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Introduction 

Generative Models Overview 

Generative models are a class of ML methods designed to learn the underlying probability 

distribution of the dataset, so that new, realistic data samples can be generated. These models not 

only learn the underlying distribution but also have a framework to generate new synthetic data. 

Two predominant generative models are  

• Generative Adversarial Networks (GANs) and  

• Diffusion Models. 

 

Generative Adversarial Networks (GANs) Network 

GAN models consists of two neural networks—the Generator and the Discriminator. The 

Generator transforms random noise into synthetic data samples, while the Discriminator evaluates 

these samples against real data. The Generator aims to fool the Discriminator, and the 

Discriminator strives to accurately distinguish real from fake. In this way, both networks iteratively 

improve. This training relies on transpose convolution and loss functions like binary cross-entropy 

to produce high resolution images. Transpose convolution takes a compact, low-resolution feature 

map and learns how to expand it into a high-resolution image, filling in details as needed. 

 

Diffusion Models: 

Diffusion models generate data by reversing a process that gradually adds noise to the training 

images. Initially, an image is progressively corrupted until it turns into pure noise. The model is 

then trained to denoise the image step by step, effectively learning how to reconstruct the original 

data from a noisy input. This process leverages Markov chains and noise schedules, providing a 

more explicit modeling of the data generation process compared to GANs. 

 

1. Generative Adversarial Networks 

1.1. Model 

 

Our model network uses  the DiscriminatorDG1,2 classes and GeneratorDG1,2 classes.  

 

DiscriminatorDG1 class implements the discriminator of a DCGAN using a so-called "4-2-1" 

topology. This means that the network is designed with layers that progressively reduce the spatial 

dimensions of the input image through a series of strided convolutions while increasing feature 



depth, using Batch Normalization and Leaky ReLU activations to ensure stable and effective 

learning. 

The GeneratorDG1 class is responsible for creating realistic images starting from a random 

noise. It uses a series of transpose convolution (or deconvolution) layers to upsample a low-

dimensional noise vector into a full-sized 64×64 image , applying Batch Normalization and 

ReLU activations, with a final Tanh activation to produce output images in the desired pixel 

range. 

These GeneratorDG1 and DiscriminatorDG1 architecture forms the basis of a DCGAN, where 

the generator and discriminator are trained in an adversarial manner to create realistic images. 

GeneratorDG2 is identical to GeneratorDG1 whereas DiscriminatorDG2 has one additional 

convolutional layer. 

# This code is copied from DLStudio Adversarial Learning by Prof. Avinash Kak. 

# I trained two different DC-GAN models (DCGAN1 and DCGAN2) 

 

from DLStudio import DLStudio 

 

import sys,os,os.path 

import torch 

import torch.nn as nn 

import torch.nn.functional as F 

import torchvision                   

import torchvision.transforms as tvt 

import torchvision.transforms.functional as tvtF 

import torch.optim as optim 

import numpy as np 

import math 

import random 

import matplotlib.pyplot as plt 

import matplotlib.animation as animation 

import time 

import glob                                                                                                            

import imageio                                                                                                         

 

#______________________________  AdversarialLearning Class Definition  ________________________________ 



 

class AdversarialLearning(object): 

 

    def __init__(self, *args, **kwargs ): 

        if args: 

            raise ValueError(   

                   '''AdversarialLearning constructor can only be called with keyword arguments for the following 

                      keywords: epochs, learning_rate, batch_size, momentum, image_size, dataroot, path_saved_model,  

                      use_gpu, latent_vector_size, ngpu, dlstudio, device, LAMBDA, clipping_threshold, and beta1''') 

        allowed_keys = 'dataroot','image_size','path_saved_model','momentum','learning_rate','epochs','batch_size', \ 

                       'classes','use_gpu','latent_vector_size','ngpu','dlstudio', 'beta1', 'LAMBDA', 'clipping_threshold' 

        keywords_used = kwargs.keys()                                                                  

        for keyword in keywords_used:                                                                  

            if keyword not in allowed_keys:                                                            

                raise SyntaxError(keyword + ":  Wrong keyword used --- check spelling")   

        learning_rate = epochs = batch_size = convo_layers_config = momentum = None 

        image_size = fc_layers_config = dataroot =  path_saved_model = classes = use_gpu = None 

        latent_vector_size = ngpu = beta1 = LAMBDA = clipping_threshold = None 

        if 'latent_vector_size' in kwargs            :   latent_vector_size = kwargs.pop('latent_vector_size') 

        if 'ngpu' in kwargs                          :   ngpu  = kwargs.pop('ngpu')            

        if 'dlstudio' in kwargs                      :   dlstudio  = kwargs.pop('dlstudio') 

        if 'beta1' in kwargs                         :   beta1  = kwargs.pop('beta1') 

        if 'LAMBDA' in kwargs                        :   LAMBDA  = kwargs.pop('LAMBDA') 

        if 'clipping_threshold' in kwargs            :   clipping_threshold = kwargs.pop('clipping_threshold') 

        if latent_vector_size: 

            self.latent_vector_size = latent_vector_size 

        if ngpu: 

            self.ngpu = ngpu 

        if dlstudio: 

            self.dlstudio = dlstudio 

        if beta1: 

            self.beta1 = beta1 

        if LAMBDA: 

            self.LAMBDA = LAMBDA 

        if clipping_threshold: 

            self.clipping_threshold = clipping_threshold  

 



    def show_sample_images_from_dataset(self, dlstudio): 

        data = next(iter(self.train_dataloader))     

        real_batch = data[0] 

        self.dlstudio.display_tensor_as_image(torchvision.utils.make_grid(real_batch, padding=2, pad_value=1, 

normalize=True)) 

