
Generative Models*
o Inference vs Generation
oMonte Carlo vs Generator Methods
oGibbs Distributions
oMonte Carlo Markov Chains

*See this helpful blog for an overview: Yang Song, “Generative Modeling by Estimating Gradients of the Data Distribution," web blog post, May
5, 2021, https://yang-song.net/blog/2021/score .

https://yang-song.net/blog/2021/score

Inference vs Generation
Two primary goals in deep learning

– How to generate random vectors with a desired distribution?
– Can we learn the distribution from sample data

Learn
inference function:

𝑥 = 𝑓! 𝑦

Learn
random vector generation:

𝑌 ∼ 𝑝 𝑦

Goal: Generate
random vectors.

Goal: Predict
unknown quantity.

Taxonomy of Learning Models

Deterministic Inference:
𝑥 = 𝑓! 𝑦

Generate a Random Vector:
𝑌 ∼ 𝑝 𝑦

Learning Models

Monte Carlo Methods:

𝑝 𝑦 =
1
𝑍
exp −𝑢 𝑦

Direct Generation:
𝑌 = 𝐹"#$ 𝑈

Generator Methods:
𝑌 = ℎ! 𝑍

Variational
Autoencoders

Generative
Adversarial

Networks (GAN)

Generative Diffusion
and Score Matching:
𝑢 𝑦 ≈ −𝑠! 𝑢

Hastings Metropolis
Stochastic Sampling:

𝑢 𝑦

Parametric model
Data driven model

⋯

⋯

Generative Models:
𝑌% ∼ 𝑝 𝑦%|𝑦%#$

Both/either

Gibbs Distribution
Let 𝑋 ∼ 𝑝 𝑥 be a random object (i.e., image, video, speech).

Typically, 𝑋 is assumed to have a Gibbs distribution given by

𝑝 𝑥 =
1
𝑧
exp −𝑢 𝑥

– where 𝑢 𝑥 is the energy function, and 𝑧 is the partition function given by 𝑧 =
𝐸 exp −𝑢 𝑋 .

Facts:
– 𝑢 𝑥 = − log 𝑝 𝑥 always exists as long as 𝑝 𝑥 > 0.
– 𝑧 is usually intractable to compute, but that’s OK.
– 𝑢 𝑥 increases ⇒ 𝑝 𝑥 decreases
– 𝑢 𝑥 decreases ⇒ 𝑝 𝑥 increases

From Thermodynamics:
– Also known as Boltzmann distribution
– The distribution of any system in thermodynamic equilibrium

Monte Carlo Markov Chains
You can generate a sample from any Gibbs distribution using the
Metropolis algorithm given by

Initialize 𝑋
Repeat {
 Generate a new proposal 4𝑋 ∼ 𝑞 7𝑥|𝑋
 If 𝑢 4𝑋 ≤ 𝑢 𝑋 , then 𝑋 ← 4𝑋
 else {
 Δ𝐸 ← 𝑢 4𝑋 − 𝑢 𝑋
 𝑝 ← exp −Δ𝐸
 With probability 𝑝, 𝑋 ← 4𝑋
 }
}

Notice that:
– Proposal distribution must have the property that 𝑞 7𝑥|𝑥 = 𝑞 𝑥| 7𝑥
– Algorithm only depends on change of 𝑢 𝑥
– You don’t need to know the partition function, 𝑧

Stochastic Sample of Gibbs Distribution

Gibbs distribution
– 𝑢 𝑥 : Energy function

– 𝑝 𝑥 : Probability density

Interpretation
– Proposals that reduce energy are always accepted
– Proposals that increase energy are sometimes accepted.

Problem:
– Requires a parametric expression for 𝑢 𝑥 .

𝑢 𝑥 𝑥

𝑝 𝑥 =
1
𝑧 exp −𝑢 𝑥

𝑥

7𝑥

Δ𝐸

𝑥

Data Driven Stochastic Sampling?
Two approaches to modeling:

– Parametric model (traditional):
• Human design; small number of parameters; often a physics model
• Example: 𝑢! 𝑥 = ∑ ",$

	 𝜃",$ 𝑥" − 𝑥$

– Data Driven model (proposed):

Great idea, but…
– How do we train a DNN to fit the 𝑢 𝑥 that describes training data?
– We don’t even know 𝑢 𝑥 !
– This reduces are problem to an inference problem.
– But what loss function should we use?

