BMEG646 and ECE60146
Homework 9
Spring 2025
Malleswari Kachireddy
Introduction
Generative Models Overview
Generative models are a class of ML methods designed to learn the underlying probability
distribution of the dataset, so that new, realistic data samples can be generated. These models not
only learn the underlying distribution but also have a framework to generate new synthetic data.
Two predominant generative models are

e Generative Adversarial Networks (GANSs) and
e Diffusion Models.

Generative Adversarial Networks (GANs) Network

GAN models consists of two neural networks—the Generator and the Discriminator. The
Generator transforms random noise into synthetic data samples, while the Discriminator evaluates
these samples against real data. The Generator aims to fool the Discriminator, and the
Discriminator strives to accurately distinguish real from fake. In this way, both networks iteratively
improve. This training relies on transpose convolution and loss functions like binary cross-entropy
to produce high resolution images. Transpose convolution takes a compact, low-resolution feature
map and learns how to expand it into a high-resolution image, filling in details as needed.

Diffusion Models:

Diffusion models generate data by reversing a process that gradually adds noise to the training
images. Initially, an image is progressively corrupted until it turns into pure noise. The model is
then trained to denoise the image step by step, effectively learning how to reconstruct the original
data from a noisy input. This process leverages Markov chains and noise schedules, providing a
more explicit modeling of the data generation process compared to GANS.

1. Generative Adversarial Networks
1.1.Model

Our model network uses the DiscriminatorDG1,2 classes and GeneratorDG1,2 classes.

DiscriminatorDG1 class implements the discriminator of a DCGAN using a so-called "4-2-1"
topology. This means that the network is designed with layers that progressively reduce the spatial
dimensions of the input image through a series of strided convolutions while increasing feature

depth, using Batch Normalization and Leaky RelLU activations to ensure stable and effective
learning.

The GeneratorDGL1 class is responsible for creating realistic images starting from a random

noise. It uses a series of transpose convolution (or deconvolution) layers to upsample a low-
dimensional noise vector into a full-sized 64x64 image , applying Batch Normalization and
ReLU activations, with a final Tanh activation to produce output images in the desired pixel
range.

These GeneratorDG1 and DiscriminatorDGL1 architecture forms the basis of a DCGAN, where
the generator and discriminator are trained in an adversarial manner to create realistic images.

GeneratorDG?2 is identical to GeneratorDG1 whereas DiscriminatorDG2 has one additional
convolutional layer.

from DLStudio import DLStudio

import sys,0s,0s.path

import torch

import torch.nn as nn

import torch.nn.functional as F

import torchvision

import torchvision.transforms as tvt

import torchvision.transforms.functional as tvtF

import torch.optim as optim

import numpy as np

import math

import random

import matplotlib.pyplot as plt

import matplotlib.animation as animation
import time

import glob

import imageio

class AdversarialLearning(object):

def __init__(self, *args, **kwargs):
if args:
raise ValueError(

"AdversarialLearning constructor can only be called with keyword arguments for the following
keywords: epochs, learning_rate, batch_size, momentum, image_size, dataroot, path_saved_model,
use_gpu, latent_vector_size, ngpu, distudio, device, LAMBDA, clipping_threshold, and beta1"")

allowed_keys = 'dataroot','image_size','path_saved_model','momentum’,'learning_rate','epochs','batch_size', \
'classes','use_gpu','latent_vector_size','ngpu’,'distudio’, 'beta1’, 'LAMBDA', ‘clipping_threshold'
keywords_used = kwargs.keys()
for keyword in keywords_used:
if keyword not in allowed_keys:
raise SyntaxError(keyword + ": Wrong keyword used --- check spelling")
learning_rate = epochs = batch_size = convo_layers_config = momentum = None
image_size = fc_layers_config = dataroot = path_saved_model = classes = use_gpu = None
latent_vector_size = ngpu = beta1l = LAMBDA = clipping_threshold = None
if 'latent_vector_size' in kwargs : latent_vector_size = kwargs.pop('latent_vector_size")
if 'ngpu’ in kwargs : ngpu = kwargs.pop(‘ngpu’)
if 'dIstudio’ in kwargs . distudio = kwargs.pop('distudio’)
if 'betat' in kwargs : betal = kwargs.pop(‘'beta1’)
if 'LAMBDA' in kwargs : LAMBDA = kwargs.pop('LAMBDA')
if 'clipping_threshold' in kwargs : clipping_threshold = kwargs.pop('clipping_threshold')
if latent_vector_size:

