Purdue

BME 64600-001 and ECE 60146-001
Midterm \#1, Spring 2024

Exam instructions:

- You have 75 minutes to work the exam.
- This is a closed-book and closed-note exam. You may not use or have access to your book, notes, any supplementary reference, a calculator, or any communication device including a cell-phone or computer.
- You may not communicate with any person other than the official proctor during the exam.

To ensure Gradescope can read your exam:

- Write your full name and PUID above and on the top of every page.
- Answer all questions in the area designated for each problem.
- Write only on the front of the exam pages.
- DO NOT run over to the next question.

Name/PUID:

Problem 1. (25pt) One Hot Encoding and the Simplex

Consider a problem in which X needs to represent the class of an image Y in which the three possible classes are $\{$ chair, elephant, tree $\}$. You have the option of two possible encodings for the class.

Encoding A: $X \in\{0,1,2\}$ with $0=$ chair, $1=$ elephant, and $2=$ tree.
Encoding B: $X \in \Re^{3}$ where $\sum_{m} X_{m}=1$, and $X_{0}=1$, if chair; $X_{1}=1$, if elephant; and $X_{2}=1$, if tree.
a) What is Encoding B called?

Solution: One hot encoding
b) Give an advantage and a disadvantage of Encoding B over Encoding A.

Solution: The advantage of Encoding B is that it provides a better representation of each class since all classes are equally distant in this representation. The disadvantage of Encoding B is that it requires more store and memory since each value of X is a vector of dimension 3 rather than a scalar integer.
c) Give a mathematical explanation as to why Encoding B is better than Encoding A?

Solution: Let X^{i} and X^{j} be encodings of class i and j. For Encoding B, we have that

$$
\left\|X^{i}-X^{j}\right\|=\delta(i-j)
$$

but for Encoding A, we have that

$$
\left\|X^{i}-X^{j}\right\|=|i-j|
$$

So in the second case, the difference depends on the specific classes.
d) For Encoding B , we say that $X \in \mathcal{S}$. State the name of the set \mathcal{S}, and give a precise mathematical definition for the set \mathcal{S}.

Solution: \mathcal{S} is the Simplex, and it is defined by

$$
\left\{s \in \Re^{P}: \sum_{i=0}^{P-1} s_{i}=1, \text { and } \forall i, s_{i} \geq 0\right\}
$$

e) Prove that \mathcal{S} is a convex set.

Solution: Let $a, b \in \mathcal{S}$, then select any $\lambda \in[0,1]$. Then define

$$
c=\lambda a+(1-\lambda) b .
$$

Then we need so show that c is also in the simplex. We can do this by showing

$$
\sum_{i=0}^{P-1} c_{i}=\sum_{i=0}^{P-1}\left\{\lambda a_{i}+(1-\lambda) b_{i}\right\}=\lambda \sum_{i=0}^{P-1} a_{i}+(1-\lambda) \sum_{i=0}^{P-1} b_{i}=\lambda 1+(1-\lambda) 1=1
$$

and

$$
c_{i}=\lambda a_{i}+(1-\lambda) b_{i} \geq \lambda 0+(1-\lambda) 0=0 .
$$

Name/PUID:
Problem 2. (25pt) Gradient of a Loss function
Consider a neural network with inference function $f_{\theta}(y)$ where $\theta \in \Re^{p}$ and $f_{\theta}: \Re^{N_{y}} \rightarrow \Re^{N_{x}}$, and loss function given by

$$
L(\theta)=\frac{1}{K} \sum_{k=0}^{K-1}\left\|x_{k}-f_{\theta}\left(y_{k}\right)\right\|^{2}
$$

where $\left\{\left(x_{k}, y_{k}\right)\right\}_{k=0}^{K-1}$ are training pairs.
a) What is the shape of $A=\nabla_{\theta} f_{\theta}(y)$? What is the interpretation of the element $A_{i, j}$?

Solution: A is $N_{x} \times p$. The value $A_{i, j}$ has the interpretation of

$$
A_{i, j}=\frac{\partial\left[f_{\theta}(y)\right]_{i}}{\partial \theta_{j}}
$$

b) What is the shape of A^{t} ? What is the interpretation of the element $\left[A^{t}\right]_{i, j}$?

Solution: A^{t} is $p \times N_{x}$. The value $A_{i, j}$ has the interpretation of

$$
\left[A^{t}\right]_{i, j}=\frac{\partial\left[f_{\theta}(y)\right]_{j}}{\partial \theta_{i}}
$$

c) Calculate an expression for $\nabla_{\theta} L(\theta)$.