Solution: Score Matching

⇒𝑋&, ⋯ , 𝑋'()
training samples

𝑢! 𝑥
deep neural

network

Score Matching
oThe Score
oDenoising Score Matching
oGeometric Interpretation

Defining the Score†

Let 𝑋 ∼ 𝑝 𝑥 be a random object, then we define
– Log probability is given by†:

𝑙 𝑥 = log 𝑝 𝑥 = −𝑢 𝑥 + c

– The score is given by†:
𝑠 𝑥 = ∇A log 𝑝 𝑥 = −∇A𝑢 𝑥

Important ideas:
– If you know 𝑠 𝑥 , then you know 𝑢 𝑥 .
– 𝑠 𝑥 is a conservative vector field ⇔ ∇A𝑠 𝑥 B = ∇A𝑠 𝑥

†Definitions are given assuming a Bayesian estimation framework. The more traditional Frequentist framework uses slightly different
definitions and terminology.

Score Matching
Let 𝑋 ∼ 𝑝 𝑥 =)

*
exp −𝑢 𝑥 :

– Then we can learn the score, 𝑠! 𝑥 , from data via
D𝜃 = argmin

!
𝐿+, 𝜃

– where

𝐿+, 𝜃 = 𝐸
1
2 −∇-𝑢 𝑋 − 𝑠! 𝑋 .

Then we have that:
– 𝑠/! 𝑥 is an estimate of the score
– But it may not be a conservative vector field.

Important Questions:
– Where do we get ∇-𝑢 𝑥 ?
– Can we use 𝑠 𝑥 to sample from the Gibbs distribution 𝑝 𝑥 ?

Denoising Score Matching: Theorem*
Theorem (Vincent):

– 𝑋 ∼ 𝑝 𝑥 = "
# exp −𝑢 𝑥 	 Gibbs distribution of 𝑋

– -𝑋|𝑋 ∼ 𝑞$ 0𝑥|𝑥 Proposal distribution†

– -𝑋 ∼ 𝑝$ 0𝑥 = "
#
exp −𝑢$ 𝑥 Gibbs distribution of -𝑋

and define:
– 𝐿%& 𝜃; 𝜎 = 𝐸 "

' −∇ ()	𝑢$ -𝑋 − 𝑠! -𝑋
'

– 𝐿*%& 𝜃; 𝜎 = 𝐸 "
' ∇ () log 𝑞$ -𝑋|𝑋 − 𝑠! -𝑋

'
.

Then
𝐿%& 𝜃; 𝜎 = 𝐿*%& 𝜃; 𝜎 + 𝐶

Proof: Clever but straight forward. See reference.

*P. Vincent. A connection between score matching and denoising autoencoders. Neural Computation, 23(7):1661–1674, 2011.
†We assume the technical conditions that 𝑞! "𝑥|𝑥 is continuously differentiable w.r.t. "𝑥 and ∀𝑥, "𝑥, 𝑞! "𝑥|𝑥 > 0.

https://www.iro.umontreal.ca/~vincentp/Publications/smdae_techreport.pdf

Appendix

Proof that JESMq� ^ JDSMq� (11)

The explicit score matching criterion using the Parzen density estimator is defined in
Eq. 7 as

JESMq�(✓) = Eq�(x̃)

"
1

2

���� (x̃; ✓)�
@ log q�(x̃)

@x̃

����
2
#

which we can develop as

JESMq�(✓) = Eq�(x̃)

1

2
k (x̃; ✓)k2

�
� S(✓) + C2 (16)

where C2 = Eq�(x̃)

1
2

���@ log q�(x̃)
@x̃

���
2
�

is a constant that does not depend on ✓, and

S(✓) = Eq�(x̃)

⌧
 (x̃; ✓),

@ log q�(x̃)

@x̃

��

=

ˆ
x̃

q�(x̃)

⌧
 (x̃; ✓),

@ log q�(x̃)

@x̃

�
dx̃

=

ˆ
x̃

q�(x̃)

*
 (x̃; ✓),

@
@x̃q�(x̃)

q�(x̃)

+
dx̃

=

ˆ
x̃

⌧
 (x̃; ✓),

@

@x̃
q�(x̃)