 

    def set_dataloader(self): 

        dataset = torchvision.datasets.ImageFolder(root=self.dlstudio.dataroot,        

                       transform = tvt.Compose([                  

                                            tvt.Resize(self.dlstudio.image_size),              

                                            tvt.CenterCrop(self.dlstudio.image_size),          

                                            tvt.ToTensor(),                      

                                            tvt.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),          

                       ])) 

        self.train_dataloader = torch.utils.data.DataLoader(dataset, batch_size=self.dlstudio.batch_size,  

                                                                                 shuffle=True, num_workers=2) 

 

    def weights_init(self,m):         

        """ 

        Uses the DCGAN initializations for the weights 

        """ 

        classname = m.__class__.__name__      

        if classname.find('Conv') != -1:          

            nn.init.normal_(m.weight.data, 0.0, 0.02)       

        elif classname.find('BatchNorm') != -1:          

            nn.init.normal_(m.weight.data, 1.0, 0.02)        

            nn.init.constant_(m.bias.data, 0)       

 

    #####################################   Discriminator-Generator DG1   

###################################### 

    class DiscriminatorDG1(nn.Module): 

        """ 

        This is an implementation of the DCGAN Discriminator. I refer to the DCGAN network topology as 

        the 4-2-1 network.  Each layer of the Discriminator network carries out a strided 

        convolution with a 4x4 kernel, a 2x2 stride and a 1x1 padding for all but the final 

        layer. The output of the final convolutional layer is pushed through a sigmoid to yield 

        a scalar value as the final output for each image in a batch. 



 

        Class Path:  AdversarialLearning  ->   DiscriminatorDG1 

        """ 

        def __init__(self): 

            super(AdversarialLearning.DiscriminatorDG1, self).__init__() 

            self.conv_in = nn.Conv2d(  3,    64,      kernel_size=4,      stride=2,    padding=1) 

            self.conv_in2 = nn.Conv2d( 64,   128,     kernel_size=4,      stride=2,    padding=1) 

            self.conv_in3 = nn.Conv2d( 128,  256,     kernel_size=4,      stride=2,    padding=1) 

            self.conv_in4 = nn.Conv2d( 256,  512,     kernel_size=4,      stride=2,    padding=1) 

            self.conv_in5 = nn.Conv2d( 512,  1,       kernel_size=4,      stride=1,    padding=0) 

            self.bn1  = nn.BatchNorm2d(128) 

            self.bn2  = nn.BatchNorm2d(256) 

            self.bn3  = nn.BatchNorm2d(512) 

            self.sig = nn.Sigmoid() 

        def forward(self, x):                  

            x = torch.nn.functional.leaky_relu(self.conv_in(x), negative_slope=0.2, inplace=True) 

            x = self.bn1(self.conv_in2(x)) 

            x = torch.nn.functional.leaky_relu(x, negative_slope=0.2, inplace=True) 

            x = self.bn2(self.conv_in3(x)) 

            x = torch.nn.functional.leaky_relu(x, negative_slope=0.2, inplace=True) 

            x = self.bn3(self.conv_in4(x)) 

            x = torch.nn.functional.leaky_relu(x, negative_slope=0.2, inplace=True) 

            x = self.conv_in5(x) 

            x = self.sig(x) 

            return x 

 

    class GeneratorDG1(nn.Module): 

        """ 

        This is an implementation of the DCGAN Generator. As was the case with the Discriminator network, 

        you again see the 4-2-1 topology here.  A Generator's job is to transform a random noise 

        vector into an image that is supposed to look like it came from the training dataset. (We refer  

        to the images constructed from noise vectors in this manner as fakes.)  As you will see later  

        in the "run_gan_code()" method, the starting noise vector is a 1x1 image with 100 channels.  In  

        order to output 64x64 output images, the network shown below use the Transpose Convolution  

        operator nn.ConvTranspose2d with a stride of 2.  If (H_in, W_in) are the height and the width  

        of the image at the input to a nn.ConvTranspose2d layer and (H_out, W_out) the same at the  

        output, the size pairs are related by 



                     H_out   =   (H_in - 1) * s   +   k   -   2 * p 

                     W_out   =   (W_in - 1) * s   +   k   -   2 * p 

         

        were s is the stride and k the size of the kernel.  (I am assuming square strides, kernels, and  

        padding). Therefore, each nn.ConvTranspose2d layer shown below doubles the size of the input. 

 

        Class Path:  AdversarialLearning  ->   GeneratorDG1 

        """ 

        def __init__(self): 

            super(AdversarialLearning.GeneratorDG1, self).__init__() 

            self.latent_to_image = nn.ConvTranspose2d( 100,   512,  kernel_size=4, stride=1, padding=0, bias=False) 

            self.upsampler2 = nn.ConvTranspose2d( 512, 256, kernel_size=4, stride=2, padding=1, bias=False) 

            self.upsampler3 = nn.ConvTranspose2d (256, 128, kernel_size=4, stride=2, padding=1, bias=False) 

            self.upsampler4 = nn.ConvTranspose2d (128, 64,  kernel_size=4, stride=2, padding=1, bias=False) 

            self.upsampler5 = nn.ConvTranspose2d(  64,  3,  kernel_size=4, stride=2, padding=1, bias=False) 

            self.bn1 = nn.BatchNorm2d(512) 

            self.bn2 = nn.BatchNorm2d(256) 

            self.bn3 = nn.BatchNorm2d(128) 

            self.bn4 = nn.BatchNorm2d(64) 

            self.tanh  = nn.Tanh() 

        def forward(self, x):                      

            x = self.latent_to_image(x) 

            x = torch.nn.functional.relu(self.bn1(x)) 

            x = self.upsampler2(x) 

            x = torch.nn.functional.relu(self.bn2(x)) 

            x = self.upsampler3(x) 

            x = torch.nn.functional.relu(self.bn3(x)) 

            x = self.upsampler4(x) 

            x = torch.nn.functional.relu(self.bn4(x)) 

            x = self.upsampler5(x) 

            x = self.tanh(x) 

            return x 

    ########################################   DG1 Definition ENDS   

########################################### 

 

    #####################################   Discriminator-Generator DG2   

###################################### 



    class DiscriminatorDG2(nn.Module): 

        """ 

        This is essentially the same network as the DCGAN for DG1, except for the extra layer 

        "self.extra" shown below.  We also declare a batchnorm for this extra layer in the form 

        of "self.bnX".  In the implementation of "forward()", we invoke the extra layer at the 

        beginning of the network. 

