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Section 3 and 4: Programming Tasks

For this section I introduced the ASPP (Atrous Spatial Pyramid Pooling) layer at the bottleneck of
the mUNet and also introduced the Dice Loss to the model for better convergence.

While running the script, I found out an issue quite like this piazza post. However, the solution

mentioned there did not work for me, and I had to run every model for the first time by deleting
the checkpoint file. This is one of the main reasons my simulation took this much time.
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Executing the Script with Modified the Modified Model ASPP at the Bottleneck

For the ASPP design I mainly followed the design of this piazza post. I concatenated the output
of 4 different convolutions: 1x1 kernel without dilation, 3x3 kernel with dilation=2, 3x3 kernel
with dilation=4, and 3x3 kernel with dilation=6. After concatenating, I passed the output to a
final convolutional layer. This is the code snippet from my customUnet (which is basically the
same mUNet with the ASPP module).

CustomUnet (DLStudio.SemanticSegmentation.mUNet):
__init_ (self, skip_connections= , depth=16):
super(CustomUnet, self).__init_ (skip_connections= , depth=depth)
self.depth = depth // 2
self.conv_in = nn.Conv2d(3, 64, 3, padding=1)

self.bnlDN = nn.BatchNorm2d(64)

self.bn2DN = nn.BatchNorm2d(128)

self.skip64DN_arr = nn.ModuleList()

for i in range(self.depth):

self.skip64DN_arr.append(SkipBlockDN(64, 64,

skip_connections=skip_connections))

self.skip64dsDN = SkipBlockDN(64, 64, downsample=
skip_connections=skip_connections)

self.skip64to128DN = SkipBlockDN(64, 128, skip_connections=skip_connections )

self.skip128DN_arr = nn.ModuleList()

for i in range(self.depth):

self.skip128DN_arr.append(SkipBlockDN(128, 128,

skip_connections=skip_connections))

self.skip128dsDN = SkipBlockDN(128,128, downsample=
skip_connections=skip_connections)

Start of the ASPP Module. I got the main instruction from this piazza post:

https://piazza.com/class/m5qxf8zm2ds2gf/post/275

In short, concatenated the output of 4 different convolutions:

1x1 kernel without dilation

3x3 kernel with dilation=2

3x3 kernel with dilation=4

3x3 kernel with dilation=6

Finally passed through the concatenated output to another convolutional layer

to regain the expected output shape.

self.aspp_convl = nn.Conv2d(128, 128, 1, padding=0)

self.aspp_conv2 = nn.Conv2d(128, 128, 3, padding=2, dilation=2)

self.aspp_conv3 = nn.Conv2d(128, 128, 3, padding=4, dilation=4)

self.aspp_conv4 = nn.Conv2d(128, 128, 3, padding=6, dilation=6)

self.aspp_final_conv = nn.Conv2d(512, 128, 1)

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu


https://piazza.com/class/m5qxf8zm2ds2gf/post/275

self.bnlUP nn.BatchNorm2d(128)
self.bn2UP nn.BatchNorm2d(64)
self.skip64UP_arr = nn.ModuleList()
for i in range(self.depth):
self.skip64UP_arr.append(SkipBlockUP(64, 64,
skip_connections=skip_connections))
self.skip64usUP = SkipBlockUP(64, 64, upsample=True,
skip_connections=skip_connections)
self.skip128to64UP = SkipBlockUP(128, 64, skip_connections=skip_connections )
self.skip128UP_arr = nn.ModuleList()
for i in range(self.depth):
self.skip128UP_arr.append(SkipBlockUP(128, 128,
skip_connections=skip_connections))
self.skip128usUP = SkipBlockUP(128,128, upsample=True,
skip_connections=skip_connections)
self.conv_out = nn.ConvTranspose2d(64, 5, 3,
stride=2,dilation=2,output_padding=1,padding=2)

def forward(self, x):

x = nn.MaxPool12d(2,2) (nn.functional. relu(self.conv_in(x)))
for i,skip64 in enumerate(self.skip64DN_arr[:self.depth//4]):
x = skip64(x)

num_channels_to_savel = x.shape[1] // 2

save_for_upside_1 = x[:,:num_channels_to_savel,:,:].clone()

x = self.skip64dsDN(x)

for i,skip64 in enumerate(self.skip64DN_arr[self.depth//4:]1):
x = skip64(x)
self.bn1DN(x)

_channels_to_save2 = x.shapell] // 2

save_for_upside_2 = x[:,:num_channels_to_save2,:,:].clone()

x = self.skip64to128DN(x)

for i,skip128 in enumerate(self.skip128DN_arr[:self.depth//4]):
x = skip128(x)

x = self.bn2DN(x)

num_channels_to_save3 = x.shapel[1] // 2

save_for_upside_3 = x[:, :num_channels_to_save3,:,:].clone()

for i,skip128 in enumerate(self.skip128DN_arr[self.depth//4:]):
x = skip128(x)

x = self.skip128dsDN(x)

Designing the ASPP:
asppl,2,3,4 means no dilation, dilation=2,4,6 respectively.
aspp_concat concatenates these four outputs which then passes
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through the final conv layer.
asppl = self.aspp_convi(
aspp2 self.aspp_conv2(
aspp3 = self.aspp_conv3(
aspp4 = self.aspp_conv4(
aspp_concat = torch.cat(
x = self.aspp_final_conv

sppl, aspp2, aspp3, aspp4), dim=1)

