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Exam instructions:

¢ You have 75 minutes to work the exam.

e This is a closed-book and closed-note exam. You may not use or have access to your book, notes, any
supplementary reference, a calculator, or any communication device including a cell-phone or computer.

¢ You may not communicate with any person other than the official proctor during the exam.

e There are 32 sub-problems each worth 5pts, for a total score of 160.

To ensure Gradescope can read your exam:
e Write your full name and PUID above and on the top of every page.
o Answer all questions in the area designated for each problem.
o Write only on the front of the exam pages.
e DO NOT run over to the next question.




Name/PUID: Key
Problem 1. (35pt) Probability and Random Variables

Let X, Y, and Z be random variables such that E[|X|] = E[|Y|] = E[|Z|] < oo on the
probability space (€2, B, P). Also, let f : R — R be a continuous function.

a) Is X random? Is X a variable? What is X7

Solution: No, it is not random, and it is not a variable. X is a function, X : @ — R

b) Is E[X] a random variable or number?

Solution: It is a number.

c) Is F[X|Y] a random variable or number?

Solution: It is a random variable. In particular, it is a random variable with the form
Z = g(Y) for some measurable function g.

d) Is f(X) a random variable or number?

Solution: Yes, Z = f(X) = f(X(w)), so it is a function of w. So Z must be a random
variable.

e) What is E[X|X]?

Solution: E[X|X]| = X.

f) What is E[E[Y|X]]?

Solution: E[E[Y|X]] = E[Y]

g) Does E|[f(X)] always exist? Justify your answer.

Solution: No. For example, let Z ~ p(z) where p(z) = 5. and let f(x) = 23, and
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define W = max{0, f(Z)} and W~ = min{0, f(Z)}. Then we have that

E[f(X)]=EW" + W]
— E[W*| + E[W~]

= 00 — 00 = not defined .




Name/PUID:
Problem 2. (30pt) Convexity and Optimization

Consider the function f: R — R such that
fl@)=(z—1)*z+1)*.

a) Sketch the function f(x) for x € [—2,2].

Plot of fix) = (x — 1)2(x + 1)2

— ) =(x-1)2x+1)
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Solution: x

b) Is f convex? Justify your answer.

Solution: No. Take a =1, b= —1, and A = 0.5. Then we have that
AMfla)+ (A=A f(b) =0< fAa+ (1 =A)b) = f(0)=1.

So f is not convex.

c¢) Does f have local minimum? If so, what are they?

Solution: Yes, it has local minimum at z = 1 and 2 = —1. This is true since f(x) > 0 and
f(1)=f(=1) =0. So x =1 and z = —1 must be local minima.

d) Does f have a global minimum? Justify your answer.

Solution: Yes, since f(z) > 0 and f(1) = f(—1) = 0, then x = 1 and x = —1 must be
global minima.

e) Does f have a unique global minimum? Justify your answer.

Solution: No, since both x = 1 and x = —1 are global minima, then the global minimum
is not unique.



f) Does f have a saddle point? Justify your answer.

Solution: No, x = 0 is not a saddle point because it is a local maximum. So see this, notice
that % — 0 and LW = —4 and f(0) = 1.
=0

2
2=0 dx

kkkk

However, the definition of saddle point in the class notes was wrong, so the following incorrect
answer is also accepted.
Yes, x = 0 is a saddle point because its gradient is zero and it is not a local minimum.
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Problem 3. (35pt) Gradient Descent and Preconditioning

Consider the function .

where H = A'A and 6 € RP.
Our goals is to minimize this function using gradient descent optimization starting at 6y = 1,
where 1 denotes a vector of 1’s.

a) Calculate V f(6), the gradient of f at 6.

Solution:

Vf(0) =0'H

b) Calculate VV f(0), the Hessian of f at 6.

Solution:
VVfO)=H

¢) Is f a convex function? Justify your answer.

Solution: Notice that V@, we have that
0'HO = 0"A" A9 = || A9||* > 0 .

So therefore, H is non-negative definite, and f is convex.

d) Write the gradient descent update algorithm with a step size of a > 0.

Solution:
0+ 0—alVfO)]=0—-aHo

Important: For the remaining parts of the problem, assume that A = diag{ao,...,ap-1}
such that a? > a?, ;.

e) Determine the largest value of a4, so that for all 0 < a < @4, gradient descent has
guaranteed convergence.

Solution:
1- amamag Z —1

6



So we have that

ez =

Sl o

f) If a2 >> az_l, then will gradient descent have fast convergence? Justify your answer.

