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Name/PUID: Key
Problem 1. (32pt) Function Properties

For each of the following functions f(x), check the associated box for every property that
holds for the function.

a) f(x) = 1
2x

2.

2� - convex

2� - strictly convex

⇤ - concave

⇤ - strictly concave

b) f(x) = �|x|.

⇤ - convex

⇤ - strictly convex

2� - concave

⇤ - strictly concave

c) f(x) = �x.

2� - convex

⇤ - strictly convex

2� - concave

⇤ - strictly concave

d) f(x) = x3.

⇤ - convex

⇤ - strictly convex

⇤ - concave

⇤ - strictly concave
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Name/PUID:
Problem 2. (15pt) Complexity of Matrix Multiplication

Consider a series of matrices A 2 <N⇥1, B 2 <1⇥N , C 2 <N⇥1, D 2 <1⇥N , and E 2 <N⇥1.
Your goal is to compute the result of the following series of matrix multiples.

b = A ⇤B ⇤ C ⇤D ⇤ E .

a) What is the shape of b?

Solution: b 2 <N⇥1

b) Assuming that you multiple the matrices from left to right ), how many multiplies are
required to compute b?

Solution: N2 +N2 +N2 +N2 = 4N2

c) Assuming that you multiple the matrices from right to left (, how many multiplies are
required to compute b?

Solution: N +N +N +N = 4N
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Name/PUID:
Problem 3. (36pt) Convolutional Neural Networks

Consider the following convolutional neural network pictured below with a gray-scale image
as both input and output. Each layer uses a ReLu activation function, a “valid” boundary
condition, and denote the convolution kernels by w1 and w2 and the associated o↵sets by b1
and b2.

input 
image Y

Image 
output X

!
=
12
8×
12
8×
1

'=
( !
×(

!×
16

!! = 3×3
ReLU

*=
( "
×(

"×
1

!" = 3×3
ReLU

a) Calculate the value of N1.

Solution: N1 = 126

b) Calculate the value of N2.

Solution: N2 = 124

c) Calculate the shape of w1.

Solution: 3⇥ 3⇥ 1⇥ 16

d) Calculate the shape of w2.

Solution: 3⇥ 3⇥ 16⇥ 1
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e) Calculate the shape of b1.

Solution: 16

f) Calculate the total number of parameters in the model.

Solution: Number of parameters in each layer:

• layer1:

– filter: 3⇥ 3⇥ 1⇥ 16 = 144

– o↵set: 16

• layer2:

– filter: 3⇥ 3⇥ 16⇥ 1 = 144

– o↵set: 1

Total number of parameters:

144 + 16 + 144 + 1 = 305
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Name/PUID:
Problem 4. (36pt) Soft Max and Cross Entropy Loss

Define the soft max function � : <M ! <M as

[�(z)]i =
exp{zi}PM�1

j=0 exp{zj}
,

and the cross-entropy loss function ⇢ : <M⇥M ) < as

⇢(a, b) =
M�1X

i=0

�ai log bi .

Furthermore, assume that

• Let {xn}N�1
n=0 be N training samples where xn 2 <M .

• Let ✓ 2 <M be the parameter vector where there is a component for each sample.

• Let xn be 1-hot encoded, i.e., exactly one component of xn is non-zero and that com-
ponent is equal to 1.

• Define Nm be the number of xn with class m.

• Define the loss function

L(✓) =
N�1X

n=0

⇢(xn, �(✓)) .

a) Prove that for all z 2 <M , p = �(z) is in the M -dimensional simplex, SM .

Solution: Proof: For all z 2 <M , we have [�(z)]i > 0 and

M�1X

i=0

pi =
M�1X

i=0

[�(z)]i =
M�1X

i=0

exp{zi}PM�1
j=0 exp{zj}

=

PM�1
i=0 exp{zi}PM�1
j=0 exp{zj}

= 1 (1)

Therefore, p = �(z) 2 SM .
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b) Prove that for all z 2 <M , p = �(z) is not on the boundary of SM (i.e., it is in the interior
of SM).

Solution:
Proof: First, the M-dimensional simplex is defined as SM = {s 2 <M�1 : 8i, si � 0 and

P
i si =

1}. A point s 2 SM is on the boundary of the simplex if there exists an k such that sk = 0.
However, since

pi = [�(z)]i =
exp{zi}PM�1

j=0 exp{zj}
> 0 .

Consequently, p is not on the boundary of s 2 SM .

c) Write an expression for L(✓) in terms of Nm.

Solution:
First we note that

Nm =
N�1X

n=0

xn,m .

Then we have that

L(✓) =
N�1X

n=0

⇢(xn, �(✓))

=
N�1X

n=0

M�1X

i=0

(
�xn,i log

 
exp{✓i}PM�1

j=0 exp{✓j}

!)

=
N�1X

n=0

M�1X

i=0

(
�xn,i log (exp{✓i}) + xn,i log

 
M�1X

j=0

exp{✓j}
!)

=
N�1X

n=0

M�1X

i=0

(
�xn,i ✓i + xn,i log

 
M�1X

j=0

exp{✓j}
!)

=
M�1X

i=0

N�1X

n=0

(
�xn,i ✓i + xn,i log

 
M�1X

j=0

exp{✓j}
!)

=
M�1X

i=0

"(
�✓i + log

 
M�1X

j=0

exp{✓j}
!)

N�1X

n=0

xn,i

#

=
M�1X

i=0

Ni

(
�✓i + log

 
M�1X

j=0

exp{✓j}
!)
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d) Calculate the gradient r✓L(✓).

Solution:

r✓L(✓) =


dL

d✓0
,
dL

d✓1
, · · · , dL

d✓M�1

�

where

dL

d✓m
=

N�1X

n=0

"
�xn,m +

M�1X

i=0

(
xn,i

exp{✓m}PM�1
j=0 exp{✓j}

)#

=
N�1X

n=0

M�1X

i=0

�xn,i

"
�(m� i)� exp{✓m}PM�1

j=0 exp{✓j}

#

e) Calculate the gradient r✓L(✓) in terms of Nm.

Solution:
We have that

dL

d✓m
=

N�1X

n=0

M�1X

i=0

�xn,i

"
�(m� i)� exp{✓m}PM�1

j=0 exp{✓j}

#

=
M�1X

i=0

N�1X

n=0

�xn,i

"
�(m� i)� exp{✓m}PM�1

j=0 exp{✓j}

#

=
M�1X

i=0

(
N�1X

n=0

xn,i

)"
��(m� i) +

exp{✓m}PM�1
j=0 exp{✓j}

#

=
M�1X

i=0

Ni

"
��(m� i) +

exp{✓m}PM�1
j=0 exp{✓j}

#

= �Nm +

 
M�1X

i=0

Ni

!
exp{✓m}PM�1
j=0 exp{✓j}
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f) Calculate an general expression for ✓⇤, the value of ✓ that minimizes the loss L(✓).

Solution: In order to calculate ✓⇤, we solve for

0 =
dL

d✓m
= Nm �

 
M�1X

i=0

Ni

!
exp{✓m}PM�1
j=0 exp{✓j}

So we have that

exp{✓m}PM�1
j=0 exp{✓j}

=
Nm⇣PM�1
i=0 Ni

⌘

So that
exp{✓m} = ↵Nm ,

for any constant ↵. Or equivalently,

✓⇤m = � + logNm ,

for any constant �.
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