 

        Class Path:  AdversarialLearning  ->   DiscriminatorDG2 

        """             

        def __init__(self, skip_connections=True, depth=16): 

            super(AdversarialLearning.DiscriminatorDG2, self).__init__() 

            self.conv_in = nn.Conv2d(  3,    64,      kernel_size=4,      stride=2,    padding=1) 

            self.extra =   nn.Conv2d(  64,    64,      kernel_size=4,      stride=1,    padding=2) 

            self.conv_in2 = nn.Conv2d( 64,   128,     kernel_size=4,      stride=2,    padding=1) 

            self.conv_in3 = nn.Conv2d( 128,  256,     kernel_size=4,      stride=2,    padding=1) 

            self.conv_in4 = nn.Conv2d( 256,  512,     kernel_size=4,      stride=2,    padding=1) 

            self.conv_in5 = nn.Conv2d( 512,  1,       kernel_size=4,      stride=1,    padding=0) 

            self.bn1  = nn.BatchNorm2d(128) 

            self.bn2  = nn.BatchNorm2d(256) 

            self.bn3  = nn.BatchNorm2d(512) 

            self.bnX  = nn.BatchNorm2d(64) 

            self.sig = nn.Sigmoid() 

        def forward(self, x):        

            x = torch.nn.functional.leaky_relu(self.conv_in(x), negative_slope=0.2, inplace=True) 

            x = self.bnX(self.extra(x)) 

            x = torch.nn.functional.leaky_relu(x, negative_slope=0.2, inplace=True) 

            x = self.bn1(self.conv_in2(x)) 

            x = torch.nn.functional.leaky_relu(x, negative_slope=0.2, inplace=True) 

            x = self.bn2(self.conv_in3(x)) 

            x = torch.nn.functional.leaky_relu(x, negative_slope=0.2, inplace=True) 

            x = self.bn3(self.conv_in4(x)) 

            x = torch.nn.functional.leaky_relu(x, negative_slope=0.2, inplace=True) 

            x = self.conv_in5(x) 

            x = self.sig(x) 

            return x 

 

    class GeneratorDG2(nn.Module): 



        """ 

        The Generator for DG2 is exactly the same as for the DG1.  So please the comment block for that 

        Generator. 

 

        Class Path:  AdversarialLearning  ->   GeneratorDG2 

        """ 

        def __init__(self): 

            super(AdversarialLearning.GeneratorDG2, self).__init__() 

            self.latent_to_image = nn.ConvTranspose2d( 100,   512,  kernel_size=4, stride=1, padding=0, bias=False) 

            self.upsampler2 = nn.ConvTranspose2d( 512, 256, kernel_size=4, stride=2, padding=1, bias=False) 

            self.upsampler3 = nn.ConvTranspose2d (256, 128, kernel_size=4, stride=2, padding=1, bias=False) 

            self.upsampler4 = nn.ConvTranspose2d (128, 64,  kernel_size=4, stride=2, padding=1, bias=False) 

            self.upsampler5 = nn.ConvTranspose2d(  64,  3,  kernel_size=4, stride=2, padding=1, bias=False) 

            self.bn1 = nn.BatchNorm2d(512) 

            self.bn2 = nn.BatchNorm2d(256) 

            self.bn3 = nn.BatchNorm2d(128) 

            self.bn4 = nn.BatchNorm2d(64) 

            self.tanh  = nn.Tanh() 

        def forward(self, x):                              

            x = self.latent_to_image(x) 

            x = torch.nn.functional.relu(self.bn1(x)) 

            x = self.upsampler2(x) 

            x = torch.nn.functional.relu(self.bn2(x)) 

            x = self.upsampler3(x) 

            x = torch.nn.functional.relu(self.bn3(x)) 

            x = self.upsampler4(x) 

            x = torch.nn.functional.relu(self.bn4(x)) 

            x = self.upsampler5(x) 

            x = self.tanh(x) 

            return x 

    ########################################   DG2 Definition ENDS   

########################################### 

 

    

#############################################################################################

############### 

    ##  The training routines follow, first for a GAN constructed using either the DG1 and or the DG2  



    ##  Discriminator-Generator Networks, and then for a WGAN constructed using either the CG1 or the CG2 

    ##  Critic-Generator Networks. 

    

#############################################################################################

############### 

 

    def run_gan_code(self, dlstudio, discriminator, generator, results_dir): 

        """ 

        This function is meant for training a Discriminator-Generator based Adversarial Network.   

        The implementation shown uses several programming constructs from the "official" DCGAN  

        implementations at the PyTorch website and at GitHub.  

 

        Regarding how to set the parameters of this method, see the following script 

 

                     dcgan_DG1.py 

 

        in the "ExamplesAdversarialLearning" directory of the distribution. 

