
1

Homework 9 - Deep Learning (ECE 60146)

 Ayan Biswas Pranta

PUID 037714249

April 07, 2025

Introduction

In this homework, two generative models—Generative Adversarial Networks (GANs)
and Diffusion Models—are explored and compared. Both models are used to
generate images, which are then analyzed both qualitatively and quantitatively. The
generated images are evaluated in terms of visual quality, diversity, and fidelity.
Following this, the GAN model is fine-tuned using images produced by the Diffusion
model.

1. GAN
1.1 Model

Generative Adversarial Network (GAN) generate images from noise with model that
gets matured through training. The model consists of two neural networks:

• Generator: The network that converts a noise vector into an image.

The generator takes in random noise as input and applies transpose convolutions

to upsample it into a full-sized image. Each Transpose Convolution layer in the

generator follows this pattern to progressively increase the feature map size. Batch

Normalization and ReLU activations refine details. The last layer uses tanh

activation to scale pixel values to [-1,1], suitable for image data. The discriminator

takes an image (real or generated) and outputs a probability of it being real.

Input: Random noise vector (latent space)

 Dense Layer: Fully connected, projecting to a higher-dimensional space

Reshape Layer: Reshapes to a spatial structure (e.g., 4×4×512)

Transposed Convolutions:

 ConvTranspose2D (512 → 256) + BatchNorm + ReLU

 ConvTranspose2D (256 → 128) + BatchNorm + ReLU

2

 ConvTranspose2D (128 → 64) + BatchNorm + ReLU

 ConvTranspose2D (64 → 3) + Tanh (Output Image)

• Discriminator: The network that classifies images as real or fake.

Input: Generated or real image (e.g., 64×64×3)

Convolutions:

Conv2D (3 → 64) + LeakyReLU

Conv2D (64 → 128) + BatchNorm + LeakyReLU

Conv2D (128 → 256) + BatchNorm + LeakyReLU

Conv2D (256 → 512) + BatchNorm + LeakyReLU

Flatten + Dense Layer: Outputs probability (Real/Fake) using a Sigmoid function.

Borrowed from Sushant Gautam (gan-beginner-tutorial-on-celeba-dataset)

Modified by me (Ayan Biswas Pranta) for this homework

import torch

import torch.nn as nn

from torch.utils.data import DataLoader

from torchvision.utils import make_grid, save_image

from torchvision.datasets import ImageFolder

import torchvision.transforms as T

import matplotlib.pyplot as plt

from IPython.display import Image

import cv2

import os

from tqdm.notebook import tqdm

import torch.nn.functional as F

data_directory = './celeba_dataset_64x64_100k/'

image_size = 64

batch_size = 128

mean_std_for_norm = (0.5, 0.5, 0.5), (0.5, 0.5, 0.5) # mean, std for normalize

images

3

train_dataset = ImageFolder(root=data_directory, transform=T.Compose([

 T.Resize(image_size),

 T.CenterCrop(image_size),

 T.ToTensor(),

 T.Normalize(*mean_std_for_norm)

]))

train_dataloader = DataLoader(train_dataset, batch_size, shuffle=True,

num_workers=0, pin_memory=True)

def denormalization(img_tensors):

 return img_tensors * mean_std_for_norm[1][0] + mean_std_for_norm[0][0]

def display_images(images, nmax=64):

 fig, ax = plt.subplots(figsize=(8,8))

 ax.set_xticks([]); ax.set_yticks([])

 ax.imshow(make_grid(denormalization(images.detach()[:nmax]), nrow=8).permute(1,

2, 0))

def to_device(data, device):

 """Move tensor(s) to chosen device"""

 if isinstance(data, (list, tuple)):

 return [to_device(x, device) for x in data]

 return data.to(device, non_blocking=True)

class DeviceDataLoader():

 """Wrap a dataloader to move data to a device"""

 def __init__(self, dl, device):

 self.dl = dl

 self.device = device

 def __iter__(self):