self.latent_vector_size = latent_vector_size

if ngpu:

self.ngpu = ngpu
if distudio:
self.dIstudio = distudio
if beta1:
self.beta1 = beta1
if LAMBDA:
self.LAMBDA = LAMBDA
if clipping_threshold:
self.clipping_threshold = clipping_threshold

show_sample_images_from_dataset(self, distudio):
data = next(iter(self.train_dataloader))
real_batch = data[0]
self.dIstudio.display_tensor_as_image(torchvision.utils.make_grid(real_batch, padding=2, pad_value=1,

normalize=)

set_dataloader(self):
dataset = torchvision.datasets.ImageFolder(root=self.dIstudio.dataroot,
transform = tvt. Compose([
tvt.Resize(self.dIstudio.image_size),
tvt.CenterCrop(self.dIstudio.image_size),
tvt. ToTensor(),
tvt.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
)
self.train_dataloader = torch.utils.data.Datal.oader(dataset, batch_size=self.dIstudio.batch_size,

shuffle= , hum_workers=2)

weights_init(self,m):

classname = m.__class_ .. name__
if classname.find('ConVv') = -1:

nn.init.normal_(m.weight.data, 0.0, 0.02)

elif classname.find('BatchNorm') 1= -1:

nn.init.normal_(m.weight.data, 1.0, 0.02)

nn.init.constant_(m.bias.data, 0)

DiscriminatorDG1(nn.Module):

__init__(self):
super(AdversarialLearning.DiscriminatorDG1, self).__init_ ()
self.conv_in = nn.Conv2d(3, 64, kernel_size=4, stride=2, padding=1)
self.conv_in2 = nn.Conv2d(64, 128, kernel_size=4, stride=2, padding=1)
self.conv_in3 = nn.Conv2d(128, 256, kernel_size=4, stride=2, padding=1)
self.conv_in4 = nn.Conv2d(256, 512, Kkernel_size=4, stride=2, padding=1)
self.conv_in5 = nn.Conv2d(512, 1, kernel_size=4, stride=1, padding=0)
self.bn1 = nn.BatchNorm2d(128)
self.on2 = nn.BatchNorm2d(256)
self.bn3 = nn.BatchNorm2d(512)
self.sig = nn.Sigmoid()

forward(self, x):
x = torch.nn.functional.leaky_relu(self.conv_in(x), negative_slope=0.2, inplace=

x = self.bn1(self.conv_in2(x))

x = torch.nn.functional.leaky_relu(x, negative_slope=0.2, inplace=

x = self.bn2(self.conv_in3(x))

x = torch.nn.functional.leaky_relu(x, negative_slope=0.2, inplace=
x = self.bn3(self.conv_in4(x))

x = torch.nn.functional.leaky_relu(x, negative_slope=0.2, inplace=
x = self.conv_in5(x)

x = self.sig(x)

return x

GeneratorDG1(nn.Module):

__init__(self):

super(AdversarialLearning.GeneratorDG1, self).__init_ ()

self.latent_to_image = nn.ConvTranspose2d(100, 512, kernel_size=4, stride=1, padding=0, bias=
self.upsampler2 = nn.ConvTranspose2d(512, 256, kernel_size=4, stride=2, padding=1, bias=)
self.upsampler3 = nn.ConvTranspose2d (256, 128, kernel_size=4, stride=2, padding=1, bias=)
self.upsampler4 = nn.ConvTranspose2d (128, 64, kernel_size=4, stride=2, padding=1, bias=)
self.upsampler5 = nn.ConvTranspose2d(64, 3, kernel_size=4, stride=2, padding=1, bias=
self.on1 = nn.BatchNorm2d(512)
self.bon2 = nn.BatchNorm2d(
self.on3 = nn.BatchNorm2d(128)
self.bon4 = nn.BatchNorm2d(64)
self.tanh = nn.Tanh()

forward(self, x):
x = self.latent_to_image(x)
x = torch.nn.functional.relu(self.bn1(x))
x = self.upsampler2(x)
x = torch.nn.functional.relu(self.bn2(x))
x = self.upsampler3(x)
x = torch.nn.functional.relu(self.bn3(x))
x = self.upsampler4(x)
x = torch.nn.functional.relu(self.bn4(x))
x = self.upsampler5(x)
x = self.tanh(x)

return x

DiscriminatorDG2(nn.Module):

