
BME646 and ECE60146

Homework 9

Spring 2025

Malleswari Kachireddy

Introduction

Generative Models Overview

Generative models are a class of ML methods designed to learn the underlying probability

distribution of the dataset, so that new, realistic data samples can be generated. These models not

only learn the underlying distribution but also have a framework to generate new synthetic data.

Two predominant generative models are

• Generative Adversarial Networks (GANs) and

• Diffusion Models.

Generative Adversarial Networks (GANs) Network

GAN models consists of two neural networks—the Generator and the Discriminator. The

Generator transforms random noise into synthetic data samples, while the Discriminator evaluates

these samples against real data. The Generator aims to fool the Discriminator, and the

Discriminator strives to accurately distinguish real from fake. In this way, both networks iteratively

improve. This training relies on transpose convolution and loss functions like binary cross-entropy

to produce high resolution images. Transpose convolution takes a compact, low-resolution feature

map and learns how to expand it into a high-resolution image, filling in details as needed.

Diffusion Models:

Diffusion models generate data by reversing a process that gradually adds noise to the training

images. Initially, an image is progressively corrupted until it turns into pure noise. The model is

then trained to denoise the image step by step, effectively learning how to reconstruct the original

data from a noisy input. This process leverages Markov chains and noise schedules, providing a

more explicit modeling of the data generation process compared to GANs.

1. Generative Adversarial Networks

1.1. Model

Our model network uses the DiscriminatorDG1,2 classes and GeneratorDG1,2 classes.

DiscriminatorDG1 class implements the discriminator of a DCGAN using a so-called "4-2-1"

topology. This means that the network is designed with layers that progressively reduce the spatial

dimensions of the input image through a series of strided convolutions while increasing feature

depth, using Batch Normalization and Leaky ReLU activations to ensure stable and effective

learning.

The GeneratorDG1 class is responsible for creating realistic images starting from a random

noise. It uses a series of transpose convolution (or deconvolution) layers to upsample a low-

dimensional noise vector into a full-sized 64×64 image , applying Batch Normalization and

ReLU activations, with a final Tanh activation to produce output images in the desired pixel

range.

These GeneratorDG1 and DiscriminatorDG1 architecture forms the basis of a DCGAN, where

the generator and discriminator are trained in an adversarial manner to create realistic images.

GeneratorDG2 is identical to GeneratorDG1 whereas DiscriminatorDG2 has one additional

convolutional layer.

This code is copied from DLStudio Adversarial Learning by Prof. Avinash Kak.

I trained two different DC-GAN models (DCGAN1 and DCGAN2)

from DLStudio import DLStudio

import sys,os,os.path

import torch

import torch.nn as nn

import torch.nn.functional as F

import torchvision

import torchvision.transforms as tvt

import torchvision.transforms.functional as tvtF

import torch.optim as optim

import numpy as np

import math

import random

import matplotlib.pyplot as plt

import matplotlib.animation as animation

import time

import glob

import imageio

#______________________________ AdversarialLearning Class Definition ________________________________

class AdversarialLearning(object):

 def __init__(self, *args, **kwargs):

 if args:

 raise ValueError(

 '''AdversarialLearning constructor can only be called with keyword arguments for the following

 keywords: epochs, learning_rate, batch_size, momentum, image_size, dataroot, path_saved_model,

 use_gpu, latent_vector_size, ngpu, dlstudio, device, LAMBDA, clipping_threshold, and beta1''')

 allowed_keys = 'dataroot','image_size','path_saved_model','momentum','learning_rate','epochs','batch_size', \

 'classes','use_gpu','latent_vector_size','ngpu','dlstudio', 'beta1', 'LAMBDA', 'clipping_threshold'

 keywords_used = kwargs.keys()

 for keyword in keywords_used:

 if keyword not in allowed_keys:

 raise SyntaxError(keyword + ": Wrong keyword used --- check spelling")

 learning_rate = epochs = batch_size = convo_layers_config = momentum = None

 image_size = fc_layers_config = dataroot = path_saved_model = classes = use_gpu = None

 latent_vector_size = ngpu = beta1 = LAMBDA = clipping_threshold = None

 if 'latent_vector_size' in kwargs : latent_vector_size = kwargs.pop('latent_vector_size')

 if 'ngpu' in kwargs : ngpu = kwargs.pop('ngpu')

 if 'dlstudio' in kwargs : dlstudio = kwargs.pop('dlstudio')

 if 'beta1' in kwargs : beta1 = kwargs.pop('beta1')

 if 'LAMBDA' in kwargs : LAMBDA = kwargs.pop('LAMBDA')

 if 'clipping_threshold' in kwargs : clipping_threshold = kwargs.pop('clipping_threshold')

 if latent_vector_size:

 self.latent_vector_size = latent_vector_size

 if ngpu:

 self.ngpu = ngpu

 if dlstudio:

 self.dlstudio = dlstudio

 if beta1:

 self.beta1 = beta1

 if LAMBDA:

 self.LAMBDA = LAMBDA

 if clipping_threshold:

 self.clipping_threshold = clipping_threshold

 def show_sample_images_from_dataset(self, dlstudio):

 data = next(iter(self.train_dataloader))

 real_batch = data[0]

 self.dlstudio.display_tensor_as_image(torchvision.utils.make_grid(real_batch, padding=2, pad_value=1,

normalize=True))

 def set_dataloader(self):

 dataset = torchvision.datasets.ImageFolder(root=self.dlstudio.dataroot,

 transform = tvt.Compose([

 tvt.Resize(self.dlstudio.image_size),

 tvt.CenterCrop(self.dlstudio.image_size),

 tvt.ToTensor(),

 tvt.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),

]))

 self.train_dataloader = torch.utils.data.DataLoader(dataset, batch_size=self.dlstudio.batch_size,

 shuffle=True, num_workers=2)

 def weights_init(self,m):

