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Name/PUID: Key
Problem 1. (35pt) Probability and Random Variables

Let X, Y , and Z be random variables such that E[|X|] = E[|Y |] = E[|Z|] < → on the
probability space (!,B, P ). Also, let f : R ↑ R be a continuous function.

a) Is X random? Is X a variable? What is X?

Solution: No, it is not random, and it is not a variable. X is a function, X : ! ↑ R

b) Is E[X] a random variable or number?

Solution: It is a number.

c) Is E[X|Y ] a random variable or number?

Solution: It is a random variable. In particular, it is a random variable with the form
Z = g(Y ) for some measurable function g.

d) Is f(X) a random variable or number?

Solution: Yes, Z = f(X) = f(X(ω)), so it is a function of ω. So Z must be a random
variable.

e) What is E[X|X]?

Solution: E[X|X] = X.

f) What is E[E[Y |X]]?

Solution: E[E[Y |X]] = E[Y ]

g) Does E[f(X)] always exist? Justify your answer.

Solution: No. For example, let Z ↓ p(z) where p(z) = 1
(1+|z|)3 , and let f(x) = x

3, and
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define W
+ = max{0, f(Z)} and W

→ = min{0, f(Z)}. Then we have that

E[f(X)] = E[W+ +W
→]

= E[W+] + E[W→]

= →↔→ = not defined .
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Problem 2. (30pt) Convexity and Optimization

Consider the function f : R ↑ R such that

f(x) = (x↔ 1)2(x+ 1)2 .

a) Sketch the function f(x) for x ↗ [↔2, 2].

Solution:

b) Is f convex? Justify your answer.

Solution: No. Take a = 1, b = ↔1, and ε = 0.5. Then we have that

εf(a) + (1↔ ε)f(b) = 0 ↘ f(εa+ (1↔ ε)b) = f(0) = 1 .

So f is not convex.

c) Does f have local minimum? If so, what are they?

Solution: Yes, it has local minimum at x = 1 and x = ↔1. This is true since f(x) ≃ 0 and
f(1) = f(↔1) = 0. So x = 1 and x = ↔1 must be local minima.

d) Does f have a global minimum? Justify your answer.

Solution: Yes, since f(x) ≃ 0 and f(1) = f(↔1) = 0, then x = 1 and x = ↔1 must be
global minima.

e) Does f have a unique global minimum? Justify your answer.

Solution: No, since both x = 1 and x = ↔1 are global minima, then the global minimum
is not unique.
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f) Does f have a saddle point? Justify your answer.

Solution: No, x = 0 is not a saddle point because it is a local maximum. So see this, notice

that df(x)
dx

∣∣∣
x=0

= 0 and d2f(x)
dx2

∣∣∣
x=0

= ↔4 and f(0) = 1.

****
However, the definition of saddle point in the class notes was wrong, so the following incorrect
answer is also accepted.
Yes, x = 0 is a saddle point because its gradient is zero and it is not a local minimum.
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Problem 3. (35pt) Gradient Descent and Preconditioning

Consider the function

f(ϑ) =
1

2
ϑ
t
Hϑ ,

where H = A
t
A and ϑ ↗ Rp.

Our goals is to minimize this function using gradient descent optimization starting at ϑ0 = 1,
where 1 denotes a vector of 1↑s.

a) Calculate ⇐f(ϑ), the gradient of f at ϑ.

Solution:

⇐f(ϑ) = ϑ
t
H

b) Calculate ⇐⇐f(ϑ), the Hessian of f at ϑ.

Solution:

⇐⇐f(ϑ) = H

c) Is f a convex function? Justify your answer.

Solution: Notice that ⇒ϑ, we have that

ϑ
t
Hϑ = ϑ

t
A

t
Aϑ = ⇑Aϑ⇑2 ≃ 0 .

So therefore, H is non-negative definite, and f is convex.

d) Write the gradient descent update algorithm with a step size of ϖ > 0.

Solution:

ϑ ⇓ ϑ ↔ ϖ [⇐f(ϑ)] = ϑ ↔ ϖHϑ

Important: For the remaining parts of the problem, assume that A = diag{a0, . . . , ap→1}
such that a2i > a

2
i+1.

e) Determine the largest value of ϖmax so that for all 0 < ϖ < ϖmax gradient descent has
guaranteed convergence.

Solution:

1↔ ϖmaxa
2
0 ≃ ↔1
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So we have that

ϖmax =
2

a
2
0

f) If a20 >> a
2
p→1, then will gradient descent have fast convergence? Justify your answer.

Solution: No, the convergence for the small eigenvalues will be slow. This is because

ϑp→1 ⇓ ϑp→1 ↔ ϖmaxa
2
p→1ϑp→1

⇓ ϑp→1

(
1↔

2a2p→1

a
2
0

)

⇓ ϑp→1(1↔ ϱ) ,

where ϱ =
2a2p→1

a20
<< 1.

g) What modification of gradient descent will have faster convergence? Be specific, and
justify your answer.