__init__(self, skip_connections= , depth=16):
super(AdversarialLearning.DiscriminatorDG2, self).__init_ ()
self.conv_in = nn.Conv2d(3, 64, kernel_size=4, stride=2, padding=1)
self.extra = nn.Conv2d(64, 64, kernel_size=4, stride=1, padding=2)
self.conv_in2 = nn.Conv2d(64, 128, kernel_size=4, stride=2, padding=1)
self.conv_in3 = nn.Conv2d(128, 256, kernel_size=4, stride=2, padding=1)
self.conv_in4 = nn.Conv2d(256, 512, Kkernel_size=4, stride=2, padding=1)
self.conv_in5 = nn.Conv2d(512, 1, kernel_size=4, stride=1, padding=0)
self.on1 = nn.BatchNorm2d(128)
self.on2 = nn.BatchNorm2d(256)
self.bn3 = nn.BatchNorm2d(512)
self.bnX = nn.BatchNorm2d(64)
self.sig = nn.Sigmoid()

forward(self, x):
x = torch.nn.functional.leaky_relu(self.conv_in(x), negative_slope=0.2, inplace=
x = self.bnX(self.extra(x))
x = torch.nn.functional.leaky_relu(x, negative_slope=0.2, inplace=
x = self.bn1(self.conv_in2(x))
x = torch.nn.functional.leaky_relu(x, negative_slope=0.2, inplace=
x = self.bn2(self.conv_in3(x))
x = torch.nn.functional.leaky_relu(x, negative_slope=0.2, inplace=
x = self.bn3(self.conv_in4(x))

x = torch.nn.functional.leaky_relu(x, negative_slope=0.2, inplace=

x = self.conv_in5(x)

x = self.sig(x)

return x

GeneratorDG2(nn.Module):

__init__(self):
super(AdversarialLearning.GeneratorDG2, self).__init_ ()
self.latent_to_image = nn.ConvTranspose2d(100, 512, kernel_size=4, stride=1, padding=0, bias=
self.upsampler2 = nn.ConvTranspose2d(512, 256, kernel_size=4, stride=2, padding=1, bias=)
self.upsampler3 = nn.ConvTranspose2d (256, 128, kernel_size=4, stride=2, padding=1, bias=)

self.upsampler4 = nn.ConvTranspose2d (128, 64, kernel_size=4, stride=2, padding=1, bias=)

self.upsampler5 = nn.ConvTranspose2d(64, 3, kernel_size=4, stride=2, padding=1, bias=
self.bn1 = nn.BatchNorm2d(512)
self.bon2 = nn.BatchNorm2d(256)
self.on3 = nn.BatchNorm2d(128)
self.bon4 = nn.BatchNorm2d(64)
self.tanh = nn.Tanh()

forward(self, x):
x = self.latent_to_image(x)
x = torch.nn.functional.relu(self.bn1(x))
x = self.upsampler2(x)
x = torch.nn.functional.relu(self.bn2(x))
x = self.upsampler3(x)
x = torch.nn.functional.relu(self.bn3(x))
x = self.upsampler4(x)
x = torch.nn.functional.relu(self.bn4(x))
x = self.upsampler5(x)
x = self.tanh(x)

return x

run_gan_code(self, distudio, discriminator, generator, results_dir):

dir_name_for_results = results_dir
if os.path.exists(dir_name_for_results):
files = glob.glob(dir_name_for_results + "/*")
for file in files:
if os.path.isfile(file):
os.remove(file)
else:
files = glob.glob(file + "/*")
list(map(X: 0s.remove(x), files))
else:

os.mkdir(dir_name_for_results)
nz =100

netD = discriminator.to(self.dIstudio.device)

netG = generator.to(self.dIstudio.device)

netD.apply(self.weights_init)

netG.apply(self.weights_init)

fixed_noise = torch.randn(self.dIstudio.batch_size, nz, 1, 1, device=self.dIstudio.device)

real_label = 1

fake_label = 0

optimizerD = optim.Adam(netD.parameters(), Ir=dlIstudio.learning_rate, betas=(self.beta1, 0.999))

optimizerG = optim.Adam(netG.parameters(), Ir=dlIstudio.learning_rate, betas=(self.beta1, 0.999))

criterion = nn.BCELoss()

img_list =[]
G_losses =]
D_losses =]
iters =0
print("\n\nStarting Training Loop...\n\n",f"{dIstudio.epochs} and {len(self.train_dataloader)}")
start_time = time.perf_counter()
for epoch in range(distudio.epochs):
g_losses_per_print_cycle =[]

