What is Machine Learning?

- o AI versus ML versus DL
- ML as an inverse problem
- ML Inference

Al versus ML versus DL

The Chinese room

Source: Wikicomms

- Artificial Intelligence (AI):
 - Definitions:
 - Narrow AI: Task specific AI such as Siri
 - Artificial general intelligence (AGI): Data on Star Trek
 - Strong (sentience or consciousness) vs Weak AI (performs task):
 - Artificial Super Intelligence (AGI): More intelligent than any human being and able to design new versions of itself.
 - Chinese room (Searle 1980):
 - "Does the machine literally "understand" Chinese? Or is it merely simulating the ability to understand Chinese?"
 - Tests of AI:
 - Turing Test (Turing): A machine can fool a human in a conversation.
 - Robot College Student Test (Goertzel): A machine can pass a class
 - Employment Test (Nilsson): A machine can successfully perform a job.
 - The Ikea test (Marcus): A machine can assemble furniture correctly.
 - Coffee Test (Wozniak): A machine can make coffee.
- Machine Learning (ML): Train an algorithm to reproduce answers from data
- Deep Learning (DL): A particularly successful ML method based on deep sequences of neural networks

State of Al

- Turing Test has been passed!
 - GPT-4.5 was judged to be the human 73% of the time.
 - Significantly more often than interrogators selected the real human participant. ☺
- Measuring intelligence
 - GPT5.1 may have passed the turning test, but there is clearly still something missing.
- •When will AGI happen?
 - Do we just need more computers, data, and money?
 - Or have we plateaued?
- •How will AGI/ASI change the world?
 - AI 2027: https://ai-2027.com
 - Not good.
 - "Genesis", Kissinger, et al.
 - Many different ASI will compete and lead to a meanable world
- [1] Cameron R Jones and Benjamin K Bergen, "Large Language Models Pass the Turing Test," arXiv preprint arXiv:2503.23674, 2025, https://arxiv.org/pdf/2503.23674.
- [2] Henry A Kissinger and Eric Schmidt and Craig Mundie and Daniel Huttenlocher, "Genesis: Artificial Intelligence, Hope, and the Human Spirit," Little, Brown and Company, 2024, https://www.hachettebookgroup.com/titles/henry-a-kissinger/genesis/9780316574552/.

Inverse Problems

Determine some unknown quantity from available data.

- y what we can measure or observe
- x what we would like to know
- •This is an inverse problem:
 - Computer vision, sensing, demodulation, speech recognition, etc.
 - Business analytics: What movie will the customer like best?
 - Science: What is the structure of this particle?

Solving an Inverse Problems

- Goal of Machine Learning (ML): Solve this inverse problem
- Observations:
 - The answer, \hat{x} , is usually not equal to the unknown, x.
 - But hopefully, \hat{x} is close to x.
- Questions:
 - How do we compute the inverse?
 - Is there a best inverse?
- Mick Jagger's Theorem:
 - You can't always get what you want. But if you try sometimes, you might fine, you get what you need.

Machine Learning: Inference

Machine Learning approach

Comments

- Adjust parameter θ to achieve the "best" or at least a "good" answer
- \hat{x} has a "hat" because it is an <u>estimate</u> (i.e., a guess) of the unknown x.
- y, \hat{x} , and θ are usually finite dimensional vectors.

ML: Mathematical Inference

Mathematical representation of ML inference

- Questions:
 - What family of functions do we choose for $f_{\theta}(\cdot)$?
 - What is the dimension of $\theta \in \Re^P$?
 - What is our goal?
 - How do we determine the best value of θ ?

Single Layer Neural Networks

- Mathematical representation
- Graphical representation
- One hot encoding
- Activation functions

What ML Function should we use?

Possible choices

- Support vector machines (SVM)
- Radial basis functions (RBF)
- Gaussian mixture functions

Neural Networks

- Very high capacity/model order
- Easy to train with modern analytical/computational tools.
- Shallow neural networks: Use one easy-to-train layer.
- Deep neural networks: Train a hierarchical stack of layers.