 """Yield a batch of data after moving it to device"""

 for b in self.dl:

 yield to_device(b, self.device)

 def __len__(self):

 """Number of batches"""

 return len(self.dl)

device = torch.device('cuda')

train_dataloader = DeviceDataLoader(train_dataloader, device)

4

discriminator = nn.Sequential(

 # in: 3x 64 x 64

 nn.Conv2d(3, 64, kernel_size=4, stride=2, padding=1, bias=False),

 nn.BatchNorm2d(64),

 nn.LeakyReLU(0.2, inplace=True),

 # out: 64 x 32 x 32

 nn.Conv2d(64, 128, kernel_size=4, stride=2, padding=1, bias=False),

 nn.BatchNorm2d(128),

 nn.LeakyReLU(0.2, inplace=True),

 # out: 128 x 16 x 16

 nn.Conv2d(128, 256, kernel_size=4, stride=2, padding=1, bias=False),

 nn.BatchNorm2d(256),

 nn.LeakyReLU(0.2, inplace=True),

 # out: 256 x 8 x 8

 nn.Conv2d(256, 512, kernel_size=4, stride=2, padding=1, bias=False),

 nn.BatchNorm2d(512),

 nn.LeakyReLU(0.2, inplace=True),

 # out: 512 x 4 x 4

 nn.Conv2d(512, 1, kernel_size=4, stride=1, padding=0, bias=False),

 # out: 1 x 1 x 1

 nn.Flatten(),

 nn.Sigmoid()

)

discriminator = to_device(discriminator, device)

generator_input_size = 128

generator = nn.Sequential(

 # in: noise_size x 1 x 1

 nn.ConvTranspose2d(generator_input_size, 512, kernel_size=4, stride=1,

padding=0, bias=False),

 nn.BatchNorm2d(512),

 nn.ReLU(True),

5

 # out: 512 x 4 x 4

 nn.ConvTranspose2d(512, 256, kernel_size=4, stride=2, padding=1, bias=False),

 nn.BatchNorm2d(256),

 nn.ReLU(True),

 # out: 256 x 8 x 8

 nn.ConvTranspose2d(256, 128, kernel_size=4, stride=2, padding=1, bias=False),

 nn.BatchNorm2d(128),

 nn.ReLU(True),

 # out: 128 x 16 x 16

 nn.ConvTranspose2d(128, 64, kernel_size=4, stride=2, padding=1, bias=False),

 nn.BatchNorm2d(64),

 nn.ReLU(True),

 # out: 64 x 32 x 32

 nn.ConvTranspose2d(64, 3, kernel_size=4, stride=2, padding=1, bias=False),

 nn.Tanh() # output is between -1 to 1

 # out: 3 x 64 x 64

)

generator = to_device(generator, device) # move generator to device

def train_discriminator(real_images, opt_d):

 opt_d.zero_grad()

 real_preds = discriminator(real_images)

 real_targets = torch.ones(real_images.size(0), 1, device=device)

 real_loss = F.binary_cross_entropy(real_preds, real_targets)

 starter_noise_for_training = torch.randn(batch_size, generator_input_size, 1, 1,

device=device)

 fake_images = generator(starter_noise_for_training)

 fake_targets = torch.zeros(fake_images.size(0), 1, device=device)

 fake_preds = discriminator(fake_images)

 fake_loss = F.binary_cross_entropy(fake_preds, fake_targets)

 loss = real_loss + fake_loss

 loss.backward()

 opt_d.step()

 return loss.item()

6

def train_generator(opt_g):

 opt_g.zero_grad()

 starter_noise = torch.randn(batch_size, generator_input_size, 1, 1,

device=device)

 fake_images = generator(starter_noise)

 preds = discriminator(fake_images)

 targets = torch.ones(batch_size, 1, device=device)

 loss = F.binary_cross_entropy(preds, targets)

 loss.backward()

 opt_g.step()

 return loss.item()

