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Name/PUID:
Problem 1. (25pt) One Hot Encoding and the Simplex

Consider a problem in which X needs to represent the class of an image Y in which the three
possible classes are {chair, elephant, tree}. You have the option of two possible encodings for
the class.

Encoding A: X 2 {0, 1, 2} with 0 = chair, 1 = elephant, and 2 = tree.

Encoding B: X 2 <3 where
P

m Xm = 1, and X0 = 1, if chair; X1 = 1, if elephant;
and X2 = 1, if tree.

a) What is Encoding B called?

Solution: One hot encoding

b) Give an advantage and a disadvantage of Encoding B over Encoding A.

Solution: The advantage of Encoding B is that it provides a better representation of each
class since all classes are equally distant in this representation. The disadvantage of Encoding
B is that it requires more store and memory since each value of X is a vector of dimension
3 rather than a scalar integer.

c) Give a mathematical explanation as to why Encoding B is better than Encoding A?

Solution: Let X i and Xj be encodings of class i and j. For Encoding B, we have that

kX i �Xjk = �(i� j) ,

but for Encoding A, we have that

kX i �Xjk = |i� j| .

So in the second case, the di↵erence depends on the specific classes.

d) For Encoding B, we say that X 2 S. State the name of the set S, and give a precise
mathematical definition for the set S.

Solution: S is the Simplex, and it is defined by
(
s 2 <P :

P�1X

i=0

si = 1, and 8i, si � 0

)
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e) Prove that S is a convex set.

Solution: Let a, b 2 S, then select any � 2 [0, 1]. Then define

c = �a+ (1� �)b .

Then we need so show that c is also in the simplex. We can do this by showing

P�1X

i=0

ci =
P�1X

i=0

{�ai + (1� �)bi} = �
P�1X

i=0

ai + (1� �)
P�1X

i=0

bi = �1 + (1� �)1 = 1 ,

and
ci = �ai + (1� �)bi � �0 + (1� �)0 = 0 .
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Name/PUID:
Problem 2. (25pt) Gradient of a Loss function

Consider a neural network with inference function f✓(y) where ✓ 2 <p and f✓ : <Ny ! <Nx ,
and loss function given by

L(✓) =
1

K

K�1X

k=0

kxk � f✓(yk)k2 ,

where {(xk, yk)}K�1
k=0 are training pairs.

a) What is the shape of A = r✓f✓(y)? What is the interpretation of the element Ai,j?

Solution: A is Nx ⇥ p. The value Ai,j has the interpretation of

Ai,j =
@[f✓(y)]i

@✓j

b) What is the shape of At? What is the interpretation of the element [At]i,j?

Solution: At is p⇥Nx. The value Ai,j has the interpretation of

[At]i,j =
@[f✓(y)]j

@✓i

c) Calculate an expression for r✓L(✓).

Solution:

r✓L(✓) = �
2

K

K�1X

k=0

(xk � f✓(yk))
tr✓f✓(yk) = �

2

K

K�1X

k=0

(xk � f✓(yk))
tA

So therefore,

[r✓L(✓)]
t = � 2

K

K�1X

k=0

At(xk � f✓(yk))

d) For general A, how many multiplies are required to compute r✓L(✓).

Solution: For each training sample indexed by k, the number of multiplications is Nx ⇥ P .
Then for K training samples, the number of multiplications is K⇥Nx⇥P . The final vector
of shape 1⇥ P is multiplied by �2/K, so the total number of multiplies is given by

Total Multiplies = K ⇥Nx ⇥ P + P .
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e) Consider the case when A = 1✓t, where 1 2 <Nx is a column vector of 1’s. Then how
many multiplies are required to compute r✓L(✓)?

Solution: In this case, we have that

r✓L(✓) = �
2

K

K�1X

k=0

(xk � f✓(yk))
tA

= � 2

K

K�1X

k=0

(xk � f✓(yk))
t1✓t

= � 2

K

K�1X

k=0

⇥
(xk � f✓(yk))

t1
⇤
✓t

Evaluation of each term in the sum requires P multiplications. (Here, multiplication by 1 is
not counted as a multiplication.) Doing this for each of the K training samples requires KP
multiplies. Finally, each of the P components of the resulting vector must be multiplied by
�2/K. So the total number of multiplies is given by

Total Multiplies = (K + 1)P .
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Name/PUID:
Problem 3. (25pt) Conditioning for Gradient Descent

Define the matrices

A =


cos� sin�
� sin� cos�

�

⌃ =


a 0
0 1

�

B = At⌃A .

where a >> 1 and � = ⇡/4, (i.e. 45 deg). Then define the function f(✓) = 1
2✓

tB✓.
Also define the gradient descent algorithm as an iterative application of the following step:

✓  ✓ + ↵[�rf(✓)] .

a) Sketch the contours of the function f(✓). Label the key features of the plot.

