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Homework 9 - Deep Learning (ECE 60146) 

 
 Ayan Biswas Pranta  

PUID 037714249 

April 07, 2025 

 
Introduction 

In this homework, two generative models—Generative Adversarial Networks (GANs) 
and Diffusion Models—are explored and compared. Both models are used to 
generate images, which are then analyzed both qualitatively and quantitatively. The 
generated images are evaluated in terms of visual quality, diversity, and fidelity. 
Following this, the GAN model is fine-tuned using images produced by the Diffusion 
model.  

1. GAN 
1.1 Model 

Generative Adversarial Network (GAN) generate images from noise with model that 
gets matured through training. The model consists of two neural networks: 

 

• Generator: The network that converts a noise vector into an image. 

The generator takes in random noise as input and applies transpose convolutions 

to upsample it into a full-sized image. Each Transpose Convolution layer in the 

generator follows this pattern to progressively increase the feature map size.  Batch 

Normalization and ReLU activations refine details. The last layer uses tanh 

activation to scale pixel values to [-1,1], suitable for image data. The discriminator 

takes an image (real or generated) and outputs a probability of it being real. 

Input: Random noise vector (latent space) 

       Dense Layer: Fully connected, projecting to a higher-dimensional space 

Reshape Layer: Reshapes to a spatial structure (e.g., 4×4×512) 

Transposed Convolutions: 

       ConvTranspose2D (512 → 256) + BatchNorm + ReLU 

       ConvTranspose2D (256 → 128) + BatchNorm + ReLU 
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       ConvTranspose2D (128 → 64) + BatchNorm + ReLU 

       ConvTranspose2D (64 → 3) + Tanh (Output Image) 

 

• Discriminator: The network that classifies images as real or fake. 

Input: Generated or real image (e.g., 64×64×3) 

Convolutions: 

Conv2D (3 → 64) + LeakyReLU 

Conv2D (64 → 128) + BatchNorm + LeakyReLU 

Conv2D (128 → 256) + BatchNorm + LeakyReLU 

Conv2D (256 → 512) + BatchNorm + LeakyReLU 

Flatten + Dense Layer: Outputs probability (Real/Fake) using a Sigmoid function. 

 

# Borrowed from Sushant Gautam (gan-beginner-tutorial-on-celeba-dataset) 

# Modified by me (Ayan Biswas Pranta) for this homework 

 

import torch 

import torch.nn as nn 

from torch.utils.data import DataLoader 

from torchvision.utils import make_grid, save_image 

from torchvision.datasets import ImageFolder 

import torchvision.transforms as T 

import matplotlib.pyplot as plt 

from IPython.display import Image 

import cv2 

import os 

from tqdm.notebook import tqdm 

import torch.nn.functional as F 

 

data_directory = './celeba_dataset_64x64_100k/' 

 

image_size = 64 

batch_size = 128 

mean_std_for_norm = (0.5, 0.5, 0.5), (0.5, 0.5, 0.5)  # mean, std for normalize 

images 
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train_dataset = ImageFolder(root=data_directory, transform=T.Compose([ 

    T.Resize(image_size), 

    T.CenterCrop(image_size), 

    T.ToTensor(), 

    T.Normalize(*mean_std_for_norm) 

])) 

train_dataloader = DataLoader(train_dataset, batch_size, shuffle=True, 

num_workers=0, pin_memory=True) 

 

def denormalization(img_tensors): 

    return img_tensors * mean_std_for_norm[1][0] + mean_std_for_norm[0][0] 

 

def display_images(images, nmax=64): 

    fig, ax = plt.subplots(figsize=(8,8)) 

    ax.set_xticks([]); ax.set_yticks([]) 

    ax.imshow(make_grid(denormalization(images.detach()[:nmax]), nrow=8).permute(1, 

2, 0)) 

 

def to_device(data, device): 

    """Move tensor(s) to chosen device""" 

    if isinstance(data, (list, tuple)): 

        return [to_device(x, device) for x in data] 

    return data.to(device, non_blocking=True) 

 

class DeviceDataLoader(): 

    """Wrap a dataloader to move data to a device""" 

    def __init__(self, dl, device): 

        self.dl = dl 

        self.device = device 

         

    def __iter__(self): 