Directory to store checkpoints and losses plot

sample_dir = 'generated'

os.makedirs(sample_dir, exist_ok=True)

Removed the per-epoch image saving function call

def main_training(epochs, lr):

 torch.cuda.empty_cache()

 losses_generator = []

 losses_discriminator = []

 optimizer_discriminator = torch.optim.Adam(discriminator.parameters(), lr=lr,

betas=(0.5, 0.999))

 optimizer_generator = torch.optim.Adam(generator.parameters(), lr=lr,

betas=(0.5, 0.999))

 for epoch in range(epochs):

 for real_images, _ in tqdm(train_dataloader, disable=True):

 loss_discriminator = train_discriminator(real_images,

optimizer_discriminator)

 loss_generator = train_generator(optimizer_generator)

 losses_generator.append(loss_generator)

 losses_discriminator.append(loss_discriminator)

 print("Epoch {}/{}, Generator Loss: {:.4f}, Discriminator Loss:

{:.4f}".format(

 epoch+1, epochs, loss_generator, loss_discriminator))

 return losses_generator, losses_discriminator

Hyperparameters

lr = 0.00025

7

epochs = 100

losses_generator, losses_discriminator = main_training(epochs, lr)

Save the model checkpoints

torch.save(generator.state_dict(), 'Generator_saved_model.pth')

torch.save(discriminator.state_dict(), 'Discriminator_saved_model.pth')

plt.figure(figsize=(12,6))

plt.plot(losses_discriminator, '-')

plt.plot(losses_generator, '-')

plt.xlabel('Epoch')

plt.ylabel('Loss')

plt.legend(['Discriminator', 'Generator'])

plt.title('Losses')

plt.savefig('losses_plot.png')

plt.show()

Final image generation: generate 1024 images

Create a new directory for final generated images

final_dir = 'generated'

os.makedirs(final_dir, exist_ok=True)

Generate 1024 noise samples

final_noise = torch.randn(1024, generator_input_size, 1, 1, device=device)

Generate 1024 images

final_images = generator(final_noise)

final_images = denormalization(final_images)

Save each image in a separate file

for i in range(final_images.shape[0]):

 # Each image is of shape [3, 64, 64]

 filename = os.path.join(final_dir, f"generated_image_{i:04d}.png")

 save_image(final_images[i], filename)

8

1.2 Training Curve

The generator training curve isn’t converging because discriminator is
overpowering generator. If the discriminator is too strong, the generator struggles
to improve but may still generate some passable samples. One trick is to train
generator more than discriminator, i.e. Instead of the usual 1:1 training ratio,
updating the generator 15-20 times before updating the discriminator. This allows
the generator to catch up and learn meaningful updates before the discriminator
gets too strong.

As GAN generated images are satisfactory in this homework (section 3.1), I didn’t
change the training ratio.

2. Diffusion
2.1 Generate Images

modified the given code for generation by diffusion

Original code is given by Kak/ instructors of ECE 60146

I modified it so that diffusion.pt can be loaded and

visualized in the same code

import os

import numpy as np

import torch

import torchvision

import matplotlib.pyplot as plt

9

import glob

from PIL import Image

from GenerativeDiffusion import *

Default model path

MODEL_PATH = "diffusion.pt"

RESULTS_DIR = "RESULTS_1024"

VISUALIZATION_DIR = "visualize_samples_1024"

IMAGE_DISPLAY_SIZE = (256, 256)

Ensure necessary directories exist

os.makedirs(RESULTS_DIR, exist_ok=True)

os.makedirs(VISUALIZATION_DIR, exist_ok=True)

gauss_diffusion = GaussianDiffusion(

 num_diffusion_timesteps=1000,

)

network = UNetModel(

 in_channels=3,

 model_channels=128,

 out_channels=3,

 num_res_blocks=2,

 attention_resolutions=(4, 8), # for 64x64 images

 channel_mult=(1, 2, 3, 4), # for 64x64 images

 num_heads=1,

 attention=True # Must be the same as for RunCodeForDiffusion.py

)

top_level = GenerativeDiffusion(

 gen_new_images=True,

 image_size=64,

 num_channels=128,

 ema_rate=0.9999,

 diffusion=gauss_diffusion,

 network=network,

 ngpu=1,

 path_saved_model=RESULTS_DIR,

 clip_denoised=True,

 num_samples=1024,

 batch_size_image_generation=8,

)

