BME/ECE 695 Deep Learning Midterm I Solution March 4, Spring 2022

Q1.

2 Points

Rules: I understand that this is an open book exam that shall be done within the allotted time of 120 minutes. I can use my notes, and web resources. However, I will not communicate with any other person other than the official exam proctors during the exam, and I will not seek or accept help from any other persons other than the official proctors.

Upload a scan of your signature here:

Name: (2 pt) _____

Q2 Convex Minimization

(30 Points)

Consider the two convolutional neural networks given by

$$\hat{x} = f_w(y) = w * y ,$$

and

$$\hat{x} = g_w(y) = f_w(f_w(y)) ,$$

where $y \in \Re^{N \times N}$ is a 2D image input, and w * y denotes 2D convolution with the kernel $w \in \Re^{p \times p}$ filter kernel with $p \ll N$ using a **valid** boundary condition.

The associated MSE loss functions for a single training pair (x, y) are then given by

$$loss_f(w) = ||x - f_w(y)||^2$$

and

$$\log_g(w) = ||x - g_w(y)||^2$$

Q2.1

Is $f_w(y)$ a linear function of w? Justify your answer, i.e., prove the result or give a counter example.

Q2.2

Is $loss_f(w)$ a convex function of w? Justify your answer, i.e., prove the result or give a counter example.

Q2.3

Will gradient descent optimization of $loss_f(w)$ converge to a global minimum? Justify your answer.

Q2.4

Is $g_w(y)$ always a linear function of w? Justify your answer, i.e., prove the result or give a counter example.

Q2.5

Is $loss_g(w)$ always a convex function of w? Justify your answer, i.e., prove the result or give a counter example.

Q2.6

Will gradient descent optimization of $loss_g(w)$ always converge to a global minimum? Justify your answer.

Solution: Q2.1

 $f_w(y)$ is a linear function of w because convolution is linear. More specifically, let $a, b \in \Re$, $w_1, w_2 \in \Re^2$ be two different convolutional kernels, then

$$f_{aw_1+bw_2}(y)_{j_1,j_2} = \sum_{k_1} \sum_{k_2} (aw_1 + bw_2)_{k_1,k_2} y_{j_1-k_1,j_2-k_2}$$
$$= a \sum_{k_1} \sum_{k_2} w_{1k_1,k_2} y_{j_1-k_1,j_2-k_2} + b \sum_{k_1} \sum_{k_2} w_{2k_1,k_2} y_{j_1-k_1,j_2-k_2}$$
$$= a f_{w_1}(y)_{j_1,j_2} + b f_{w_2}(y)_{j_1,j_2}$$

Q2.2

 $loss_f(w)$ is a convex function of w.

Justification: Let $\hat{x} = Aw$ be a linear function of w, and $d(\hat{x})$ be a convex function of \hat{x} . then we know from the properties of convex functions taught in class that d(Aw) is a convex function of w.

Therefore, since $\hat{x} = f_w(y)$ is a linear function of w, and the MSE loss function, $||x - \hat{x}||^2$, is a convex function of \hat{x} , then we know that $loss_f(w) = ||x - f_w(y)||^2$ is a convex function of w.

Q2.3

Gradient descent optimization of $loss_f(w)$ will converge to a global minimum, because gradient descent will converge to a local minimum, and every local minimum of a convex function is a global minimum.

Q2.4

The function $g_w(y)$ is **not** always a linear function of w.

Justification: In order to prove that this is not always true, we only need to find a counter example. Consider the case where $w_{j_1,j_2} = w_0 \delta_{j_1,j_2}$. Then

$$g_w(y) = w_0^2 . y$$

is not a linear function of the one parameter w_0 .

Q2.5

 $loss_q(w)$ is **not** necessarily a convex function of w.

Justification: Since $g_w(y) = fw(fw(y))$ is not generally a linear function of w, then $loss_g(w) = ||x - g_w(y)||^2$ is not generally a convex function of w.

We can prove that it is not always convex by giving a counter example. Let x = 1, y = 1and $w_{j_1,j_2} = w_0 \delta_{j_1,j_2}$, then we have that

$$\log_g(w) = (1 - w_0^2)^2 = (1 - w_o)^2 (1 + w_0)^2 .$$

This is clearly not a convex function with minimum at both 1 and -1. **Q2.6**

Gradient descent optimization of $loss_g(w)$ will not necessarily converge to a global minimum because $loss_g(w)$ is not in general a convex function of w.