        """ 

        dir_name_for_results = results_dir 

        if os.path.exists(dir_name_for_results): 

            files = glob.glob(dir_name_for_results + "/*") 

            for file in files: 

                if os.path.isfile(file): 

                    os.remove(file) 

                else: 

                    files = glob.glob(file + "/*") 

                    list(map(lambda x: os.remove(x), files)) 

        else: 

            os.mkdir(dir_name_for_results) 

        #  Set the number of channels for the 1x1 input noise vectors for the Generator: 

        nz = 100 

        netD = discriminator.to(self.dlstudio.device) 

        netG = generator.to(self.dlstudio.device) 

        #  Initialize the parameters of the Discriminator and the Generator networks according to the 

        #  definition of the "weights_init()" method: 

        netD.apply(self.weights_init) 

        netG.apply(self.weights_init) 



        #  We will use a the same noise batch to periodically check on the progress made for the Generator: 

        fixed_noise = torch.randn(self.dlstudio.batch_size, nz, 1, 1, device=self.dlstudio.device)           

        #  Establish convention for real and fake labels during training 

        real_label = 1    

        fake_label = 0          

        #  Adam optimizers for the Discriminator and the Generator: 

        optimizerD = optim.Adam(netD.parameters(), lr=dlstudio.learning_rate, betas=(self.beta1, 0.999))     

        optimizerG = optim.Adam(netG.parameters(), lr=dlstudio.learning_rate, betas=(self.beta1, 0.999)) 

        #  Establish the criterion for measuring the loss at the output of the Discriminator network: 

        criterion = nn.BCELoss() 

        #  We will use these lists to store the results accumulated during training: 

        img_list = []                                

        G_losses = []                                

        D_losses = []                                

        iters = 0                     

        print("\n\nStarting Training Loop...\n\n",f"{dlstudio.epochs} and {len(self.train_dataloader)}")       

        start_time = time.perf_counter()             

        for epoch in range(dlstudio.epochs):         

            g_losses_per_print_cycle = []            

            d_losses_per_print_cycle = []            

            # For each batch in the dataloader 

            for i, data in enumerate(self.train_dataloader, 0):          

 

                ##  Maximization Part of the Min-Max Objective of Eq. (3): 

                ## 

                ##  As indicated by Eq. (3) in the DCGAN part of the doc section at the beginning of this  

                ##  file, the GAN training boils down to carrying out a min-max optimization. Each iterative  

                ##  step of the max part results in updating the Discriminator parameters and each iterative  

                ##  step of the min part results in the updating of the Generator parameters.  For each  

                ##  batch of the training data, we first do max and then do min.  Since the max operation  

                ##  affects both terms of the criterion shown in the doc section, it has two parts: In the 

                ##  first part we apply the Discriminator to the training images using 1.0 as the target;  

                ##  and, in the second part, we supply to the Discriminator the output of the Generator  

                ##  and use 0 as the target. In what follows, the Discriminator is being applied to  

                ##  the training images: 

                netD.zero_grad()     

                real_images_in_batch = data[0].to(self.dlstudio.device)      



                #  Need to know how many images we pulled in since at the tailend of the dataset, the  

                #  number of images may not equal the user-specified batch size: 

                b_size = real_images_in_batch.size(0)   

                label = torch.full((b_size,), real_label, dtype=torch.float, device=self.dlstudio.device)   

                output = netD(real_images_in_batch).view(-1)   

                lossD_for_reals = criterion(output, label)                                                    

                lossD_for_reals.backward()                                                                    

                ##  That brings us the second part of what it takes to carry out the max operation on the 

                ##  min-max criterion shown in Eq. (3) in the doc section at the beginning of this file. 

                ##  part calls for applying the Discriminator to the images produced by the Generator from  

                ##  noise: 

                noise = torch.randn(b_size, nz, 1, 1, device=self.dlstudio.device)     

                fakes = netG(noise)  

                label.fill_(fake_label)  

                ##  The call to fakes.detach() in the next statement returns a copy of the 'fakes' tensor  

                ##  that does not exist in the computational graph. That is, the call shown below first  

                ##  makes a copy of the 'fakes' tensor and then removes it from the computational graph.  

                ##  The original 'fakes' tensor continues to remain in the computational graph.  This ploy  

                ##  ensures that a subsequent call to backward() in the 3rd statement below would only 

                ##  update the netD weights. 

                output = netD(fakes.detach()).view(-1)     

                lossD_for_fakes = criterion(output, label)     

                lossD_for_fakes.backward()           

                ##  The following is just for displaying the losses: 

                lossD = lossD_for_reals + lossD_for_fakes     

                d_losses_per_print_cycle.append(lossD)   

                ##  Only the Discriminator weights are incremented: 

                optimizerD.step()   

 

                ##  Minimization Part of the Min-Max Objective of Eq. (3): 

                ## 

                ##  That brings us to the min part of the max-min optimization described in Eq. (3) the doc  

                ##  section at the beginning of this file.  The min part requires that we minimize  

                ##  "1 - D(G(z))" which, since D is constrained to lie in the interval (0,1), requires that  

                ##  we maximize D(G(z)).  We accomplish that by applying the Discriminator to the output  

                ##  of the Generator and use 1 as the target for each image: 

                netG.zero_grad()    



                label.fill_(real_label)   

                ##  The following forward prop will compute the partials wrt the discriminator params also, but 

                ##  they will never get used for updating param vals for two reasons: (1) We call "step()" on  

                ##  just optimizerG as shown later below; and (2) We call "netD.zero_grad()" at the beginning of  

                ##  each training cycle. 

                output = netD(fakes).view(-1)    

                lossG = criterion(output, label)           

                g_losses_per_print_cycle.append(lossG)  

                lossG.backward()     

                ##  Only the Generator parameters are incremented: 

                optimizerG.step()  

                if i % 100 == 99:                                                                            

                    current_time = time.perf_counter()                                                       

                    elapsed_time = current_time - start_time                                                 

                    mean_D_loss = torch.mean(torch.FloatTensor(d_losses_per_print_cycle))                    

                    mean_G_loss = torch.mean(torch.FloatTensor(g_losses_per_print_cycle))                    

                    print("[epoch=%d/%d   iter=%4d   elapsed_time=%5d secs]     mean_D_loss=%7.4f    

mean_G_loss=%7.4f" %  

                                  ((epoch+1),dlstudio.epochs,(i+1),elapsed_time,mean_D_loss,mean_G_loss))    

                    d_losses_per_print_cycle = []                                                            

                    g_losses_per_print_cycle = []                                                            

                G_losses.append(lossG.item())                                                                 

                D_losses.append(lossD.item())                                                                 

                if (iters % 500 == 0) or ((epoch == dlstudio.epochs-1) and (i == len(self.train_dataloader)-1)):    

                    with torch.no_grad():              

                        fake = netG(fixed_noise).detach().cpu()  ## detach() removes the fake from comp. graph.  