        """Yield a batch of data after moving it to device""" 

        for b in self.dl:  

            yield to_device(b, self.device) 

 

    def __len__(self): 

        """Number of batches""" 

        return len(self.dl) 

     

device = torch.device('cuda') 

train_dataloader = DeviceDataLoader(train_dataloader, device) 
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discriminator = nn.Sequential( 

    # in: 3x 64 x 64 

    nn.Conv2d(3, 64, kernel_size=4, stride=2, padding=1, bias=False), 

    nn.BatchNorm2d(64), 

    nn.LeakyReLU(0.2, inplace=True), 

    # out: 64 x 32 x 32 

 

    nn.Conv2d(64, 128, kernel_size=4, stride=2, padding=1, bias=False), 

    nn.BatchNorm2d(128), 

    nn.LeakyReLU(0.2, inplace=True), 

    # out: 128 x 16 x 16 

 

    nn.Conv2d(128, 256, kernel_size=4, stride=2, padding=1, bias=False), 

    nn.BatchNorm2d(256), 

    nn.LeakyReLU(0.2, inplace=True), 

    # out: 256 x 8 x 8 

 

    nn.Conv2d(256, 512, kernel_size=4, stride=2, padding=1, bias=False), 

    nn.BatchNorm2d(512), 

    nn.LeakyReLU(0.2, inplace=True), 

    # out: 512 x 4 x 4 

 

    nn.Conv2d(512, 1, kernel_size=4, stride=1, padding=0, bias=False), 

    # out: 1 x 1 x 1 

 

    nn.Flatten(), 

    nn.Sigmoid() 

) 

 

 

discriminator = to_device(discriminator, device) 

 

 

generator_input_size = 128 

 

 

generator = nn.Sequential( 

    # in: noise_size x 1 x 1 

    nn.ConvTranspose2d(generator_input_size, 512, kernel_size=4, stride=1, 

padding=0, bias=False), 

    nn.BatchNorm2d(512), 

    nn.ReLU(True), 
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    # out: 512 x 4 x 4 

 

    nn.ConvTranspose2d(512, 256, kernel_size=4, stride=2, padding=1, bias=False), 

    nn.BatchNorm2d(256), 

    nn.ReLU(True), 

    # out: 256 x 8 x 8 

 

    nn.ConvTranspose2d(256, 128, kernel_size=4, stride=2, padding=1, bias=False), 

    nn.BatchNorm2d(128), 

    nn.ReLU(True), 

    # out: 128 x 16 x 16 

 

    nn.ConvTranspose2d(128, 64, kernel_size=4, stride=2, padding=1, bias=False), 

    nn.BatchNorm2d(64), 

    nn.ReLU(True), 

    # out: 64 x 32 x 32 

 

    nn.ConvTranspose2d(64, 3, kernel_size=4, stride=2, padding=1, bias=False), 

    nn.Tanh()  # output is between -1 to 1 

    # out: 3 x 64 x 64 

) 

 

generator = to_device(generator, device)  # move generator to device 

 

def train_discriminator(real_images, opt_d): 

    opt_d.zero_grad() 

    real_preds = discriminator(real_images) 

    real_targets = torch.ones(real_images.size(0), 1, device=device) 

    real_loss = F.binary_cross_entropy(real_preds, real_targets) 

     

    starter_noise_for_training = torch.randn(batch_size, generator_input_size, 1, 1, 

device=device) 

    fake_images = generator(starter_noise_for_training) 

    fake_targets = torch.zeros(fake_images.size(0), 1, device=device) 

    fake_preds = discriminator(fake_images) 

    fake_loss = F.binary_cross_entropy(fake_preds, fake_targets) 

     

    loss = real_loss + fake_loss 

    loss.backward() 

    opt_d.step() 

    return loss.item() 
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def train_generator(opt_g): 

    opt_g.zero_grad() 

    starter_noise = torch.randn(batch_size, generator_input_size, 1, 1, 

device=device) 

    fake_images = generator(starter_noise) 

    preds = discriminator(fake_images) 

    targets = torch.ones(batch_size, 1, device=device) 

    loss = F.binary_cross_entropy(preds, targets) 

    loss.backward() 

    opt_g.step() 

    return loss.item() 

 

# Directory to store checkpoints and losses plot 

sample_dir = 'generated' 

os.makedirs(sample_dir, exist_ok=True) 

