BME/ECE 695 Deep Learning
Midterm I Solution
March 4, Spring 2022
Q1.
2 Points
Rules: I understand that this is an open book exam that shall be done within the allotted time of 120 minutes. I can use my notes, and web resources. However, I will not communicate with any other person other than the official exam proctors during the exam, and I will not seek or accept help from any other persons other than the official proctors.

Upload a scan of your signature here:
Name: (2 pt)

## Q2 Convex Minimization <br> (30 Points)

Consider the two convolutional neural networks given by

$$
\hat{x}=f_{w}(y)=w * y,
$$

and

$$
\hat{x}=g_{w}(y)=f_{w}\left(f_{w}(y)\right),
$$

where $y \in \Re^{N \times N}$ is a 2 D image input, and $w * y$ denotes 2 D convolution with the kernel $w \in \Re^{p \times p}$ filter kernel with $p \ll N$ using a valid boundary condition.
The associated MSE loss functions for a single training pair $(x, y)$ are then given by

$$
\operatorname{loss}_{f}(w)=\left\|x-f_{w}(y)\right\|^{2}
$$

and

$$
\operatorname{loss}_{g}(w)=\left\|x-g_{w}(y)\right\|^{2}
$$

Q2.1
Is $f_{w}(y)$ a linear function of $w$ ? Justify your answer, i.e., prove the result or give a counter example.

## Q2.2

Is $\operatorname{loss}_{f}(w)$ a convex function of $w$ ? Justify your answer, i.e., prove the result or give a counter example.

## Q2.3

Will gradient descent optimization of $\operatorname{loss}_{f}(w)$ converge to a global minimum? Justify your answer.
Q2.4
Is $g_{w}(y)$ always a linear function of $w$ ? Justify your answer, i.e., prove the result or give a counter example.

## Q2.5

Is $\operatorname{loss}_{g}(w)$ always a convex function of $w$ ? Justify your answer, i.e., prove the result or give a counter example.
Q2.6
Will gradient descent optimization of $\operatorname{loss}_{g}(w)$ always converge to a global minimum? Justify your answer.

## Solution: Q2.1

$f_{w}(y)$ is a linear function of $w$ because convolution is linear. More specifically, let $a, b \in \Re$, $w_{1}, w_{2} \in \Re^{2}$ be two different convolutional kernels, then

$$
\begin{aligned}
f_{a w_{1}+b w_{2}}(y)_{j_{1}, j_{2}} & =\sum_{k_{1}} \sum_{k_{2}}\left(a w_{1}+b w_{2}\right)_{k_{1}, k_{2}} y_{j_{1}-k_{1}, j_{2}-k_{2}} \\
& =a \sum_{k_{1}} \sum_{k_{2}} w_{1 k_{1}, k_{2}} y_{j_{1}-k_{1}, j_{2}-k_{2}}+b \sum_{k_{1}} \sum_{k_{2}} w_{2 k_{1}, k_{2}} y_{j_{1}-k_{1}, j_{2}-k_{2}} \\
& =a f_{w_{1}}(y)_{j_{1}, j_{2}}+b f_{w_{2}}(y)_{j_{1}, j_{2}}
\end{aligned}
$$

## Q2.2

$\operatorname{loss}_{f}(w)$ is a convex function of $w$.
Justification: Let $\hat{x}=A w$ be a linear function of $w$, and $d(\hat{x})$ be a convex function of $\hat{x}$. then we know from the properties of convex functions taught in class that $d(A w)$ is a convex function of $w$.
Therefore, since $\hat{x}=f_{w}(y)$ is a linear function of $w$, and the MSE loss function, $\|x-\hat{x}\|^{2}$, is a convex function of $\hat{x}$, then we know that $\operatorname{loss}_{f}(w)=\left\|x-f_{w}(y)\right\|^{2}$ is a convex function of $w$.

## Q2.3

Gradient descent optimization of $\operatorname{loss}_{f}(w)$ will converge to a global minimum, because gradient descent will converge to a local minimum, and every local minimum of a convex function is a global minimum.