d_losses_per_print_cycle =[]

for i, data in enumerate(self.train_dataloader, 0):

netD.zero_grad()

real_images_in_batch = data[0].to(self.dIstudio.device)

b_size = real_images_in_batch.size(0)

label = torch.full((b_size,), real_label, dtype=torch.float, device=self.dIstudio.device)
output = netD(real_images_in_batch).view(-1)

lossD_for_reals = criterion(output, label)

lossD_for_reals.backward()

noise = torch.randn(b_size, nz, 1, 1, device=self.dIstudio.device)
fakes = netG(noise)

label fill_(fake_label)

output = netD(fakes.detach()).view(-1)
lossD_for_fakes = criterion(output, label)

lossD_for_fakes.backward()

lossD = lossD_for_reals + lossD_for_fakes

d_losses_per_print_cycle.append(lossD)

optimizerD.step()

netG.zero_grad()

label.fill_(real_label)

output = netD(fakes).view(-1)
lossG = criterion(output, label)
g_losses_per_print_cycle.append(lossG)

lossG.backward()

optimizerG.step()

if i % 100 == 99:
current_time = time.perf_counter()
elapsed_time = current_time - start_time
mean_D_loss = torch.mean(torch.FloatTensor(d_losses_per_print_cycle))
mean_G_loss = torch.mean(torch.FloatTensor(g_losses_per_print_cycle))
print("[epoch=%d/ iter= elapsed_time= secs] mean_D_loss=

mean_G_loss= " %
((epoch+1),dIstudio.epochs,(i+1),elapsed_time,mean_D_loss,mean_G_loss))

d_losses_per_print_cycle =[]
g_losses_per_print_cycle =[]

G_losses.append(lossG.item())

D_losses.append(lossD.item())

if (iters % 500 == 0) or ((epoch == dIstudio.epochs-1) (i == len(self.train_dataloader)-1)):

with torch.no_grad():
fake = netG(fixed_noise).detach().cpu()

img_list.append(torchvision.utils.make_grid(fake, padding=1, pad_value=1, normalize=

iters += 1

plt.figure(figsize=(10,5))

plt.title("Generator and Discriminator Loss During Training")
plt.plot(G_losses,label="G")

plt.plot(D_losses,label="D")

plt.xlabel("iterations")

plt.ylabel("Loss")

plt.legend()

plt.savefig(dir_name_for_results + "/gen_and_disc_loss_training.png")

plt.show()

images = []

for imgobj in img_list:
img = tvtF.to_pil_image(imgobj)
images.append(img)

imageio.mimsave(dir_name_for_results + "/generation_animation.gif", images, fps=5)

real_batch = next(iter(self.train_dataloader))

real_batch = real_batch[0]

plt.figure(figsize=(15,15))

plt.subplot(1,2,1)

plt.axis("off")

plt.title("Real Images")

plt.imshow(np.transpose(torchvision.utils.make_grid(real_batch.to(self.dIstudio.device),
padding=1, pad_value=1, normalize=)-cpu(),(1,2,0)))

plt.subplot(1,2,2)

plt.axis("off")

plt.title("Fake Images")

plt.imshow(np.transpose(img_list[-1],(1,2,0)))

plt.savefig(dir_name_for_results + "/real_vs_fake_images.png")

plt.show()

import random
import numpy
import torch

import os, sys

seed =0

random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)

numpy.random.seed(seed)

torch.backends.cudnn.deterministic=
torch.backends.cudnn.benchmarks=

os.environ[PYTHONHASHSEED'] = str(seed)

from DLStudio import *

from AdversarialLearning import *

import sys

dls = DLStudio(

dataroot = "/content/Supplementary/celeba_dataset_64x64",

image_size = [64,64],
path_saved_model = "/content/DLStudio-
2.5.2/ExamplesAdversarialLearning/saved_model/dcgan_DG1.pt",

learning_rate = 1e-4,

epochs = 30,
batch_size = 32,

use_gpu = ,

dcgan = AdversarialLearning(
dlstudio = dls,
ngpu =1,
latent_vector_size = 100,

beta1l = 0.5,

discriminator = dcgan.DiscriminatorDG1()

generator = dcgan.GeneratorDG1()