�
dx̃

=

ˆ
x̃

⌧
 (x̃; ✓),

@

@x̃

ˆ
x

q0(x)q�(x̃|x)dx
�
dx̃

=

ˆ
x̃

⌧
 (x̃; ✓),

ˆ
x

q0(x)
@q�(x̃|x)
@x̃

dx

�
dx̃

=

ˆ
x̃

⌧
 (x̃; ✓),

ˆ
x

q0(x)q�(x̃|x)
@ log q�(x̃|x)

@x̃
dx

�
dx̃

=

ˆ
x̃

ˆ
x

q0(x)q�(x̃|x)
⌧
 (x̃; ✓),

@ log q�(x̃|x)
@x̃

�
dxdx̃

=

ˆ
x̃

ˆ
x

q�(x̃,x)

⌧
 (x̃; ✓),

@ log q�(x̃|x)
@x̃

�
dxdx̃

= Eq�(x̃,x)

⌧
 (x̃; ✓),

@ log q�(x̃|x)
@x̃

��
.

Substituting this expression for S(✓) in Eq. 16 yields

JESMq�(✓) = Eq�(x̃)

1

2
k (x̃; ✓)k2

�

�Eq�(x,x̃)

⌧
 (x̃; ✓),

@ log q�(x̃|x)
@x̃

��
+ C2. (17)

12

We also have defined in Eq. 9,

JDSMq�(✓) = Eq�(x,x̃)

"
1

2

���� (x̃; ✓)�
@ log q�(x̃|x)

@x̃

����
2
#
,

which we can develop as

JDSMq�(✓) = Eq�(x̃)

1

2
k (x̃; ✓)k2

�

�Eq�(x,x̃)

⌧
 (x̃; ✓),

@ log q�(x̃|x)
@x̃

��
+ C3 (18)

where C3 = Eq�(x,x̃)

1
2

���@ log q�(x̃|x)
@x̃

���
2
�

is a constant that does not depend on ✓.

Looking at equations 17 and 18 we see that JESMq�(✓) = JDSMq�(✓) + C2 � C3.
We have thus shown that the two optimization objectives are equivalent.

13

Proof of Denoising Score Matching Theorem*

*Reproduced from P. Vincent. A connection between score matching and denoising autoencoders. Neural Computation, 23(7):1661–1674, 2011.

https://www.iro.umontreal.ca/~vincentp/Publications/smdae_techreport.pdf

DSM with Additive White Gaussian Noise
Take the proposal distribution to be

;𝑋 = 𝑋 + 𝜎𝑊 where 𝑊 ∼ 𝑁 0, 𝐼

– Then we have that
𝑞$ 0𝑥|𝑥 =

1

2𝜋𝜎'
+
'
exp −

1
2𝜎'

0𝑥 − 𝑥 '

∇ 7A log 𝑞M C𝑥|𝑥 =
1
𝜎N

𝑥 − C𝑥

– So, then the DSM loss function is*

𝐿*%& 𝜃; 𝜎 = 𝐸
1
2

1
𝜎'

𝑋 − -𝑋 − 𝑠! -𝑋
'

noisy
image

noise-less
image

We can
compute this!

Score for
distribution of 4𝑋

*Yang Song, Y. and Stefan Ermon, “Improved Techniques for Training Score-Based Generative Models”, Neural Information Processing Systems 2020.

https://arxiv.org/pdf/2006.09011.pdf

The DSM with AWGN: Loss Function

Goal: Formulate loss function from training data
– 𝑥O, ⋯ , 𝑥PQR - training samples from desired distribution
– For 𝑘 = 0,⋯ ,𝐾 − 1, create noisy sample:

C𝑥S = 𝑥S + 𝜎𝑤S where 𝑤 ∼ 𝑁 0, 𝐼

Practical loss function is
𝜃$ = argmin

!
E
,-.