                                                                 ## for creating its CPU compatible version 

                    img_list.append(torchvision.utils.make_grid(fake, padding=1, pad_value=1, normalize=True)) 

                iters += 1               

        #  At the end of training, make plots from the data in G_losses and D_losses: 

        plt.figure(figsize=(10,5))     

        plt.title("Generator and Discriminator Loss During Training")     

        plt.plot(G_losses,label="G")     

        plt.plot(D_losses,label="D")  

        plt.xlabel("iterations")    

        plt.ylabel("Loss")          

        plt.legend()           



        plt.savefig(dir_name_for_results + "/gen_and_disc_loss_training.png")  

        plt.show()     

        #  Make an animated gif from the Generator output images stored in img_list:             

        images = []            

        for imgobj in img_list:   

            img = tvtF.to_pil_image(imgobj)   

            images.append(img)  

        imageio.mimsave(dir_name_for_results + "/generation_animation.gif", images, fps=5) 

        #  Make a side-by-side comparison of a batch-size sampling of real images drawn from the 

        #  training data and what the Generator is capable of producing at the end of training: 

        real_batch = next(iter(self.train_dataloader))  

        real_batch = real_batch[0] 

        plt.figure(figsize=(15,15))   

        plt.subplot(1,2,1)    

        plt.axis("off")    

        plt.title("Real Images")     

        plt.imshow(np.transpose(torchvision.utils.make_grid(real_batch.to(self.dlstudio.device),  

                                               padding=1, pad_value=1, normalize=True).cpu(),(1,2,0)))   

        plt.subplot(1,2,2)                                                                              

        plt.axis("off")                                                                                 

        plt.title("Fake Images")                                                                        

        plt.imshow(np.transpose(img_list[-1],(1,2,0)))                                                  

        plt.savefig(dir_name_for_results + "/real_vs_fake_images.png")                                  

        plt.show()                                                                                      

 

import random 

import numpy 

import torch 

import os, sys 

 

seed = 0            

random.seed(seed) 

torch.manual_seed(seed) 

torch.cuda.manual_seed(seed) 

numpy.random.seed(seed) 



torch.backends.cudnn.deterministic=True 

torch.backends.cudnn.benchmarks=False 

os.environ['PYTHONHASHSEED'] = str(seed) 

 

 

##  watch -d -n 0.5 nvidia-smi 

 

from DLStudio import * 

from AdversarialLearning import * 

 

import sys 

 

dls = DLStudio(                                                                                        

                  dataroot = "/content/Supplementary/celeba_dataset_64x64",  

#                  dataroot = "/mnt/cloudNAS3/Avi/ImageDatasets/PurdueShapes5GAN/multiobj/", 

#                  dataroot = "/home/kak/ImageDatasets/PurdueShapes5GAN/multiobj/",   

                  image_size = [64,64],                                                                

                  path_saved_model = "/content/DLStudio-

2.5.2/ExamplesAdversarialLearning/saved_model/dcgan_DG1.pt",  

                  learning_rate = 1e-4,       ## <==  try smaller value if mode collapse 

#                  learning_rate = 5e-3,      ## <==  try smaller value if mode collapse 

                  epochs = 30, 

                  batch_size = 32,                                                                      

                  use_gpu = True,                                                                      

              ) 

 

dcgan = AdversarialLearning( 

                  dlstudio = dls, 

                  ngpu = 1,     

                  latent_vector_size = 100, 

                  beta1 = 0.5,                           ## for the Adam optimizer 

              ) 

 

discriminator =  dcgan.DiscriminatorDG1() 

generator =  dcgan.GeneratorDG1() 



 

num_learnable_params_disc = sum(p.numel() for p in discriminator.parameters() if p.requires_grad) 

print("\n\nThe number of learnable parameters in the Discriminator: %d\n" % num_learnable_params_disc) 

num_learnable_params_gen = sum(p.numel() for p in generator.parameters() if p.requires_grad) 

print("\nThe number of learnable parameters in the Generator: %d\n" % num_learnable_params_gen) 

num_layers_disc = len(list(discriminator.parameters())) 

print("\nThe number of layers in the discriminator: %d\n" % num_layers_disc) 

num_layers_gen = len(list(generator.parameters())) 

print("\nThe number of layers in the generator: %d\n\n" % num_layers_gen) 

 

dcgan.set_dataloader() 

 

print("\n\nHere is one batch of images from the training dataset:") 

dcgan.show_sample_images_from_dataset(dls) 

 

dcgan.run_gan_code(dls, discriminator=discriminator, generator=generator, results_dir="results_DG1") 

 

torch.save(generator.state_dict(), "/content/DLStudio-

2.5.2/ExamplesAdversarialLearning/saved_model/dcgan_G1.pt") 

torch.save(discriminator.state_dict(), "/content/DLStudio-

2.5.2/ExamplesAdversarialLearning/saved_model/dcgan_D1.pt") 

 

 

dls = DLStudio(                                                                                        

                  dataroot = "/content/Supplementary/celeba_dataset_64x64",  

#                  dataroot = "/mnt/cloudNAS3/Avi/ImageDatasets/PurdueShapes5GAN/multiobj/", 

#                  dataroot = "/home/kak/ImageDatasets/PurdueShapes5GAN/multiobj/",       

 

                  image_size = [64,64],                                                                

                  path_saved_model = "/content/DLStudio-

2.5.2/ExamplesAdversarialLearning/saved_model/dcgan_DG2.pt",                                                  

                  learning_rate = 2e-4,     ## <== try smaller value if mode collapse 

                  epochs = 30, 

                  batch_size = 32,                                                                      

                  use_gpu = True,                                                                      

              )            