 

# Removed the per-epoch image saving function call 

 

def main_training(epochs, lr): 

    torch.cuda.empty_cache() 

    losses_generator = [] 

    losses_discriminator = [] 

    optimizer_discriminator = torch.optim.Adam(discriminator.parameters(), lr=lr, 

betas=(0.5, 0.999)) 

    optimizer_generator = torch.optim.Adam(generator.parameters(), lr=lr, 

betas=(0.5, 0.999)) 

 

    for epoch in range(epochs): 

        for real_images, _ in tqdm(train_dataloader, disable=True): 

            loss_discriminator = train_discriminator(real_images, 

optimizer_discriminator) 

            loss_generator = train_generator(optimizer_generator) 

        losses_generator.append(loss_generator) 

        losses_discriminator.append(loss_discriminator) 

        print("Epoch {}/{}, Generator Loss: {:.4f}, Discriminator Loss: 

{:.4f}".format( 

            epoch+1, epochs, loss_generator, loss_discriminator)) 

 

    return losses_generator, losses_discriminator 

 

# Hyperparameters 

lr = 0.00025 
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epochs = 100 

 

losses_generator, losses_discriminator = main_training(epochs, lr) 

 

# Save the model checkpoints  

torch.save(generator.state_dict(), 'Generator_saved_model.pth') 

torch.save(discriminator.state_dict(), 'Discriminator_saved_model.pth') 

 

plt.figure(figsize=(12,6)) 

plt.plot(losses_discriminator, '-') 

plt.plot(losses_generator, '-') 

plt.xlabel('Epoch') 

plt.ylabel('Loss') 

plt.legend(['Discriminator', 'Generator']) 

plt.title('Losses') 

plt.savefig('losses_plot.png') 

plt.show() 

 

# ------------------------------- 

# Final image generation: generate 1024 images 

# ------------------------------- 

 

# Create a new directory for final generated images 

final_dir = 'generated' 

os.makedirs(final_dir, exist_ok=True) 

 

 

# Generate 1024 noise samples 

final_noise = torch.randn(1024, generator_input_size, 1, 1, device=device) 

# Generate 1024 images 

final_images = generator(final_noise) 

final_images = denormalization(final_images) 

 

 

# Save each image in a separate file 

for i in range(final_images.shape[0]): 

    # Each image is of shape [3, 64, 64] 

    filename = os.path.join(final_dir, f"generated_image_{i:04d}.png") 

    save_image(final_images[i], filename) 
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1.2 Training Curve 

 

The generator training curve isn’t converging because discriminator is 
overpowering generator. If the discriminator is too strong, the generator struggles 
to improve but may still generate some passable samples. One trick is to train 
generator more than discriminator, i.e. Instead of the usual 1:1 training ratio, 
updating the generator 15-20 times before updating the discriminator. This allows 
the generator to catch up and learn meaningful updates before the discriminator 
gets too strong. 
 
As GAN generated images are satisfactory in this homework (section 3.1), I didn’t 
change the training ratio. 

2. Diffusion 
2.1 Generate Images 

# modified the given code for generation by diffusion 

# Original code is given by Kak/ instructors of ECE 60146 

# I modified it so that diffusion.pt can be loaded and  

# visualized in the same code 

 

import os 

import numpy as np 

import torch 

import torchvision 

import matplotlib.pyplot as plt 
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import glob 

from PIL import Image 

from GenerativeDiffusion import * 

 

# Default model path 

MODEL_PATH = "diffusion.pt" 

RESULTS_DIR = "RESULTS_1024" 

VISUALIZATION_DIR = "visualize_samples_1024" 

IMAGE_DISPLAY_SIZE = (256, 256) 

 

# Ensure necessary directories exist 

os.makedirs(RESULTS_DIR, exist_ok=True) 

os.makedirs(VISUALIZATION_DIR, exist_ok=True) 

 

gauss_diffusion = GaussianDiffusion( 

    num_diffusion_timesteps=1000, 

) 

 

network = UNetModel( 

    in_channels=3, 

    model_channels=128, 

    out_channels=3, 

    num_res_blocks=2, 

    attention_resolutions=(4, 8),  # for 64x64 images 

    channel_mult=(1, 2, 3, 4),  # for 64x64 images 

    num_heads=1, 

    attention=True  # Must be the same as for RunCodeForDiffusion.py 

) 

