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1 ASPP Model

For this assignment I have updated mUnet in DLStudio by adding ASPP to it. mUnet has an encoder/decoder architecture.
The encoder is responsible for taking the input image and converting it into a smaller more abstract representation. The decoder
on the other hand is responsible for taking this abstract, smaller representation and mapping it back to the pixel level. The
encoder in this model uses regular convolutions to reduce the size of the input. The decoder then uses transpose convolutions
to increase the resolution of the encoded data. The enlargement is done gradually using multiple transpose convolutions. The
encoder and decoders both use skipblocks in their architecture. This model also had skip connections between the corresponding
levels of abstraction in the encoder and decoder. These skip connections are crucial to the models ability to carry out semantic
segmentation. In this model as data passes through the multiple layers of the encoder, a portion of it is saved and then
reintroduced as it goes through the decoder. This model uses MSE loss as the loss function.

To modify mUnet I added a 1x1 convolution and 3 Atrous convolutions at the end of the encoder. The output of these 4
convolutions is then concatenated together and passed into another 1x1 convolution that outputs a 128 channel output. Adding
this ASPP essentially helps the model better understand both the fine details and the broader spatial features in an image.
This makes the model better at identifying objects of varied sizes. The Atrous convolutions are responsible for ”seeing” a bigger
context of the image. The larger the dialation, the larger the context. The 1x1 convolution is responsible for retaining the finer
details. Finally, the last 1x1 convolution is used to merge all the results together.

The code modifications I made can be seen below along with the model outputs.

1 |class mUNet (nn.Module):

def __init__(self, skip_connections=True, depth=16):
3 super (DLStudio.SemanticSegmentation.mUNet, self).
1 self .depth = depth // 2

5 self.conv_in = nn.Conv2d(3, 64, 3, padding=1)

6 ## For the DN arm of the U:

7 self .bnlDN = nn.BatchNorm2d (64)

8 self .bn2DN = nn.BatchNorm2d (128)

9 self.skip64DN_arr = nn.Modulelist ()

10 for i in range(self.depth):

11 self .skip64DN_arr.append (DLStudio.SemanticSegmentation.
SkipBlockDN (64, 64, skip_connections=skip_connections))

12 self .skip64dsDN = DLStudio.SemanticSegmentation.SkipBlockDN(64, 64,
downsample=True, skip_connections=skip_connections)

13 self.skip64to128DN = DLStudio.SemanticSegmentation.SkipBlockDN (64,
128, skip_connections=skip_connections )

14 self.skip128DN_arr = nn.ModulelList ()

15 for i in range(self.depth):

16 self .skip128DN_arr.append (DLStudio.SemanticSegmentation.
SkipBlockDN (128, 128, skip_connections=skip_connections))
17 self .skip128dsDN = DLStudio.SemanticSegmentation.SkipBlockDN
(128,128, downsample=True, skip_connections=skip_connections)
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18 ## For the UP arm of the U:
19 self .bnlUP = nn.BatchNorm2d(128)
20 self .bn2UP = nn.BatchNorm2d (64)

21 self .skip64UP_arr = nn.ModulelList ()

22 for i in range(self.depth):

23 self .skip64UP_arr.append (DLStudio.SemanticSegmentation.
SkipBlockUP (64, 64, skip_connections=skip_connections))

24 self .skip64usUP = DLStudio.SemanticSegmentation.SkipBlockUP (64, 64,
upsample=True, skip_connections=skip_connections)
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self.skipl128to64UP = DLStudio.SemanticSegmentation.SkipBlockUP (128,
64, skip_connections=skip_connections )

self .skip128UP_arr = nn.ModulelList ()

for i in range(self.depth):
self .skip128UP_arr.append (DLStudio.SemanticSegmentation.