 """

 Uses the DCGAN initializations for the weights

 """

 classname = m.__class__.__name__

 if classname.find('Conv') != -1:

 nn.init.normal_(m.weight.data, 0.0, 0.02)

 elif classname.find('BatchNorm') != -1:

 nn.init.normal_(m.weight.data, 1.0, 0.02)

 nn.init.constant_(m.bias.data, 0)

 ##################################### Discriminator-Generator DG1

######################################

 class DiscriminatorDG1(nn.Module):

 """

 This is an implementation of the DCGAN Discriminator. I refer to the DCGAN network topology as

 the 4-2-1 network. Each layer of the Discriminator network carries out a strided

 convolution with a 4x4 kernel, a 2x2 stride and a 1x1 padding for all but the final

 layer. The output of the final convolutional layer is pushed through a sigmoid to yield

 a scalar value as the final output for each image in a batch.

 Class Path: AdversarialLearning -> DiscriminatorDG1

 """

 def __init__(self):

 super(AdversarialLearning.DiscriminatorDG1, self).__init__()

 self.conv_in = nn.Conv2d(3, 64, kernel_size=4, stride=2, padding=1)

 self.conv_in2 = nn.Conv2d(64, 128, kernel_size=4, stride=2, padding=1)

 self.conv_in3 = nn.Conv2d(128, 256, kernel_size=4, stride=2, padding=1)

 self.conv_in4 = nn.Conv2d(256, 512, kernel_size=4, stride=2, padding=1)

 self.conv_in5 = nn.Conv2d(512, 1, kernel_size=4, stride=1, padding=0)

 self.bn1 = nn.BatchNorm2d(128)

 self.bn2 = nn.BatchNorm2d(256)

 self.bn3 = nn.BatchNorm2d(512)

 self.sig = nn.Sigmoid()

 def forward(self, x):

 x = torch.nn.functional.leaky_relu(self.conv_in(x), negative_slope=0.2, inplace=True)

 x = self.bn1(self.conv_in2(x))

 x = torch.nn.functional.leaky_relu(x, negative_slope=0.2, inplace=True)

 x = self.bn2(self.conv_in3(x))

 x = torch.nn.functional.leaky_relu(x, negative_slope=0.2, inplace=True)

 x = self.bn3(self.conv_in4(x))

 x = torch.nn.functional.leaky_relu(x, negative_slope=0.2, inplace=True)

 x = self.conv_in5(x)

 x = self.sig(x)

 return x

 class GeneratorDG1(nn.Module):

 """

 This is an implementation of the DCGAN Generator. As was the case with the Discriminator network,

 you again see the 4-2-1 topology here. A Generator's job is to transform a random noise

 vector into an image that is supposed to look like it came from the training dataset. (We refer

 to the images constructed from noise vectors in this manner as fakes.) As you will see later

 in the "run_gan_code()" method, the starting noise vector is a 1x1 image with 100 channels. In

 order to output 64x64 output images, the network shown below use the Transpose Convolution

 operator nn.ConvTranspose2d with a stride of 2. If (H_in, W_in) are the height and the width

 of the image at the input to a nn.ConvTranspose2d layer and (H_out, W_out) the same at the

 output, the size pairs are related by

 H_out = (H_in - 1) * s + k - 2 * p

 W_out = (W_in - 1) * s + k - 2 * p

 were s is the stride and k the size of the kernel. (I am assuming square strides, kernels, and

 padding). Therefore, each nn.ConvTranspose2d layer shown below doubles the size of the input.

 Class Path: AdversarialLearning -> GeneratorDG1

 """

 def __init__(self):

 super(AdversarialLearning.GeneratorDG1, self).__init__()

 self.latent_to_image = nn.ConvTranspose2d(100, 512, kernel_size=4, stride=1, padding=0, bias=False)

 self.upsampler2 = nn.ConvTranspose2d(512, 256, kernel_size=4, stride=2, padding=1, bias=False)

 self.upsampler3 = nn.ConvTranspose2d (256, 128, kernel_size=4, stride=2, padding=1, bias=False)

 self.upsampler4 = nn.ConvTranspose2d (128, 64, kernel_size=4, stride=2, padding=1, bias=False)

 self.upsampler5 = nn.ConvTranspose2d(64, 3, kernel_size=4, stride=2, padding=1, bias=False)

 self.bn1 = nn.BatchNorm2d(512)

 self.bn2 = nn.BatchNorm2d(256)

 self.bn3 = nn.BatchNorm2d(128)

 self.bn4 = nn.BatchNorm2d(64)

 self.tanh = nn.Tanh()

 def forward(self, x):

 x = self.latent_to_image(x)

 x = torch.nn.functional.relu(self.bn1(x))

 x = self.upsampler2(x)

 x = torch.nn.functional.relu(self.bn2(x))

 x = self.upsampler3(x)

 x = torch.nn.functional.relu(self.bn3(x))

 x = self.upsampler4(x)

 x = torch.nn.functional.relu(self.bn4(x))

 x = self.upsampler5(x)

 x = self.tanh(x)

 return x

 ## DG1 Definition ENDS

 ##################################### Discriminator-Generator DG2

######################################

 class DiscriminatorDG2(nn.Module):

 """

 This is essentially the same network as the DCGAN for DG1, except for the extra layer

 "self.extra" shown below. We also declare a batchnorm for this extra layer in the form

 of "self.bnX". In the implementation of "forward()", we invoke the extra layer at the

 beginning of the network.