Solution: You can speed convergence of gradient descent by using a preconditioner to adapt
the step size for di”erent components of ϑ. So this is

ϑ ⇓ ϑ ↔ ϖMHϑ ,

where we choose M = diag{1/a20, . . . , 1/a2p→1}.
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Problem 4. (35pt) Forward and Backward Propagation Complexity

Our goal is to evaluate an expression for the vectors g and h given by

g = a
t
BC

h = DEf ,

where B,C,D,E ↗ Rp↓p are matrices; a, f ↗ Rp↓1 are vectors, and p >> 1.
We call forward evaluation of these functions

g = a
t(BC))

h = D(Ef) ,

and we call backward evaluation of these functions

g = (atB)C

h = (DE)f .

a) Does forward and backward evaluation generate the same result for g and h? Justify your
answer.

Solution: Yes, because multiplication is associative.

b) Give an expression for FMg the number of multiples required for forward evaluation of
g.
(Hint: Assume straight forward evaluation of the matrix vector products.)

Solution: Forward evaluation of g requires FMg = p
3 + p

2 multiplies.

c) Give an expression for FMh the number of multiples required for forward evaluation of
h.
(Hint: Assume straight forward evaluation of the matrix vector products.)

Solution: Forward evaluation of h requires FMh = 2p2 multiplies.

d) Give expressions for BMg and BMh, the number of multiples required for backward

evaluation of g and h, respectively.

Solution: Backward evaluation of g requires BMg = 2p2 multiplies. Backward evaluation
of h requires BMh = p

3 + p
2 multiplies.
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e) Which evaluation approach is best for g? Which evaluation approach is best for h?

Solution: Backward evaluation is best for g and forward evaluation is best for h.

f) Is there a general rule you can give for when to use forward evaluation and when to use
backward evaluation?

Solution: Yes, use forward evaluation when the input dimension (on the right) is smaller
than the output dimension (on the left). Use backward evaluation when the output dimension
(on the left) is smaller than he input dimension (on the right).

g) Why is back propagation commonly used in optimization of deep neural networks?

Solution: Back propagation is commonly used because the output dimension is 1 for a loss
function.
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Problem 5. (25pt) Maximum Likelihood and Loss Functions

Define the open simplex, S, as the following:

S =

{
x ↗ RM : ⇒i ↗ [0, . . . ,M ↔ 1], xi > 0, and

M→1∑

i=0

xi = 1

}

Then define the ground truth data Xk,i for 0 ↘ k < K and 0 ↘ i < M to be one-hot encoded
random variables were k denotes the training pair and i denotes the class.
Also define the cross-entropy loss function as

L(ϑ; x) =
1

K

K→1∑

k=0

M→1∑

i=0

↔xk,i log ϑi ,

where ϑ ↗ S is a parameter vector and x is a realization of X, i.e., x is not random.

a) Prove that the simplex is a convex set.

Solution: Let a, b ↗ S, then ⇒i, ai > 0 and bi > 0, and
∑

i ai =
∑

i bi = 1. So if we define

c = εa+ (1↔ ε)b ,

then we have that ci > 0, and
∑

i ci = 1. Q.E.D.

b) Is L is a convex function of ϑ on S? Justify your answer.

Solution: Yes. To prove this, we will show that each term of the sum is convex. If we
define, f(z) = ↔x log z, then we have that

df(z)

dz
= ↔x/z

d
2
f(z)

dz2
= x/z

2 ≃ 0 .

So since f(z) has positive second derivative for z > 0, it must be convex.

Important: For the remaining parts of the problem, assume that Xk,: are independent and
identically distributed (i.i.d.) for di”erent values of k with

Pω{Xk,i = 1} = ϑi
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c) Calculate an expression for l(ϑ) = ↔ logP{X = x}.

Solution:

l(ϑ) = ↔ logP{X = x}

=
K→1∑

k=0

M→1∑

i=0

↔xk,i log ϑi

= KL(ϑ; x)

d) What is the relationship between minimizing the cross-entropy loss and the maximum
likelihood estimate? Justify your answer.

Solution: Since L(ϑ; x) = 1
K l(ϑ), computing the arg min for L and l is the same. So the

minimization of the cross-entropy loss results in the maximum likelihood estimate.

e) Calculate a closed from expression for the ML estimate of ϑ given X.1

Solution:

ϑ̂ = argmin
ω↔S

l(ϑ)

= argmin
ω↔S

K→1∑

k=0

M→1∑

i=0

↔xk,i log ϑi ,

This results in

ϑ̂i =

∑K→1
k=0 xk,i

K
.

1Assume that ⇒i
∑

k Xk,i > 0 so that you don’t have problems with the log.
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