BME/ECE 695 Deep Learning Midterm I February 27, Spring 2020

Name:	<ey< th=""><th></th></ey<>	
	V	

Instructions:

This is a 75 minute exam containing five (5) problems.

- You may only use your brain and a pencil (or pen) to complete this exam.
- You may not use or have access to your book, notes, any supplementary reference, a calculator, or any communication device including a cell-phone, computer, smart watch, etc.
- You may not communicate with any person other than the official proctors during the exam.

Good Luck.

Problem 1) (20 pt) (L. 5 pt each) For each of the following, check the one box that best corresponds to the function's properties.				
a) $f(x) = e^{-x}$ for $x \in \Re$	Convex	Concave		
	neither	Both		
b) $f(x) = x$ for $x \in \Re$	Convex neither	Concave Both		
c) $f(x) = x^2$ for $x \in \Re$	Convex neither	Concave Both		
d) $f(x) = x^3$ for $x \in \Re$	Convex neither	Concave Both		
e) $f(x) = x $ for $x \in \Re$	Convex neither	Concave Both		
f) $f(x) = x ^3$ for $x \in \Re$ for $x \in \Re$	Convex neither	Concave Both		
g) $f(x) = \sum_{k=0}^{K} (x - \mu_k)^2$ for $x \in \Re$, $\mu_k \in \Re$	Convex neither	Concave Both		
h) $f(x) = \sum_{k=0}^{K} \{a_k e^{-x} + b_k x + c_k (x - \mu_k)^2\}$ for :	$x \in \Re, a_k \ge 0, b_k$	$k \geq 0, c_k \geq 0, \ \mu_k \in \Re$		
	Convex	Concave		
	neither	Both		

Problem 2) (20 pt) (4 p+ each)

Mark each of the following statements as only one of the three following labels:

T-"true"; F-"false"; or U-"Undecidable given the information that is provided".

a) Gobbly gook is always blue.

U

b) Let f(x) be a function of $x \in \Re$. For all x^* , if x^* is a global minimum of f(x), then x^* must also be a local minimum of f(x).

1

c) Let f(x) be a function of $x \in \Re$. For all x^* , if x^* is a local minimum of f(x), then x^* must also be a global minimum of f(x).

c) Let f(x) be a continuously differentiable function for $x \in \Re$. If $\frac{d}{dx}f(x^*) = 0$, then x^* is a local minimum.

d) Let f(x) be a continuously differentiable and convex function for $x \in \mathbb{R}$. If $\frac{d}{dx}f(x^*) = 0$, then x^* is a global minimum.

Problem 3) (20 pt)

Consider the following convolutional neural network (see diagram on next page) with a color image as input, and a gray-scale image as output. Each layer uses a ReLu activation function, and denote the convolution kernel by w and the offsets by b.

a) For layer 1, give:

1. The shape of the tensor w;

2. The number of parameters in w;

3. The shape of the vector *b*;

4. The number of parameters in b.

5. The total number of parameters in the layer.

b) For layer 2, give:

The shape of the tensor w;

The number of parameters in w;

The shape of the vector b;

The number of parameters in b.

The total number of parameters in the layer.

c) The total number of parameters in the model.

$$224 + 73 = 297$$

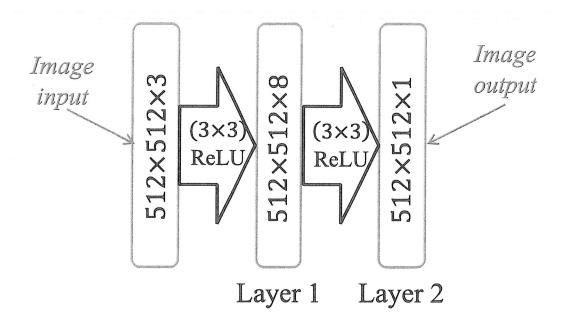


Figure 1: Convolutional Neural Network for Problem 3

Problem 4) (20 pt)

Consider the following tensor operation where z^{i_1,i_2} is the input, x^j is the output, and $w^j_{i_1,i_2}$ is the kernel.