10

Load the model

print(f"Loading model from {MODEL_PATH}...")

network.load_state_dict(torch.load(MODEL_PATH))

network.to(top_level.device)

network.eval()

print("sampling...")

all_images = []

while len(all_images) * top_level.batch_size_image_generation < top_level.num_samples:

 sample = gauss_diffusion.p_sampler_for_image_generation(

 network,

 (top_level.batch_size_image_generation, 3, top_level.image_size,

top_level.image_size),

 device=top_level.device,

 clip_denoised=top_level.clip_denoised,

)

 sample = ((sample + 1) * 127.5).clamp(0, 255).to(torch.uint8)

 sample = sample.permute(0, 2, 3, 1).contiguous()

 gathered_samples = [sample]

 all_images.extend([sample.cpu().numpy() for sample in gathered_samples])

 print(f"created {len(all_images) * top_level.batch_size_image_generation} samples")

arr = np.concatenate(all_images, axis=0)

arr = arr[: top_level.num_samples]

shape_str = "x".join([str(x) for x in arr.shape])

out_path = os.path.join(RESULTS_DIR, f"samples_{shape_str}.npz")

np.savez(out_path, arr)

print("image generation completed")

Visualization

print("\n\nPutting together a collage of the generated images for display\n")

print("\nFor the individual images, check the directory 'visualize_samples'\n\n")

npz_archive = out_path

data = np.load(npz_archive)

for i, arr in enumerate(data['arr_0']):

 img = Image.fromarray(arr)

11

 img = img.resize(IMAGE_DISPLAY_SIZE)

 img.save(f"{VISUALIZATION_DIR}/test_{i}.jpg")

if os.path.exists(VISUALIZATION_DIR):

 im_tensor_all = torch.from_numpy(data['arr_0'][:64]).float()

 im_tensor_all = torch.transpose(im_tensor_all, 1, 3)

 im_tensor_all = torch.transpose(im_tensor_all, 2, 3)

 plt.figure(figsize=(25, 15))

 plt.imshow(np.transpose(torchvision.utils.make_grid(im_tensor_all, padding=2,

pad_value=1, normalize=True).cpu(), (1, 2, 0)))

 plt.title("Fake Images")

 plt.savefig(VISUALIZATION_DIR + "/fake_images.png")

 plt.show()

Parameters chosen for generation:

Parameter Value Description

model_channels 128 Base channel width of the network

num_res_blocks 2 Number of residual blocks per level

attention_resolutions (4, 8) Attention at specific resolution (64×64)

channel_mult (1, 2, 3, 4) Channel scaling factors at different
resolutions

num_heads 1 Number of attention heads

num_channels 128 Number of feature channels

ema_rate 0.9999 EMA decay rate for model weights

clip_denoised True Clip values after denoising

12

3. FID Score
3.1 Display 4x4 (16 images) images Generated by GAN

3.2 Display 4x4 (16 images) images Generated by Diffusion

13

The diffusion model images appear sharper, with more refined details. They are
generally more realistic, with more natural skin textures, lighting, and symmetry.
The GAN-generated faces sometimes have odd textures and distortions. The
GAN-generated images have more visible artifacts (blurriness, unnatural blending,
or strange textures), while diffusion models produce smoother and more natural
results. GANs sometimes suffer from "mode collapse," generating similar-looking
faces, whereas diffusion models tend to have a better distribution of facial
diversity.