 

top_level = GenerativeDiffusion( 

    gen_new_images=True, 

    image_size=64, 

    num_channels=128, 

    ema_rate=0.9999, 

    diffusion=gauss_diffusion, 

    network=network, 

    ngpu=1, 

    path_saved_model=RESULTS_DIR, 

    clip_denoised=True, 

    num_samples=1024, 

    batch_size_image_generation=8, 

) 
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# Load the model 

print(f"Loading model from {MODEL_PATH}...") 

network.load_state_dict(torch.load(MODEL_PATH)) 

network.to(top_level.device) 

network.eval() 

 

print("sampling...") 

all_images = [] 

 

while len(all_images) * top_level.batch_size_image_generation < top_level.num_samples: 

    sample = gauss_diffusion.p_sampler_for_image_generation( 

        network, 

        (top_level.batch_size_image_generation, 3, top_level.image_size, 

top_level.image_size), 

        device=top_level.device, 

        clip_denoised=top_level.clip_denoised, 

    ) 

    sample = ((sample + 1) * 127.5).clamp(0, 255).to(torch.uint8) 

    sample = sample.permute(0, 2, 3, 1).contiguous() 

    gathered_samples = [sample] 

    all_images.extend([sample.cpu().numpy() for sample in gathered_samples]) 

    print(f"created {len(all_images) * top_level.batch_size_image_generation} samples") 

 

arr = np.concatenate(all_images, axis=0) 

arr = arr[: top_level.num_samples] 

 

shape_str = "x".join([str(x) for x in arr.shape]) 

out_path = os.path.join(RESULTS_DIR, f"samples_{shape_str}.npz") 

 

np.savez(out_path, arr) 

print("image generation completed") 

 

# Visualization 

print("\n\nPutting together a collage of the generated images for display\n") 

print("\nFor the individual images, check the directory 'visualize_samples'\n\n") 

 

npz_archive = out_path 

data = np.load(npz_archive) 

 

for i, arr in enumerate(data['arr_0']): 

    img = Image.fromarray(arr) 
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    img = img.resize(IMAGE_DISPLAY_SIZE) 

    img.save(f"{VISUALIZATION_DIR}/test_{i}.jpg") 

 

if os.path.exists(VISUALIZATION_DIR): 

    im_tensor_all = torch.from_numpy(data['arr_0'][:64]).float() 

    im_tensor_all = torch.transpose(im_tensor_all, 1, 3) 

    im_tensor_all = torch.transpose(im_tensor_all, 2, 3) 

    plt.figure(figsize=(25, 15))    

    plt.imshow(np.transpose(torchvision.utils.make_grid(im_tensor_all, padding=2, 

pad_value=1, normalize=True).cpu(), (1, 2, 0))) 

    plt.title("Fake Images") 

    plt.savefig(VISUALIZATION_DIR +  "/fake_images.png") 

    plt.show() 

 

Parameters chosen for generation: 

Parameter Value Description 

model_channels 128 Base channel width of the network 

num_res_blocks 2 Number of residual blocks per level 

attention_resolutions (4, 8) Attention at specific resolution (64×64) 

channel_mult (1, 2, 3, 4) Channel scaling factors at different 
resolutions 

num_heads 1 Number of attention heads 

num_channels 128 Number of feature channels 

ema_rate 0.9999 EMA decay rate for model weights 

clip_denoised True Clip values after denoising 
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3. FID Score 
3.1 Display 4x4 (16 images) images Generated by GAN 

              

3.2 Display 4x4 (16 images) images Generated by Diffusion  
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The diffusion model images appear sharper, with more refined details. They are 
generally more realistic, with more natural skin textures, lighting, and symmetry. 
The GAN-generated faces sometimes have odd textures and distortions. The 
GAN-generated images have more visible artifacts (blurriness, unnatural blending, 
or strange textures), while diffusion models produce smoother and more natural 
results. GANs sometimes suffer from "mode collapse," generating similar-looking 
faces, whereas diffusion models tend to have a better distribution of facial 
diversity. 

