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Name/PUID: Key
Problem 1. (18pt) Training Convergence

For each of the plots below, answer the associated questions.

Iteration #

Lo
ss

!! - validation 
loss

!" - training 
loss

Small

a) What is the data telling you? Based on this, what action(s) might you take?

Solution: The capacity of the network may be too small. You might want to increase the

capacity by adding more layers, structures or parameters.

Iteration #

Lo
ss

!! - validation 
loss

!" - training 
loss

Large

b) What is the data telling you? Based on this, what action(s) might you take?

Solution: The capacity of the network may be too large. You might want to decrease the

capacity by a) removing layers or parameters, b) increasing the amount of training data, or

c) introducing some regularization of the network parameters.
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! = # Training Pairs

Lo
ss

More training data is 
always better, but slower.

!! - validation loss

!" - training loss

c) What is the data telling you? Based on this, what action(s) might you take?

Solution: You probably do not have enough training data. You might want to increase the

amount of training data, or reduce the number of parameters in the network, or introduce

some regularization of the network parameters.
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Name/PUID:

Problem 2. (48pt) Stochastic Gradient Descent

Consider a problem in which you are doing supervised training of an inference network,

f✓ : <Ny ! <Nx , for ✓ 2 <p
. Let the loss function for each training pair, (xk, yk), be given

by

Lk(✓) =
1

2
kxk � f✓(yk)k2 ,

and let the total loss function be given by

L(✓) =
K�1X

k=0

Lk(✓) .

Also assume the gradient of the inference network is given by

Ak = r✓f✓(yk) ,

where Ak 2 <Nx⇥p
, and define gk 2 <p

given by

gk = r✓Lk(✓) ,

to be a column vector equal to the gradient of the loss function for the kth
training pair.

Let G be a p-dimensional random column vector produced by selecting the gradient of the

loss for a single training pair at random with a uniform distribution. Then the probability

density of G is given by

p(g) =
1

K

K�1X

k=0

�(g � gk) ,

where �(x) is a multi-dimensional delta function.

Furthermore, let G0, · · · , GKb�1 be Kb independently sampled (with replacement) gradients,

and let

Ĝ =
1

Kb

Kb�1X

k=0

Gk ,

be the average of their gradients.
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a) Calculate an expression for gk = r✓Lk(✓).

Solution:

gk = [Ak]
t
(xk � f✓(yk))

b) Sketch the probability density p(g) for a typical case. Label your sketch to explain the

meaning of its structure. For your sketch, you can assume p = 1.

Solution:

!

1
# $ ! − !!

!" !! !#!$ !%

c) Calculate µ, the mean of G.

Solution:

µ = E [G]

=

Z

<p

g
1

K

K�1X

k=0

�(g � gk)dg

=
1

K

K�1X

k=0

Z

<p

g �(g � gk)dg

=
1

K

K�1X

k=0

gk
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d) Calculate R, the covariance of G.

Solution:

R = E
⇥
(G� µ) (G� µ)t

⇤

=

Z

<p

(g � µ) (g � µ)t
1

K

K�1X

k=0

�(g � gk)dg

=
1

K

K�1X

k=0

Z

<p

(g � µ) (g � µ)t �(g � gk)dg

=
1

K

K�1X

k=0

(gk � µ) (gk � µ)t

e) Calculate µ̂, the mean Ĝ.

Solution:

µ̂ = E
h
Ĝ
i

= E

"
1

Kb

Kb�1X

k=0

Gk

#

=
1

Kb

Kb�1X

k=0

E [Gk]

=
1

Kb

Kb�1X

k=0

µ

= µ
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f) Calculate an expression for R̂, the covariance of Ĝ.

(Hint: This calculation is a bit tricky, so you might just want to guess at the answer for

partial credit.)

Solution:

R̂ = E

⇣
Ĝ� µ

⌘⇣
Ĝ� µ

⌘t�

= E

2

4
 

1

Kb

Kb�1X

k=0

Gk � µ

! 
1

Kb

Kb�1X

k=0

Gk � µ

!t
3

5

= E

2

4
 

1

Kb

Kb�1X

k=0

(Gk � µ)

! 
1

Kb

Kb�1X

k=0

(Gk � µ)

!t
3

5

= E

2

4
 

1

Kb

Kb�1X

i=0

(Gi � µ)

! 
1

Kb

Kb�1X

j=0

(Gj � µ)

!t
3

5

= E

"
1

K2
b

Kb�1X

i=0

Kb�1X

j=0

(Gi � µ)(Gj � µ)t
#

=
1

K2
b

Kb�1X

i=0

Kb�1X

j=0

E
⇥
(Gi � µ)(Gj � µ)t

⇤

=
1

K2
b

Kb�1X

i=0

Kb�1X

j=0

E
⇥
(Gi � µ)(Gi � µ)t

⇤
�(i� j)

=
1

K2
b

Kb�1X

i=0

E
⇥
(Gi � µ)(Gi � µ)t

⇤

=
1

K2
b

Kb�1X

i=0

R

=
1

Kb
R
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g) What is/are advantage(s) of choosing Kb to be larger?