3.3 + 3.4 GAN FID + Diffusion FID

GAN demonstrates lower FID than diffusion model which implies GAN captures
the distribution better than the latter. However, this doesn’t necessarily mean GAN
images are better qualitatively from human perception. FID primarily measures
statistical similarity between generated and real image distributions, not perceptual
quality. Diffusion models, despite having higher FID, often produce images with
finer details and fewer artifacts, which can appear more realistic or visually
appealing to human observers.

import os

import torch

import torchvision.transforms as transforms

from PIL import Image

from torch_fidelity import calculate_metrics

def resize_images(folder_path, size=(64, 64)):

 """Resizes all images in a folder to the specified size."""

 transform = transforms.Compose([

 transforms.Resize(size),

 transforms.ToTensor()

])

 for filename in os.listdir(folder_path):

 img_path = os.path.join(folder_path, filename)

 try:

 with Image.open(img_path) as img:

 img = img.convert("RGB")

14

 img_resized = transform(img)

 img_resized = transforms.ToPILImage()(img_resized)

 img_resized.save(img_path)

 except Exception as e:

 print(f"Error processing {img_path}: {e}")

def compute_fid(real_images_path, fake_images_path):

 metrics = calculate_metrics(

 input1=real_images_path,

 input2=fake_images_path,

 fid=True, # Compute FID

 verbose=False

)

 return metrics['frechet_inception_distance']

if __name__ == "__main__":

 real_images_folder = "./training_images"

 diffusion_images_folder = "./diffusion_images"

 gan_images_folder = "./gan_images"

 # Resize diffusion images before computing FID

 resize_images(diffusion_images_folder, size=(64, 64))

 fid_diffusion = compute_fid(real_images_folder, diffusion_images_folder)

 fid_gan = compute_fid(real_images_folder, gan_images_folder)

 print("+---------------------------+------------------+")

 print("| Model | FID Score |")

 print("+---------------------------+------------------+")

 print(f"| Diffusion | {fid_diffusion:.3f} |")

 print(f"| GAN | {fid_gan:.3f} |")

 print("+---------------------------+------------------+")

4. Finetune GAN

Borrowed from Sushant Gautam (gan-beginner-tutorial-on-celeba-dataset)

Modified by me (Ayan Biswas Pranta) for this homework

import torch

import torch.nn as nn

from torch.utils.data import DataLoader

15

from torchvision.utils import make_grid, save_image

from torchvision.datasets import ImageFolder

import torchvision.transforms as T

import matplotlib.pyplot as plt

from IPython.display import Image

import cv2

import os

from tqdm.notebook import tqdm

import torch.nn.functional as F

import random

Update the training dataset directory for fine-tuning

data_directory = './dataset_for_finetuning/'

image_size = 64

batch_size = 128

mean_std_for_norm = (0.5, 0.5, 0.5), (0.5, 0.5, 0.5) # mean, std for normalize images

train_dataset = ImageFolder(root=data_directory, transform=T.Compose([

 T.Resize(image_size),

 T.CenterCrop(image_size),

 T.ToTensor(),

 T.Normalize(*mean_std_for_norm)

]))

train_dataloader = DataLoader(train_dataset, batch_size, shuffle=True, num_workers=0,

pin_memory=True)

def denormalization(img_tensors):

 return img_tensors * mean_std_for_norm[1][0] + mean_std_for_norm[0][0]

def display_images(images, nmax=64):

 fig, ax = plt.subplots(figsize=(8,8))

 ax.set_xticks([]); ax.set_yticks([])

 ax.imshow(make_grid(denormalization(images.detach()[:nmax]), nrow=8).permute(1, 2, 0))

def to_device(data, device):

16

 """Move tensor(s) to chosen device"""

 if isinstance(data, (list, tuple)):

 return [to_device(x, device) for x in data]

 return data.to(device, non_blocking=True)

class DeviceDataLoader():

 """Wrap a dataloader to move data to a device"""

 def __init__(self, dl, device):

 self.dl = dl

 self.device = device

 def __iter__(self):