Solution: No, the convergence for the small eigenvalues will be slow. This is because

2
epfl — epfl - amamap_lepfl

2a2_,
— 0, <1— p‘)
p a/g

— 91)71(1 - B) )

2

2
where § = % << 1.
0

g) What modification of gradient descent will have faster convergence? Be specific, and
justify your answer.

Solution: You can speed convergence of gradient descent by using a preconditioner to adapt
the step size for different components of 6. So this is

0+ 0—aMHO

where we choose M = diag{1/ag,...,1/a’_}.
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Problem 4. (35pt) Forward and Backward Propagation Complexity

Our goal is to evaluate an expression for the vectors g and h given by
g=a'BC
h=DEf ,

where B, C, D, E € RP*P are matrices; a, f € RP*! are vectors, and p >> 1.
We call forward evaluation of these functions

g =d'(BC))
h=D(Ef),

and we call backward evaluation of these functions

g=(a'B)C
h=(DE)f .

a) Does forward and backward evaluation generate the same result for g and h? Justify your
answer.

Solution: Yes, because multiplication is associative.

b) Give an expression for F M, the number of multiples required for forward evaluation of

g.
(Hint: Assume straight forward evaluation of the matrix vector products.)

Solution: Forward evaluation of g requires F M, = p* + p? multiplies.

c¢) Give an expression for F M, the number of multiples required for forward evaluation of
h.
(Hint: Assume straight forward evaluation of the matrix vector products.)

Solution: Forward evaluation of h requires F M), = 2p* multiplies.

d) Give expressions for BM, and BM}, the number of multiples required for backward
evaluation of g and h, respectively.

Solution: Backward evaluation of g requires BM, = 2p? multiplies. Backward evaluation
of h requires BM,, = p® + p? multiplies.



e) Which evaluation approach is best for g7 Which evaluation approach is best for h?

Solution: Backward evaluation is best for ¢ and forward evaluation is best for h.

f) Is there a general rule you can give for when to use forward evaluation and when to use
backward evaluation?

Solution: Yes, use forward evaluation when the input dimension (on the right) is smaller
than the output dimension (on the left). Use backward evaluation when the output dimension
(on the left) is smaller than he input dimension (on the right).

g) Why is back propagation commonly used in optimization of deep neural networks?

Solution: Back propagation is commonly used because the output dimension is 1 for a loss
function.
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Problem 5. (25pt) Maximum Likelihood and Loss Functions

Define the open simplex, S, as the following;:

M1
S:{xERM:WG[0,...,M—1],xi>0, and Zx,-zl}

=0

Then define the ground truth data Xj; for 0 < k < K and 0 < ¢ < M to be one-hot encoded
random variables were k denotes the training pair and ¢ denotes the class.
Also define the cross-entropy loss function as

K—1 M-
1
L(0;x) = e Z — Ty, logt;
k=0 1i=

[y

where 6 € S is a parameter vector and z is a realization of X, i.e., x is not random.

a) Prove that the simplex is a convex set.

Solution: Let a,b € S, then Vi, a; > 0 and b; > 0, and ), a; = >, b; = 1. So if we define
c=Xa+(1-\b,

then we have that ¢; >0, and ) . ¢; = 1. Q.E.D.

b) Is L is a convex function of § on §? Justify your answer.

Solution: Yes. To prove this, we will show that each term of the sum is convex. If we
define, f(z) = —zlog z, then we have that

di;;(Qz) =2/22>0.

So since f(z) has positive second derivative for z > 0, it must be convex.

Important: For the remaining parts of the problem, assume that X . are independent and
identically distributed (i.i.d.) for different values of k with

Pp{X), =1} =9,

10



c) Calculate an expression for () = —log P{X = z}.

Solution:
1(0) = —log P{X =z}
K-1M-1
= Z Z —xy,; log 0;
k=0 i=0
= KL(0;x)

d) What is the relationship between minimizing the cross-entropy loss and the maximum
likelihood estimate? Justify your answer.

Solution: Since L(6;z) = %I(f), computing the arg min for L and [ is the same. So the
minimization of the cross-entropy loss results in the maximum likelihood estimate.

e) Calculate a closed from expression for the ML estimate of § given X

Solution:

0 = arg min 1(0)

K-1M-1

= arg min E E —xp,logl; ,
0eS ’
k=0 i=0

This results in
K-1_
0. k=0 Tk,

' K

! Assume that Vi > & Xk, > 0 so that you don’t have problems with the log.
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