num_learnable_params_disc = sum(p.numel() for p in discriminator.parameters() if p.requires_grad)
print("\n\nThe number of learnable parameters in the Discriminator: \n" % num_learnable_params_disc)
num_learnable_params_gen = sum(p.numel() for p in generator.parameters() if p.requires_grad)
print("\nThe number of learnable parameters in the Generator: %d\n" % num_learnable_params_gen)
num_layers_disc = len(list(discriminator.parameters()))

print("\nThe number of layers in the discriminator: \n" % num_layers_disc)

num_layers_gen = len(list(generator.parameters()))

print("\nThe number of layers in the generator: \n\n" % num_layers_gen)

dcgan.set_dataloader()

print("\n\nHere is one batch of images from the training dataset:")

dcgan.show_sample_images_from_dataset(dls)

dcgan.run_gan_code(dls, discriminator=discriminator, generator=generator, results_dir="results_DG1")

torch.save(generator.state_dict(), "/content/DLStudio-
2.5.2/[ExamplesAdversarialLearning/saved_model/dcgan_G1.pt")
torch.save(discriminator.state_dict(), "/content/DLStudio-

2.5.2/ExamplesAdversarialLearning/saved_model/dcgan_D1.pt")

dls = DLStudio(

dataroot = "/content/Supplementary/celeba_dataset_64x64",

image_size = [64,64],

path_saved_model = "/content/DLStudio-
2.5.2/ExamplesAdversarialLearning/saved_model/dcgan_DG2.pt",

learning_rate = 2e-4,

epochs = 30,

batch_size = 32,

use_gpu = ,

dcgan = AdversarialLearning(
dlstudio = dls,
ngpu = 1,
latent_vector_size = 100,

betal = 0.5,

discriminator = dcgan.DiscriminatorDG2()

generator = dcgan.GeneratorDG2()

num_learnable_params_disc = sum(p.numel() for p in discriminator.parameters() if p.requires_grad)
print("\n\nThe number of learnable parameters in the Discriminator: \n" % num_learnable_params_disc)
num_learnable_params_gen = sum(p.numel() for p in generator.parameters() if p.requires_grad)

print("\nThe number of learnable parameters in the Generator: %d\n" % num_learnable_params_gen)

num_layers_disc = len(list(discriminator.parameters()))
print("\nThe number of layers in the discriminator: %d\n" % num_layers_disc)
num_layers_gen = len(list(generator.parameters()))

print("\nThe number of layers in the generator: \n\n" % num_layers_gen)

dcgan.set_dataloader()

dcgan.show_sample_images_from_dataset(dls)

dcgan.run_gan_code(dls, discriminator=discriminator, generator=generator, results_dir="results_DG2")

torch.save(generator.state_dict(), "/content/DLStudio-
2.5.2/ExamplesAdversarialLearning/saved_model/dcgan_G2.pt")
torch.save(discriminator.state_dict(), "/content/DLStudio-

2.5.2/ExamplesAdversarialLearning/saved_model/dcgan_D2.pt")

1.2.Training curves: As is expected the generator loss is very high at the
beginning and the discriminator loss increases as the generator becomes
better at generating fake images that look realistic.

Generator and Discriminator Loss During Training

35 — G
— D

25 A

20

§
15 4
10
5_
N M i st b s il il
tl) 2()'00 40|00 GDIOO BOIOO
iterations
Figure 1: Training loss curve for DC GAN 1
Generator and Discriminator Loss During Training
— G
40 A — D
30 -
g 20
10
0 Lttt g b il bl L d Ll sl
(IJ 2600 40|00 6600 BDIOO
iterations
Figure 2: Training loss curve for DC GAN 2
. Diffusion

2.1.Generated images:
Using the code and model weights provided by Prof. Kak, | generated and
visualized 1024 images by calling GenerateNewlmageSamples.py and
VisualizeSamples.py.

0
5000
1000
6000
2000
7000
3000
8000
‘s oimiTels B L BaQOROr
4000 gSanr ' s Valais slals

Figure 3: 1024 Fake Images generated by Diffusion model

Figure 4: Sample images generated by diffusion model

The outputs generated by diffusion model are very realistic. However, using an A100
GPU, it took more than 24 minutes to generate 1024 images using the code provided.

However, generating 1024 images using the DC-GAN networks took a few seconds.
So, the high quality of images comes at the cost of speed.