3.3  +  3.4   GAN FID + Diffusion FID 

 

GAN demonstrates lower FID than diffusion model which implies GAN captures 
the distribution better than the latter. However, this doesn’t necessarily mean GAN 
images are better qualitatively from human perception. FID primarily measures 
statistical similarity between generated and real image distributions, not perceptual 
quality. Diffusion models, despite having higher FID, often produce images with 
finer details and fewer artifacts, which can appear more realistic or visually 
appealing to human observers. 

import os 

import torch 

import torchvision.transforms as transforms 

from PIL import Image 

from torch_fidelity import calculate_metrics 

 

def resize_images(folder_path, size=(64, 64)): 

    """Resizes all images in a folder to the specified size.""" 

    transform = transforms.Compose([ 

        transforms.Resize(size), 

        transforms.ToTensor() 

    ]) 

     

    for filename in os.listdir(folder_path): 

        img_path = os.path.join(folder_path, filename) 

        try: 

            with Image.open(img_path) as img: 

                img = img.convert("RGB") 
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                img_resized = transform(img) 

                img_resized = transforms.ToPILImage()(img_resized) 

                img_resized.save(img_path) 

        except Exception as e: 

            print(f"Error processing {img_path}: {e}") 

 

def compute_fid(real_images_path, fake_images_path): 

    metrics = calculate_metrics( 

        input1=real_images_path, 

        input2=fake_images_path, 

        fid=True,  # Compute FID 

        verbose=False 

    ) 

    return metrics['frechet_inception_distance'] 

 

if __name__ == "__main__": 

    real_images_folder = "./training_images" 

    diffusion_images_folder = "./diffusion_images" 

    gan_images_folder = "./gan_images" 

     

    # Resize diffusion images before computing FID 

    resize_images(diffusion_images_folder, size=(64, 64)) 

     

    fid_diffusion = compute_fid(real_images_folder, diffusion_images_folder) 

    fid_gan = compute_fid(real_images_folder, gan_images_folder) 

     

    print("+---------------------------+------------------+") 

    print("| Model                     | FID Score        |") 

    print("+---------------------------+------------------+") 

    print(f"| Diffusion                 | {fid_diffusion:.3f}           |") 

    print(f"| GAN                       | {fid_gan:.3f}           |") 

    print("+---------------------------+------------------+") 

 

4. Finetune GAN 

# Borrowed from Sushant Gautam (gan-beginner-tutorial-on-celeba-dataset) 

# Modified by me (Ayan Biswas Pranta) for this homework 

 

import torch 

import torch.nn as nn 

from torch.utils.data import DataLoader 
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from torchvision.utils import make_grid, save_image 

from torchvision.datasets import ImageFolder 

import torchvision.transforms as T 

import matplotlib.pyplot as plt 

from IPython.display import Image 

import cv2 

import os 

from tqdm.notebook import tqdm 

import torch.nn.functional as F 

import random 

 

 

# Update the training dataset directory for fine-tuning 

data_directory = './dataset_for_finetuning/' 

 

 

image_size = 64 

batch_size = 128 

mean_std_for_norm = (0.5, 0.5, 0.5), (0.5, 0.5, 0.5)  # mean, std for normalize images 

 

 

train_dataset = ImageFolder(root=data_directory, transform=T.Compose([ 

    T.Resize(image_size), 

    T.CenterCrop(image_size), 

    T.ToTensor(), 

    T.Normalize(*mean_std_for_norm) 

])) 

train_dataloader = DataLoader(train_dataset, batch_size, shuffle=True, num_workers=0, 

pin_memory=True) 

 

 

def denormalization(img_tensors): 

    return img_tensors * mean_std_for_norm[1][0] + mean_std_for_norm[0][0] 

 

 

def display_images(images, nmax=64): 

    fig, ax = plt.subplots(figsize=(8,8)) 

    ax.set_xticks([]); ax.set_yticks([]) 

    ax.imshow(make_grid(denormalization(images.detach()[:nmax]), nrow=8).permute(1, 2, 0)) 

 

 

def to_device(data, device): 
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    """Move tensor(s) to chosen device""" 

    if isinstance(data, (list, tuple)): 

        return [to_device(x, device) for x in data] 

    return data.to(device, non_blocking=True) 

 

 

class DeviceDataLoader(): 

    """Wrap a dataloader to move data to a device""" 

    def __init__(self, dl, device): 

        self.dl = dl 

        self.device = device 

         

    def __iter__(self): 