 

dcgan = AdversarialLearning( 

                  dlstudio = dls, 

                  ngpu = 1,     

                  latent_vector_size = 100, 

                  beta1 = 0.5,                           ## for the Adam optimizer 

              ) 

 

discriminator =  dcgan.DiscriminatorDG2() 

generator =  dcgan.GeneratorDG2() 

 

num_learnable_params_disc = sum(p.numel() for p in discriminator.parameters() if p.requires_grad) 

print("\n\nThe number of learnable parameters in the Discriminator: %d\n" % num_learnable_params_disc) 

num_learnable_params_gen = sum(p.numel() for p in generator.parameters() if p.requires_grad) 

print("\nThe number of learnable parameters in the Generator: %d\n" % num_learnable_params_gen) 

 

num_layers_disc = len(list(discriminator.parameters())) 

print("\nThe number of layers in the discriminator: %d\n" % num_layers_disc) 

num_layers_gen = len(list(generator.parameters())) 

print("\nThe number of layers in the generator: %d\n\n" % num_layers_gen) 

 

dcgan.set_dataloader() 

 

dcgan.show_sample_images_from_dataset(dls) 

 

dcgan.run_gan_code(dls, discriminator=discriminator, generator=generator, results_dir="results_DG2") 

 

torch.save(generator.state_dict(), "/content/DLStudio-

2.5.2/ExamplesAdversarialLearning/saved_model/dcgan_G2.pt") 

torch.save(discriminator.state_dict(), "/content/DLStudio-

2.5.2/ExamplesAdversarialLearning/saved_model/dcgan_D2.pt") 

 

1.2. Training curves: As is expected the generator loss is very high at the 

beginning and the discriminator loss increases as the generator becomes 

better at generating fake images that look realistic. 



 
Figure 1: Training loss curve for DC GAN 1 

 
Figure 2: Training loss curve for DC GAN 2 

2. Diffusion 

2.1. Generated images:  

Using the code and model weights provided by Prof. Kak, I generated and 

visualized 1024 images by calling GenerateNewImageSamples.py and 

VisualizeSamples.py. 

 



 
Figure 3: 1024 Fake Images generated by Diffusion model 

  



 
 

Figure 4: Sample images generated by diffusion model 

 

 

The outputs generated by diffusion model are very realistic. However, using an A100 

GPU, it took more than 24 minutes to generate 1024 images using the code provided. 

However, generating 1024 images using the DC-GAN networks took a few seconds. 

So, the high quality of images comes at the cost of speed.



3. FID Score 

 

Code to generate images from DC GAN generators: 

def generate_DCGAN_images(output_dir, path_saved_model, dataroot, total_images, image_size, learning_rate, 

epochs, batch_size, use_gpu, latent_vector_size, beta1): 

  if not os.path.exists(output_dir): 

      os.makedirs(output_dir) 

 

  device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") 

 

  dlstudio = 

DLStudio(dataroot=dataroot,image_size=image_size,path_saved_model=path_saved_model,learning_rate=learning_r

ate,epochs=epochs,batch_size=batch_size,use_gpu=use_gpu) 

  adv = AdversarialLearning(dlstudio=dlstudio,ngpu = 1,latent_vector_size=latent_vector_size,beta1=beta1) 

 

  netG = AdversarialLearning.GeneratorDG1() 

  netG.load_state_dict(torch.load(adv.dlstudio.path_saved_model, map_location=device)) 

  netG.to(device) 

  netG.eval() 

 

  num_batches = total_images // adv.dlstudio.batch_size 

  for batch_idx in range(num_batches): 

      noise = torch.randn(adv.dlstudio.batch_size, adv.latent_vector_size, 1, 1, device=device) 

      with torch.no_grad(): 

          fake_images = netG(noise) 

      fake_images = (fake_images + 1) / 2.0 

      for i in range(adv.dlstudio.batch_size): 

          img_idx = batch_idx * adv.dlstudio.batch_size + i 

          save_image(fake_images[i], f"{output_dir}/fake_image_{img_idx:04d}.png") 

      print(f"Generated images {batch_idx * adv.dlstudio.batch_size} to {(batch_idx + 1) * adv.dlstudio.batch_size - 1}") 

 

  print(f"Successfully generated {total_images} fake images in the '{output_dir}' directory") 

 

  sample_fake_images = [] 

  for i in range(16): 

      img_path = f"{output_dir}/fake_image_{i:04d}.png" 



      img = Image.open(img_path) 

      img_tensor = torchvision.transforms.ToTensor()(img) 

      sample_fake_images.append(img_tensor) 

 

  grid = torchvision.utils.make_grid(sample_fake_images, nrow=4, padding=2, normalize=False)  # Changed nrow to 4 

  save_image(grid, f"{output_dir}/grid_4x4_sample.png") 

  print(f"Created a 4x4 grid visualization at '{output_dir}/grid_4x4_sample.png'")   

   

from DLStudio import * 

from AdversarialLearning import * 

 

dataroot="/content/Supplementary/celeba_dataset_64x64" 

total_images = 1024 

image_size=[64,64] 

learning_rate = 1e-4 

epochs = 1 

batch_size = 32 

use_gpu = True 

latent_vector_size=100 

beta1=0.5 

 

output_dir = "/content/DLStudio-2.5.2/ExamplesAdversarialLearning/results_DG1/images" 

path_saved_model="/content/DLStudio-2.5.2/ExamplesAdversarialLearning/saved_model/dcgan_G1.pt" 

generate_DCGAN_images(output_dir, path_saved_model, dataroot, total_images, image_size, learning_rate, epochs, 

batch_size, use_gpu, latent_vector_size, beta1) 

shutil.move('/content/DLStudio-2.5.2/ExamplesAdversarialLearning/results_DG1/images/grid_4x4_sample.png',  