 Class Path: AdversarialLearning -> DiscriminatorDG2

 """

 def __init__(self, skip_connections=True, depth=16):

 super(AdversarialLearning.DiscriminatorDG2, self).__init__()

 self.conv_in = nn.Conv2d(3, 64, kernel_size=4, stride=2, padding=1)

 self.extra = nn.Conv2d(64, 64, kernel_size=4, stride=1, padding=2)

 self.conv_in2 = nn.Conv2d(64, 128, kernel_size=4, stride=2, padding=1)

 self.conv_in3 = nn.Conv2d(128, 256, kernel_size=4, stride=2, padding=1)

 self.conv_in4 = nn.Conv2d(256, 512, kernel_size=4, stride=2, padding=1)

 self.conv_in5 = nn.Conv2d(512, 1, kernel_size=4, stride=1, padding=0)

 self.bn1 = nn.BatchNorm2d(128)

 self.bn2 = nn.BatchNorm2d(256)

 self.bn3 = nn.BatchNorm2d(512)

 self.bnX = nn.BatchNorm2d(64)

 self.sig = nn.Sigmoid()

 def forward(self, x):

 x = torch.nn.functional.leaky_relu(self.conv_in(x), negative_slope=0.2, inplace=True)

 x = self.bnX(self.extra(x))

 x = torch.nn.functional.leaky_relu(x, negative_slope=0.2, inplace=True)

 x = self.bn1(self.conv_in2(x))

 x = torch.nn.functional.leaky_relu(x, negative_slope=0.2, inplace=True)

 x = self.bn2(self.conv_in3(x))

 x = torch.nn.functional.leaky_relu(x, negative_slope=0.2, inplace=True)

 x = self.bn3(self.conv_in4(x))

 x = torch.nn.functional.leaky_relu(x, negative_slope=0.2, inplace=True)

 x = self.conv_in5(x)

 x = self.sig(x)

 return x

 class GeneratorDG2(nn.Module):

 """

 The Generator for DG2 is exactly the same as for the DG1. So please the comment block for that

 Generator.

 Class Path: AdversarialLearning -> GeneratorDG2

 """

 def __init__(self):

 super(AdversarialLearning.GeneratorDG2, self).__init__()

 self.latent_to_image = nn.ConvTranspose2d(100, 512, kernel_size=4, stride=1, padding=0, bias=False)

 self.upsampler2 = nn.ConvTranspose2d(512, 256, kernel_size=4, stride=2, padding=1, bias=False)

 self.upsampler3 = nn.ConvTranspose2d (256, 128, kernel_size=4, stride=2, padding=1, bias=False)

 self.upsampler4 = nn.ConvTranspose2d (128, 64, kernel_size=4, stride=2, padding=1, bias=False)

 self.upsampler5 = nn.ConvTranspose2d(64, 3, kernel_size=4, stride=2, padding=1, bias=False)

 self.bn1 = nn.BatchNorm2d(512)

 self.bn2 = nn.BatchNorm2d(256)

 self.bn3 = nn.BatchNorm2d(128)

 self.bn4 = nn.BatchNorm2d(64)

 self.tanh = nn.Tanh()

 def forward(self, x):

 x = self.latent_to_image(x)

 x = torch.nn.functional.relu(self.bn1(x))

 x = self.upsampler2(x)

 x = torch.nn.functional.relu(self.bn2(x))

 x = self.upsampler3(x)

 x = torch.nn.functional.relu(self.bn3(x))

 x = self.upsampler4(x)

 x = torch.nn.functional.relu(self.bn4(x))

 x = self.upsampler5(x)

 x = self.tanh(x)

 return x

 ## DG2 Definition ENDS

###

###############

 ## The training routines follow, first for a GAN constructed using either the DG1 and or the DG2

 ## Discriminator-Generator Networks, and then for a WGAN constructed using either the CG1 or the CG2

 ## Critic-Generator Networks.

###

###############

 def run_gan_code(self, dlstudio, discriminator, generator, results_dir):

 """

 This function is meant for training a Discriminator-Generator based Adversarial Network.

 The implementation shown uses several programming constructs from the "official" DCGAN

 implementations at the PyTorch website and at GitHub.

 Regarding how to set the parameters of this method, see the following script

 dcgan_DG1.py

 in the "ExamplesAdversarialLearning" directory of the distribution.

