for Single Layer NN

Single layer NN:



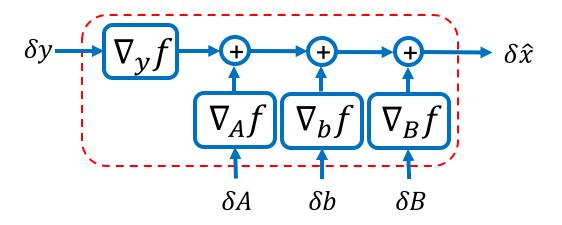
– We will need gradient w.r.t the parameters $\theta = (A, b, B)$:

$$\nabla_{\theta} f_{\theta}(y) = \left[\nabla_{A} f_{(A,b,B)}(y), \nabla_{b} f_{(A,b,B)}(y), \nabla_{B} f_{(A,b,B)}(y) \right]$$

– Later, we will also need:

$$\nabla_{y} f_{\theta}(y)$$

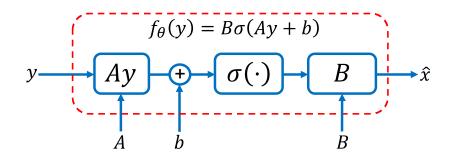
Gradient Structure for Single Layer NN



- Single layer NN:
 - Parameters are $\theta = (A, b, B)$
 - We will need the parameter gradients: $\nabla_{\theta} f_{\theta}(y) = \left[\nabla_{A} f_{(A,b,B)}(y), \nabla_{b} f_{(A,b,B)}(y), \nabla_{B} f_{(A,b,B)}(y) \right]$
 - And the input gradient:

$$\nabla_{y} f_{\theta}(y)$$

Gradient w.r.t. y

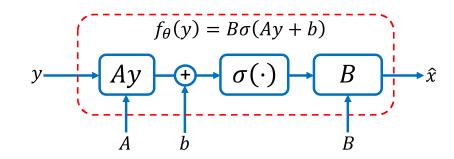


• For this case,

$$\nabla_{y} f = \nabla_{y} f_{\theta}(y) = \nabla_{y} B[\sigma(Ay + b)]$$
$$= B[\nabla \sigma(Ay + b)]A$$

Using Einstein notation

Gradient w.r.t. A



For this case,

$$\nabla_A f = B \left[\nabla \sigma (Ay + b) \right] \left[\nabla_A (Ay) \right]$$

 $[\nabla_{A}(Ay)]^{i}_{j_{1},j_{2}} = \delta^{i}_{j_{1}}y^{j_{2}}$

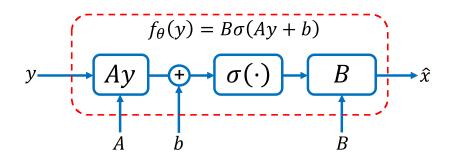
Using Einstein notation, since

- Then

$$\begin{split} [\nabla_A f]^{i_1}{}_{j_1,j_2} &= B^{i_1}{}_{i_2} [\nabla\sigma]^{i_2}{}_{i_3} [\nabla_A (Ay)]^{i_3}{}_{j_1,j_2} \\ &= B^{i_1}{}_{i_2} [\nabla\sigma]^{i_2}{}_{i_3} \delta^{i_3}{}_{j_1} y^{j_2} \end{split}$$

$$\left[\left[\nabla_{A} f \right]^{i_{1}}_{j_{1}, j_{2}} = B^{i_{1}}_{i_{2}} \left[\nabla \sigma \right]^{i_{2}}_{j_{1}} y^{j_{2}} \right]$$

Gradient w.r.t. b



• For this case,

$$\nabla_b f = B \left[\nabla \sigma (Ay + b) \right] \nabla_b (Ay + b)$$
$$= B \left[\nabla \sigma \right] I = B \nabla \sigma$$

- Using Einstein notation,

$$\left[[\nabla_b f]^{i_1}_{j_1} = B^{i_1}_{i_2} [\nabla \sigma]^{i_2}_{j_1} \right]$$

Gradient w.r.t. B



For this case,

$$\nabla_B f = \left[\nabla_B (B\sigma)\right]$$
This is a tensor!