            '/content/DLStudio-2.5.2/ExamplesAdversarialLearning/results_DG1/grid_4x4_sample.png') 

 

output_dir = "/content/DLStudio-2.5.2/ExamplesAdversarialLearning/results_DG2/images" 

path_saved_model="/content/DLStudio-2.5.2/ExamplesAdversarialLearning/saved_model/dcgan_G2.pt" 

generate_DCGAN_images(output_dir, path_saved_model, dataroot, total_images, image_size, learning_rate, epochs, 

batch_size, use_gpu, latent_vector_size, beta1) 

shutil.move('/content/DLStudio-2.5.2/ExamplesAdversarialLearning/results_DG2/images/grid_4x4_sample.png',  

            '/content/DLStudio-2.5.2/ExamplesAdversarialLearning/results_DG2/grid_4x4_sample.png')   

 

 

 



 

 

 

 

 

 

3.1. 4x4 images generated by GAN 

 
Figure 5: Sample images generated by DC-GAN1 

 



 
Figure 6: Sample images generated by DC-GAN2



 

3.2. 4x4 images generated by Diffusion 

sample_fake_images = [] 

for i in range(16): 

    img_path = f"/content/DLStudio-2.5.2/ExamplesDiffusion/visualize_samples/test_{i}.jpg" 

    img = Image.open(img_path) 

    img_tensor = torchvision.transforms.ToTensor()(img) 

    sample_fake_images.append(img_tensor) 

 

grid = torchvision.utils.make_grid(sample_fake_images, nrow=4, padding=2, normalize=False)  # Changed nrow to 4 

save_image(grid, f"/content/DLStudio-2.5.2/ExamplesDiffusion/RESULTS/grid_4x4_sample.png") 

print(f"Created a 4x4 grid visualization at '/content/DLStudio-

2.5.2/ExamplesDiffusion/RESULTS/grid_4x4_sample.png'")   

 

 
Figure 7: Sample images generated by Diffusion Model 

 



3.3. GAN FID 

3.4. Diffusion FID 

Model FID Score 

DC-GAN1 111.88 

DC-GAN2 106.88 

Diffusion 76.66 

Table 1: FID Scores for various generative models 

 

Code to compute FID score: I selected a random selection of 1024 images from the 

real paths to make sure the number of images is the same in both real and fake 

folders. 

  

def calculate_fid_score(real_images_dir, fake_images_dir, match_count=True): 

    real_paths = [os.path.join(real_images_dir, filename) for filename in os.listdir(real_images_dir)] 

    fake_paths = [os.path.join(fake_images_dir, filename) for filename in os.listdir(fake_images_dir)] 

    if match_count and len(real_paths) > len(fake_paths): 

        real_paths = random.sample(real_paths, len(fake_paths)) 

    dims = 2048 

    block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[dims] 

    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") 

    model = InceptionV3([block_idx]).to(device) 

    m1,s1 = calculate_activation_statistics(real_paths,model,batch_size=32,dims=dims,device=device) # Added 

batch_size and dims parameters 

    m2,s2 = calculate_activation_statistics(fake_paths,model,batch_size=32,dims=dims,device=device) # Added 

batch_size and dims parameters 

    fid_value = calculate_frechet_distance(m1,s1,m2,s2) 

    return fid_value 

 

real_images_dir = "/content/Supplementary/celeba_dataset_64x64/0" 

fake_images_dir = "/content/DLStudio-2.5.2/ExamplesAdversarialLearning/results_DG1/images" 

fid_value = calculate_fid_score(real_images_dir,fake_images_dir) 

print(f"FID value: {fid_value:.2f}") 

 

real_images_dir = "/content/Supplementary/celeba_dataset_64x64/0" 

fake_images_dir = "/content/DLStudio-2.5.2/ExamplesAdversarialLearning/results_DG2/images" 

fid_value = calculate_fid_score(real_images_dir,fake_images_dir) 



print(f"FID value: {fid_value:.2f}") 

 

real_images_dir = "/content/Supplementary/celeba_dataset_64x64/0" 

fake_images_dir = "/content/DLStudio-2.5.2/ExamplesDiffusion/visualize_samples" 

fid_value = calculate_fid_score(real_images_dir,fake_images_dir) 

print(f"FID value: {fid_value:.2f}") 

 

4. Finetuning 

I commented out these two lines in run_gan_code: 

        # netD.apply(self.weights_init) 

        # netG.apply(self.weights_init) 

Training code inspired by dcgan_DG1.py: 

 

import random 

import numpy 

import torch 

import os, sys 

 

seed = 0            

random.seed(seed) 

torch.manual_seed(seed) 

torch.cuda.manual_seed(seed) 

numpy.random.seed(seed) 

torch.backends.cudnn.deterministic=True 

torch.backends.cudnn.benchmarks=False 

os.environ['PYTHONHASHSEED'] = str(seed) 

 

from DLStudio import * 

import sys 

 

dls = DLStudio(                                                                                        

                  dataroot = "/content/Supplementary/New_training_folder",  

                  image_size = [64,64],                                                                

                  path_saved_model = "/content/DLStudio-

2.5.2/ExamplesAdversarialLearning/saved_model/dcgan_DG1.pt",  

                  learning_rate = 1e-5, 



                  epochs = 50, 

                  batch_size = 8, 

                  use_gpu = True,                                                                      

              ) 

 

dcgan = AdversarialLearning(dlstudio = dls,ngpu = 1,latent_vector_size = 100,beta1 = 0.5) 

 

discriminator =  dcgan.DiscriminatorDG1() 

generator =  dcgan.GeneratorDG1() 

 

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") 

 

generator.load_state_dict(torch.load("/content/DLStudio-

2.5.2/ExamplesAdversarialLearning/saved_model/dcgan_G1.pt", map_location=device)) 

generator.to(device) 