SkipBlockUP (128, 128, skip_connections=skip_connections))

self .skip128usUP = DLStudio.SemanticSegmentation.SkipBlockUP
(128,128, upsample=True, skip_connections=skip_connections)

self.conv_out = nn.ConvIranspose2d (64, 3, 3, stride=2,dilation=2,
output_padding=1,padding=2)

### MODIFICATION START

self.conv_i = nn.Conv2d (128, 128, kernel_size=1)

self.al = nn.Conv2d (128, 128, kermnel_size=3, padding=2, dilation=2)
self.a2 = nn.Conv2d (128, 128, kernel_size=3, padding=4, dilation=4)
self.a3 nn.Conv2d (128, 128, kernel_size=3, padding=6, dilation=6)
self.conv_1 = nn.Conv2d (128*4, 128, kernel_size=1)

### MODIFICATION END

forward (self, x):

## Going down to the bottom of the U:

x = nn.MaxPoo0l2d(2,2) (nn.functional.relu(self.conv_in(x)))

for i,skip64 in enumerate(self.skip64DN_arr[:self.depth//4]):
x = skip64(x)

num_channels_to_savel = x.shape[1l] // 2

save_for_upside_1 = x[:,:num_channels_to_savel,:,:].clone()

x = self.skip64dsDN(x)

for i,skip64 in enumerate(self.skip64DN_arr[self.depth//4:]1):
x = skip64(x)

x = self.bnl1DN(x)

num_channels_to_save2 = x.shape[l1l] // 2

save_for_upside_2 = x[:,:num_channels_to_save2,:,:].clone()

x = self.skip64to0128DN(x)

for i,skip128 in enumerate(self.skip128DN_arr[:self.depth//4]):
x = skip128(x)

x = self.bn2DN(x)

num_channels_to_save3 = x.shape[1l] // 2

save_for_upside_3 = x[:,:num_channels_to_save3,:,:].clone()

for i,skip128 in enumerate(self.skip128DN_arr[self.depth//4:1):
x = skip128(x)

x = self.skip128dsDN(x)

### MODIFICATION START

c_out = self.conv_i(x)

a_outl = self.al(x)

a_out2 = self.a2(x)

a_out3 = self.a3(x)

a_concat = torch.cat([c_out, a_outl, a_out2, a_out3], dim=1)
x = self.conv_1(a_concat)

### MODIFICATION END

## Coming up from the bottom of U on the other side:

x = self.skip128usUP(x)

for i,skip128 in enumerate(self.skip128UP_arr[:self.depth//4]):
x = skip128(x)

x[:,:num_channels_to_save3,:,:] = save_for_upside_3

x = self.bnlUP(x)

for i,skip128 in enumerate(self.skipl128UP_arr[:self.depth//4]):




82 x = skip128(x)

83 x = self.skip128to64UP (x)

84 for i,skip64 in enumerate(self.skip64UP_arr[self.depth//4:]1):
85 x = skip64(x)

86 x[:,:num_channels_to_save2,:,:] = save_for_upside_2

87 x = self.bn2UP(x)

88 x = self.skip64usUP (x)

89 for i,skip64 in enumerate(self.skip64UP_arr[:self.depth//4]):
90 x = skip64(x)

91 x[:,:num_channels_to_savel,:,:] = save_for_upside_1

92 x = self.conv_out (x)

93 return Xx

Listing 1: ASPP

2 Training Curves

To get the training curves I first create a function to calculate the Dice loss between the ground truth mask and the model
predicted mask. The code for doing this is highlighted below.

To generate training curves for best and worst case losses, I tweak the hyper parameters and record the results. Then I
compare and contrast these results to find the best and worst-case training loss.

I train the model using learning rates of 0.001, 0.0001 and 0.00001. For the combined loss I try different multipliers for the
Dice-loss. I multiply the dice loss by 50, 80 and 100.

I do this testing on both the PurdueShapesb dataset and the COCO dataset. To do this I had to also create a custom dataset
to load in the coco dataset information.

The code and results of all of this testing are detailed below.