Using Einstein notation, since

$$[\nabla_B(B\sigma)]^i_{j_1,j_2} = \delta^i_{j_1}\sigma^{j_2}$$

We have that

$$[\nabla_B f]^{i_1}_{j_1, j_2} = \delta^{i_1}_{j_1} \sigma^{j_2}$$

Update Direction for *A*

Gradient step: $A \leftarrow A + \alpha d^t$

where d is given by

$$d_{j_1,j_2} = -\nabla_A L(\theta) = \frac{2}{K} \sum_{k=0}^{K-1} \epsilon_{k,i_1} B^{i_1}{}_{i_2} [\nabla \sigma_k]^{i_2}{}_{j_1} y_k{}^{j_2}$$

$$\frac{2}{K} \sum_{k=0}^{K-1} \frac{\epsilon_{k} \times 1 \times N_{x}}{\sum_{k=0}^{N_{x}} \sum_{k=0}^{N_{x}} \frac{\sum_{k=0}^{N_{1}} \sum_{k=0}^{N_{1}} \sum_{k=0}^{N_{2}} \frac{\sum_{k=0}^{N_{1}} \sum_{k=0}^{N_{2}} \sum_{k=0}^{N_{1}} \sum_{k=0}^{N_{2}} \frac{\sum_{k=0}^{N_{1}} \sum_{k=0}^{N_{2}} \sum_{k=0}^{N_{1}} \sum_{k=0}^{N_{1}} \sum_{k=0}^{N_{2}} \sum_{k=0}^{N_{1}} \sum_{k=0}^{N_{2}} \sum_{k=0}^{N_{1}} \sum_{k=0}^{N_{2}} \sum_{k=0}^{N_{1}} \sum_{k=0}^{N_$$

For efficiency, computation goes this way!

Update Direction for *b*

Gradient step:
$$b \leftarrow b + \alpha d^t$$

where d is given by

$$d_{j_1} = -\nabla_b L(\theta) = \frac{2}{K} \sum_{k=0}^{K-1} \epsilon_{k,i_1} B^{i_1}{}_{i_2} [\nabla \sigma_k]^{i_2}{}_{j_1}$$

$$\frac{2}{K} \sum_{k=0}^{K-1} \underbrace{\epsilon_{k} \times 1 \times N_{x}}_{K} = \underbrace{1 \times N_{1}}_{N_{x}} \underbrace{\nabla^{N_{1}} \nabla^{N_{1}} \nabla^{N_{1}} \nabla^{N_{1}}}_{N_{x}} = \underbrace{1 \times N_{1}}_{N_{x}}$$

For efficiency, computation goes this way!

Update Direction for *B*

Gradient step:
$$B \leftarrow B + \alpha d^t$$

where d is given by

$$d_{j_1,j_2} = -\nabla_B L(\theta) = \frac{2}{K} \sum_{k=0}^{K-1} \epsilon_{k,j_1} \sigma_k^{j_2}$$

$$\frac{2}{K} \sum_{k=0}^{K-1} \frac{\epsilon_{k} \times 1 \times N_{x}}{\sigma_{k} N_{2}} = \frac{1}{N_{x} N_{x}}$$

For efficiency, computation goes this way!