/0"
1
2

1
𝜎'

𝑥, − 0𝑥, − 𝑠! 0𝑥,
'

noisy
image

ground
truth image

Score for
distribution of 4𝑋

DSM with AWGN: Simplified
Take the proposal distribution to be

!𝑥! = 𝑥! + 𝜎𝑤! where 𝑤! ∼ 𝑁 0, 𝐼

Then we have that

𝐿TUV 𝜃; 𝜎 = K
SWO

PQR
1
2

1
𝜎N

𝑥S − C𝑥S − 𝑠! C𝑥S
N

= K
SWO

PQR
1
2

𝑤S
𝜎
+ 𝑠! 𝑥S + 𝜎𝑤S

N

– So then
−𝑤S ≈ 𝜎𝑠!5 𝑥S + 𝜎𝑤S

Denoising and the Score
It’s easy to show that

𝑋 = ;𝑋 + 𝜎N𝑠!5 ;𝑋 = Denoise ;𝑋; 𝜎N

– or equivalently that

𝑠!5 ;𝑋 =
1
𝜎N

Denoise ;𝑋; 𝜎N − ;𝑋

Interpretation:
– Denoise ;𝑋; 𝜎N is a MMSE denoiser
– 𝜎𝑠!5 ;𝑋 estimates the negative noise.
– This is just residual training for an image denoiser.
– As 𝜎 → 0, then 𝑠!5 𝑥 → 𝑠 𝑥

DSM with AWGN: Graphical Interpretation
Take the proposal distribution to be

;𝑋 = 𝑋 + 𝜎𝑊 where 𝑊 ∼ 𝑁 0, 𝐼

If we first define

-𝐿*%& 𝜃, 0𝑥; 𝜎 = 𝐸 G
1
2

1
𝜎'

𝑋 − 0𝑥 − 𝑠! 0𝑥
'
-𝑋 = 0𝑥	

= H
ℜ)

1
2

1
𝜎'

𝑥 − 0𝑥 − 𝑠! 0𝑥
'
𝑝$* 𝑥| 0𝑥 𝑑𝑥

– Then we have that
𝐿*%& 𝜃; 𝜎 = 𝐸 -𝐿*%& 𝜃, -𝑋; 𝜎

= H
ℜ)

	

-𝐿*%& 𝜃, 0𝑥; 𝜎 𝑝$* 0𝑥 𝑑 0𝑥

Posterior distribution
of noiseless image
given noisy image

Interpretation of Denoising Score Matching

Intuition:
– Denoiser moves towards larger probability
– Expected change approximates score

x1

x2

probability
density of +𝑋

1
𝜎. 𝑋 − 4𝑋 ≈ 𝑠0 4𝑋

white noise ball
with radius 𝜎

+𝑋
𝑋

Interpretation of DSM with larger 𝝈

Intuition:
– Samples further from the peak of the distribution
– Allows for sample in low probability regions
– Speeds convergence of MCMC

x1

x2

probability
density of +𝑋

1
𝜎.

𝑋 − 4𝑋 ≈ 𝑠0 4𝑋

white noise ball
with radius 𝜎

+𝑋 𝑋

DSM with Descreasing 𝝈

Intuition:
– Large 𝜎 samples far from the peak ⇒ used early in the simulation
– Small 𝜎 samples close to the peak ⇒ used late in the simulation

x1

x2

probability
density of +𝑋

white noise ball
with radius 𝜎"

+𝑋 𝑋
+𝑋

white noise ball
with radius 𝜎#

Generative Diffusion Models*†
oLangevin dynamics

*Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole, “Score-Based Generative Modeling
Through Stochastic Differential Equations” ICLR 2021.
†Yang Song, “Generative Modeling by Estimating Gradients of the Data Distribution," web blog post, May 5, 2021, https://yang-
song.net/blog/2021/score .

https://arxiv.org/pdf/2011.13456.pdf
https://arxiv.org/pdf/2011.13456.pdf
https://yang-song.net/blog/2021/score
https://yang-song.net/blog/2021/score

Langevin Dynamics*
How can you use the score to generate samples from the Gibbs distribution?

Langevin dynamics:
𝑋1 = 𝑋1() + 𝜖∇-𝑢 𝑋1() + 2𝜖	𝑊1

– We can use our estimate of the score to generate

𝑋1 = 𝑋1() + 𝜖𝑠!! 𝑋1() + 2𝜖	𝑊1

Problem: Takes too long to converge

*Ulf Grenander and Michael Miller, “Representations of Knowledge in Complex Systems,” J. Royal Statistical Society, vol. 56, no. 4, 1994.

White noise,
𝑊. ∼ 𝑁 0, 𝐼 .

Score learns the gradient of
the log probability.