1 |class CustomDataset (Dataset):
2 def __init__(self, dataset_path, type, transform=transforms.Compose([transforms.
ToTensor () ,transforms.Normalize ([0.5, 0.5, 0.5], [0.5, 0.5, 0.51)1)):
self.img_path = [os.path.join(dataset_path, type+"_imgs", file) for file in os.
listdir (os.path.join(dataset_path, type+"_imgs"))]
1 self.ann_path = os.path.join(dataset_path, type+"_anns"

5 self.transform = transform

7 def len__(self):

8 return len(self.img_path)

10 def __getitem__(self, idx):

12 img = Image.open(self.img_path[idx])

13 if img.mode != ’RGB’:

14 img = img.convert (’RGB’)

16 img_name = self.img_path[idx].split(".") [0].split("\\") [-1]

s for i, ann in enumerate(glob.glob(os.path.join(self.ann_path, img_name+"_x*.npy"
IDDE

19 with open(ann, ’rb’) as f:

20 mask = np.load(f)

22 if self.transform:
23 img = self.transform(img)

25 bbox_tensor = torch.zeros(3,3,4, dtype=torch.float)

27 sample = {’image’ : img,
28 ‘mask_tensor’ : mask,
29 ’bbox_tensor’ : bbox_tensor }

30 return sample




Listing 2: COCO Dataloader

1 |import torch

def dice_loss(preds: torch.Tensor, ground_truth: torch.Tensor, epsilon: float
-6) -> torch.Tensor:
!
5 preds.requires_grad_(True)
6 ground_truth.requires_grad_(True)
8 # nmumerator
9 num = torch.sum(preds * ground_truth, dim=(2, 3))
10
11 # denmominator
12 den = torch.sum(preds * preds, dim=(2, 3)) + torch.sum(ground_truth x*

ground_truth, dim=(2, 3))

14 # Dice coefficient

15 dice_coefficient = num / torch.add(den, epsilon)
16

17 # Dice divergence

18 dice_loss = torch.sub(1.0,dice_coefficient)

20 return torch.sum(dice_loss)

le

Listing 3: Dice Loss

2.1 Best training curves for MSE loss

MSE Loss for Learning rate of 0.0001 on PurdueShapes5
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Figure 1: Best training Curve for Purdue Shapes 5 Dataset
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MSE Loss for Learning rate of 0.0001 on COCO
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Figure 2: Best training Curve for COCO Dataset

2.2 Best training curves for Dice loss

Dice Loss for Learning rate of 0.0001 on PurdueShapes5
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Figure 3: Best training Curve for Purdue Shapes 5 Dataset



Dice Loss for Learning rate of 0.001 on COCO
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Figure 4: Best training Curve for COCO Dataset

2.3 Best training curves for MSE-+Dice loss

MSE + Dice Loss for Learning rate of 0.0001 on PurdueShapes5
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Figure 5: Best training Curve for Purdue Shapes 5 Dataset
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MSE + Dice Loss for Learning rate of 0.0001 on COCO
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MSE Loss for Learning rate of 0.000001 on PurdueShapes5
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Figure 7: Worst training Curve for Purdue Shapes 5 Dataset



MSE Loss for Learning rate of 0.000001 on COCO
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Figure 8: Worst training Curve for COCO Dataset

2.5 Worst training curves for Dice loss

Dice Loss for Learning rate of 0.000001 on PurdueShapes5
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Figure 9: Worst training Curve for Purdue Shapes 5 Dataset



Dice Loss for Learning rate of 0.000001 on COCO
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Figure 10: Worst training Curve for COCO Dataset

2.6 Worst training curves for MSE+Dice loss

MSE + Dice Loss for Learning rate of 0.000001 on PurdueShapes5
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Figure 11: Worst training Curve for Purdue Shapes 5 Dataset



MSE + Dice Loss for Learning rate of 0.000001 on COCO
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Figure 12: Worst training Curve for COCO Dataset

3 Observations on Coefficient effect

When we use a combination of MSE and Dice loss, we run into scaling problems. The MSE loss is unbounded and can be
arbitrarily large, where as the Dice loss is bounded between 0 and 1. This means that when we combine both the losses, the
effect of the Dice loss is drowned out. To tackle this problem we multiply the Dice loss by some constant coefficient to make its
value more prominent.