Q3 Maximum Likelihood Estimation

(30 Points)

Consider the machine learning algorithm with inference function f_{θ} and parameters $\theta \in \Re^p$ so that

$$\hat{p} = f_{\theta}(y)$$
,

where $y \in \Re^N$ with distribution p(y), and $\hat{p} \in S_M$ where S_M is the M-D simplex set defined by

$$S_M = \{ p \in [0,1]^M : p_m \ge 0 \text{ and } \sum_{m=0}^{M-1} p_m = 1 \}.$$

Intuitively, our goal is to train the ML function, f_{θ} , so the it accurately estimates, $\hat{p}_m = [f_{\theta}(y)]_m$, the probability that y has class m.

In order to do this, we would like to compute the maximum likelihood estimate (MLE) of the parameter θ given the single training pair (x, y) where $x \in \{0, 1\}^M$ and $y \in \Re^N$, i.e., x uses 1-hot encoding.

Q3.1

Write out an expression for the joint probability $p_{\theta}(x, y)$.

Q3.2

Write out an expression for the negative log likelihood, $L(\theta) = -\log p_{\theta}(x, y)$.

Q3.3

Assume that you now have K independent training samples, $(x_k, y_k)_{k=0}^{K-1}$, then write out an expression for the joint probability $p_{\theta}(x, y)$.

Q3.4

Assume that you now have K independent training samples, then write out an expression for the negative log likelihood, $L(\theta) = -\log p_{\theta}(x, y)$.

Q3.5

If you would like to compute the MLE estimate of θ using the K training samples, then what loss function should you use? Justify your answer.

Q3.6

Give at least one **advantage** and one **disadvantage** of the MLE estimate.

Solution:

Q3.1

Let $p_{\theta}(x|y)$ denote the conditional probability of $x \in S_M$ given $y \in \Re^N$ where x uses 1-hot encoding. So only one element $x_m^* = 1$, and the rest are 0. First notice that since x has one-hot encoding,

$$p_{\theta}(x|y) = \hat{p}_{m^*} = \prod_{m=0}^{M-1} (\hat{p}_m)^{x_m} = \prod_{m=0}^{M-1} ([f_{\theta}(y)]_m)^{x_m}$$

So then we have that

$$p_{\theta}(x, y) = p(x|y)p(y) = p(y) \prod_{m=0}^{M-1} ([f_{\theta}(y)]_m)^{x_m}$$

Q3.2

$$L(\theta) = -\log p_{\theta}(x, y)$$

= $-\log p(y) - \sum_{m=0}^{M-1} x_m \log \left([f_{\theta}(y)]_m \right)$

Q3.3

$$p_{\theta}(x,y) = \prod_{k=0}^{K-1} p_{\theta}(x_k, y_k)$$
$$= \prod_{k=0}^{K-1} \left\{ p(y_k) \prod_{m=0}^{M-1} \left([f_{\theta}(y_k)]_m \right)^{x_{k,m}} \right\}$$

where $x_{k,m}$ denotes the m^{th} element of the k^{th} training sample. Q3.4

$$L(\theta) = -\sum_{k=0}^{K-1} \left\{ \log p(y_k) + \sum_{m=0}^{M-1} x_{k,m} \log \left([f_{\theta}(y_k)]_m \right) \right\}$$
$$= -\sum_{k=0}^{K-1} \log p(y_k) - \sum_{k=0}^{K-1} \sum_{m=0}^{M-1} x_{k,m} \log \left([f_{\theta}(y_k)]_m \right)$$

Q3.5

In order to compute the maximum likelihood estimate for this problem, one should use the cross-entropy loss function. This is because in the answer to question Q3.4 above, the negative log likelihood is equal to the cross-entropy loss plus a constant.

Q3.6

Advantage:

- 1. Good choice when there's plenty of training data, or the prior distribution is unknown or hard to model.
- 2. Mostly unbiased.

Disadvantage:

- 1. Needs lots of training data to get good results.
- 2. Overfits when there is no sufficient training data.
- 3. Does not exploit the knowledge of prior distribution of the data.

Q4 Convolutional Neural Networks

(10 Points)

Consider the following convolutional neural network pictured below with a color image as input, and a gray-scale image as output. Each layer uses a ReLu activation function, and denote the convolution kernel by w and the offsets by b.

 $\mathbf{Q4.1}$

For layer 1, what are the shapes of the tensors w and b? ${\bf Q4.2}$

For layer 2, what are the shapes of the tensors w and b?

Solution: Q4.1 $w: 3 \times 3 \times 3 \times 8, b: 8$ Q4.2 $w: 3 \times 3 \times 8 \times 1, b: 1$

Q5 Adjoint Gradients

(10 Points)

Consider a single layer 1D convolutional neural network of the form

$$\hat{x} = f_w(y) = w * y \; ,$$

where $y \in \Re^5$ is a five component rank 1 vector, $w = [w_0, w_1, w_2]$, and w * y denotes **true** convolution using a **valid** boundary condition.