Solution:

!!

!"

2

2
"

line !! − !" = 0

line !! + !" = 0

b) What is the condition number for this optimization problem?

Solution: The condition number is a.
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c) Calculate the negative gradient d = �rf(✓). Draw another contour plot of f , and for a
particular value of ✓, draw the vector d on the plot.

Solution:
rf(✓) = B✓

!!

!"

!

d) What is the largest value of ↵ for which gradient descent is stable?

Solution: In order for gradient descent to be stable, we need that ↵ < 2/a. For values of
↵ � 2/a, the gradient descent algorithm will be unstable because along the 45 deg direction
the solution will oscillate with increasing amplitude.

e) If a = 106 and you start gradient descent at ✓ = (1, 0)/
p
2, what will happen?

Solution: In order to make convergence stable, the step size must be decreased so that
↵ < 1/a. However, this will make convergence very slow along the -45 deg axis. So each
step will only move a small amount.
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Name/PUID:
Problem 4. (25pt) Convolution Blocks

A convolution block in a neural network can be represented by x = f(y) where y =
[y0, · · · , yN ] is the input, x = [0, · · · , N � 2] is the output for N = 4. Also it uses a 3-
point convolution kernel of w = [w0, w1, w2] with the “valid” boundary condition and an
o↵set of b. In this case, function can be written as

x = f(y) = y ⇤ w + b ,

where ⇤ denotes conventional convolution. Also define the loss function

L(y) =
1

K

K�1X

k=0

kxk � f(y)k2 .

a) What is the shape of the gradient A = ryf(y)?

Solution: 3⇥ 5.

b) Write out an explicit expression for f in the form f(y) = Ay + b.

Solution:

f(y) =

2

4
w2 w1 w0 0 0
0 w2 w1 w0 0
0 0 w2 w1 w0

3

5

2

66664

y0
y1
y2
y3
y4

3

77775
+

2

4
b0
b1
b2

3

5

c) Write out an explicit expression for the adjoint gradient, At = [ryf(y)]t.

Solution:

At =

2

66664

w2 0 0
w1 w2 0
w0 w1 w2

0 w0 w1

0 0 w0

3

77775
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d) Write out an explicit expression for the gradient of the loss function ryL(y).

Solution:

ryL(y) =
�2
K

K�1X

k=0

(xk � f(y))tA (1)

=
�2
K

K�1X

k=0

⇥
✏0 ✏1 ✏2

⇤
2

4
w2 w1 w0 0 0
0 w2 w1 w0 0
0 0 w2 w1 w0

3

5 (2)

[ryL(y)]
t =
�2
K

K�1X

k=0

At(xk � f(y)) (3)

=

2

66664

w2 0 0
w1 w2 0
w0 w1 w2

0 w0 w1

0 0 w0

3

77775

2

4
✏0
✏1
✏2

3

5 (4)

(5)

e) What is the interpretation of multiplication by At?

Solution: The interpretation is “same” boundary condition convolution with the time-
reversed kernel, w2�n, using an input that is padded with zeros at the first and last positions.

So in other words, it is convolution of [0, ✏0, ✏1, ✏2, 0] with the kernel [w2, w1, w0] using the
“same” boundary condition.
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Name/PUID:
Problem 5. (25pt) Probability and Random Variables

a) Let X be a random variable. What precisely does {X  �} mean?

Solution: It means the event A ⇢ ⌦ defined by

A = {! 2 ⌦ : X(!)  �}

b) Let X be a random variable. What precisely does P{X  �} mean?

Solution: It means
P ({! 2 ⌦ : X(!)  �})

c) Let X, Y, Z be a random variables with Y and Z independent. Give a simplified expression
for the following:

1. E[Y |Z]

2. E[ZX|Z]

3. E[Y Z]

Solution:
E[Y |Z] = E[Y ]

E[ZX|Z] = ZE[X|Z]

E[Y Z] = E[Y ]E[Z]

d) Consider that you use the cross entropy loss function to estimate ✓ in training the inference
function f✓(y) with training data {xk, yk}K�1

k=0 . What interpretation does minimization of the
cross entropy loss function have in this case?

Solution: It is equivalent to maximum likelihood estimation of the parameter ✓.

10



e) Let Y be a random variable with density p✓(y) for ✓ 2 <P , and let ✓̂ = T (Y ) be an
estimator of ✓. Define the bias of the estimator.

Solution:
Bias = E[✓̂|✓]� ✓
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