BME/ECE 695 Deep Learning
Midterm I Solution
March 4, Spring 2022

Q1.
2 Points

Rules: I understand that this is an open book exam that shall be done within the allotted
time of 120 minutes. I can use my notes, and web resources. However, I will not communicate
with any other person other than the official exam proctors during the exam, and I will not
seek or accept help from any other persons other than the official proctors.

Upload a scan of your signature here:

Name: (2 pt)




Q2 Convex Minimization
(30 Points)

Consider the two convolutional neural networks given by

&= fuly) =wx*y,
and
T = gw(y) = fw(fw(y)) )
where y € RV is a 2D image input, and w * y denotes 2D convolution with the kernel

w € RP*P filter kernel with p << N using a valid boundary condition.
The associated MSE loss functions for a single training pair (x,y) are then given by

loss(w) = ||z — fu(y)]?

and
lossy(w) = ||z — 9| -

Q2.1

Is fu(y) a linear function of w? Justify your answer, i.e., prove the result or give a counter
example.

Q2.2

Is lossy(w) a convex function of w? Justify your answer, i.e., prove the result or give a
counter example.

Q2.3

Will gradient descent optimization of lossy(w) converge to a global minimum? Justify your
answer.

Q2.4

Is g, (y) always a linear function of w? Justify your answer, i.e., prove the result or give a
counter example.

Q2.5

Is loss,(w) always a convex function of w? Justify your answer, i.e., prove the result or give
a counter example.

Q2.6

Will gradient descent optimization of loss,(w) always converge to a global minimum? Justify
your answer.



Solution: Q2.1
fw(y) is a linear function of w because convolution is linear. More specifically, let a,b € R,
wy, we € N2 be two different convolutional kernels, then

Sawbws (V)1 = Z Z(@wl + bw2 )by k2 Y — et ok

k1 k2

=a E E W1ky kyYjs—ky jo—ke T 0 E E Waky ko Yjr—ki,jo—hs

k1 ko k1 k2
= afuw, ()12 + 0fws(Y) 1,52

Q2.2

lossf(w) is a convex function of w.

Justification: Let & = Aw be a linear function of w, and d(z) be a convex function of z.
then we know from the properties of convex functions taught in class that d(Aw) is a convex
function of w.

Therefore, since & = f,(y) is a linear function of w, and the MSE loss function, ||z — 2|2, is
a convex function of #, then we know that loss;(w) = ||z — f,(y)||* is a convex function of
w.

Q2.3

Gradient descent optimization of loss;(w) will converge to a global minimum, because gradi-
ent descent will converge to a local minimum, and every local minimum of a convex function
is a global minimum.

Q2.4

The function g,(y) is not always a linear function of w.

Justification: In order to prove that this is not always true, we only need to find a counter

example. Consider the case where wj, ;, = wodj, ;,- Then

is not a linear function of the one parameter wy.

Q2.5

loss,(w) is not necessarily a convex function of w.

Justification: Since g, (y) = fw(fw(y)) is not generally a linear function of w, then loss,(w) =
|z — gw(y)]|* is not generally a convex function of w.

We can prove that it is not always convex by giving a counter example. Let v = 1,y = 1
and wj, j, = wedj, j,, then we have that

loss,(w) = (1 —wg)? = (1 — w,)*(1 4+ wp)? .

This is clearly not a convex function with minimum at both 1 and —1.

Q2.6

Gradient descent optimization of loss,(w) will not necessarily converge to a global minimum
because lossy(w) is not in general a convex function of w.



Q3 Maximum Likelihood Estimation
(30 Points)

Consider the machine learning algorithm with inference function fy and parameters 6 € RP
so that

ﬁ = f@(y) )

where y € R with distribution p(y), and p € Sy where Sy is the M-D simplex set defined
by

M-1

SM:{pe [O,l]MimeOand mezl} :

m=0
Intuitively, our goal is to train the ML function, fy, so the it accurately estimates, p,, =
[fo(y)]m, the probability that y has class m.
In order to do this, we would like to compute the maximum likelihood estimate (MLE) of
the parameter 6 given the single training pair (z,y) where x € {0,1}* and y € RV, ie., =
uses 1-hot encoding.

Q3.1
Write out an expression for the joint probability py(z,y).

Q3.2

Write out an expression for the negative log likelihood, L(6) = —log pg(z,y).

Q3.3

Assume that you now have K independent training samples, (zg, yk)kK:’Ol, then write out an
expression for the joint probability pe(z,y).

Q3.4

Assume that you now have K independent training samples, then write out an expression
for the negative log likelihood, L(0) = —log pe(z,y).

Q3.5

If you would like to compute the MLE estimate of 6 using the K training samples, then what
loss function should you use? Justify your answer.

Q3.6

Give at least one advantage and one disadvantage of the MLE estimate.



Solution:

Q3.1

Let pg(x|y) denote the conditional probability of x € Sy, given y € RY where z uses 1-hot
encoding. So only one element x7 = 1, and the rest are 0.