For the PurdueShapes5 dataset the coefficients I used to multiply the Dice loss were 20, 40 and 60. The multiplier of 60
brought the Dice loss to almost the same scale as the mse loss. The other multipliers made the Dice loss more prominent but
not as prominent as the MSE loss. Consequently as we can see in the graphs below, the multiplier of 60 performed the best.

Similarly for the COCO dataset I tried multipliers of values 60, 80 and 100. Following the same logic as above, the multiplier
of 100 performed the best.

For both the datasets, the middle value of the multiplier performed the worst. This could be because in this state the dice
loss is not prominent enough to make an actual effect in training, but still adds to the overall value of the loss without getting
significantly minimized.

In conclusion, we observe that making both the losses have similar magnitudes helps the model train better. When both the
losses contribute fairly equally to the total loss, the model learns the best. These results are highlighted in the graphs below:



3.1 Best training curves for MSE+Dice loss based on coefficients

Dice and MSE Loss for 60 multiplier PurdueShapes5

1580 -

1560 -

1540 ~

1520 A

Loss

1500 ~

1480

1460

1440

1420

=
L
=
=]
[}
u
%)
L=
%)
19}
[¥5)
L=

100 Iterations

Figure 13: Best training Curve for Purdue Shapes 5 Dataset

Dice and MSE Loss for 100 multiplier COCO
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Figure 14: Best training Curve for COCO Dataset



3.2

Worst training curves for MSE-+Dice loss based on coefficients
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Dice and MSE Loss for 40 multiplier PurdueShapes5
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Figure 15: Worst training Curve for Purdue Shapes 5 Dataset

Dice and MSE Loss for 80 multiplier COCO
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Figure 16: Worst training Curve for COCO Dataset



4 Evaluation and observations

To evaluate the COCO dataset I modify the testing function from DLStudio to plot the outputs from the COCO Dataset. I
leave this function unmodified when I test the PurdueShapes5 dataset.
My Modified testing function is below:

1 |def run_code_for_testing_semantic_segmentation (self, net):

plot_count = 0
net.load_state_dict(torch.load(self.dl_studio.path_saved_model))
A batch_size = self.dl_studio.batch_size

5 image_size = self.dl_studio.image_size

6 max_num_objects = self.max_num_objects

7 out_count = 0

8 with torch.no_grad():

9 for i, data in enumerate(self.test_dataloader):

10 im_tensor ,mask_tensor ,bbox_tensor =datal’image’],datal’
mask_tensor’],datal[’bbox_tensor’]

1 outputs = net(im_tensor)

12

13 outputs = outputs.cpu().detach() .numpy()

14 im_tensor = im_tensor.cpu().detach().numpy ()
15

16 if i ¥ 50 == 0:

17 for idx in range(batch_size):

18 out_count += 1

19 fig, axs = plt.subplots(l, 4, figsize=(10, 10))
0 mask_to_plot_1 = np.zeros ((256, 256, 3))
21 mask_to_plot_2 = np.zeros ((256, 256, 3))
22 mask_to_plot_3 = np.zeros ((256, 256, 3))

24 mask_to_plot_1[np.where((outputs[idx][0] > 25) & (
outputs [idx][0] < 85))] = [255, 0, O]

25 mask_to_plot_2[np.where ((outputs[idx][1] > 65) & (
outputs [idx] [1] < 135))] = [0, 255, O]

26 mask_to_plot_3[np.where ((outputs[idx][2] > 115) & (
outputs [idx][2] < 185))] = [0, 0, 255]

28 im = im_tensor [idx].transpose(l, 2, 0)
29 im = im + 1
50 im = im / 2

12 axs [0] . imshow(im.astype(np.float64))
33 axs [0] .axis (’off’)
34 axs [0].set_title(’Image’)