 """

 dir_name_for_results = results_dir

 if os.path.exists(dir_name_for_results):

 files = glob.glob(dir_name_for_results + "/*")

 for file in files:

 if os.path.isfile(file):

 os.remove(file)

 else:

 files = glob.glob(file + "/*")

 list(map(lambda x: os.remove(x), files))

 else:

 os.mkdir(dir_name_for_results)

 # Set the number of channels for the 1x1 input noise vectors for the Generator:

 nz = 100

 netD = discriminator.to(self.dlstudio.device)

 netG = generator.to(self.dlstudio.device)

 # Initialize the parameters of the Discriminator and the Generator networks according to the

 # definition of the "weights_init()" method:

 netD.apply(self.weights_init)

 netG.apply(self.weights_init)

 # We will use a the same noise batch to periodically check on the progress made for the Generator:

 fixed_noise = torch.randn(self.dlstudio.batch_size, nz, 1, 1, device=self.dlstudio.device)

 # Establish convention for real and fake labels during training

 real_label = 1

 fake_label = 0

 # Adam optimizers for the Discriminator and the Generator:

 optimizerD = optim.Adam(netD.parameters(), lr=dlstudio.learning_rate, betas=(self.beta1, 0.999))

 optimizerG = optim.Adam(netG.parameters(), lr=dlstudio.learning_rate, betas=(self.beta1, 0.999))

 # Establish the criterion for measuring the loss at the output of the Discriminator network:

 criterion = nn.BCELoss()

 # We will use these lists to store the results accumulated during training:

 img_list = []

 G_losses = []

 D_losses = []

 iters = 0

 print("\n\nStarting Training Loop...\n\n",f"{dlstudio.epochs} and {len(self.train_dataloader)}")

 start_time = time.perf_counter()

 for epoch in range(dlstudio.epochs):

 g_losses_per_print_cycle = []

 d_losses_per_print_cycle = []

 # For each batch in the dataloader

 for i, data in enumerate(self.train_dataloader, 0):

 ## Maximization Part of the Min-Max Objective of Eq. (3):

 ##

 ## As indicated by Eq. (3) in the DCGAN part of the doc section at the beginning of this

 ## file, the GAN training boils down to carrying out a min-max optimization. Each iterative

 ## step of the max part results in updating the Discriminator parameters and each iterative

 ## step of the min part results in the updating of the Generator parameters. For each

 ## batch of the training data, we first do max and then do min. Since the max operation

 ## affects both terms of the criterion shown in the doc section, it has two parts: In the

 ## first part we apply the Discriminator to the training images using 1.0 as the target;

 ## and, in the second part, we supply to the Discriminator the output of the Generator

 ## and use 0 as the target. In what follows, the Discriminator is being applied to

 ## the training images:

 netD.zero_grad()

 real_images_in_batch = data[0].to(self.dlstudio.device)

 # Need to know how many images we pulled in since at the tailend of the dataset, the

 # number of images may not equal the user-specified batch size:

 b_size = real_images_in_batch.size(0)

 label = torch.full((b_size,), real_label, dtype=torch.float, device=self.dlstudio.device)

 output = netD(real_images_in_batch).view(-1)

 lossD_for_reals = criterion(output, label)

 lossD_for_reals.backward()

 ## That brings us the second part of what it takes to carry out the max operation on the

 ## min-max criterion shown in Eq. (3) in the doc section at the beginning of this file.

 ## part calls for applying the Discriminator to the images produced by the Generator from

 ## noise:

 noise = torch.randn(b_size, nz, 1, 1, device=self.dlstudio.device)

 fakes = netG(noise)

 label.fill_(fake_label)

 ## The call to fakes.detach() in the next statement returns a copy of the 'fakes' tensor

 ## that does not exist in the computational graph. That is, the call shown below first

 ## makes a copy of the 'fakes' tensor and then removes it from the computational graph.

 ## The original 'fakes' tensor continues to remain in the computational graph. This ploy

 ## ensures that a subsequent call to backward() in the 3rd statement below would only

 ## update the netD weights.

 output = netD(fakes.detach()).view(-1)

 lossD_for_fakes = criterion(output, label)

 lossD_for_fakes.backward()

 ## The following is just for displaying the losses:

 lossD = lossD_for_reals + lossD_for_fakes

 d_losses_per_print_cycle.append(lossD)

 ## Only the Discriminator weights are incremented:

 optimizerD.step()

 ## Minimization Part of the Min-Max Objective of Eq. (3):

 ##

 ## That brings us to the min part of the max-min optimization described in Eq. (3) the doc

 ## section at the beginning of this file. The min part requires that we minimize

 ## "1 - D(G(z))" which, since D is constrained to lie in the interval (0,1), requires that

 ## we maximize D(G(z)). We accomplish that by applying the Discriminator to the output

 ## of the Generator and use 1 as the target for each image:

 netG.zero_grad()

 label.fill_(real_label)

 ## The following forward prop will compute the partials wrt the discriminator params also, but

 ## they will never get used for updating param vals for two reasons: (1) We call "step()" on

 ## just optimizerG as shown later below; and (2) We call "netD.zero_grad()" at the beginning of

 ## each training cycle.

 output = netD(fakes).view(-1)

 lossG = criterion(output, label)

 g_losses_per_print_cycle.append(lossG)

 lossG.backward()

 ## Only the Generator parameters are incremented:

 optimizerG.step()

 if i % 100 == 99:

 current_time = time.perf_counter()

 elapsed_time = current_time - start_time

 mean_D_loss = torch.mean(torch.FloatTensor(d_losses_per_print_cycle))

 mean_G_loss = torch.mean(torch.FloatTensor(g_losses_per_print_cycle))

 print("[epoch=%d/%d iter=%4d elapsed_time=%5d secs] mean_D_loss=%7.4f

mean_G_loss=%7.4f" %

 ((epoch+1),dlstudio.epochs,(i+1),elapsed_time,mean_D_loss,mean_G_loss))

 d_losses_per_print_cycle = []

 g_losses_per_print_cycle = []

 G_losses.append(lossG.item())

 D_losses.append(lossD.item())

 if (iters % 500 == 0) or ((epoch == dlstudio.epochs-1) and (i == len(self.train_dataloader)-1)):

 with torch.no_grad():

 fake = netG(fixed_noise).detach().cpu() ## detach() removes the fake from comp. graph.