Local and Global Minima

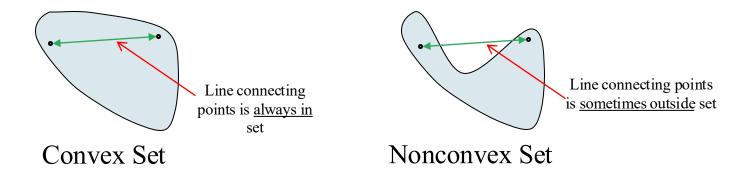
- Open and Closed Sets
- Convex Sets and Functions
- Properties of Convex Functions
- o Local Minimum, Saddle Points, and Global Minima
- Optimization Theorems

Open and Closed Sets

- Define:
 - $-\mathcal{A}\subset\mathfrak{R}^N$
 - Open ball of radius ϵ is $B(r, \epsilon) = \{r \in \mathbb{R}^N : ||r r_o|| < \epsilon\}$.
- A set \mathcal{A} is open if
 - At every point, there is an open ball contained in \mathcal{A} .
 - $\forall r \in \mathcal{A}, \ \exists \epsilon > 0 \text{ s.t. } B(r, \epsilon) \subset \mathcal{A}.$
- A set \mathcal{A} is closed if $\mathcal{A}^c = \Re^N \mathcal{A}$ is open.
- A set \mathcal{A} is compact if it is closed and bounded.
- •Facts:
 - \Re^N is both open and closed, but it is not compact.
 - If \mathcal{A} is compact, then every sequence in \mathcal{A} has a limit point in \mathcal{A} .

Convexity Sets

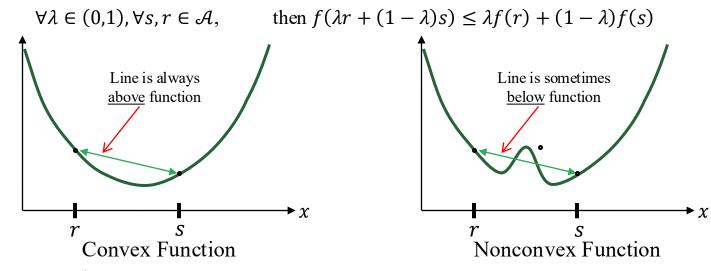
■ A set \mathcal{A} is convex if $\forall \lambda \in (0,1), \forall s, r \in \mathcal{A}$, then $\lambda r + (1 - \lambda)s \in \mathcal{A}$



- Properties:
 - The intersection of convex sets is convex

Convexity Functions

• Let $f: \mathcal{A} \to \Re$ where \mathcal{A} is a convex set. Then we say that f is a convex function if



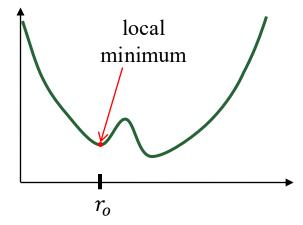
- Properties:
 - The sums of convex functions is convex
 - The maximum of a set of convex functions is convex
 - If f(y) is convex, then f(Ay) is also convex.
 - f(y) is concave if -f(y) is convex.
 - f(y) = Ay + b is both convex and concave

Properties of Convex Functions

- Valuable properties of convex functions
 - The sums of convex functions is convex.
 - Let $f(x) = \sum_n f_n(x)$. If $f_n(x)$ are convex, then f(x) is convex.
- The maximum of a set of convex functions is convex.
 - Let $f(x) = \max_{n} f_n(x)$. If $f_n(x)$ are convex, then f(x) is convex.
- The second derivative of a convex function is positive.
 - Let f(y) have two continuous derivatives, and let $H_{i,j}(y) = \frac{\partial^2 f}{\partial y_i \partial y_j}$ be the Hessian of f at y. Then f(y) is convex if and only if H(y) is non-negative definite for all y.
- A convex function of a linear transform is convex.
 - If f(y) is convex, then f(Ay) is also convex.
- An affine transform is both convex and concave.
 - f(y) = Ay + b is both convex and concave.
- A function is concave if its negative is convex.
 - f(y) is concave if -f(y) is convex.

Local Minimum

- Let $f: \mathcal{A} \to \mathfrak{R}$ where $\mathcal{A} \subset \mathfrak{R}^N$.
 - We say that $r_o \in \mathcal{A}$ is a local minimum of f if there $\exists \epsilon > 0$ s.t. $\forall r \in \mathcal{A} \cap B(r, \epsilon), f(r) \geq f(r_o)$.