Single Layer Dense NN

Single layer NN, graphically

- Mathematically, $\hat{x} = B\sigma(Ay + b)$ where
 - $\neg A \in \Re^{N_1 \times N_y}$ is a matrix of multiplicative weights.
 - $b \in \Re^{N_1}$ is a column vector of additive offsets.
 - $\neg \sigma: \mathbb{R}^{N_1} \to \mathbb{R}^{N_1}$ is a point-wise <u>activation function</u>.
 - \Box $B \in \Re^{N_x \times N_1}$ is a matrix of multiplicative weights.
 - Typical activation function: Logistic sigmoid

$$\sigma_i(z) = \frac{1}{1 + e^{-z_i}}$$

Point-Wise Activation Functions

Logistic sigmoid function

$$\sigma_i(z) = \frac{1}{1 + e^{-z_i}}$$

Rectified linear unit (ReLU)

$$\sigma_i(z) = \begin{cases} 0 & \text{if } z_i \le 0 \\ z_i & \text{if } z_i > 0 \end{cases}$$

Leaky ReLU

$$\sigma_i(z) = \begin{cases} \alpha z_i & \text{if } z_i \le 0 \\ z_i & \text{if } z_i > 0 \end{cases}$$

Point-Wise Activation Function

■ Point-wise activation function, $\sigma: \mathbb{R}^N \to \mathbb{R}^N$

Gradient of Point-Wise Activation Function

- Gradient Matrix is:
 - Diagonal
 - Sparse (most entries are zero)
 - Fast to compute and apply

Single Layer NN: Abstract Form

Single layer NN,

Mathematical representation is

$$f_{\theta}(y) = B\sigma(Ay + b)$$

where $\theta = (A, B, b)$ is the set of all NN parameters.

Single Layer NN Flow Diagram

• Example for $N_y = 3$, $N_1 = 4$, and $N_x = 2$.

- Approximation theorem:
 - Cybenko 1989, "Approximation by Superpositions of Sigmoidal Functions" ⇒
 Any function can be approximated by a single layer neural network!
 - But number of hidden layers might be huge!!

One-Hot Encoding for Classification

- A method to encode the class of an object
 - A vector $y \in \mathbb{R}^{10}$ needs to be classified into one of M possible classes.
- Standard encoding:
 - $\hat{x} \in \{0, \dots, M-1\}$ each value represents a different class
- One-hot encoding:
 - $-\hat{x} \in \Re^{M} \text{ s.t.} \qquad \hat{x}_{i} = \begin{cases} 1 & \text{if } class = i \\ 0 & \text{if } class \neq i \end{cases}$
- Example: For M = 5, and class=3, then $\hat{x} = [0,0,1,0,0]$

Continuous Encoding for Classification

■ Define an *M*-dimensional simplex as

$$S^M = \left\{ x \in \mathbb{R}^M : \forall i, x_i \ge 0 \text{ and } 1 = \sum_{i=0}^{M-1} x_i \right\}$$

Like a probability density for each class

- Continuous function on a convex set
- Makes optimization easier
- Allows for representation of probability densities
- Example: For M = 5, and class=3, then $\hat{x} = [p_0, p_1, p_2, p_3, p_4]$ where $p_i \in \mathcal{S}$

Softmax Activation Functions

Softmax

$$\sigma_i(z) = \frac{e^{z_i}}{\sum_j e^{z_j}}$$

- Joint activation function
- Notice that $\sigma_i(z) \in \mathcal{S}^N \subset \mathfrak{R}^N$.
- It can be interpreted as a probability density.