 ## for creating its CPU compatible version

 img_list.append(torchvision.utils.make_grid(fake, padding=1, pad_value=1, normalize=True))

 iters += 1

 # At the end of training, make plots from the data in G_losses and D_losses:

 plt.figure(figsize=(10,5))

 plt.title("Generator and Discriminator Loss During Training")

 plt.plot(G_losses,label="G")

 plt.plot(D_losses,label="D")

 plt.xlabel("iterations")

 plt.ylabel("Loss")

 plt.legend()

 plt.savefig(dir_name_for_results + "/gen_and_disc_loss_training.png")

 plt.show()

 # Make an animated gif from the Generator output images stored in img_list:

 images = []

 for imgobj in img_list:

 img = tvtF.to_pil_image(imgobj)

 images.append(img)

 imageio.mimsave(dir_name_for_results + "/generation_animation.gif", images, fps=5)

 # Make a side-by-side comparison of a batch-size sampling of real images drawn from the

 # training data and what the Generator is capable of producing at the end of training:

 real_batch = next(iter(self.train_dataloader))

 real_batch = real_batch[0]

 plt.figure(figsize=(15,15))

 plt.subplot(1,2,1)

 plt.axis("off")

 plt.title("Real Images")

 plt.imshow(np.transpose(torchvision.utils.make_grid(real_batch.to(self.dlstudio.device),

 padding=1, pad_value=1, normalize=True).cpu(),(1,2,0)))

 plt.subplot(1,2,2)

 plt.axis("off")

 plt.title("Fake Images")

 plt.imshow(np.transpose(img_list[-1],(1,2,0)))

 plt.savefig(dir_name_for_results + "/real_vs_fake_images.png")

 plt.show()

import random

import numpy

import torch

import os, sys

seed = 0

random.seed(seed)

torch.manual_seed(seed)

torch.cuda.manual_seed(seed)

numpy.random.seed(seed)

torch.backends.cudnn.deterministic=True

torch.backends.cudnn.benchmarks=False

os.environ['PYTHONHASHSEED'] = str(seed)

watch -d -n 0.5 nvidia-smi

from DLStudio import *

from AdversarialLearning import *

import sys

dls = DLStudio(

 dataroot = "/content/Supplementary/celeba_dataset_64x64",

dataroot = "/mnt/cloudNAS3/Avi/ImageDatasets/PurdueShapes5GAN/multiobj/",

dataroot = "/home/kak/ImageDatasets/PurdueShapes5GAN/multiobj/",

 image_size = [64,64],

 path_saved_model = "/content/DLStudio-

2.5.2/ExamplesAdversarialLearning/saved_model/dcgan_DG1.pt",

 learning_rate = 1e-4, ## <== try smaller value if mode collapse

learning_rate = 5e-3, ## <== try smaller value if mode collapse

 epochs = 30,

 batch_size = 32,

 use_gpu = True,

)

dcgan = AdversarialLearning(

 dlstudio = dls,

 ngpu = 1,

 latent_vector_size = 100,

 beta1 = 0.5, ## for the Adam optimizer

)

discriminator = dcgan.DiscriminatorDG1()

generator = dcgan.GeneratorDG1()

num_learnable_params_disc = sum(p.numel() for p in discriminator.parameters() if p.requires_grad)

print("\n\nThe number of learnable parameters in the Discriminator: %d\n" % num_learnable_params_disc)

num_learnable_params_gen = sum(p.numel() for p in generator.parameters() if p.requires_grad)

print("\nThe number of learnable parameters in the Generator: %d\n" % num_learnable_params_gen)

num_layers_disc = len(list(discriminator.parameters()))

print("\nThe number of layers in the discriminator: %d\n" % num_layers_disc)

num_layers_gen = len(list(generator.parameters()))

print("\nThe number of layers in the generator: %d\n\n" % num_layers_gen)

dcgan.set_dataloader()

print("\n\nHere is one batch of images from the training dataset:")

dcgan.show_sample_images_from_dataset(dls)

dcgan.run_gan_code(dls, discriminator=discriminator, generator=generator, results_dir="results_DG1")

torch.save(generator.state_dict(), "/content/DLStudio-

2.5.2/ExamplesAdversarialLearning/saved_model/dcgan_G1.pt")

torch.save(discriminator.state_dict(), "/content/DLStudio-

2.5.2/ExamplesAdversarialLearning/saved_model/dcgan_D1.pt")

dls = DLStudio(

 dataroot = "/content/Supplementary/celeba_dataset_64x64",

dataroot = "/mnt/cloudNAS3/Avi/ImageDatasets/PurdueShapes5GAN/multiobj/",

dataroot = "/home/kak/ImageDatasets/PurdueShapes5GAN/multiobj/",

 image_size = [64,64],

 path_saved_model = "/content/DLStudio-

2.5.2/ExamplesAdversarialLearning/saved_model/dcgan_DG2.pt",

 learning_rate = 2e-4, ## <== try smaller value if mode collapse

 epochs = 30,

 batch_size = 32,

 use_gpu = True,

)