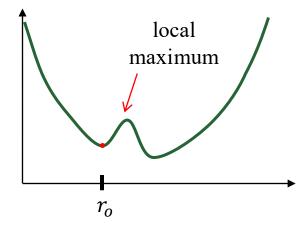


- Necessary condition for local minima:
 - Let f be continuously differentiable and let r_o be a local minimum, then $\nabla f(r_o) = 0$.

$$\begin{pmatrix} r_o \text{ a local} \\ \text{minimum} \end{pmatrix} \longrightarrow \left[\nabla f(r_o) = 0 \right]$$

Local Maximum

- Let $f: \mathcal{A} \to \mathfrak{R}$ where $\mathcal{A} \subset \mathfrak{R}^N$.
 - We say that $r_o \in \mathcal{A}$ is a local minimum of f if there $\exists \epsilon > 0$ s.t. $\forall r \in \mathcal{A} \cap B(r, \epsilon), f(r) \leq f(r_o)$.



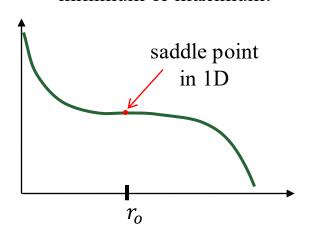
- Necessary condition for local maximum:
 - Let f be continuously differentiable and let r_o be a local minimum, then $\nabla f(r_o) = 0$.

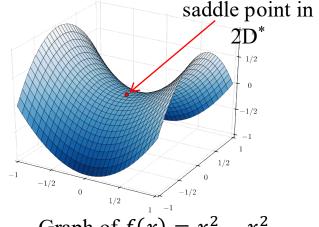
$$r_o \text{ a local maximum}$$
 \Rightarrow $\nabla f(r_o) = 0$

Saddle Point

• Let $f: \mathcal{A} \to \mathbb{R}$ where $\mathcal{A} \subset \mathbb{R}^N$ be a continuously differentiable function.

- We say that $r_o \in \mathcal{A}$ is a saddle point of f if $\nabla f(r_o) = 0$ and r_o is not a local minimum or maximum.





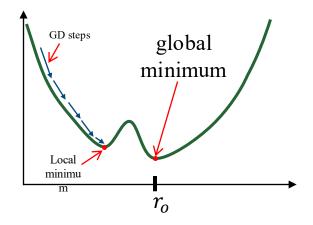
Graph of $f(x) = x_1^2 - x_2^2$

Saddle points can cause more problems than you might think.

*Shared from Wikipedia

Global Minimum

- Let $f: \mathcal{A} \to \Re$ where $\mathcal{A} \subset \Re^N$.
 - We say that $r_o \in \mathcal{A}$ is a global minimum of f if $\forall r \in \mathcal{A}, f(r) \geq f(r_o)$.



- Comments:
 - In general, finding global minimum is difficult.
 - Gradient descent optimization typically becomes trapped in local minima.

Optimization Theorems

- Let $f: \mathcal{A} \to \mathfrak{R}$ where $\mathcal{A} \subset \mathfrak{R}^N$.
 - If f is continuous and \mathcal{A} is compact, then f takes on a global minimum in \mathcal{A} .
 - If f is convex on \mathcal{A} , then any local minimum is a global minimum.
 - If f is continuously differentiable and convex on \mathcal{A} , then $\nabla f(r_o) = 0$ implies that $r_o \in \mathcal{A}$ is a global minimum of f.

• Important facts:

- Global minimum may not be unique.
- If \mathcal{A} is closed but not bounded, then it may not take on a global minimum.
- Generally speaking, gradient descent algorithms converge to the global minimum of continuously differentiable convex functions.
- Most interesting functions in ML are not convex!

