
BME/ECE 695 Deep Learning
Midterm I Solution

March 4, Spring 2022

Q1.
2 Points

Rules: I understand that this is an open book exam that shall be done within the allotted
time of 120 minutes. I can use my notes, and web resources. However, I will not communicate
with any other person other than the official exam proctors during the exam, and I will not
seek or accept help from any other persons other than the official proctors.

Upload a scan of your signature here:

Name: (2 pt)
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Q2 Convex Minimization
(30 Points)

Consider the two convolutional neural networks given by

x̂ = fw(y) = w ∗ y ,

and
x̂ = gw(y) = fw(fw(y)) ,

where y ∈ <N×N is a 2D image input, and w ∗ y denotes 2D convolution with the kernel
w ∈ <p×p filter kernel with p << N using a valid boundary condition.
The associated MSE loss functions for a single training pair (x, y) are then given by

lossf (w) = ‖x− fw(y)‖2

and
lossg(w) = ‖x− gw(y)‖2 .

Q2.1
Is fw(y) a linear function of w? Justify your answer, i.e., prove the result or give a counter
example.
Q2.2
Is lossf (w) a convex function of w? Justify your answer, i.e., prove the result or give a
counter example.
Q2.3
Will gradient descent optimization of lossf (w) converge to a global minimum? Justify your
answer.
Q2.4
Is gw(y) always a linear function of w? Justify your answer, i.e., prove the result or give a
counter example.
Q2.5
Is lossg(w) always a convex function of w? Justify your answer, i.e., prove the result or give
a counter example.
Q2.6
Will gradient descent optimization of lossg(w) always converge to a global minimum? Justify
your answer.
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Solution: Q2.1
fw(y) is a linear function of w because convolution is linear. More specifically, let a, b ∈ <,
w1, w2 ∈ <2 be two different convolutional kernels, then

faw1+bw2(y)j1,j2 =
∑
k1

∑
k2

(aw1 + bw2)k1,k2yj1−k1,j2−k2

= a
∑
k1

∑
k2

w1k1,k2yj1−k1,j2−k2 + b
∑
k1

∑
k2

w2k1,k2yj1−k1,j2−k2

= afw1(y)j1,j2 + bfw2(y)j1,j2

Q2.2
lossf (w) is a convex function of w.
Justification: Let x̂ = Aw be a linear function of w, and d(x̂) be a convex function of x̂.
then we know from the properties of convex functions taught in class that d(Aw) is a convex
function of w.
Therefore, since x̂ = fw(y) is a linear function of w, and the MSE loss function, ‖x− x̂‖2, is
a convex function of x̂, then we know that lossf (w) = ‖x − fw(y)‖2 is a convex function of
w.
Q2.3
Gradient descent optimization of lossf (w) will converge to a global minimum, because gradi-
ent descent will converge to a local minimum, and every local minimum of a convex function
is a global minimum.
Q2.4
The function gw(y) is not always a linear function of w.
Justification: In order to prove that this is not always true, we only need to find a counter
example. Consider the case where wj1,j2 = w0δj1,j2 . Then

gw(y) = w2
0 .y

is not a linear function of the one parameter w0.
Q2.5
lossg(w) is not necessarily a convex function of w.
Justification: Since gw(y) = fw(fw(y)) is not generally a linear function of w, then lossg(w) =
‖x− gw(y)‖2 is not generally a convex function of w.
We can prove that it is not always convex by giving a counter example. Let x = 1, y = 1
and wj1,j2 = w0δj1,j2 , then we have that

lossg(w) = (1− w2
0)

2 = (1− wo)2(1 + w0)
2 .

This is clearly not a convex function with minimum at both 1 and −1.
Q2.6
Gradient descent optimization of lossg(w) will not necessarily converge to a global minimum
because lossg(w) is not in general a convex function of w.
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Q3 Maximum Likelihood Estimation
(30 Points)

Consider the machine learning algorithm with inference function fθ and parameters θ ∈ <p
so that

p̂ = fθ(y) ,

where y ∈ <N with distribution p(y), and p̂ ∈ SM where SM is the M-D simplex set defined
by

SM = {p ∈ [0, 1]M : pm ≥ 0 and
M−1∑
m=0

pm = 1} .

Intuitively, our goal is to train the ML function, fθ, so the it accurately estimates, p̂m =
[fθ(y)]m, the probability that y has class m.
In order to do this, we would like to compute the maximum likelihood estimate (MLE) of
the parameter θ given the single training pair (x, y) where x ∈ {0, 1}M and y ∈ <N , i.e., x
uses 1-hot encoding.
Q3.1
Write out an expression for the joint probability pθ(x, y).
Q3.2
Write out an expression for the negative log likelihood, L(θ) = − log pθ(x, y).
Q3.3
Assume that you now have K independent training samples, (xk, yk)

K−1
k=0 , then write out an

expression for the joint probability pθ(x, y).
Q3.4
Assume that you now have K independent training samples, then write out an expression
for the negative log likelihood, L(θ) = − log pθ(x, y).
Q3.5
If you would like to compute the MLE estimate of θ using the K training samples, then what
loss function should you use? Justify your answer.
Q3.6
Give at least one advantage and one disadvantage of the MLE estimate.
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Solution:
Q3.1
Let pθ(x|y) denote the conditional probability of x ∈ SM given y ∈ <N where x uses 1-hot
encoding. So only one element x∗m = 1, and the rest are 0.
First notice that since x has one-hot encoding,

pθ(x|y) = p̂m∗ =
M−1∏
m=0

(p̂m)xm =
M−1∏
m=0

([fθ(y)]m)xm

So then we have that

pθ(x, y) = p(x|y)p(y)

= p(y)
M−1∏
m=0

([fθ(y)]m)xm .