dcgan = AdversarialLearning(

 dlstudio = dls,

 ngpu = 1,

 latent_vector_size = 100,

 beta1 = 0.5, ## for the Adam optimizer

)

discriminator = dcgan.DiscriminatorDG2()

generator = dcgan.GeneratorDG2()

num_learnable_params_disc = sum(p.numel() for p in discriminator.parameters() if p.requires_grad)

print("\n\nThe number of learnable parameters in the Discriminator: %d\n" % num_learnable_params_disc)

num_learnable_params_gen = sum(p.numel() for p in generator.parameters() if p.requires_grad)

print("\nThe number of learnable parameters in the Generator: %d\n" % num_learnable_params_gen)

num_layers_disc = len(list(discriminator.parameters()))

print("\nThe number of layers in the discriminator: %d\n" % num_layers_disc)

num_layers_gen = len(list(generator.parameters()))

print("\nThe number of layers in the generator: %d\n\n" % num_layers_gen)

dcgan.set_dataloader()

dcgan.show_sample_images_from_dataset(dls)

dcgan.run_gan_code(dls, discriminator=discriminator, generator=generator, results_dir="results_DG2")

torch.save(generator.state_dict(), "/content/DLStudio-

2.5.2/ExamplesAdversarialLearning/saved_model/dcgan_G2.pt")

torch.save(discriminator.state_dict(), "/content/DLStudio-

2.5.2/ExamplesAdversarialLearning/saved_model/dcgan_D2.pt")

1.2. Training curves: As is expected the generator loss is very high at the

beginning and the discriminator loss increases as the generator becomes

better at generating fake images that look realistic.

Figure 1: Training loss curve for DC GAN 1

Figure 2: Training loss curve for DC GAN 2

2. Diffusion

2.1. Generated images:

Using the code and model weights provided by Prof. Kak, I generated and

visualized 1024 images by calling GenerateNewImageSamples.py and

VisualizeSamples.py.

Figure 3: 1024 Fake Images generated by Diffusion model

Figure 4: Sample images generated by diffusion model

The outputs generated by diffusion model are very realistic. However, using an A100

GPU, it took more than 24 minutes to generate 1024 images using the code provided.

However, generating 1024 images using the DC-GAN networks took a few seconds.

So, the high quality of images comes at the cost of speed.

3. FID Score

Code to generate images from DC GAN generators:

def generate_DCGAN_images(output_dir, path_saved_model, dataroot, total_images, image_size, learning_rate,

epochs, batch_size, use_gpu, latent_vector_size, beta1):

 if not os.path.exists(output_dir):

 os.makedirs(output_dir)

 device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

 dlstudio =

DLStudio(dataroot=dataroot,image_size=image_size,path_saved_model=path_saved_model,learning_rate=learning_r

ate,epochs=epochs,batch_size=batch_size,use_gpu=use_gpu)

 adv = AdversarialLearning(dlstudio=dlstudio,ngpu = 1,latent_vector_size=latent_vector_size,beta1=beta1)

 netG = AdversarialLearning.GeneratorDG1()

 netG.load_state_dict(torch.load(adv.dlstudio.path_saved_model, map_location=device))

 netG.to(device)

 netG.eval()

 num_batches = total_images // adv.dlstudio.batch_size

 for batch_idx in range(num_batches):

 noise = torch.randn(adv.dlstudio.batch_size, adv.latent_vector_size, 1, 1, device=device)

 with torch.no_grad():

 fake_images = netG(noise)

 fake_images = (fake_images + 1) / 2.0

 for i in range(adv.dlstudio.batch_size):

 img_idx = batch_idx * adv.dlstudio.batch_size + i

 save_image(fake_images[i], f"{output_dir}/fake_image_{img_idx:04d}.png")

 print(f"Generated images {batch_idx * adv.dlstudio.batch_size} to {(batch_idx + 1) * adv.dlstudio.batch_size - 1}")

 print(f"Successfully generated {total_images} fake images in the '{output_dir}' directory")

 sample_fake_images = []

 for i in range(16):

 img_path = f"{output_dir}/fake_image_{i:04d}.png"

 img = Image.open(img_path)

 img_tensor = torchvision.transforms.ToTensor()(img)

 sample_fake_images.append(img_tensor)

 grid = torchvision.utils.make_grid(sample_fake_images, nrow=4, padding=2, normalize=False) # Changed nrow to 4

 save_image(grid, f"{output_dir}/grid_4x4_sample.png")

 print(f"Created a 4x4 grid visualization at '{output_dir}/grid_4x4_sample.png'")

from DLStudio import *

from AdversarialLearning import *

dataroot="/content/Supplementary/celeba_dataset_64x64"

total_images = 1024

image_size=[64,64]

learning_rate = 1e-4

epochs = 1

batch_size = 32

use_gpu = True

latent_vector_size=100

beta1=0.5

output_dir = "/content/DLStudio-2.5.2/ExamplesAdversarialLearning/results_DG1/images"

path_saved_model="/content/DLStudio-2.5.2/ExamplesAdversarialLearning/saved_model/dcgan_G1.pt"

generate_DCGAN_images(output_dir, path_saved_model, dataroot, total_images, image_size, learning_rate, epochs,

batch_size, use_gpu, latent_vector_size, beta1)

shutil.move('/content/DLStudio-2.5.2/ExamplesAdversarialLearning/results_DG1/images/grid_4x4_sample.png',