 

discriminator.load_state_dict(torch.load("/content/DLStudio-

2.5.2/ExamplesAdversarialLearning/saved_model/dcgan_D1.pt", map_location=device)) 

discriminator.to(device) 

 

num_learnable_params_disc = sum(p.numel() for p in discriminator.parameters() if p.requires_grad) 

print("\n\nThe number of learnable parameters in the Discriminator: %d\n" % num_learnable_params_disc) 

num_learnable_params_gen = sum(p.numel() for p in generator.parameters() if p.requires_grad) 

print("\nThe number of learnable parameters in the Generator: %d\n" % num_learnable_params_gen) 

num_layers_disc = len(list(discriminator.parameters())) 

print("\nThe number of layers in the discriminator: %d\n" % num_layers_disc) 

num_layers_gen = len(list(generator.parameters())) 

print("\nThe number of layers in the generator: %d\n\n" % num_layers_gen) 

 

dcgan.set_dataloader() 

 

print("\n\nHere is one batch of images from the fine-tuning dataset:") 

dcgan.show_sample_images_from_dataset(dls) 

 

dcgan.run_gan_code(dls, discriminator=discriminator, generator=generator, results_dir="results_finetuned_DG1") 

 



torch.save(generator.state_dict(), "/content/DLStudio-

2.5.2/ExamplesAdversarialLearning/saved_model/dcgan_finetuned_G1.pt") 

torch.save(discriminator.state_dict(), "/content/DLStudio-

2.5.2/ExamplesAdversarialLearning/saved_model/dcgan_finetuned_D1.pt") 

 

 

 

 

 

 

 

 

 

4.1. Training loss curves 

 
Figure 8: Training loss curve while finetuning DG-GAN1 

 



 
Figure 9: Training loss curve while finetuning DG-GAN2 

 

 

4.2. Visual observations of finetuned GAN vs. GAN 

  

Before Fine-tuning DC-GAN1 After Fine-tuning DC-GAN1 



The images generated before fine-

tuning had higher resolution, sharper 

details and faces were in similar 

proportions to real people. The lighting 

in most of the images were consistent 

with real scenes. The backgrounds are 

colored in somewhat strange but refined 

colors. 

Images generated after fine-tuning have 

caricature like appearance, blurrier 

details. The lighting and background 

appear unnatural. 

 

 

 

 

 

 

 

 

 

 

 

4.3. Visual observations of finetuned GAN vs diffusion model 

 



  

Diffusion Model After Fine-tuning DC-GAN1 

Majority of the images are professional 

headshot like portraits with mostly 

young people’s images generated 

predominantly. We can still notice 

weird artifacts in teeth and eyes in some 

of the images. 

Images generated after fine-tuning have 

caricature like appearance, blurrier 

details. The lighting and background 

appear unnatural. 

 

 

 

 

 

 

 

 

 

 

 

 

4.4. Finetuned GAN sample images 

dataroot="/content/Supplementary/celeba_dataset_64x64" 



total_images = 1024 

image_size=[64,64] 

learning_rate = 1e-4 

epochs = 1 

batch_size = 32 

use_gpu = True 

latent_vector_size=100 

beta1=0.5 

 

output_dir = "/content/DLStudio-2.5.2/ExamplesAdversarialLearning/finetuned_DG1/images" 

path_saved_model="/content/DLStudio-2.5.2/ExamplesAdversarialLearning/saved_model/dcgan_finetuned_G1.pt" 

generate_DCGAN_images(output_dir, path_saved_model, dataroot, total_images, image_size, learning_rate, epochs, 

batch_size, use_gpu, latent_vector_size, beta1) 

shutil.move('/content/DLStudio-2.5.2/ExamplesAdversarialLearning/finetuned_DG1/images/grid_4x4_sample.png',  

            '/content/DLStudio-2.5.2/ExamplesAdversarialLearning/results_finetuned_DG1/grid_4x4_sample.png') 

 

output_dir = "/content/DLStudio-2.5.2/ExamplesAdversarialLearning/results_finetuned_DG2/images" 

path_saved_model="/content/DLStudio-2.5.2/ExamplesAdversarialLearning/saved_model/dcgan_finetuned_G2.pt" 

generate_DCGAN_images(output_dir, path_saved_model, dataroot, total_images, image_size, learning_rate, epochs, 

batch_size, use_gpu, latent_vector_size, beta1) 

shutil.move('/content/DLStudio-

2.5.2/ExamplesAdversarialLearning/results_finetuned_DG2/images/grid_4x4_sample.png',  

            '/content/DLStudio-2.5.2/ExamplesAdversarialLearning/results_finetuned_DG2/grid_4x4_sample.png') 



 
Figure 10: Sample images generated by finetuned DC-GAN 1

 
Figure 11: Sample images generated by finetuned DC-GAN2



4.5. FID Score 

real_images_dir = "/content/Supplementary/celeba_dataset_64x64/0" 

fake_images_dir = "/content/DLStudio-2.5.2/ExamplesAdversarialLearning/finetuned_DG1/images" 

fid_value = calculate_fid_score(real_images_dir,fake_images_dir) 

print(f"FID value: {fid_value:.2f}") 

 

real_images_dir = "/content/Supplementary/celeba_dataset_64x64/0" 

fake_images_dir = "/content/DLStudio-2.5.2/ExamplesAdversarialLearning/results_finetuned_DG2/images" 

fid_value = calculate_fid_score(real_images_dir,fake_images_dir) 

print(f"FID value: {fid_value:.2f}") 

 

Model FID Score  

(Before Finetuning) 

FID Score  

(After Finetuning) 

DC-GAN1 111.88 121.64 

DC-GAN2 106.88 117.44 

Diffusion 76.66 N/A 

Table 2: FID Scores for various generative models before and after finetuning 