## Q2.4

The function $g_{w}(y)$ is not always a linear function of $w$.
Justification: In order to prove that this is not always true, we only need to find a counter example. Consider the case where $w_{j_{1}, j_{2}}=w_{0} \delta_{j_{1}, j_{2}}$. Then

$$
g_{w}(y)=w_{0}^{2} \cdot y
$$

is not a linear function of the one parameter $w_{0}$.

## Q2.5

$\operatorname{loss}_{g}(w)$ is not necessarily a convex function of $w$.
Justification: Since $g_{w}(y)=f w(f w(y))$ is not generally a linear function of $w$, then $\operatorname{loss}_{g}(w)=$ $\left\|x-g_{w}(y)\right\|^{2}$ is not generally a convex function of $w$.
We can prove that it is not always convex by giving a counter example. Let $x=1, y=1$ and $w_{j_{1}, j_{2}}=w_{0} \delta_{j_{1}, j_{2}}$, then we have that

$$
\operatorname{loss}_{g}(w)=\left(1-w_{0}^{2}\right)^{2}=\left(1-w_{o}\right)^{2}\left(1+w_{0}\right)^{2}
$$

This is clearly not a convex function with minimum at both 1 and -1 .

## Q2.6

Gradient descent optimization of $\operatorname{loss}_{g}(w)$ will not necessarily converge to a global minimum because $\operatorname{loss}_{g}(w)$ is not in general a convex function of $w$.

## Q3 Maximum Likelihood Estimation

(30 Points)
Consider the machine learning algorithm with inference function $f_{\theta}$ and parameters $\theta \in \Re^{p}$ so that

$$
\hat{p}=f_{\theta}(y)
$$

where $y \in \Re^{N}$ with distribution $p(y)$, and $\hat{p} \in S_{M}$ where $S_{M}$ is the M-D simplex set defined by

$$
S_{M}=\left\{p \in[0,1]^{M}: p_{m} \geq 0 \text { and } \sum_{m=0}^{M-1} p_{m}=1\right\}
$$

Intuitively, our goal is to train the ML function, $f_{\theta}$, so the it accurately estimates, $\hat{p}_{m}=$ $\left[f_{\theta}(y)\right]_{m}$, the probability that $y$ has class $m$.
In order to do this, we would like to compute the maximum likelihood estimate (MLE) of the parameter $\theta$ given the single training pair $(x, y)$ where $x \in\{0,1\}^{M}$ and $y \in \Re^{N}$, i.e., $x$ uses 1-hot encoding.

## Q3.1

Write out an expression for the joint probability $p_{\theta}(x, y)$.
Q3.2
Write out an expression for the negative $\log$ likelihood, $L(\theta)=-\log p_{\theta}(x, y)$.

## Q3.3

Assume that you now have $K$ independent training samples, $\left(x_{k}, y_{k}\right)_{k=0}^{K-1}$, then write out an expression for the joint probability $p_{\theta}(x, y)$.
Q3. 4
Assume that you now have $K$ independent training samples, then write out an expression for the negative $\log$ likelihood, $L(\theta)=-\log p_{\theta}(x, y)$.

## Q3.5

If you would like to compute the MLE estimate of $\theta$ using the $K$ training samples, then what loss function should you use? Justify your answer.

## Q3.6

Give at least one advantage and one disadvantage of the MLE estimate.

## Solution:

## Q3.1

Let $p_{\theta}(x \mid y)$ denote the conditional probability of $x \in S_{M}$ given $y \in \Re^{N}$ where $x$ uses 1-hot encoding. So only one element $x_{m}^{*}=1$, and the rest are 0 .
First notice that since $x$ has one-hot encoding,

$$
p_{\theta}(x \mid y)=\hat{p}_{m^{*}}=\prod_{m=0}^{M-1}\left(\hat{p}_{m}\right)^{x_{m}}=\prod_{m=0}^{M-1}\left(\left[f_{\theta}(y)\right]_{m}\right)^{x_{m}}
$$

So then we have that

$$
\begin{aligned}
p_{\theta}(x, y) & =p(x \mid y) p(y) \\
& =p(y) \prod_{m=0}^{M-1}\left(\left[f_{\theta}(y)\right]_{m}\right)^{x_{m}} .
\end{aligned}
$$

## Q3.2

$$
\begin{aligned}
L(\theta) & =-\log p_{\theta}(x, y) \\
& =-\log p(y)-\sum_{m=0}^{M-1} x_{m} \log \left(\left[f_{\theta}(y)\right]_{m}\right)
\end{aligned}
$$

