Generative Models*

o Inference vs Generation

o Monte Carlo vs Generator Methods
o Gibbs Distributions

o Monte Carlo Markov Chains

*See this helpful blog for an overview: Yang Song, “Generative Modeling by Estimating Gradients of the Data Distribution," web blog post, May
5, 2021, https://yang-song.net/blog/2021/score .



https://yang-song.net/blog/2021/score

Inference vs Generation

*Two primary goals 1n deep learning
— How to generate random vectors with a desired distribution?
— Can we learn the distribution from sample data

Learn
random vector generation:

Y ~p(y)

Goal: Generate
random vectors.

Learn
inference function:

x = fo(¥)

Goal: Predict
unknown quantity.




Taxonomy of Learning Models

s Parametric model

s Data driven model
Learning Models — Both/cither
Deterministic Inference: Generate a Random Vector:
x = fo(y) Y ~p(y)

Direct Generation: Generative Models:
Y = F;1(U) Yo ~ 0nlyn-1)

Monte Carlo Methods: Generator Methods:

1
p(y) = fexp{—u(y)} Y =hy(2)

Hastings Metropolis Generative Diffusion - Generative
Stochastic Sampling: and Score Matching: AVarlatlorclla Adversarial
u(y) u(y) ~ —sp(w) utoencoders Networks (GAN)




Gibbs Distribution

"Let X ~ p(x) be arandom object (i.e., image, video, speech).

*Typically, X 1s assumed to have a Gibbs distribution given by

1
p(x) = - exp{-u(x)}

— where u(x) is the energy function, and z is the partition function given by z =

=Facts:

Elexp{-u(X)}].

u(x) = —logp(x) always exists as long as p(x) > 0.
z 1s usually intractable to compute, but that’s OK.
u(x) increases = p(x) decreases

u(x) decreases = p(x) increases

*From Thermodynamics:

— Also known as Boltzmann distribution

— The distribution of any system in thermodynamic equilibrium



Monte Carlo Markov Chains

"You can generate a sample from any Gibbs distribution using the
Metropolis algorithm given by

Initialize X

Repeat {
Generate a new proposal X ~ q(%|X)
Ifu()?) <u(X),thenX « X

else {
AE < u(X) —u(X)
p < exp{—AE}

With probability p, X « X

*Notice that:
— Proposal distribution must have the property that q(¥|x) = q(x|X)
— Algorithm only depends on change of u(x)
— You don’t need to know the partition function, z



Stochastic Sample of Gibbs Distribution

=(G1bbs distribution

- u(x): Energy function AET—
_= : u(x) X
- p(x): Probability density x X ) — 1 o{—2(0)
Z
: i} X,
*|nterpretation

— Proposals that reduce energy are always accepted
— Proposals that increase energy are sometimes accepted.

=*Problem:

— Requires a parametric expression for u(x).



Data Driven Stochastic Sampling?

*Two approaches to modeling:

— Parametric model (traditional):

* Human design; small number of parameters; often a physics model
° Example: Ug (X) = Z{l,]} 9i,j|xl- — le

— Data Driven model (proposed):

{Xo; o, X1} un(x
{ training samples : 9( ) \deep neural

network

=(Great 1dea, but...
— How do we train a DNN to fit the u(x) that describes training data?
— We don’t even know u(x)!
— This reduces are problem to an inference problem.
— But what loss function should we use?

=Solution: Score Matching




Score Matching
o The Score
o Denoising Score Matching
o Geometric Interpretation



Defining the Score’

"Let X ~ p(x) be a random object, then we define
— Log probability is given by:
[(x) =logp(x) = —u(x) +c

— The score is given by:
s(x) = Vylogp(x) = —V,u(x)

"[mportant ideas:
— If you know s(x), then you know u(x).
- s(x) is a conservative vector field © [V,s(x)]¢ = V,.s(x)

"Definitions are given assuming a Bayesian estimation framework. The more traditional Frequentist framework uses slightly different
definitions and terminology.



Score Matching

"let X ~plx) = iexp{—u(x)}:

— Then we can learn the score, Sg(x), from data via

6 = arg mein Ly (6)

— where
1
Lou(8) = E [ =7,u(0) = 55 (O

*Then we have that:
- sp(x) is an estimate of the score
— But it may not be a conservative vector field.

"[mportant Questions:
— Where do we get V, u(x)?
— Can we use s(x) to sample from the Gibbs distribution p(x)?



Denoising Score Matching: Theorem*

"Theorem (Vincent):

- X ~p(x) = exp{—u(x)} Gibbs distribution of X

- X|X ~ q,(%X|x) Proposal distribution’

- £~ pe@) = exp{—u,(x)} Gibbs distribution of X
and define:

- Lew(8;0) = E [5 || -V u, (%) - 59(;?)”2]
- Lpsu(8;0) = E [1||Vzlog 4, (X1X) — so(X)|°|

Then
Lsy(8;0) = Lpsy(8;0) +C

Proof: Clever but straight forward. See reference.

*P_Vincent. A connection between score matching and denoising autoencoders. Neural Computation, 23(7):1661-1674. 2011.