 """Yield a batch of data after moving it to device"""

 for b in self.dl:

 yield to_device(b, self.device)

 def __len__(self):

 """Number of batches"""

 return len(self.dl)

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

train_dataloader = DeviceDataLoader(train_dataloader, device)

Define the discriminator

discriminator = nn.Sequential(

 nn.Conv2d(3, 64, kernel_size=4, stride=2, padding=1, bias=False),

 nn.BatchNorm2d(64),

 nn.LeakyReLU(0.2, inplace=True),

 nn.Conv2d(64, 128, kernel_size=4, stride=2, padding=1, bias=False),

 nn.BatchNorm2d(128),

 nn.LeakyReLU(0.2, inplace=True),

 nn.Conv2d(128, 256, kernel_size=4, stride=2, padding=1, bias=False),

 nn.BatchNorm2d(256),

 nn.LeakyReLU(0.2, inplace=True),

 nn.Conv2d(256, 512, kernel_size=4, stride=2, padding=1, bias=False),

 nn.BatchNorm2d(512),

 nn.LeakyReLU(0.2, inplace=True),

17

 nn.Conv2d(512, 1, kernel_size=4, stride=1, padding=0, bias=False),

 nn.Flatten(),

 nn.Sigmoid()

)

discriminator = to_device(discriminator, device)

generator_input_size = 128

Define the generator

generator = nn.Sequential(

 nn.ConvTranspose2d(generator_input_size, 512, kernel_size=4, stride=1, padding=0,

bias=False),

 nn.BatchNorm2d(512),

 nn.ReLU(True),

 nn.ConvTranspose2d(512, 256, kernel_size=4, stride=2, padding=1, bias=False),

 nn.BatchNorm2d(256),

 nn.ReLU(True),

 nn.ConvTranspose2d(256, 128, kernel_size=4, stride=2, padding=1, bias=False),

 nn.BatchNorm2d(128),

 nn.ReLU(True),

 nn.ConvTranspose2d(128, 64, kernel_size=4, stride=2, padding=1, bias=False),

 nn.BatchNorm2d(64),

 nn.ReLU(True),

 nn.ConvTranspose2d(64, 3, kernel_size=4, stride=2, padding=1, bias=False),

 nn.Tanh()

)

generator = to_device(generator, device)

Load the pre-trained model checkpoints

discriminator.load_state_dict(torch.load('Discriminator_saved_model.pth'))

generator.load_state_dict(torch.load('Generator_saved_model.pth'))

def train_discriminator(real_images, opt_d):

 opt_d.zero_grad()

18

 real_preds = discriminator(real_images)

 real_targets = torch.ones(real_images.size(0), 1, device=device)

 real_loss = F.binary_cross_entropy(real_preds, real_targets)

 starter_noise_for_training = torch.randn(batch_size, generator_input_size, 1, 1,

device=device)

 fake_images = generator(starter_noise_for_training)

 fake_targets = torch.zeros(fake_images.size(0), 1, device=device)

 fake_preds = discriminator(fake_images)

 fake_loss = F.binary_cross_entropy(fake_preds, fake_targets)

 loss = real_loss + fake_loss

 loss.backward()

 opt_d.step()

 return loss.item()

def train_generator(opt_g):

 opt_g.zero_grad()

 starter_noise = torch.randn(batch_size, generator_input_size, 1, 1, device=device)

 fake_images = generator(starter_noise)

 preds = discriminator(fake_images)

 targets = torch.ones(batch_size, 1, device=device)

 loss = F.binary_cross_entropy(preds, targets)

 loss.backward()

 opt_g.step()

 return loss.item()

Directory to store checkpoints and losses plot

sample_dir = 'generated'

os.makedirs(sample_dir, exist_ok=True)