Gradient of Softmax Function

- Gradient Matrix is:
 - Dense matrix (most or all entries are non-zero)
 - Usually slow to compute, but some tricks in this case

$$[\nabla \sigma(z)]_{i,j} = \frac{1}{\sum_{k} e^{z_k}} \left(e^{z_i} \delta_{i-j} - \frac{e^{z_i} e^{z_j}}{\sum_{k} e^{z_k}} \right)$$

$$abla \sigma(z) = \frac{1}{\sum_{k} e^{z_{k}}}$$
 $abla \sigma(z) = \frac{1}{\sum_{k} e^{z_{k}}}$
 $abla \sigma(z) = \frac{1}{\sum_{k} e^{z_{k}}}$

The Loss Function

- Measuring supervised training error
- Mathematical representation
- o Parameter estimation through loss minimization
- Inference and training as inverse problems

Machine Learning: Supervised Training

Training:

- Measure x too! This produces training data.
 - Collecting training data is application specific
 - It can be difficult, expensive, or even impossible
- Select θ so that $\epsilon = x \hat{x}$ is small
- How do we measure "small"?

ML: Supervised Training

- Find lots of training data
 - (x_k, y_k) for $k = 0, \dots, K 1$
- Define a loss function $L(\theta)$
- Pick θ to minimize $L(\theta)$

The ML Loss Function

- What is a loss function?
 - The loss function is a measure of training error
 - So for example, $x_k \in \Re^{N_\chi}$

$$Loss = L(\theta) = \frac{1}{K} \sum_{k=0}^{K-1} ||x_k - \hat{x}_k||^2 = \frac{1}{K} \sum_{k=0}^{K-1} \sum_{i=0}^{N_y - 1} (x_{k,i} - \hat{x}_{k,i})^2$$
But wait! Gobbligood Alert!

What I really mean is

$$Loss = L(\theta) = \frac{1}{K} \sum_{k=0}^{K-1} ||x_k - f_{\theta}(y_k)||^2$$

Loss Function Properties

$$L_{MSE}(\theta) = \frac{1}{K} \sum_{k=0}^{K-1} ||x_k - f_{\theta}(y_k)||^2$$

- Facts:
 - Usually called mean squared error (MSE). But technically,
 MSE is really defined as

$$MSE = E[||x_k - f_\theta(y_k)||^2] \approx L_{MSE}(\theta)$$

So this should really be called Total Squared Error (TSE), but what are you going to do...

- When $L(\theta) = 0$, then for all $k, x_k = f_{\theta}(y_k)$.

Parameter Estimation using Loss Minimization

$$\theta^* = \arg\min_{\theta} \{L_{MSE}(\theta)\} = \arg\min_{\theta} \left\{ \frac{1}{K} \sum_{k=0}^{K-1} ||x_k - f_{\theta}(y_k)||^2 \right\}$$

• Estimate θ^* by minimizing loss

What does this mean?
$$\theta^* = \arg\min_{\theta} \{l_{MSE}(\theta)\}$$

Question: What is the lowest point in the USA?

Death Valley
Badwater Basin =
$$\underset{\theta \in USA}{\text{arg min}} [Altitude(\theta)]$$

$$-282 \text{ feet} = \underset{\theta \in USA}{\text{min}} [Altitude(\theta)]$$

- "min" returns the minimum value
- "arg min" returns the parameter that minimizes the value

ML Supervised Training

- Generate training data:
 - Collect K training pairs, (x_0, y_0) , (x_1, y_1) , ..., (x_{K-1}, y_{K-1})
- Estimate parameter:
 - $\theta^* = \arg\min_{\theta} \{L_{MSE}(\theta)\}$
- This is also an inverse problem!
 - Trying to find the "hidden" or "latent" value of θ .

Complete ML System

- Supervised training:
 - Off-line and often slow
 - Requires expensive training data
- Online inference:
 - On-line and usually needs to be fast

Two Inverse Problems in ML

- Inference inverse problem:
 - Estimate the unknown, \hat{x} , from the available measurements, y.

- Training inverse problem:
 - Estimate the unknown parameter, θ^* , from the training pairs, $(x_n, y_n)|_{n=0}^{N-1}$