Solution:

$$
\nabla_{\theta} L(\theta)=-\frac{2}{K} \sum_{k=0}^{K-1}\left(x_{k}-f_{\theta}\left(y_{k}\right)\right)^{t} \nabla_{\theta} f_{\theta}\left(y_{k}\right)=-\frac{2}{K} \sum_{k=0}^{K-1}\left(x_{k}-f_{\theta}\left(y_{k}\right)\right)^{t} A
$$

So therefore,

$$
\left[\nabla_{\theta} L(\theta)\right]^{t}=-\frac{2}{K} \sum_{k=0}^{K-1} A^{t}\left(x_{k}-f_{\theta}\left(y_{k}\right)\right)
$$

d) For general A, how many multiplies are required to compute $\nabla_{\theta} L(\theta)$.

Solution: For each training sample indexed by k, the number of multiplications is $N_{x} \times P$. Then for K training samples, the number of multiplications is $K \times N_{x} \times P$. The final vector of shape $1 \times P$ is multiplied by $-2 / K$, so the total number of multiplies is given by

Total Multiplies $=K \times N_{x} \times P+P$.
e) Consider the case when $A=1 \theta^{t}$, where $1 \in \Re^{N_{x}}$ is a column vector of 1 's. Then how many multiplies are required to compute $\nabla_{\theta} L(\theta)$?

Solution: In this case, we have that

$$
\begin{aligned}
\nabla_{\theta} L(\theta) & =-\frac{2}{K} \sum_{k=0}^{K-1}\left(x_{k}-f_{\theta}\left(y_{k}\right)\right)^{t} A \\
& =-\frac{2}{K} \sum_{k=0}^{K-1}\left(x_{k}-f_{\theta}\left(y_{k}\right)\right)^{t} \mathbf{1} \theta^{t} \\
& =-\frac{2}{K} \sum_{k=0}^{K-1}\left[\left(x_{k}-f_{\theta}\left(y_{k}\right)\right)^{t} \mathbf{1}\right] \theta^{t}
\end{aligned}
$$

Evaluation of each term in the sum requires P multiplications. (Here, multiplication by 1 is not counted as a multiplication.) Doing this for each of the K training samples requires $K P$ multiplies. Finally, each of the P components of the resulting vector must be multiplied by $-2 / K$. So the total number of multiplies is given by

$$
\text { Total Multiplies }=(K+1) P
$$

Name/PUID:
Problem 3. (25pt) Conditioning for Gradient Descent
Define the matrices

$$
\begin{aligned}
A & =\left[\begin{array}{cc}
\cos \phi & \sin \phi \\
-\sin \phi & \cos \phi
\end{array}\right] \\
\Sigma & =\left[\begin{array}{ll}
a & 0 \\
0 & 1
\end{array}\right] \\
B & =A^{t} \Sigma A
\end{aligned}
$$

where $a \gg 1$ and $\phi=\pi / 4$, (i.e. 45 deg). Then define the function $f(\theta)=\frac{1}{2} \theta^{t} B \theta$.
Also define the gradient descent algorithm as an iterative application of the following step:

$$
\theta \leftarrow \theta+\alpha[-\nabla f(\theta)]
$$

a) Sketch the contours of the function $f(\theta)$. Label the key features of the plot.

Solution:

b) What is the condition number for this optimization problem?

Solution: The condition number is a.
c) Calculate the negative gradient $d=-\nabla f(\theta)$. Draw another contour plot of f, and for a particular value of θ, draw the vector d on the plot.

Solution:

$$
\nabla f(\theta)=B \theta
$$

d) What is the largest value of α for which gradient descent is stable?

Solution: In order for gradient descent to be stable, we need that $\alpha<2 / a$. For values of $\alpha \geq 2 / a$, the gradient descent algorithm will be unstable because along the 45 deg direction the solution will oscillate with increasing amplitude.
e) If $a=10^{6}$ and you start gradient descent at $\theta=(1,0) / \sqrt{2}$, what will happen?

Solution: In order to make convergence stable, the step size must be decreased so that $\alpha<1 / a$. However, this will make convergence very slow along the -45 deg axis. So each step will only move a small amount.

Name/PUID:

Problem 4. (25pt) Convolution Blocks

A convolution block in a neural network can be represented by $x=f(y)$ where $y=$ $\left[y_{0}, \cdots, y_{N}\right]$ is the input, $x=[0, \cdots, N-2]$ is the output for $N=4$. Also it uses a 3 point convolution kernel of $w=\left[w_{0}, w_{1}, w_{2}\right]$ with the "valid" boundary condition and an offset of b. In this case, function can be written as

$$
x=f(y)=y * w+b
$$

where $*$ denotes conventional convolution. Also define the loss function

$$
L(y)=\frac{1}{K} \sum_{k=0}^{K-1}\left\|x_{k}-f(y)\right\|^{2} .
$$

a) What is the shape of the gradient $A=\nabla_{y} f(y)$?