        """Yield a batch of data after moving it to device""" 

        for b in self.dl:  

            yield to_device(b, self.device) 

 

    def __len__(self): 

        """Number of batches""" 

        return len(self.dl) 

     

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') 

train_dataloader = DeviceDataLoader(train_dataloader, device) 

 

# Define the discriminator 

discriminator = nn.Sequential( 

    nn.Conv2d(3, 64, kernel_size=4, stride=2, padding=1, bias=False), 

    nn.BatchNorm2d(64), 

    nn.LeakyReLU(0.2, inplace=True), 

 

    nn.Conv2d(64, 128, kernel_size=4, stride=2, padding=1, bias=False), 

    nn.BatchNorm2d(128), 

    nn.LeakyReLU(0.2, inplace=True), 

 

    nn.Conv2d(128, 256, kernel_size=4, stride=2, padding=1, bias=False), 

    nn.BatchNorm2d(256), 

    nn.LeakyReLU(0.2, inplace=True), 

 

    nn.Conv2d(256, 512, kernel_size=4, stride=2, padding=1, bias=False), 

    nn.BatchNorm2d(512), 

    nn.LeakyReLU(0.2, inplace=True), 
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    nn.Conv2d(512, 1, kernel_size=4, stride=1, padding=0, bias=False), 

    nn.Flatten(), 

    nn.Sigmoid() 

) 

 

 

discriminator = to_device(discriminator, device) 

 

generator_input_size = 128 

 

# Define the generator 

generator = nn.Sequential( 

    nn.ConvTranspose2d(generator_input_size, 512, kernel_size=4, stride=1, padding=0, 

bias=False), 

    nn.BatchNorm2d(512), 

    nn.ReLU(True), 

 

    nn.ConvTranspose2d(512, 256, kernel_size=4, stride=2, padding=1, bias=False), 

    nn.BatchNorm2d(256), 

    nn.ReLU(True), 

 

    nn.ConvTranspose2d(256, 128, kernel_size=4, stride=2, padding=1, bias=False), 

    nn.BatchNorm2d(128), 

    nn.ReLU(True), 

 

    nn.ConvTranspose2d(128, 64, kernel_size=4, stride=2, padding=1, bias=False), 

    nn.BatchNorm2d(64), 

    nn.ReLU(True), 

 

    nn.ConvTranspose2d(64, 3, kernel_size=4, stride=2, padding=1, bias=False), 

    nn.Tanh() 

) 

generator = to_device(generator, device) 

 

 

# Load the pre-trained model checkpoints 

discriminator.load_state_dict(torch.load('Discriminator_saved_model.pth')) 

generator.load_state_dict(torch.load('Generator_saved_model.pth'))  

 

 

def train_discriminator(real_images, opt_d): 

    opt_d.zero_grad() 
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    real_preds = discriminator(real_images) 

    real_targets = torch.ones(real_images.size(0), 1, device=device) 

    real_loss = F.binary_cross_entropy(real_preds, real_targets) 

     

    starter_noise_for_training = torch.randn(batch_size, generator_input_size, 1, 1, 

device=device) 

    fake_images = generator(starter_noise_for_training) 

    fake_targets = torch.zeros(fake_images.size(0), 1, device=device) 

    fake_preds = discriminator(fake_images) 

    fake_loss = F.binary_cross_entropy(fake_preds, fake_targets) 

     

    loss = real_loss + fake_loss 

    loss.backward() 

    opt_d.step() 

    return loss.item() 

 

 

def train_generator(opt_g): 

    opt_g.zero_grad() 

    starter_noise = torch.randn(batch_size, generator_input_size, 1, 1, device=device) 

    fake_images = generator(starter_noise) 

    preds = discriminator(fake_images) 

    targets = torch.ones(batch_size, 1, device=device) 

    loss = F.binary_cross_entropy(preds, targets) 

    loss.backward() 

    opt_g.step() 

    return loss.item() 

 

 

# Directory to store checkpoints and losses plot 

sample_dir = 'generated' 

os.makedirs(sample_dir, exist_ok=True) 

 

 