3. FID Score

Code to generate images from DC GAN generators:
generate_ DCGAN_images(output_dir, path_saved_model, dataroot, total_images, image_size, learning_rate,
epochs, batch_size, use_gpu, latent_vector_size, beta1):
if os.path.exists(output_dir):

os.makedirs(output_dir)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

distudio =
DL Studio(dataroot=dataroot,image_size=image_size,path_saved_model=path_saved_model,learning_rate=learning_r
ate,epochs=epochs,batch_size=batch_size,use_gpu=use_gpu)

adv = AdversarialLearning(distudio=dIstudio,ngpu = 1,latent_vector_size=latent_vector_size,betal=betal)

netG = AdversarialLearning.GeneratorDG1()
netG.load_state_dict(torch.load(adv.dIstudio.path_saved_model, map_location=device))
netG.to(device)

netG.eval()

num_batches = total_images // adv.dlIstudio.batch_size
for batch_idx in range(num_batches):
noise = torch.randn(adv.dlIstudio.batch_size, adv.latent_vector_size, 1, 1, device=device)
with torch.no_grad():
fake_images = netG(noise)
fake_images = (fake_images + 1) / 2.0
for i in range(adv.dlstudio.batch_size):
img_idx = batch_idx * adv.dlIstudio.batch_size + i
save_image(fake_imagesJi], f"{output_dir}/fake_image_{img_idx .png")

print(f"Generated images {batch_idx * adv.dIstudio.batch_size} to {(batch_idx + 1) * adv.dIstudio.batch_size - 1}")
print(f"Successfully generated {total_images} fake images in the {output_dir}' directory")

sample_fake_images =[]
for i in range(16):

img_path = f"{output_dir}/fake_image_{i .png

img = Image.open(img_path)
img_tensor = torchvision.transforms.ToTensor()(img)

sample_fake_images.append(img_tensor)

grid = torchvision.utils.make_grid(sample_fake_images, nrow=4, padding=2, normalize=False)
save_image(grid, f"{output_dir}/grid_4x4_sample.png")
print(f'Created a 4x4 grid visualization at '{output_dir}/grid_4x4_sample.png")

from DLStudio import *

from AdversarialLearning import *

dataroot="/content/Supplementary/celeba_dataset_64x64"
total_images = 1024

image_size=[64,64]

learning_rate = 1e-4

epochs = 1

batch_size = 32

use_gpu = True

latent_vector_size=100

beta1=0.5

output_dir = "/content/DLStudio-2.5.2/ExamplesAdversarialLearning/results_DG1/images"
path_saved_model="/content/DLStudio-2.5.2/ExamplesAdversarialLearning/saved_model/dcgan_G1.pt"
generate_ DCGAN_images(output_dir, path_saved_model, dataroot, total_images, image_size, learning_rate, epochs,

batch_size, use_gpu, latent_vector_size, beta1)

shutil. move('/content/DLStudio-2.5.2/ExamplesAdversarialLearning/results_DG1/images/grid_4x4_sample.png',

'/content/DLStudio-2.5.2/ExamplesAdversarialLearning/results_DG1/grid_4x4_sample.png')

output_dir = "/content/DLStudio-2.5.2/ExamplesAdversarialLearning/results_DG2/images"
path_saved_model="/content/DLStudio-2.5.2/ExamplesAdversarialLearning/saved_model/dcgan_G2.pt"

generate_ DCGAN_images(output_dir, path_saved_model, dataroot, total_images, image_size, learning_rate, epochs,
batch_size, use_gpu, latent_vector_size, beta1)

shutil. move('/content/DLStudio-2.5.2/ExamplesAdversarialLearning/results_DG2/images/grid_4x4_sample.png',

'/content/DLStudio-2.5.2/ExamplesAdversarialLearning/results_DG2/grid_4x4_sample.png')

3.1.4x4 images generated by GAN

Figure 5: Sample images generated by DC-GAN1

Flgure 6: Sample images generated by DC-GAN2

3.2.4x4 images generated by Diffusion

sample_fake_images =[]

for i in range(16):

img_path = f"/content/DLStudio-2.5.2/ExamplesDiffusion/visualize_samples/test_{i}.jpg"
img = Image.open(img_path)
img_tensor = torchvision.transforms.ToTensor()(img)

sample_fake_images.append(img_tensor)

grid = torchvision.utils.make_grid(sample_fake_images, nrow=4, padding=2, normalize=)
save_image(grid, f"/content/DLStudio-2.5.2/ExamplesDiffusion/RESULTS/grid_4x4_sample.png")
print(f"Created a 4x4 grid visualization at '/content/DLStudio-