Solution: 3×5.
b) Write out an explicit expression for f in the form $f(y)=A y+b$.

Solution:

$$
f(y)=\left[\begin{array}{ccccc}
w_{2} & w_{1} & w_{0} & 0 & 0 \\
0 & w_{2} & w_{1} & w_{0} & 0 \\
0 & 0 & w_{2} & w_{1} & w_{0}
\end{array}\right]\left[\begin{array}{l}
y_{0} \\
y_{1} \\
y_{2} \\
y_{3} \\
y_{4}
\end{array}\right]+\left[\begin{array}{l}
b_{0} \\
b_{1} \\
b_{2}
\end{array}\right]
$$

c) Write out an explicit expression for the adjoint gradient, $A^{t}=\left[\nabla_{y} f(y)\right]^{t}$.

Solution:

$$
A^{t}=\left[\begin{array}{ccc}
w_{2} & 0 & 0 \\
w_{1} & w_{2} & 0 \\
w_{0} & w_{1} & w_{2} \\
0 & w_{0} & w_{1} \\
0 & 0 & w_{0}
\end{array}\right]
$$

d) Write out an explicit expression for the gradient of the loss function $\nabla_{y} L(y)$.

Solution:

$$
\begin{align*}
\nabla_{y} L(y) & =\frac{-2}{K} \sum_{k=0}^{K-1}\left(x_{k}-f(y)\right)^{t} A \tag{1}\\
& =\frac{-2}{K} \sum_{k=0}^{K-1}\left[\begin{array}{lll}
\epsilon_{0} & \epsilon_{1} & \epsilon_{2}
\end{array}\right]\left[\begin{array}{ccccc}
w_{2} & w_{1} & w_{0} & 0 & 0 \\
0 & w_{2} & w_{1} & w_{0} & 0 \\
0 & 0 & w_{2} & w_{1} & w_{0}
\end{array}\right] \tag{2}\\
{\left[\nabla_{y} L(y)\right]^{t} } & =\frac{-2}{K} \sum_{k=0}^{K-1} A^{t}\left(x_{k}-f(y)\right) \tag{3}\\
& =\left[\begin{array}{ccc}
w_{2} & 0 & 0 \\
w_{1} & w_{2} & 0 \\
w_{0} & w_{1} & w_{2} \\
0 & w_{0} & w_{1} \\
0 & 0 & w_{0}
\end{array}\right]\left[\begin{array}{c}
\epsilon_{0} \\
\epsilon_{1} \\
\epsilon_{2}
\end{array}\right] \tag{4}
\end{align*}
$$

e) What is the interpretation of multiplication by A^{t} ?

Solution: The interpretation is "same" boundary condition convolution with the timereversed kernel, w_{2-n}, using an input that is padded with zeros at the first and last positions.

So in other words, it is convolution of $\left[0, \epsilon_{0}, \epsilon_{1}, \epsilon_{2}, 0\right]$ with the kernel $\left[w_{2}, w_{1}, w_{0}\right]$ using the "same" boundary condition.

Name/PUID:
Problem 5. (25pt) Probability and Random Variables
a) Let X be a random variable. What precisely does $\{X \leq \lambda\}$ mean?

Solution: It means the event $A \subset \Omega$ defined by

$$
A=\{\omega \in \Omega: X(\omega) \leq \lambda\}
$$

b) Let X be a random variable. What precisely does $P\{X \leq \lambda\}$ mean?

Solution: It means

$$
P(\{\omega \in \Omega: X(\omega) \leq \lambda\})
$$

c) Let X, Y, Z be a random variables with Y and Z independent. Give a simplified expression for the following:

1. $E[Y \mid Z]$
2. $E[Z X \mid Z]$
3. $E[Y Z]$

Solution:

$$
\begin{gathered}
E[Y \mid Z]=E[Y] \\
E[Z X \mid Z]=Z E[X \mid Z] \\
E[Y Z]=E[Y] E[Z]
\end{gathered}
$$

d) Consider that you use the cross entropy loss function to estimate θ in training the inference function $f_{\theta}(y)$ with training data $\left\{x_{k}, y_{k}\right\}_{k=0}^{K-1}$. What interpretation does minimization of the cross entropy loss function have in this case?

Solution: It is equivalent to maximum likelihood estimation of the parameter θ.
e) Let Y be a random variable with density $p_{\theta}(y)$ for $\theta \in \Re^{P}$, and let $\hat{\theta}=T(Y)$ be an estimator of θ. Define the bias of the estimator.

Solution:

$$
\text { Bias }=E[\hat{\theta} \mid \theta]-\theta
$$