TWe assume the technical conditions that g, (%|x) is continuously differentiable w.r.t. ¥ and Vx, X, q,(%|x) > 0.


https://www.iro.umontreal.ca/~vincentp/Publications/smdae_techreport.pdf

Appendix

Proof that Jpsy,, — Jpsarg, (11)

The explicit score matching criterion using the Parzen density estimator is defined in
Eq.7 as

1, . dlog q,(x 2
Ipsig, (0) = Eq, 2 [5 Hw(x;t‘)) - %75(() ]
which we can develop as
1.
Jesng, (0) = By [5 (0l J 5(0)+Ce (16)

2
where Cy = Ey_(x) { ‘ 7010%10( X

E, ) K@(i;e)‘%ﬂ
/;;q"(i‘) <¢'(>?? 9), %%T?"(i)> %
o 7a~qg >dx

< x,ﬁ,a /q._, qux\xdx>dx

e 0qu(§X\X) > g%
<1/1(5<; G)W/qo(X)qﬁ(iIX)%dg dx

//qu(x 4o (X[x) < %.0), OIOg(/;{:(x\X)>dxdi
- | foten{on 22558

o dlog q,(x|x
Ey, (x.x) {<w(x;0),%>] .

Substituting this expression for S(6) in Eq. 16 yields

] is a constant that does not depend on ¢, and

5(0)

I
— e — i %

1
Tesin0) = Fao [3 WG]

—Eq, (x.%) [<T/)(X1 0), alo%‘i(xlx)ﬂ + Ca. 17)
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Proof of Denoising Score Matching Theorem*

We also have defined in Eq. 9,

JDSMqa(G) = ]qu(xjc) [% 1/1(5(? 9) - dlo%;(i\x) 2] ’
which we can develop as
JIpsng, (0) = Egx B llv(x; 9)\\2]
—Eq, x5 Kls“}(iﬂ%ﬂ +Cy (18)

9log 4o (Xx)
0%

where C3 = Ey (x z) [ ] is a constant that does not depend on 6.

Looking at equations 17 and 18 we see that Jpsag, (0) = Jpsarg, (0) + Co — Cs.
‘We have thus shown that the two optimization objectives are equivalent.

*Reproduced from P. Vincent. A connection between score matching and denoising autoencoders. Neural Computation, 23(7):1661-1674, 2011.


https://www.iro.umontreal.ca/~vincentp/Publications/smdae_techreport.pdf

DSM with Additive White Gaussian Noise

=Take the proposal distribution to be
X=X+ oW where W ~ N(0,])

— Then we have that

4o(Flx) = ——exp -~ 1%~ xll?
(chz)g 2102
Vilogqo(X|x) = — (x = %)

Score for
distribution of X

— So, then the DSM loss function 1s* /
]

11 3 g
Lpsu(6;0) = E [E ‘ F(X —X) — s9(X)

[N/

noise-less noisy

image image

We can
compute this!

*Yang Song. Y. and Stefan Ermon, “Improved Techniques for Training Score-Based Generative Models”. Neural Information Processing Systems 2020.



https://arxiv.org/pdf/2006.09011.pdf

The DSM with AWGN: Loss Function

*Goal: Formulate loss function from training data

- {xg, ", Xg_1} - training samples from desired distribution
— Fork =0,---, K — 1, create noisy sample:

fk = X, + owy, where w ~ N(O,I)

Score for
. . . distribution of X
"Practical loss function 1s /
K- 1 )

0, = arg m1n z (xk — X1) — sg(Xy)

k=0 /
ground

truth image :
noisy

image



DSM with AWGN: Simplified

=Take the proposal distribution to be

fk = X}, + oWy, where Wi ~ N(O,I)

*Then we have that
K— 1 2

Lpsm(0;0) = z > ‘ — Xy) — sg(Xy)
k=

K-1

= 2 % H% + sg(x;, + awk)Hz

k=0

— So then
—wy = 0sg_(xx + owy)



Denoising and the Score

*[t’s easy to show that
X=X+ 02590()?) = Denoise(X; a2)

— or equivalently that
~ 1 - ~
sg,(X) = — [Denoise(X; 02) — X|

" [nterpretation:
- Denoise(X; 02) is a MMSE denoiser

- 0Sg, ()? ) estimates the negative noise.
— This 1s just residual training for an 1mage denoiser.
— As o — 0, then sg_(x) — s(x)



DSM with AWGN: Graphical Interpretation

=Take the proposal distribution to be
X =X+ oW where W ~ N(0,])

=[f we first define

Lpsy(8,%,0) = E

— Then we have that
Lpsu(0;0) = E
|

J

ﬁﬁN

1] 1 ) 3
| -0 - s ®)
(11 . )
] > ?(X—X)—Se(x)
gnN

ZDSM(Q,X, O')]

Lpsu(0,%;0) py2(X)dx

2
X

f]
2

pg2(x|X)dx

Posterior distribution
of noiseless image
given noisy image



Interpretation of Denoising Score Matching

Xy

probability

1 ~ -
F (X — X) ~ S, (X) density of X

white noise ball
with radius o

= [ntuition:

— Denoiser moves towards larger probability
— Expected change approximates score



Interpretation of DSM with larger o

Xy

~

probability

o2 density of X

7

white noise ball
with radius o

"[ntuition:
— Samples further from the peak of the distribution
— Allows for sample in low probability regions
— Speeds convergence of MCMC



DSM with Descreasing o

probability
density of X

white noise ball
with radius o,

white noise ball
with radius o3

=[ntuition:

— Large o samples far from the peak = used early in the simulation
— Small o samples close to the peak = used late in the simulation



Generative Diffusion Models*f

o Langevin dynamics

*Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole, “Score-Based Generative Modeling

Through Stochastic Differential Equations™ ICLR 2021.
TYang Song, “Generative Modeling by Estimating Gradients of the Data Distribution," web blog post, May 5, 2021, https://vang-
song.net/blog/2021/score .



https://arxiv.org/pdf/2011.13456.pdf
https://arxiv.org/pdf/2011.13456.pdf
https://yang-song.net/blog/2021/score
https://yang-song.net/blog/2021/score

Langevin Dynamics*

*"How can you use the score to generate samples from the Gibbs distribution?
*Langevin dynamics:
Xn = Xno1 + eVu(Xpn_q) + ‘/Z_EWn
— We can use our estimate of the score to generate

Xn=Xn1 t ESGJ(Xn—l) +VZe W,

Score learns the gradient of White noise
the log probability. W, ~ N(0,I).

"Problem: Takes too long to converge

= p (%) - Probability density

‘ for noisy image X

' S~ Poor training in very low
probability region of X

*UIf Grenander and Michael Miller, “Representations of Knowledge in Complex Systems.” J. Roval Statistical Society, vol. 56, no. 4. 1994.



https://rss.onlinelibrary.wiley.com/doi/10.1111/j.2517-6161.1994.tb02000.x

Annealed Langevin Dynamics*

*Key idea: Increase o to get better estimation in low density regions

— Small vs Large values of &

| P (%) - Probability density
‘ for noisy image X

® —

[ Poor training in very low
probability region of X

Small o

" Annealed Langevin dynamics:
— Picke, andlet gy > g, > -+ > gy

Forn=1to N {

€, — ¢, 2
n OO.L

> p(X) - Probability density

—

Large o

Xn < Xn—l + Ensean (Xn—l) + 2en Wn

for very noisy image X

Better training in low.
probability region of X

But less accurate modeling
of true density p (%)

*Yang Song and Stefano Ermon, “Generative Modeling by Estimating Gradients of the Data Distribution.” NeurIPS 2019.



https://proceedings.neurips.cc/paper_files/paper/2019/file/3001ef257407d5a371a96dcd947c7d93-Paper.pdf

Practical Recommendations: Annealed*f

" Annealed Langevin dynamics:
— Picke, andlet gy > g, > - > gy

/€y « INit; Opyip < iNit; Oppax < iNit;
1

Omin \N-1
Omax

Forn=0to N —1{
O-n(_ano-max

O-
€, < €5, —

Omax

Xn < Xp-1t EnSHGn (Xn—l) + 26, Wy

Annealed Langevin Dynamics

=Practical considerations
— Geometric sequence for o,

- Omax = Max RMS(Xl- - X j) where X; and X; are training images.
Lj

— Use a U-net (RefineNet) with skipped connections for score modeling.
— Apply exponential moving average on the weights of the score-based model when used at test time.

*Yang Song, “Generative Modeling by Estimating Gradients of the Data Distribution," web blog post, May 5, 2021, https://yang-song.net/blog/2021/score .
tYang Song, Y. and Stefan Ermon, “Improved Techniques for Training Score-Based Generative Models”, Neural Information Processing Systems 2020.



https://yang-song.net/blog/2021/score
https://arxiv.org/pdf/2006.09011.pdf

Langevin: Denoising Interpretation

" Annealed Langevin dynamics:
Xn=Xpn-1+ €EnSog, (Xn-1) ++/ 26, Wy,

— where

1
sg, (x) = g [Denoise(x; 02) — x]

. If we set €, = 02, then we get
X,, = Denoise(X,,_1; 0%) + V20 W,
— where W,, ~ N(0,1)

* Interpretation:
— Remove noise with variance a2, then add AWGN with variance 20 2.
— As o — 0, this iteration generates samples from the distribution p(x).



Denoising Interpretation of Langevin

" Annealed Langevin dynamics:

-
-
,

/" Omin < Init; 1O'max < 1nit;

Omin \N-1
Omax

Forn=0to N —1{
O-n(_ano-max

X,, < Denoise(X,,_1; 62) + 20, W,

1
I
1

Annealed Langevin Dynamics:
Denoising Interpretation

* Interpretation:
— Remove noise with variance o2, then add back AWGN with variance 20?2.

— Denoiser trained using MMSE loss on samples from p(x) with AWGN of

variance 2.

— As o — 0, this iteration generates samples from the distribution p(x).