Modify the training function to use 50 epochs

def main_training(epochs, lr):

 torch.cuda.empty_cache()

 losses_generator = []

 losses_discriminator = []

 optimizer_discriminator = torch.optim.Adam(discriminator.parameters(), lr=lr,

betas=(0.5, 0.999))

 optimizer_generator = torch.optim.Adam(generator.parameters(), lr=lr, betas=(0.5,

19

0.999))

 for epoch in range(epochs):

 for real_images, _ in tqdm(train_dataloader, disable=True):

 loss_discriminator = train_discriminator(real_images, optimizer_discriminator)

 loss_generator = train_generator(optimizer_generator)

 losses_generator.append(loss_generator)

 losses_discriminator.append(loss_discriminator)

 print("Epoch {}/{}, Generator Loss: {:.4f}, Discriminator Loss: {:.4f}".format(

 epoch+1, epochs, loss_generator, loss_discriminator))

 return losses_generator, losses_discriminator

Hyperparameters: set learning rate and 50 epochs for fine-tuning

lr = 0.00025

epochs = 50

losses_generator, losses_discriminator = main_training(epochs, lr)

Save the fine-tuned model checkpoints

torch.save(generator.state_dict(), 'generated_saved_model_finetuned.pth')

torch.save(discriminator.state_dict(), 'discriminator_saved_model_finetuned.pth')

plt.figure(figsize=(12,6))

plt.plot(losses_discriminator, '-')

plt.plot(losses_generator, '-')

plt.xlabel('Epoch')

plt.ylabel('Loss')

plt.legend(['Discriminator', 'Generator'])

plt.title('Losses')

plt.savefig('losses_plot_finetuning.png')

plt.show()

Final image generation: generate 1024 images

final_dir = 'generated_finetuned'

os.makedirs(final_dir, exist_ok=True)

final_noise = torch.randn(1024, generator_input_size, 1, 1, device=device)

20

final_images = generator(final_noise)

final_images = denormalization(final_images)

for i in range(final_images.shape[0]):

 filename = os.path.join(final_dir, f"generated_image_{i:04d}.png")

 save_image(final_images[i], filename)

Select 16 random images from the 1024 generated images

random_images = random.sample(range(1024), 16)

selected_images = torch.stack([final_images[i] for i in random_images]) # Convert list to

tensor

selected_images = selected_images.cpu() # Move to CPU if necessary

Create a 4x4 grid of images

plt.figure(figsize=(8, 8))

plt.axis("off")

plt.imshow(make_grid(selected_images, nrow=4).permute(1, 2, 0).cpu().numpy()) # Ensure

numpy conversion

plt.title("Randomly Selected 4x4 Generated Images")

plt.show()

4.1 Training curves

21

After resuming training from where it ended for GAN, it didn’t improve
anymore. Discriminator is very dominant with very low loss where generator is
having a hard time fooling the discriminator. This can happen for two reasons:

1. The number of diffusion generated images (which are used as training
data for fine-tuning) is only 1024, where original GAN was trained with
10000 training samples.

2. Diffusion generated images are fake, they aren’t as good as celebA
dataset.

4.2 Visual observations of Fine-tuned GAN against GAN

From my Qualitative observation, originally trained GAN looks better than fine-
tuned GAN. My assumption is, diffusion generated images aren’t good as
training data because at the end of the day they are fake, they aren’t better
training sample than the original celebrity images (celebA dataset). Therefore,
with further training with diffusion generated images, the result of fine-tuned
GAN gets worse.

4.3 Visual observations of Fine-tuned GAN against Diffusion

Diffusion generated images are far better than fine-tuned GAN. The Fine-tuned
GAN-generated faces have odd textures and distortions. They have more
visible artifacts (blurriness, unnatural blending, or strange textures), sometimes
suffer from "mode collapse," generating similar-looking faces. On the other
hand, the diffusion model images appear sharper, with more refined details.
They are generally more realistic, with more natural skin textures, lighting, and
symmetry.

4.4 Display 4x4 (16 images) images generated by finetuned GAN

22

5. Bonus
5.1 Late

The homework is submitted before the deadline.

