Recurrent Neural Networks*

- Basic concept of RNNs
- LSTM networks
- GRU networks
- Example application in tomography

*Slides “barrowed” from Prof. Greg Buzzard
Basic Concept of RNN

- State machine viewpoint
 - x_t, y_t - input and output
 - s_t - state
 - θ – parameter

- “Unrolling the loop”
 - Parameters θ are shared
 - Time dependent processes such as speech
RNN Problems and Solutions

- **Problem:**
 - Back propagation now iterates in time
 - Gradient tends to vanish over long time scales
 - Difficult to model long time dependencies in data

- **Solution:**
 - Use skip connection, batch normalization (BM) and tricky methods for gating information from the past.
 - Results in long-short time memory (LSTM) RNN
Long-Short Term Memory (LSTM)

- **LSTM architecture**
 - State has two components $s_t = [C_t, h_t]$
 - C_t - cell state
 - Store information that flows from one time to the next
 - Reduces vanishing gradient problem much like the skipped connection
 - h_t - hidden state
 - This is usually the output of the LSTM
 - It typically needs to be further processed to produce the desired output

Useful reference: http://colah.github.io/posts/2015-08-Understanding-LSTMs/
For example, if we have

\[y = h \circ x \]

For rank 1 case:

\[y_i = h_i \, x_i \]

For rank 2 case:

\[y_{i,j} = h_{i,j} \, x_{i,j} \]

Etc., ...
A Look Inside LSTM block: L1

Forget old information that is not useful. “Forget gate”

Add new information that is of value

\[C_t = f_t \circ C_{t-1} + a_t \]
A Look Inside an LSTM block: L2

\[f_t = \sigma(W_{fx} \cdot x_t + W_{fh} \cdot h_{t-1} + b_f) \]
\[i_t = \sigma(W_{ix} \cdot x_t + W_{ih} \cdot h_{t-1} + b_i) \]
\[\tilde{C}_t = \tanh(W_{cx} \cdot x_t + W_{ch} \cdot h_{t-1} + b_c) \]
\[C_t = f_t \odot C_{t-1} + i_t \odot \tilde{C}_t \]

Hadamard product: \(\odot \)
Matrix multiplication: \(\cdot \)
Sigmoid: \(\sigma(z) = \frac{1}{1+e^{-z}} \)
A Look Inside an LSTM block: L3

\[
f_t = \sigma(W_{fx} \cdot x_t + W_{fh} \cdot h_{t-1} + b_f)
\]
\[
i_t = \sigma(W_{ix} \cdot x_t + W_{ih} \cdot h_{t-1} + b_i)
\]
\[
\tilde{C}_t = \tanh(W_{cx} \cdot x_t + W_{ch} \cdot h_{t-1} + b_c)
\]
\[
C_t = f_t \circ C_{t-1} + i_t \circ \tilde{C}_t
\]
\[
o_t = \sigma(W_{ox} \cdot x_t + W_{oh} \cdot h_{t-1} + b_o)
\]
\[
h_t = o_t \circ \tanh(C_t)
\]

Hadamard product: \(\circ \)
Matrix multiplication: \(\cdot \)
Sigmoid: \(\sigma(z) = \frac{1}{1+e^{-z}} \)
LSTM Intuition

- **The backbone**
 - Carries state forward and gradients backward.
 - Gating (Hadamard product) modulate information flow.

- **“Forgetting” gate:**
 - Use \(C, h, \) and \(x \) to determine how much to suppress.
 - If \(C \) encodes that we need a verb. Forget that when verb is found.

- **Input gate:**
 - \(i \) determines which values of \(C \) to update.
 - \(\tanh(\cdot) \) generates new state to add to \(C \).

- **Output gate:**
 - \(o \) is the output gate: modulates what part of the state \(C \) gets passed (via \(\tanh \)) to current output \(h \).
 - Could encode whether a noun is singular or plural to prepare for a verb.
Convolutional LSTM block*†

\[
\begin{align*}
&f_t = \sigma(W_{fx} * x_t + W_{fh} * h_{t-1} + W_{fc} \circ C_{t-1} + b_f) \\
&i_t = \sigma(W_{ix} * x_t + W_{ih} * h_{t-1} + W_{ic} \circ C_{t-1} + b_i) \\
&\tilde{C}_t = \tanh(W_{cx} * x_t + W_{ch} * h_{t-1} + b_c) \\
&C_t = f_t \circ C_{t-1} + i_t \circ \tilde{C}_t \\
o_t = \sigma(W_{ox} * x_t + W_{oh} * h_{t-1} + W_{oc} \circ C_{t-1} + b_o) \\
h_t = o_t \circ \tanh(C_t)
\end{align*}
\]

ConvLSTM2D available in TensorFlow

Why use ConvLSTM to SBP

- **Advantages:**
 - Allows LSTM RNN to be used with images
 - Dramatically reduces number of parameters as compared to LSTM implementation.