Solution: By choosing Kb large, you can reduce the variance in your estimate of the gradi-

ent. This is better for exactly getting at the precise minimum of the loss function.

h) What is/are advantage(s) of choosing Kb to be smaller?

Solution: By choosing Kb smaller, you increase the variance in your estimate of the gradi-

ent. This can be advantageous in certain situations since it can help to jump out of local

minima of the loss function. It is also faster to do each update since the number of training

pairs in the batch is smaller.
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Name/PUID:

Problem 3. (48pt) Optimization

Consider a problem where Ỹ ⇠ p̃(y) and Y ⇠ p(y) are two random vectors in <N
, and define

the likelihood ratio as

R(y) =
p̃(y)

p(y)
.

Also, assume the technical condition that p̃(y) is absolutely continuous with respect to p(y)
i.e., that 8y 2 <N

, R(y) < 1.
1

Also define the function

C(R) = E [(1 +R(Y )) log(1 +R(Y ))] ,

and let Ra and Rb be any two valid likelihood ratios.

a) Is R(y) = 2 a valid likelihood ratio? Why or why not?

Solution: No, R(y) = 2 is not a valid likelihood ratio. To see this, notice that then

p̃(y) = 2p(y), but this implies that
R
<N p̃(y)dy =

R
<N 2p(y)dy = 2. However, this is not

possible, so the likelihood ratio must not be valid.

b) Show that for every valid likelihood ratio, E [R(Y )] = 1.

Solution:

E [R(Y )] =

Z

<N

R(y) p(y)dy

=

Z

<N

p̃(y)

p(y)
p(y)dy

=

Z

<N

p̃(y)dy

= 1

1This is not exactly the correct definition of absolutely continuous, but it’s good enough.
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c) Show that for any valid likelihood ratio, R, and integrable function, f : <N ! <, then

E
h
f(Ỹ )

i
= E [f(Y )R(Y )] .

Solution:

E
h
f(Ỹ )

i
=

Z

<N

f(y) p̃(y)dy

=

Z

<N

f(y)
p̃(y)

p(y)
p(y)dy

=

Z

<N

f(y)R(y) p(y)dy

= E [f(Y )R(Y )]

d) Show that the function h(x) = (1 + x) log(1 + x) is strictly convex for all x � 0.

Solution:

dh(x)

dx
= log(1 + x) +

1 + x

1 + x
= log(1 + x) + 1

So then

d2h(x)

dx2
=

1

1 + x
.

So then 8x � 0, we have that
d2h(x)
dx2 > 0, which implies that h(x) is strictly convex.
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e) Show that 8� 2 (0, 1), then R = �Ra + (1� �)Rb is a valid likelihood ratio.

Solution:

E [R(Y )] = E [�Ra(Y ) + (1� �)Rb(Y )]

= �E [Ra(Y )] + (1� �)E [Rb(Y )]

= �+ (1� �) = 1

Furthermore, if Ra and Rb are valid, then R(y) < 1.

f) Show that C is a strictly convex function by showing that 8� 2 (0, 1), then

C(R) < �C (Ra) + (1� �)C (Rb) .

Solution:

C(R) = E [(1 +R(Y )) log(1 +R(Y ))]

= E [h(R(Y ))]

= E [h(�Ra + (1� �)Rb)]

 E [�h(Ra) + (1� �)h(Rb)]

= �E [h(Ra)] + (1� �)E [h(Rb)]

= �C(Ra) + (1� �)C(Rb)

g) Use these results to argue that if C(R) has a local minimum, then the local minimum

must be the unique global minimum.

Solution: Since it is a strictly convex function, any local minimum must be the unique

global minimum.
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h) Use these results to argue that the unique global minimum of C(R) must occur for the

likelihood ratio given by R(y) = 1.

Solution: First notice that for x = 1,
dh(x)
dx = 1 + log 2.

To do this, we need to your the method of variations. However, we get the correct answer if

we di↵erentiate with respect to R as if it was a finite dimensional vector. We also need to

enforce the constraint that E[R(Y )] = 1, so we will minimize the following Lagrangian

L(R) = C(R) + ↵E[R(Y ) ,

by di↵erentiating with respect to R.

rRL(R) = rR [C(R) + ↵E[R(Y )]

= rR [E [h(R(Y ))] + ↵E [R(Y )]]

= rRE [h(R(Y )) + ↵R(Y )]

= rR

Z

<N

[h(R(y)) + ↵R(y)] p(y)dy

=

Z

<N

rR [h(R(y)) + ↵R(y)] p(y)dy

=

Z

<N

[1 + log 2 + ↵1] p(y)dy

= 1 + log 2 + ↵1

If we choose ↵ =
�1

1+log 2 , then we find that

rRL(R) = 0 ,

which means that R = 1 is a minimum to the constrained optimization problem.
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