Q3.3

$$
\begin{aligned}
p_{\theta}(x, y) & =\prod_{k=0}^{K-1} p_{\theta}\left(x_{k}, y_{k}\right) \\
& =\prod_{k=0}^{K-1}\left\{p\left(y_{k}\right) \prod_{m=0}^{M-1}\left(\left[f_{\theta}\left(y_{k}\right)\right]_{m}\right)^{x_{k, m}}\right\}
\end{aligned}
$$

where $x_{k, m}$ denotes the $m^{\text {th }}$ element of the $k^{t h}$ training sample.
Q3.4

$$
\begin{aligned}
L(\theta) & =-\sum_{k=0}^{K-1}\left\{\log p\left(y_{k}\right)+\sum_{m=0}^{M-1} x_{k, m} \log \left(\left[f_{\theta}\left(y_{k}\right)\right]_{m}\right)\right\} \\
& =-\sum_{k=0}^{K-1} \log p\left(y_{k}\right)-\sum_{k=0}^{K-1} \sum_{m=0}^{M-1} x_{k, m} \log \left(\left[f_{\theta}\left(y_{k}\right)\right]_{m}\right)
\end{aligned}
$$

Q3.5
In order to compute the maximum likelihood estimate for this problem, one should use the cross-entropy loss function. This is because in the answer to question Q3.4 above, the negative log likelihood is equal to the cross-entropy loss plus a constant.
Q3.6
Advantage:

1. Good choice when there's plenty of training data, or the prior distribution is unknown or hard to model.
2. Mostly unbiased.

Disadvantage:

1. Needs lots of training data to get good results.
2. Overfits when there is no sufficient training data.
3. Does not exploit the knowledge of prior distribution of the data.

## Q4 Convolutional Neural Networks

(10 Points)
Consider the following convolutional neural network pictured below with a color image as input, and a gray-scale image as output. Each layer uses a ReLu activation function, and denote the convolution kernel by $w$ and the offsets by $b$.


Layer 1 Layer 2

## Q4. 1

For layer 1, what are the shapes of the tensors $w$ and $b$ ?
Q4.2
For layer 2, what are the shapes of the tensors $w$ and $b$ ?

## Solution:

Q4.1
$w: 3 \times 3 \times 3 \times 8, b: 8$ Q4.2
$w: 3 \times 3 \times 8 \times 1, b: 1$

## Q5 Adjoint Gradients

(10 Points)
Consider a single layer 1D convolutional neural network of the form

$$
\hat{x}=f_{w}(y)=w * y,
$$

where $y \in \Re^{5}$ is a five component rank 1 vector, $w=\left[w_{0}, w_{1}, w_{2}\right]$, and $w * y$ denotes true convolution using a valid boundary condition.
Assume the CNN is trained using a single training pair $(x, y)$ and that the MSE loss function is given by

$$
\operatorname{loss}(w)=\left\|x-f_{w}(y)\right\|^{2}
$$

Q5.1
Determine the matrix $A$ so that

$$
A y=\left[\nabla_{y} f_{w}(y)\right] y .
$$

Q5.2
Determine an expression for the multiplication by the adjoint gradient given by

$$
g_{y}=\left[\nabla_{y} f_{w}(y)\right]^{t} \epsilon .
$$

## Q5.3

Express $g_{y}$ using the convolution operator and specify the required boundary condition. Q5.4
Determine the matrix $B$ so that

$$
B w=\left[\nabla_{w} f_{w}(y)\right] w .
$$

## Q5.5

Determine an expressions for the matrix $C$ and the row vector $\epsilon$ so that

$$
g_{w}=C \epsilon=\nabla_{w} \operatorname{loss}(w) .
$$

Q5.6
Express $g_{w}$ using the convolution operator and specify the required boundary condition.