Assume the CNN is trained using a single training pair (x, y) and that the MSE loss function is given by

$$\log(w) = ||x - f_w(y)||^2$$
.

Q5.1

Determine the matrix A so that

$$Ay = [\nabla_y f_w(y)]y$$
.

Q5.2

Determine an expression for the multiplication by the adjoint gradient given by

$$g_y = \left[\nabla_y f_w(y)\right]^t \epsilon \; .$$

Q5.3

Express g_y using the convolution operator and specify the required boundary condition. Q5.4

Determine the matrix B so that

$$Bw = [\nabla_w f_w(y)]w \; .$$

Q5.5

Determine an expressions for the matrix C and the row vector ϵ so that

$$g_w = C\epsilon = \nabla_w \mathrm{loss}(w)$$
.

Q5.6

Express g_w using the convolution operator and specify the required boundary condition.

Solution:

Q5.1 We know that $\hat{x}_i = w_i * y_i$, so we have that

$$A_{i,j} = w_{2+i-j} ,$$

where the offset of 2 = 3 - 1 is used due to the valid boundary condition. Then we have that

$$A = \begin{bmatrix} w_2 & w_1 & w_0 & 0 & 0\\ 0 & w_2 & w_1 & w_0 & 0\\ 0 & 0 & w_2 & w_1 & w_0 \end{bmatrix}$$

Then we have that

$$\begin{bmatrix} \hat{x}_0 \\ \hat{x}_1 \\ \hat{x}_2 \end{bmatrix} = \begin{bmatrix} w_2 & w_1 & w_0 & 0 & 0 \\ 0 & w_2 & w_1 & w_0 & 0 \\ 0 & 0 & w_2 & w_1 & w_0 \end{bmatrix} \begin{bmatrix} y_0 \\ y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix}$$

Г

Q5.2

$$g_y = \begin{bmatrix} w_2 & 0 & 0 \\ w_1 & w_2 & 0 \\ w_0 & w_1 & w_2 \\ 0 & w_0 & w_1 \\ 0 & 0 & w_0 \end{bmatrix} \epsilon$$

Notice that $\epsilon \in \Re^3$. Q5.3 From Problem Q5.2, we can write

	$\begin{bmatrix} w_2 \\ w_1 \end{bmatrix}$	$\begin{array}{c} 0 \\ w_2 \end{array}$	0 0		$\begin{bmatrix} w_1 \\ w_0 \end{bmatrix}$	$w_2 \\ w_1$	$\begin{array}{c} 0 \\ w_2 \end{array}$	0 0	0 0	$\left[\begin{array}{c} 0\\ \epsilon_1 \end{array}\right]$
$g_y =$	w_0	w_1	w_2	$\epsilon =$	0	w_0	w_1	w_2	0	ϵ_2
	0	w_0	w_1		0	0	w_0	w_1	w_2	ϵ_3
	0	0	w_0		0	0	0	w_0	w_1	

From the form of the matrix A^t in problem Q5.2, we see that

$$[g_y]_k = w_{-k} * \epsilon_k$$

with the "same" boundary condition and ϵ padded with zeros.

Q5.4

Since convolution is communitive, we also know that $\hat{x}_i = y_i * w_i$ with a "valid" boundary condition. So we have that

$$B_{i,j} = y_{2+i-j} ,$$

where again the offset of 2 = 3 - 1 is due to the valid boundary condition. So then we have that

$$B = \begin{bmatrix} y_2 & y_1 & y_0 \\ y_3 & y_2 & y_1 \\ y_4 & y_3 & y_2 \end{bmatrix}$$

Then we have that
$$\begin{bmatrix} \hat{x}_0 \\ \hat{x}_1 \\ \hat{x}_2 \end{bmatrix} = \begin{bmatrix} y_2 & y_1 & y_0 \\ y_3 & y_2 & y_1 \\ y_4 & y_3 & y_2 \end{bmatrix} \begin{bmatrix} w_0 \\ w_1 \\ w_2 \end{bmatrix}$$

Q5.5

$$\epsilon = -2(x - f_w(y))$$
$$C = B^t$$

Q5.6

We have that

$$g_w = -2B^t \epsilon$$
$$= -2y_{-i} * \epsilon_i$$

using a "valid" boundary condition. In this case, we have that

$\int g_{w,0}$		y_2	y_3	y_4	$\left[\epsilon_0 \right]$
$g_{w,1}$	=	y_1	y_2	y_3	ϵ_1
$g_{w,2}$		y_0	y_1	y_2	ϵ_2