 '/content/DLStudio-2.5.2/ExamplesAdversarialLearning/results_DG1/grid_4x4_sample.png')

output_dir = "/content/DLStudio-2.5.2/ExamplesAdversarialLearning/results_DG2/images"

path_saved_model="/content/DLStudio-2.5.2/ExamplesAdversarialLearning/saved_model/dcgan_G2.pt"

generate_DCGAN_images(output_dir, path_saved_model, dataroot, total_images, image_size, learning_rate, epochs,

batch_size, use_gpu, latent_vector_size, beta1)

shutil.move('/content/DLStudio-2.5.2/ExamplesAdversarialLearning/results_DG2/images/grid_4x4_sample.png',

 '/content/DLStudio-2.5.2/ExamplesAdversarialLearning/results_DG2/grid_4x4_sample.png')

3.1. 4x4 images generated by GAN

Figure 5: Sample images generated by DC-GAN1

Figure 6: Sample images generated by DC-GAN2

3.2. 4x4 images generated by Diffusion

sample_fake_images = []

for i in range(16):

 img_path = f"/content/DLStudio-2.5.2/ExamplesDiffusion/visualize_samples/test_{i}.jpg"

 img = Image.open(img_path)

 img_tensor = torchvision.transforms.ToTensor()(img)

 sample_fake_images.append(img_tensor)

grid = torchvision.utils.make_grid(sample_fake_images, nrow=4, padding=2, normalize=False) # Changed nrow to 4

save_image(grid, f"/content/DLStudio-2.5.2/ExamplesDiffusion/RESULTS/grid_4x4_sample.png")

print(f"Created a 4x4 grid visualization at '/content/DLStudio-

2.5.2/ExamplesDiffusion/RESULTS/grid_4x4_sample.png'")

Figure 7: Sample images generated by Diffusion Model

3.3. GAN FID

3.4. Diffusion FID

Model FID Score

DC-GAN1 111.88

DC-GAN2 106.88

Diffusion 76.66

Table 1: FID Scores for various generative models

Code to compute FID score: I selected a random selection of 1024 images from the

real paths to make sure the number of images is the same in both real and fake

folders.

def calculate_fid_score(real_images_dir, fake_images_dir, match_count=True):

 real_paths = [os.path.join(real_images_dir, filename) for filename in os.listdir(real_images_dir)]

 fake_paths = [os.path.join(fake_images_dir, filename) for filename in os.listdir(fake_images_dir)]

 if match_count and len(real_paths) > len(fake_paths):

 real_paths = random.sample(real_paths, len(fake_paths))

 dims = 2048

 block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[dims]

 device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

 model = InceptionV3([block_idx]).to(device)

 m1,s1 = calculate_activation_statistics(real_paths,model,batch_size=32,dims=dims,device=device) # Added

batch_size and dims parameters

 m2,s2 = calculate_activation_statistics(fake_paths,model,batch_size=32,dims=dims,device=device) # Added

batch_size and dims parameters

 fid_value = calculate_frechet_distance(m1,s1,m2,s2)

 return fid_value

real_images_dir = "/content/Supplementary/celeba_dataset_64x64/0"

fake_images_dir = "/content/DLStudio-2.5.2/ExamplesAdversarialLearning/results_DG1/images"

fid_value = calculate_fid_score(real_images_dir,fake_images_dir)

print(f"FID value: {fid_value:.2f}")

real_images_dir = "/content/Supplementary/celeba_dataset_64x64/0"

fake_images_dir = "/content/DLStudio-2.5.2/ExamplesAdversarialLearning/results_DG2/images"

fid_value = calculate_fid_score(real_images_dir,fake_images_dir)

print(f"FID value: {fid_value:.2f}")

real_images_dir = "/content/Supplementary/celeba_dataset_64x64/0"

fake_images_dir = "/content/DLStudio-2.5.2/ExamplesDiffusion/visualize_samples"

fid_value = calculate_fid_score(real_images_dir,fake_images_dir)

print(f"FID value: {fid_value:.2f}")

4. Finetuning

I commented out these two lines in run_gan_code:

 # netD.apply(self.weights_init)

 # netG.apply(self.weights_init)

Training code inspired by dcgan_DG1.py:

import random

import numpy

import torch

import os, sys

seed = 0

random.seed(seed)

torch.manual_seed(seed)

torch.cuda.manual_seed(seed)

numpy.random.seed(seed)

torch.backends.cudnn.deterministic=True

torch.backends.cudnn.benchmarks=False

os.environ['PYTHONHASHSEED'] = str(seed)

from DLStudio import *

import sys

dls = DLStudio(

 dataroot = "/content/Supplementary/New_training_folder",

 image_size = [64,64],

 path_saved_model = "/content/DLStudio-

2.5.2/ExamplesAdversarialLearning/saved_model/dcgan_DG1.pt",

 learning_rate = 1e-5,

 epochs = 50,

 batch_size = 8,

 use_gpu = True,

)

dcgan = AdversarialLearning(dlstudio = dls,ngpu = 1,latent_vector_size = 100,beta1 = 0.5)

discriminator = dcgan.DiscriminatorDG1()

generator = dcgan.GeneratorDG1()