Q3.2

L(θ) = − log pθ(x, y)

= − log p(y)−
M−1∑
m=0

xm log ([fθ(y)]m)

Q3.3

pθ(x, y) =
K−1∏
k=0

pθ(xk, yk)

=
K−1∏
k=0

{
p(yk)

M−1∏
m=0

([fθ(yk)]m)xk,m

}
where xk,m denotes the mth element of the kth training sample.
Q3.4

L(θ) = −
K−1∑
k=0

{
log p(yk) +

M−1∑
m=0

xk,m log ([fθ(yk)]m)

}

= −
K−1∑
k=0

log p(yk)−
K−1∑
k=0

M−1∑
m=0

xk,m log ([fθ(yk)]m)

Q3.5
In order to compute the maximum likelihood estimate for this problem, one should use
the cross-entropy loss function. This is because in the answer to question Q3.4 above, the
negative log likelihood is equal to the cross-entropy loss plus a constant.
Q3.6
Advantage:
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1. Good choice when there’s plenty of training data, or the prior distribution is unknown
or hard to model.

2. Mostly unbiased.

Disadvantage:

1. Needs lots of training data to get good results.

2. Overfits when there is no sufficient training data.

3. Does not exploit the knowledge of prior distribution of the data.
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Q4 Convolutional Neural Networks
(10 Points)
Consider the following convolutional neural network pictured below with a color image as
input, and a gray-scale image as output. Each layer uses a ReLu activation function, and
denote the convolution kernel by w and the offsets by b.

Q4.1
For layer 1, what are the shapes of the tensors w and b?
Q4.2
For layer 2, what are the shapes of the tensors w and b?
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Solution:
Q4.1
w: 3× 3× 3× 8, b: 8
Q4.2
w: 3× 3× 8× 1, b: 1
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Q5 Adjoint Gradients
(10 Points)
Consider a single layer 1D convolutional neural network of the form

x̂ = fw(y) = w ∗ y ,

where y ∈ <5 is a five component rank 1 vector, w = [w0, w1, w2], and w ∗ y denotes true
convolution using a valid boundary condition.
Assume the CNN is trained using a single training pair (x, y) and that the MSE loss function
is given by

loss(w) = ‖x− fw(y)‖2 .

Q5.1
Determine the matrix A so that

Ay = [∇yfw(y)]y .

Q5.2
Determine an expression for the multiplication by the adjoint gradient given by

gy = [∇yfw(y)]t ε .

Q5.3
Express gy using the convolution operator and specify the required boundary condition.
Q5.4
Determine the matrix B so that

Bw = [∇wfw(y)]w .

Q5.5
Determine an expressions for the matrix C and the row vector ε so that

gw = Cε = ∇wloss(w) .

Q5.6
Express gw using the convolution operator and specify the required boundary condition.
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Solution:
Q5.1
We know that x̂i = wi ∗ yi, so we have that

Ai,j = w2+i−j ,

where the offset of 2 = 3−1 is used due to the valid boundary condition. Then we have that

A =

 w2 w1 w0 0 0
0 w2 w1 w0 0
0 0 w2 w1 w0


Then we have that  x̂0

x̂1
x̂2

 =

 w2 w1 w0 0 0
0 w2 w1 w0 0
0 0 w2 w1 w0



y0
y1
y2
y3
y4


Q5.2

gy =


w2 0 0
w1 w2 0
w0 w1 w2

0 w0 w1

0 0 w0

 ε
Notice that ε ∈ <3.
Q5.3
From Problem Q5.2, we can write

gy =


w2 0 0
w1 w2 0
w0 w1 w2

0 w0 w1

0 0 w0

 ε =


w1 w2 0 0 0
w0 w1 w2 0 0
0 w0 w1 w2 0
0 0 w0 w1 w2

0 0 0 w0 w1




0
ε1
ε2
ε3
0


From the form of the matrix At in problem Q5.2, we see that

[gy]k = w−k ∗ εk

with the “same” boundary condition and ε padded with zeros.
Q5.4
Since convolution is communitive, we also know that x̂i = yi ∗ wi with a “valid” boundary
condition. So we have that

Bi,j = y2+i−j ,
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where again the offset of 2 = 3− 1 is due to the valid boundary condition. So then we have
that

B =

 y2 y1 y0
y3 y2 y1
y4 y3 y2


Then we have that  x̂0

x̂1
x̂2

 =

 y2 y1 y0
y3 y2 y1
y4 y3 y2

 w0

w1

w2


Q5.5

ε = −2(x− fw(y))

C = Bt

Q5.6
We have that

gw = −2Btε

= −2y−i ∗ εi

using a “valid” boundary condition. In this case, we have that gw,0
gw,1
gw,2

 =

 y2 y3 y4
y1 y2 y3
y0 y1 y2

 ε0
ε1
ε2


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