# Modify the training function to use 50 epochs 

def main_training(epochs, lr): 

    torch.cuda.empty_cache() 

    losses_generator = [] 

    losses_discriminator = [] 

    optimizer_discriminator = torch.optim.Adam(discriminator.parameters(), lr=lr, 

betas=(0.5, 0.999)) 

    optimizer_generator = torch.optim.Adam(generator.parameters(), lr=lr, betas=(0.5, 
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0.999)) 

 

    for epoch in range(epochs): 

        for real_images, _ in tqdm(train_dataloader, disable=True): 

            loss_discriminator = train_discriminator(real_images, optimizer_discriminator) 

            loss_generator = train_generator(optimizer_generator) 

        losses_generator.append(loss_generator) 

        losses_discriminator.append(loss_discriminator) 

        print("Epoch {}/{}, Generator Loss: {:.4f}, Discriminator Loss: {:.4f}".format( 

            epoch+1, epochs, loss_generator, loss_discriminator)) 

 

    return losses_generator, losses_discriminator 

 

# Hyperparameters: set learning rate and 50 epochs for fine-tuning 

lr = 0.00025 

epochs = 50 

 

losses_generator, losses_discriminator = main_training(epochs, lr) 

 

# Save the fine-tuned model checkpoints  

torch.save(generator.state_dict(), 'generated_saved_model_finetuned.pth') 

torch.save(discriminator.state_dict(), 'discriminator_saved_model_finetuned.pth') 

 

plt.figure(figsize=(12,6)) 

plt.plot(losses_discriminator, '-') 

plt.plot(losses_generator, '-') 

plt.xlabel('Epoch') 

plt.ylabel('Loss') 

plt.legend(['Discriminator', 'Generator']) 

plt.title('Losses') 

plt.savefig('losses_plot_finetuning.png') 

plt.show() 

 

 

# ------------------------------- 

# Final image generation: generate 1024 images 

# ------------------------------- 

 

final_dir = 'generated_finetuned' 

os.makedirs(final_dir, exist_ok=True) 

 

final_noise = torch.randn(1024, generator_input_size, 1, 1, device=device) 
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final_images = generator(final_noise) 

final_images = denormalization(final_images) 

 

for i in range(final_images.shape[0]): 

    filename = os.path.join(final_dir, f"generated_image_{i:04d}.png") 

    save_image(final_images[i], filename) 

 

 

# Select 16 random images from the 1024 generated images 

random_images = random.sample(range(1024), 16) 

selected_images = torch.stack([final_images[i] for i in random_images])  # Convert list to 

tensor 

selected_images = selected_images.cpu()  # Move to CPU if necessary 

 

 

# Create a 4x4 grid of images 

plt.figure(figsize=(8, 8)) 

plt.axis("off") 

plt.imshow(make_grid(selected_images, nrow=4).permute(1, 2, 0).cpu().numpy())  # Ensure 

numpy conversion 

plt.title("Randomly Selected 4x4 Generated Images") 

plt.show() 

 

 

4.1 Training curves 
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After resuming training from where it ended for GAN, it didn’t improve 
anymore. Discriminator is very dominant with very low loss where generator is 
having a hard time fooling the discriminator. This can happen for two reasons: 

1. The number of diffusion generated images (which are used as training 
data for fine-tuning) is only 1024, where original GAN was trained with 
10000 training samples. 

2. Diffusion generated images are fake, they aren’t as good as celebA 
dataset.  

4.2 Visual observations of Fine-tuned GAN against GAN 

From my Qualitative observation, originally trained GAN looks better than fine-
tuned GAN. My assumption is, diffusion generated images aren’t good as 
training data because at the end of the day they are fake, they aren’t better 
training sample than the original celebrity images (celebA dataset). Therefore, 
with further training with diffusion generated images, the result of fine-tuned 
GAN gets worse. 

4.3 Visual observations of Fine-tuned GAN against Diffusion 

Diffusion generated images are far better than fine-tuned GAN. The Fine-tuned 
GAN-generated faces have odd textures and distortions. They have more 
visible artifacts (blurriness, unnatural blending, or strange textures), sometimes 
suffer from "mode collapse," generating similar-looking faces. On the other 
hand, the diffusion model images appear sharper, with more refined details. 
They are generally more realistic, with more natural skin textures, lighting, and 
symmetry. 

4.4 Display 4x4 (16 images) images generated by finetuned GAN 
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5. Bonus 
5.1 Late 

The homework is submitted before the deadline. 

 