## Solution:

## Q5.1

We know that $\hat{x}_{i}=w_{i} * y_{i}$, so we have that

$$
A_{i, j}=w_{2+i-j},
$$

where the offset of $2=3-1$ is used due to the valid boundary condition. Then we have that

$$
A=\left[\begin{array}{ccccc}
w_{2} & w_{1} & w_{0} & 0 & 0 \\
0 & w_{2} & w_{1} & w_{0} & 0 \\
0 & 0 & w_{2} & w_{1} & w_{0}
\end{array}\right]
$$

Then we have that

$$
\left[\begin{array}{l}
\hat{x}_{0} \\
\hat{x}_{1} \\
\hat{x}_{2}
\end{array}\right]=\left[\begin{array}{ccccc}
w_{2} & w_{1} & w_{0} & 0 & 0 \\
0 & w_{2} & w_{1} & w_{0} & 0 \\
0 & 0 & w_{2} & w_{1} & w_{0}
\end{array}\right]\left[\begin{array}{l}
y_{0} \\
y_{1} \\
y_{2} \\
y_{3} \\
y_{4}
\end{array}\right]
$$

## Q5.2

$$
g_{y}=\left[\begin{array}{ccc}
w_{2} & 0 & 0 \\
w_{1} & w_{2} & 0 \\
w_{0} & w_{1} & w_{2} \\
0 & w_{0} & w_{1} \\
0 & 0 & w_{0}
\end{array}\right] \epsilon
$$

Notice that $\epsilon \in \Re^{3}$.

## Q5.3

From Problem Q5.2, we can write

$$
g_{y}=\left[\begin{array}{ccc}
w_{2} & 0 & 0 \\
w_{1} & w_{2} & 0 \\
w_{0} & w_{1} & w_{2} \\
0 & w_{0} & w_{1} \\
0 & 0 & w_{0}
\end{array}\right] \epsilon=\left[\begin{array}{ccccc}
w_{1} & w_{2} & 0 & 0 & 0 \\
w_{0} & w_{1} & w_{2} & 0 & 0 \\
0 & w_{0} & w_{1} & w_{2} & 0 \\
0 & 0 & w_{0} & w_{1} & w_{2} \\
0 & 0 & 0 & w_{0} & w_{1}
\end{array}\right]\left[\begin{array}{c}
0 \\
\epsilon_{1} \\
\epsilon_{2} \\
\epsilon_{3} \\
0
\end{array}\right]
$$

From the form of the matrix $A^{t}$ in problem Q5.2, we see that

$$
\left[g_{y}\right]_{k}=w_{-k} * \epsilon_{k}
$$

with the "same" boundary condition and $\epsilon$ padded with zeros.
Q5.4
Since convolution is communitive, we also know that $\hat{x}_{i}=y_{i} * w_{i}$ with a "valid" boundary condition. So we have that

$$
B_{i, j}=y_{2+i-j},
$$

where again the offset of $2=3-1$ is due to the valid boundary condition. So then we have that

$$
B=\left[\begin{array}{lll}
y_{2} & y_{1} & y_{0} \\
y_{3} & y_{2} & y_{1} \\
y_{4} & y_{3} & y_{2}
\end{array}\right]
$$

Then we have that

$$
\left[\begin{array}{l}
\hat{x}_{0} \\
\hat{x}_{1} \\
\hat{x}_{2}
\end{array}\right]=\left[\begin{array}{lll}
y_{2} & y_{1} & y_{0} \\
y_{3} & y_{2} & y_{1} \\
y_{4} & y_{3} & y_{2}
\end{array}\right]\left[\begin{array}{l}
w_{0} \\
w_{1} \\
w_{2}
\end{array}\right]
$$

## Q5.5

$$
\begin{aligned}
\epsilon & =-2\left(x-f_{w}(y)\right) \\
C & =B^{t}
\end{aligned}
$$

Q5.6
We have that

$$
\begin{aligned}
g_{w} & =-2 B^{t} \epsilon \\
& =-2 y_{-i} * \epsilon_{i}
\end{aligned}
$$

using a "valid" boundary condition. In this case, we have that

$$
\left[\begin{array}{l}
g_{w, 0} \\
g_{w, 1} \\
g_{w, 2}
\end{array}\right]=\left[\begin{array}{lll}
y_{2} & y_{3} & y_{4} \\
y_{1} & y_{2} & y_{3} \\
y_{0} & y_{1} & y_{2}
\end{array}\right]\left[\begin{array}{c}
\epsilon_{0} \\
\epsilon_{1} \\
\epsilon_{2}
\end{array}\right]
$$