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

generator.load_state_dict(torch.load("/content/DLStudio-

2.5.2/ExamplesAdversarialLearning/saved_model/dcgan_G1.pt", map_location=device))

generator.to(device)

discriminator.load_state_dict(torch.load("/content/DLStudio-

2.5.2/ExamplesAdversarialLearning/saved_model/dcgan_D1.pt", map_location=device))

discriminator.to(device)

num_learnable_params_disc = sum(p.numel() for p in discriminator.parameters() if p.requires_grad)

print("\n\nThe number of learnable parameters in the Discriminator: %d\n" % num_learnable_params_disc)

num_learnable_params_gen = sum(p.numel() for p in generator.parameters() if p.requires_grad)

print("\nThe number of learnable parameters in the Generator: %d\n" % num_learnable_params_gen)

num_layers_disc = len(list(discriminator.parameters()))

print("\nThe number of layers in the discriminator: %d\n" % num_layers_disc)

num_layers_gen = len(list(generator.parameters()))

print("\nThe number of layers in the generator: %d\n\n" % num_layers_gen)

dcgan.set_dataloader()

print("\n\nHere is one batch of images from the fine-tuning dataset:")

dcgan.show_sample_images_from_dataset(dls)

dcgan.run_gan_code(dls, discriminator=discriminator, generator=generator, results_dir="results_finetuned_DG1")

torch.save(generator.state_dict(), "/content/DLStudio-

2.5.2/ExamplesAdversarialLearning/saved_model/dcgan_finetuned_G1.pt")

torch.save(discriminator.state_dict(), "/content/DLStudio-

2.5.2/ExamplesAdversarialLearning/saved_model/dcgan_finetuned_D1.pt")

4.1. Training loss curves

Figure 8: Training loss curve while finetuning DG-GAN1

Figure 9: Training loss curve while finetuning DG-GAN2

4.2. Visual observations of finetuned GAN vs. GAN

Before Fine-tuning DC-GAN1 After Fine-tuning DC-GAN1

The images generated before fine-

tuning had higher resolution, sharper

details and faces were in similar

proportions to real people. The lighting

in most of the images were consistent

with real scenes. The backgrounds are

colored in somewhat strange but refined

colors.

Images generated after fine-tuning have

caricature like appearance, blurrier

details. The lighting and background

appear unnatural.

4.3. Visual observations of finetuned GAN vs diffusion model

Diffusion Model After Fine-tuning DC-GAN1

Majority of the images are professional

headshot like portraits with mostly

young people’s images generated

predominantly. We can still notice

weird artifacts in teeth and eyes in some

of the images.

Images generated after fine-tuning have

caricature like appearance, blurrier

details. The lighting and background

appear unnatural.

4.4. Finetuned GAN sample images

dataroot="/content/Supplementary/celeba_dataset_64x64"

total_images = 1024

image_size=[64,64]

learning_rate = 1e-4

epochs = 1

batch_size = 32

use_gpu = True

latent_vector_size=100

beta1=0.5

output_dir = "/content/DLStudio-2.5.2/ExamplesAdversarialLearning/finetuned_DG1/images"

path_saved_model="/content/DLStudio-2.5.2/ExamplesAdversarialLearning/saved_model/dcgan_finetuned_G1.pt"

generate_DCGAN_images(output_dir, path_saved_model, dataroot, total_images, image_size, learning_rate, epochs,

batch_size, use_gpu, latent_vector_size, beta1)

shutil.move('/content/DLStudio-2.5.2/ExamplesAdversarialLearning/finetuned_DG1/images/grid_4x4_sample.png',

 '/content/DLStudio-2.5.2/ExamplesAdversarialLearning/results_finetuned_DG1/grid_4x4_sample.png')

output_dir = "/content/DLStudio-2.5.2/ExamplesAdversarialLearning/results_finetuned_DG2/images"

path_saved_model="/content/DLStudio-2.5.2/ExamplesAdversarialLearning/saved_model/dcgan_finetuned_G2.pt"

generate_DCGAN_images(output_dir, path_saved_model, dataroot, total_images, image_size, learning_rate, epochs,

batch_size, use_gpu, latent_vector_size, beta1)

shutil.move('/content/DLStudio-

2.5.2/ExamplesAdversarialLearning/results_finetuned_DG2/images/grid_4x4_sample.png',

 '/content/DLStudio-2.5.2/ExamplesAdversarialLearning/results_finetuned_DG2/grid_4x4_sample.png')

Figure 10: Sample images generated by finetuned DC-GAN 1

Figure 11: Sample images generated by finetuned DC-GAN2

4.5. FID Score

real_images_dir = "/content/Supplementary/celeba_dataset_64x64/0"

fake_images_dir = "/content/DLStudio-2.5.2/ExamplesAdversarialLearning/finetuned_DG1/images"

fid_value = calculate_fid_score(real_images_dir,fake_images_dir)

print(f"FID value: {fid_value:.2f}")

real_images_dir = "/content/Supplementary/celeba_dataset_64x64/0"

fake_images_dir = "/content/DLStudio-2.5.2/ExamplesAdversarialLearning/results_finetuned_DG2/images"

fid_value = calculate_fid_score(real_images_dir,fake_images_dir)

print(f"FID value: {fid_value:.2f}")

Model FID Score

(Before Finetuning)

FID Score

(After Finetuning)

DC-GAN1 111.88 121.64

DC-GAN2 106.88 117.44

Diffusion 76.66 N/A

Table 2: FID Scores for various generative models before and after finetuning