Poor training in very low
probability region of +𝑋

𝑝 "𝑥 - Probability density
for noisy image +𝑋

https://rss.onlinelibrary.wiley.com/doi/10.1111/j.2517-6161.1994.tb02000.x

Annealed Langevin Dynamics*
Key idea: Increase 𝜎 to get better estimation in low density regions

– Small vs Large values of 𝜎

Annealed Langevin dynamics:
– Pick 𝜖& and let 𝜎$ > 𝜎' > ⋯ > 𝜎(

For 𝑛 = 1 to 𝑁 {
 𝜖1 ← 𝜖2

0"
0#

 𝑋1 ← 𝑋1() + 𝜖1𝑠!!" 𝑋1() + 2𝜖1	𝑊1
}

*Yang Song and Stefano Ermon, “Generative Modeling by Estimating Gradients of the Data Distribution,” NeurIPS 2019.

Better training in low
probability region of +𝑋

But less accurate modeling
of true density 𝑝 "𝑥

"𝑝 "𝑥 - Probability density
for very noisy image +𝑋

Large 𝜎

Poor training in very low
probability region of +𝑋

"𝑝 "𝑥 - Probability density
for noisy image +𝑋

Small 𝜎

https://proceedings.neurips.cc/paper_files/paper/2019/file/3001ef257407d5a371a96dcd947c7d93-Paper.pdf

Practical Recommendations: Annealed*†
Annealed Langevin dynamics:

– Pick 𝜖& and let 𝜎$ > 𝜎' > ⋯ > 𝜎(

Practical considerations
– Geometric sequence for 𝜎%
– 𝜎)*+ = max

,,.
RMS 𝑋, − 𝑋. where 𝑋, and 𝑋. are training images.

– Use a U-net (RefineNet) with skipped connections for score modeling.
– Apply exponential moving average on the weights of the score-based model when used at test time.

*Yang Song, “Generative Modeling by Estimating Gradients of the Data Distribution," web blog post, May 5, 2021, https://yang-song.net/blog/2021/score .
†Yang Song, Y. and Stefan Ermon, “Improved Techniques for Training Score-Based Generative Models”, Neural Information Processing Systems 2020.

𝜖2 ← init; 𝜎345 ← init; 𝜎367 ← init;

𝛼 ← 0$%&
0$'(

)
*+) ;

For 𝑛 = 0 to 𝑁 − 1 {
 𝜎1 ← 𝛼1𝜎367
 𝜖1 ← 𝜖2

0"
0$'(

 𝑋1 ← 𝑋1() + 𝜖1𝑠!!" 𝑋1() + 2𝜖1	𝑊1
}

Annealed Langevin Dynamics

https://yang-song.net/blog/2021/score
https://arxiv.org/pdf/2006.09011.pdf

Langevin: Denoising Interpretation
Annealed Langevin dynamics:

𝑋3 = 𝑋30" + 𝜖3𝑠!01 𝑋30" + 2𝜖3	𝑊3
– where

𝑠!0 𝑥 =
1
𝜎'

Denoise 𝑥; 𝜎' − 𝑥

• If we set 𝜖e = 𝜎N, then we get
𝑋3 = Denoise 𝑋30"; 𝜎' + 2𝜎	𝑊3

– where 𝑊3 ∼ 𝑁 0, 𝐼

• Interpretation:
– Remove noise with variance 𝜎', then add AWGN with variance 2𝜎'.
– As 𝜎 → 0, this iteration generates samples from the distribution 𝑝 𝑥 .

Denoising Interpretation of Langevin
Annealed Langevin dynamics:

• Interpretation:
– Remove noise with variance 𝜎', then add back AWGN with variance 2𝜎'.
– Denoiser trained using MMSE loss on samples from 𝑝 𝑥 with AWGN of

variance 𝜎'.
– As 𝜎 → 0, this iteration generates samples from the distribution 𝑝 𝑥 .

𝜎345 ← init; 𝜎367 ← init;

𝛼 ← 0$%&
0$'(

)
*+) ;

For 𝑛 = 0 to 𝑁 − 1 {
 𝜎1 ← 𝛼1𝜎367
 𝑋1 ← Denoise 𝑋1(); 𝜎1. + 2𝜎1	𝑊1
}

Annealed Langevin Dynamics:
Denoising Interpretation