- **Disadvantage:**
 - Training a deep LSTM requires that all the states be stored during training.
 - This requires a large amount of GPU memory.
GRU: Gated Recurrent Unit*

Hadamard product: \circ
Matrix multiplication: \cdot
Sigmoid: $\sigma(z) = \frac{1}{1+e^{-z_i}}$

$$r_t = \sigma(W_{rx} \cdot x_t + W_{rh} \cdot h_{t-1})$$
$$z_t = \sigma(W_{zx} \cdot x_t + W_{zh} \cdot h_{t-1})$$
$$\tilde{h}_t = \tanh(W_{hx} \cdot x_t + W_{hh} \cdot (r_t \circ h_{t-1}))$$
$$h_t = (1 - z_t) \circ h_{t-1} + z_t \circ \tilde{h}_t$$

Why use a GRU?

- **Advantages of GRU:**
 - Simpler and typically just as effective
 - Combine C and h into a single state/output.
 - Combine forget and input gates into update gate, z.

- **Disadvantages of GRU**
 - Convolutional GRU exists* but is not already implemented in PyTorch or TensorFlow.

link to paper Nicolas Ballas, Li Yao, Chris Pal, and Aaron Courville, “DELVING DEEPER INTO CONVOLUTIONAL NETWORKS FOR LEARNING VIDEO REPRESENTATIONS,” ICLR, 2016.
Computed Tomography (CT)

- Reconstruct object from projections
 - Used in medical, scientific, and industrial imaging
 - Collect views of object from different angles
 - Reconstruct 3D object
Sparse View CT Reconstruction

- Sparse view: Reduce acquisition time and dosage
- Filtered Back Projection (FBP) reconstruction
 - FBP requires 256 views for a 256×256 reconstruction.
 - 16-view (i.e., sparse view) reconstruction looks very bad

Solution: Deep Neural Net reconstruction
Stacked Back Projections (SBP)*

- Measure projections
- Back project each projection
- Stack them up in order

SBP contains
- All information from the sinogram.
- Sequential information.

RSBP Network Architecture

- **Recurrent Stacked Back Projection (RSBP)**
 - Uses convolutional LSTM\(^1\) processing of SBP

Reconstruction on Simulated data

Ground Truth

8 Views

MBIR NRMSE: 0.5517

FBP-CNN NRMSE: 0.4968

SBP-CNN NRMSE: 0.4460

MBIR NRMSE: 0.4782

FBP-CNN NRMSE: 0.4022

SBP-CNN NRMSE: 0.3646

RSBP-CNN NRMSE: 0.3529

Proposed Method

Typical 16-View FBP Reconstruction
Reconstruction on Real data

8 Views

MBIR
NRMSE: 0.5416

FBP-CNN
NRMSE: 0.5057

SBP-CNN
NRMSE: 0.4840

RSBP-CNN
NRMSE: 0.4652

16 Views

MBIR
NRMSE: 0.4266

FBP-CNN
NRMSE: 0.3620

SBP-CNN
NRMSE: 0.3569

RSBP-CNN
NRMSE: 0.3195

Proposed Method

Typical 16-View FBP Reconstruction
Unsupervised Learning

- The Concept of Unsupervised Training
- Autoencoders
- Decoders as Generators
Autoencoder

- Two stages:
 - Encoder generates a latent vector, \(z \), then encodes the object
 - Decoder generates an approximation to the original input
Training an Autoencoders

- An example of unsupervised learning

\[\text{Loss}(\theta) = \sum_{k=0}^{K-1} \| y_k - g_{\theta_2}(f_{\theta_1}(y_k)) \|^2 \]

- Encoder Network \(f_{\theta_1} \)
- Latent vector, \(z \)
- Decoder Network \(g_{\theta_2} \)
- MSE Loss
- \(L(\theta) \)
Probability Distribution of Natural Images

- An image can be thought of as a point in an N-dimensional space.
 - $x \in \mathbb{R}^N$ is a point in a space
 - Natural images have some distribution, $X \sim p(x)$

- Let W be a white noise image, then
 - $W_i \sim \text{Uniform}[0,1]$
 - W fills the space
 - A typical sample of W has zero chance of looking like a natural image
 - Conclusion: $p(x)$ is very sparse

- Thought experiment:
 - Number of images ever seen by people:
 - $N \leq (10^{14} \text{ people}) \times \left(10^{14} \frac{\text{image}}{\text{people}}\right) = 10^{28}$
 - Bits required to encode all images:
 - $\log_2 \{N\} \leq \log_2 \{10^{28}\} = 28 \log_2 \{10\} = 93$ bits
 - All images can be encoded in less than 128 bits = 16 bytes
Application of Encoder

- The encoder as a preprocessor:
 - Dimensionality reduction
 - Pretrained

\[
y \xrightarrow{f_{\theta_1}} \text{Encoder Network} \xrightarrow{z} \text{latent vector, } z \xrightarrow{\text{DNN Postprocessing}} x
\]
The decoder can be used as a generator:

- Produces instantiations of \(y \)
- Variational autoencoders