2.5.2/ExamplesDiffusion/RESULTS/grid_4x4_sample.png™)

Figure 7 Saple imags generated by Diffusion Model

3.3.GAN FID
3.4.Diffusion FID

Model FID Score
DC-GAN1 111.88
DC-GAN2 106.88

Diffusion 76.66

Table 1: FID Scores for various generative models

Code to compute FID score: | selected a random selection of 1024 images from the
real paths to make sure the number of images is the same in both real and fake
folders.

calculate_fid_score(real_images_dir, fake_images_dir, match_count=):
real_paths = [0s.path.join(real_images_dir, filename) for filename in os.listdir(real_images_dir)]
fake_paths = [0s.path.join(fake_images_dir, filename) for filename in os.listdir(fake_images_dir)]
if match_count len(real_paths) > len(fake_paths):

real_paths = random.sample(real_paths, len(fake_paths))

dims = 2048
block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[dims]
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = InceptionV3([block_idx]).to(device)

m1,s1 = calculate_activation_statistics(real_paths,model,batch_size=32,dims=dims,device=device)
m2,s2 = calculate_activation_statistics(fake_paths,model,batch_size=32,dims=dims,device=device)

fid_value = calculate_frechet_distance(m1,s1,m2,s2)

return fid_value

real_images_dir = "/content/Supplementary/celeba_dataset_64x64/0"
fake_images_dir = "/content/DLStudio-2.5.2/ExamplesAdversarialLearning/results_DG1/images"
fid_value = calculate_fid_score(real_images_dir,fake_images_dir)

print(f"FID value: {fid_value:.2f}")

real_images_dir = "/content/Supplementary/celeba_dataset_64x64/0"

fake_images_dir = "/content/DLStudio-2.5.2/ExamplesAdversarialLearning/results_DG2/images"

fid_value = calculate_fid_score(real_images_dir,fake_images_dir)

print(f"FID value: {fid_value:.2f}")

real_images_dir = "/content/Supplementary/celeba_dataset_64x64/0"
fake_images_dir = "/content/DLStudio-2.5.2/ExamplesDiffusion/visualize_samples"
fid_value = calculate_fid_score(real_images_dir,fake_images_dir)

print(f'FID value: {fid_value:.2f}")

4. Finetuning
I commented out these two lines in run_gan_code:

Training code inspired by dcgan_DG1.py:

import random
import numpy
import torch

import os, sys

seed =0

random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
numpy.random.seed(seed)
torch.backends.cudnn.deterministic=
torch.backends.cudnn.benchmarks=

os.environ[PYTHONHASHSEED'] = str(seed)

from DLStudio import *

import sys

dls = DLStudio(
dataroot = "/content/Supplementary/New_training_folder",
image_size = [64,64],
path_saved_model = "/content/DLStudio-
2.5.2/ExamplesAdversarialLearning/saved_model/dcgan_DG1.pt",

learning_rate = 1e-5,

epochs = 50,
batch_size = 8,

use_gpu = True,

dcgan = AdversarialLearning(distudio = dls,ngpu = 1,latent_vector_size = 100,betal = 0.5)

discriminator = dcgan.DiscriminatorDG1()

generator = dcgan.GeneratorDG1()

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

generator.load_state_dict(torch.load("/content/DLStudio-
2.5.2/[ExamplesAdversarialLearning/saved_model/dcgan_G1.pt", map_location=device))

generator.to(device)

discriminator.load_state_dict(torch.load("/content/DLStudio-
2.5.2/[ExamplesAdversarialLearning/saved_model/dcgan_D1.pt", map_location=device))

discriminator.to(device)

num_learnable_params_disc = sum(p.numel() for p in discriminator.parameters() if p.requires_grad)
print("\n\nThe number of learnable parameters in the Discriminator: %d\n" % num_learnable_params_disc)
num_learnable_params_gen = sum(p.numel() for p in generator.parameters() if p.requires_grad)
print("\nThe number of learnable parameters in the Generator: %d\n" % num_learnable_params_gen)
num_layers_disc = len(list(discriminator.parameters()))

print("\nThe number of layers in the discriminator: %d\n" % num_layers_disc)

num_layers_gen = len(list(generator.parameters()))

print("\nThe number of layers in the generator: %d\n\n" % num_layers_gen)

dcgan.set_dataloader()

print("\n\nHere is one batch of images from the fine-tuning dataset:")

dcgan.show_sample_images_from_dataset(dls)

dcgan.run_gan_code(dls, discriminator=discriminator, generator=generator, results_dir="results_finetuned_DG1")