36 axs [1] . imshow(mask_to_plot_1.astype(np.uint8))
7 axs [1].axis (P off’)
38 axs[1] .set_title(’Pizza’)

10 axs [2] . imshow(mask_to_plot_2.astype(np.uint8))
1 axs [2] .axis (’off’)
12 axs [2] .set_title(’Cat’)

14 axs [3] . imshow(mask_to_plot_3.astype(np.uint8))

15 axs [3].axis(’off’)

16 axs [3].set_title(’Bus’)

17 plt.savefig(str(out_count) + ’_output’ + ’.png’)
8 plt.clf ()

0 plt.close ()

Listing 4: Tesing Function Code



4.1 MSE Evaluation

Figure 17: Result 1 for Purdue Shapes 5 Dataset






Figure 19: Result 3 for Purdue Shapes 5 Dataset



Image Pizza Bus

Figure 20: Result 1 for COCO Dataset
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Figure 21: Result 2 for COCO Dataset
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Figure 22: Result 3 for COCO Dataset



4.2 Dice Evaluation

Figure 23: Result 1 for Purdue Shapes 5 Dataset




Figure 24: Result 2 for Purdue Shapes 5 Dataset




Figure 25: Result 3 for Purdue Shapes 5 Dataset
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Figure 26: Result 1 for COCO Dataset
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Figure 27: Result 2 for COCO Dataset



Image Pizza Bus

Figure 28: Result 3 for COCO Dataset



4.3 MSE + Dice Evaluation

Figure 29: Result 1 for Purdue Shapes 5 Dataset



Figure 30: Result 2 for Purdue Shapes 5 Dataset
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Figure 31: Result 3 for Purdue Shapes 5 Dataset




Image Pizza Cat Bus

& k-
)
oy, . 0
A
a

Figure 32: Result 1 for COCO Dataset



Pizza Bus

Figure 33: Result 2 for COCO Dataset
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Figure 34: Result 3 for COCO Dataset

4.4 Observations

As we can see from the results above, a combination of MSE and Dice loss gives us the best segmentation. This performance if
followed by only MSE loss and finally only Dice loss performs the worse.

The combination of both losses likely performs the best because these losses help minimize two different factors. The dice
loss focuses on the shape and overlap of the predicted mask whereas the MSE loss ensures pixel-wise accuracy. The addition of
MSE loss to Dice loss helps stabilize it. The addition of MSE loss gives more stable gradients and helps with convergence. This
combination also leads to less overfitting and allows the model to generalize well.

Dice loss likely performs the worst since in general it is a non-linear and non-convex function. Minimizing such a function is
difficult and often times unstable. For this reason Dice loss is unable to perform really well.



5 Extra Credit
5.1 COCO Comparisons
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Figure 35: Comparisons

Image Pizza Cat Bus

(a) Sam Output (b) My Output

Figure 36: Comparisons
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Figure 37: Comparisons
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Figure 38: Comparisons



(a) Sam Output

5.2 PurdueShapes5 Comparisons

Figure 39: Comparisons
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Figure 40: SAM Output 1



Figure 41: SAM Output 1

Figure 42: SAM Output 1



Figure 43: SAM Output 1



Figure 44: My Output for Image 1-4



Figure 45: My Output for Image 5

5.3 Observations

When it comes to completeness, the SAM model far outperforms my implementation of mUnet. My model often only predicts
the middle of the object, whereas SAM predicts the entire object most time.

On a similar note, SAM is able to accurately predict the boundary of most objects. My model on the other hand does not
have smooth boundaries. SAM has smooth and complete boundaries separating different objects.

When it comes to false positives, my implementation of mUnet is conservative in predictions and consequently has a small
number of false positives. Whereas, SAM is aggressive with its predictions and segmentation which sometimes leads to a few
false positives or over segmentation. This is especially visible in the Bus images.