First notice that since x has one-hot encoding,

polaly) = o = [T Gu)™ = [T Uow)] )™

So then we have that

M-1
= (o) TT (o],
m=0
Q3.2
L(0) = —log pe(,y)
M—1
= —logp(y) = > zmlog ([fo(y)],,)
m=0
Q3.3
1
po(z,y) = Po(Th; Yi)
k=0
K-1 M-1
= p(y) ([fa(yk)]m)””’“m}
k=0 m=0
where xy,, denotes the m'™ element of the k™™ training sample.
Q3.4
K—1 M-1
L) = => {logp(yk) + ) Trm 10g([f9(yk)]m)}
b K
= = logp(ye) = > > wramlog ([folwr)],)
k=0 k=0 m=0
Q3.5

In order to compute the maximum likelihood estimate for this problem, one should use
the cross-entropy loss function. This is because in the answer to question Q3.4 above, the
negative log likelihood is equal to the cross-entropy loss plus a constant.

Q3.6

Advantage:



1. Good choice when there’s plenty of training data, or the prior distribution is unknown
or hard to model.

2. Mostly unbiased.

Disadvantage:

1. Needs lots of training data to get good results.
2. Overfits when there is no sufficient training data.

3. Does not exploit the knowledge of prior distribution of the data.



Q4 Convolutional Neural Networks

(10 Points)

Consider the following convolutional neural network pictured below with a color image as
input, and a gray-scale image as output. Each layer uses a ReLu activation function, and
denote the convolution kernel by w and the offsets by b.

I Image
mage
input Q ? J\ ‘; -
e E axaN S [N |

% | ReLU/ 2 | ReLU/ 'R

o~ (o] o™

i — L

[Ep] [ Tp] [Ep]

Layer 1 Layer2

Q4.1
For layer 1, what are the shapes of the tensors w and b?
Q4.2

For layer 2, what are the shapes of the tensors w and b7



Solution:

Q4.1

w: 3 X3 Xx3x8, 08
Q4.2

w: 3X3Ix8x1,b:1



Q5 Adjoint Gradients
(10 Points)
Consider a single layer 1D convolutional neural network of the form

j:fw(y):w*y7

where y € R° is a five component rank 1 vector, w = [wg, w1, ws], and w * y denotes true
convolution using a valid boundary condition.
Assume the CNN is trained using a single training pair (x,y) and that the MSE loss function
is given by

loss(w) = [lz = fu(y)l* -

Q5.1

Determine the matrix A so that

Ay = [V, fu®)ly .
Q5.2

Determine an expression for the multiplication by the adjoint gradient given by

Iy = [vyfw(y>]t€ .

Q5.3

Express g, using the convolution operator and specify the required boundary condition.
Q5.4
Determine the matrix B so that

Bw = [waw(y)]w .

Q5.5

Determine an expressions for the matrix C' and the row vector € so that
gw = Ce = Vloss(w) .

Q5.6

Express g, using the convolution operator and specify the required boundary condition.



Solution:

Q5.1

We know that z; = w; * y;, so we have that
Aij =Wy,
where the offset of 2 = 3 —1 is used due to the valid boundary condition. Then we have that
weg wp; wg 0 0
A= 0 wy w;y wy O

0 0 Weo W1 Wy

Then we have that

Yo
fo Wy W1 Wy 0 0 Y1
i’l = 0 W2 W1 Wy 0 Y2
To 0 0 wy wi wo Y3
Yy
Q5.2
Wo 0 0
w; wy 0
gy = | Wo W1 Wz | €
0 wy wq
0 0 Wo
Notice that € € R3.
Q5.3
From Problem 5.2, we can write
Wa 0 0 w1 Wa 0 0 0 0
w1 W2 0 Wy W1 Wa 0 0 €1
gy = | wo wy wy | €= 0 wy wy wy 0 €9
0 Wy Wy 0 0 Wy W1 Wa €3
0 0 Wo 0 0 0 Wy W1 0

From the form of the matrix A* in problem Q5.2, we see that

[Qy}k = W—_k * €

with the “same” boundary condition and e padded with zeros.
Q5.4
Since convolution is communitive, we also know that z; = y; * w; with a “valid” boundary
condition. So we have that
Bi,j = Y2+i—j

10



where again the offset of 2 =3 — 1 is due to the valid boundary condition. So then we have

that
Y2 Y1 Yo
B=1|wys vy wn
Ys Yz Y2
Then we have that R
Zo Y2 Y1 Yo Wo
T | =1y v n wy
T Ys Ys Yo wy
Q5.5
€= _2(3: - fw(y>>
C =R
Q5.6
We have that
Gw = —2B'e
= —2y_i*¢

‘valid” boundary condition. In this case, we have that

4

using a

Guw,0 Y2 Ys Y4 €0
Guw,1 =Yy Y2 Y3 €1
Guw,2 Yo Y1 Y2 €2
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