Loss

.save(generator.state_dict(),

.save(discriminator.state_dict(),

4.1.Training loss curves

Generator and Discriminator Loss During Training

17.5 4

15.0 +

12.5 A

10.0 4

7.5 1

5.0 1

2.5

0.0

— G
— D

il

T T T T T T
10000 20000 30000 40000 50000 60000
iterations

o -

Figure 8: Training loss curve while finetuning DG-GAN1

T
70000

Generator and Discriminator Loss During Training

— D

| | vwl'erMM»M

T T T T T T T T T
0 500 1000 1500 2000 2500 3000 3500 4000
iterations

Figure 9: Training loss curve while finetuning DG-GAN2

The images generated before fine-
tuning had higher resolution, sharper
details and faces were in similar
proportions to real people. The lighting
in most of the images were consistent
with real scenes. The backgrounds are
colored in somewhat strange but refined
colors.

Images generated after fine-tuning have
caricature like appearance, blurrier
details. The lighting and background
appear unnatural.

4.3.Visual observations of finetuned GAN vs diffusion model

Diffusion Model
Majority of the images are professional
headshot like portraits with mostly
young people’s 1mages generated
predominantly. We can still notice
weird artifacts in teeth and eyes in some
of the images.

4.4.Finetuned GAN sample images

dataroot="/content/Supplementary/celeba_dataset_64x64"

o
84}) -
After Fine-tuning DC-GANL1
Images generated after fine-tuning have
caricature like appearance, blurrier
details. The lighting and background
appear unnatural.

total_images = 1024
image_size=[64,64]
learning_rate = 1e-4
epochs = 1

batch_size = 32
use_gpu =
latent_vector_size=100

beta1=0.5

output_dir = "/content/DLStudio-2.5.2/ExamplesAdversarialLearning/finetuned_DG1/images"
path_saved_model="/content/DLStudio-2.5.2/ExamplesAdversarialLearning/saved_model/dcgan_finetuned_G1.pt"
generate_ DCGAN_images(output_dir, path_saved_model, dataroot, total_images, image_size, learning_rate, epochs,
batch_size, use_gpu, latent_vector_size, beta1)
shutil.move('/content/DLStudio-2.5.2/ExamplesAdversarialLearning/finetuned_DG1/images/grid_4x4_sample.png’,
'/content/DLStudio-2.5.2/ExamplesAdversarialLearning/results_finetuned_DG1/grid_4x4_sample.png')

output_dir = "/content/DLStudio-2.5.2/ExamplesAdversarialLearning/results_finetuned_DG2/images"

path_saved_model="/content/DLStudio-2.5.2/ExamplesAdversarialLearning/saved_model/dcgan_finetuned_G2.pt"
generate_ DCGAN_images(output_dir, path_saved_model, dataroot, total_images, image_size, learning_rate, epochs,
batch_size, use_gpu, latent_vector_size, beta1)

shutil.move('/content/DLStudio-
2.5.2/ExamplesAdversarialLearning/results_finetuned_DG2/images/grid_4x4_sample.png',

‘/content/DLStudio-2.5.2/ExamplesAdversarialLearning/results_finetuned_DG2/grid_4x4_sample.png')

Figure 10: Sample images generated by finetuned DC-GAN 1

5) A

erated by finetuned DC-GAN2

Figure 11: Sample images gen

4 5.FID Score

real_images_dir = "/content/Supplementary/celeba_dataset_64x64/0"
fake_images_dir = "/content/DLStudio-2.5.2/ExamplesAdversarialLearning/finetuned_DG1/images"
fid_value = calculate_fid_score(real_images_dir,fake_images_dir)

print(f"FID value: {fid_value:.2f}")

real_images_dir = "/content/Supplementary/celeba_dataset_64x64/0"

fake_images_dir = "/content/DLStudio-2.5.2/ExamplesAdversarialLearning/results_finetuned_DG2/images"

fid_value = calculate_fid_score(real_images_dir,fake_images_dir)

print(f'FID value: {fid_value:.2f}")

Model FID Score FID Score
(Before Finetuning) | (After Finetuning)
DC-GAN1 111.88 121.64
DC-GAN2 106.88 117.44
Diffusion 76.66 N/A

Table 2: FID Scores for various generative models before and after finetuning