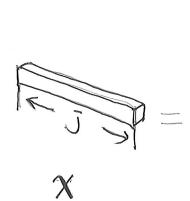
$$x^j = w^j{}_{i_1, i_2} z^{i_1, i_2}$$

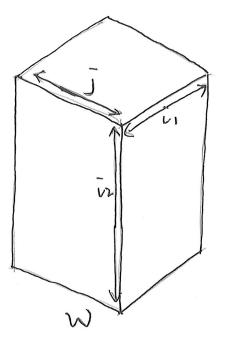
(Hint: The rank of a tensor is the number of axes in the tensor.)

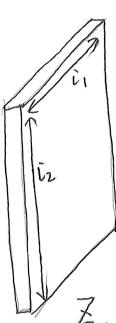
b) What is the rank of the tensor x^{j} ?

c) What is the rank of the tensor $w^{j}_{i_1,i_2}$?

d) Draw a 3D picture illustrating this operation.







Problem 5) (20 pt)

Consider a machine learning (ML) system,

$$\hat{x} = f_{\theta}(y) = Ay + b ,$$

where $y \in \Re^{N_y}$, $\hat{x} \in \Re^{N_x}$, and $\theta = [A, b]$ where $A \in \Re^{N_x \times N_y}$ and $b \in \Re^{N_x}$. Assume we have training data pairs given by $(x_k, y_k)|_{k=0}^{K-1}$, and a loss function given by

$$l(\theta) = \frac{1}{K} \sum_{k=0}^{K-1} ||x_k - f_{\theta}(y_k)||^2.$$

- a) What is the commonly used name for this loss function?
- b) How many scalar parameters are in this model, i.e., what is the dimension of θ ?
- c) Calculate a theoretical expression for $\nabla_b l(\theta)$, the gradient of the loss function w.r.t. b. You can express this in the form $g_{1,i} = [\nabla_b l(\theta)]_i$ for $0 \le i < N_x$.
- d) Calculate a theoretical expression for $\nabla_A l(\theta)$, the gradient of the loss function w.r.t. A. You can express this in the form $g_{2,i,j} = [\nabla_A l(\theta)]_{i,j}$ for $0 \le i < N_x$ and $0 \le j < N_y$.
- e) Write a pseudo-code algorithm for gradient descent of the parameter $\theta = [A, b]$.

(c)
$$\nabla_b l(0) = -\frac{2}{K} \sum_{k=0}^{K-1} (\chi_k - f_0(y_k))^{\frac{1}{2}} \nabla_b f_0(y_k)$$

where
$$\nabla_b f_0(y_k) = I$$

where
$$\nabla_b f_0(y_k) = I$$
.
Therefore $g_{l,i} = [\nabla_b l(0)]_{i} = -\frac{2}{k} \sum_{k=0}^{k-1} [k_k]_i - [f_0(y_k)]_i$

(d)
$$\nabla_{A} l(0) = -\frac{2}{K} \sum_{k=0}^{K-1} (x_{k} - f_{0}(y_{k}))^{t} \nabla_{A} f_{0}(y_{k})$$

where $\left[\nabla_{A} f_{0}(y_{k})\right]_{j_{1}, j_{2}}^{i} = \int_{j_{1}}^{i} [y_{k}]^{j_{2}}$

Therefore
$$g_{2,i,j} = [V_A l(0)]_{i,j}$$

$$= -\frac{2}{K} \sum_{k=0}^{K-1} [(\chi_k - f_0(y_k))^t]_m [V_A f_0(y_k)]_{i,j}^m$$

$$= -\frac{2}{K} \sum_{k=0}^{K-1} [\chi_k - f_0(y_k)]_{i} [Y_k]^j$$