X
X
X
X
(
(aspp_concat)

)
)
)
)
a
a

x = self.skip128usUP(x)

for i,skip128 in enumerate(self.skip128UP_arrl[:self.depth//4]):
x = skip128(x)

x[:, :num_channels_to_save3,:,:] = save_for_upside_3

x = self.bnlUP(x)

for i,skip128 in enumerate(self.skip128UP_arrl[:self.depth//4]):
x = skip128(x)

x = self.skip128to64UP(x)

for i,skip64 in enumerate(self.skip64UP_arr[self.depth//4:]1):
x = skip64(x)

x[:, :num_channels_to_save2,:,:] = save_for_upside_2

x = self.bn2UP(x)

x = self.skip64usUP(x)

for i,skip64 in enumerate(self.skip64UP_arr[:self.depth//4]):
x = skip64(x)

x[:, :num_channels_to_savel,:,:] = save_for_upside_1

x = self.conv_out(x)

return x

model = CustomUnet(skip_connections= , depth=16)
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After completing the model architecture, I ran a set of performance analysis by varying the loss
function and these hyperparameters: learning rate, batch size, and epoch. The values that I used
for the hyperparameters are:

Learning rate: 1e-4 and le-5
Batch size: 4, 8, 16

Epoch: 6, 12, 20, 30

In short this is the list of analysis that I did for the PurdueShapes5MultiObjectDataset:

For both datasets, I repeated the same set for MSE only, Dice Only, MSE+ aDice where a was
toggled between 1 and 100, the reason of this will be explained later on this report.
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This is the complete code for analyzing the performance of the mUNet model with ASPP:

This code is heavily borrowed from the semantic_segmentation.py,
and the DLStudio SemanticSegmentation Class, especially mUNet.

import random

import os, sys

import torch.nn as nn

import copy

import torch.optim as optim
import sys,o0s,o0s.path,glob
import torch

import torch.nn as nn

import torch.nn.functional as F
import torchvision

import torchvision.transforms as tvt
import torch.optim as optim
import numpy as np

from PIL import ImageFilter
import numbers

import re

import math

import random

import copy

import matplotlib.pyplot as plt
import gzip

import pickle

import pymsgbox

import time

import logging

from DLStudio import *

from multiprocessing import freeze_support

I will be changing the learning rate, batch size, and epoch to
find the apparently best and worst combination for optimum performance

learning_rate batch_size
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if _name__ == "_main__
freeze_support()

dls = DLStudio(

dataroot = "./data/",

image_size = [64,64],

path_saved_model = "./saved_model",

momentum = 0.9,

learning_rate = le-4,

epochs = 12,

batch_size = 8,

classes = ('rectangle', 'triangle’, 'disk', 'oval’, 'star'),
use_gpu = True,

segmenter = DLStudio.SemanticSegmentation(
dl_studio = dls,
max_num_objects = 5,

dataserver_train = DLStudio.SemanticSegmentation.PurdueShapes5MultiObjectDataset(
train_or_test = 'train',
dl_studio = dls,
segmenter = segmenter,
dataset_file = "PurdueShapes5MultiObject-10000-train.gz",
)
dataserver_test = DLStudio.SemanticSegmentation.PurdueShapes5MultiObjectDataset/(
train_or_test = 'test',
dl_studio = dls,
segmenter = segmenter,
dataset_file = "PurdueShapes5MultiObject-1000-test.gz"
)
segmenter.dataserver_train = dataserver_train
segmenter.dataserver_test = dataserver_test

segmenter. load_PurdueShapes5MultiObject_dataset(dataserver_train, dataserver_test)
class SkipBlockDN(nn.Module):

This class for the skip connections in the downward leg of the "U"

Class Path: DLStudio —> SemanticSegmentation -—> SkipBlockDN
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def __init_ (self, in_ch, out_ch, downsample=False, skip_connections=True):

super(SkipBlockDN, self).__init_ ()
self.downsample = downsample
self.skip_connections = skip_connections
self.in_ch = in_ch
self.out_ch = out_ch
self.convol = nn.Conv2d(in_ch, out_ch, 3, stride=1, padding=1)
self.convo2 = nn.Conv2d(in_ch, out_ch, 3, stride=1, padding=1)
self.bnl = nn.BatchNorm2d(out_ch)
self.bn2 = nn.BatchNorm2d(out_ch)
if downsample:

self.downsampler = nn.Conv2d(in_ch, out_ch, 1, stride=2)
forward(self, x):
identity = x
out = self.convol(x)
out = self.bnl(out)
out = nn.functional.relu(out)
if self.in_ch == self.out_ch:

out = self.convo2(out)

out = self.bn2(out)

out = nn.functional.relu(out)
if self.downsample:

out = self.downsampler(out)

identity = self.downsampler(identity)
if self.skip_connections:

if self.in_ch == self.out_ch:

out = out + identity
else:
out = out + torch.cat((identity, identity), dim=1)

return out

class SkipBlockUP(nn.Module):

This class is for the skip connections in the upward leg of the "U"

Class Path: DLStudio —> SemanticSegmentation -> SkipBlockUP
def __init_ (self, in_ch, out_ch, upsample=False, skip_connections=True):
super(SkipBlockUP, self).__init_ ()
self.upsample = upsample
self.skip_connections = skip_connections
self.in_ch = in_ch
self.out_ch = out_ch
self.convoTl = nn.ConvTranspose2d(in_ch, out_ch, 3, padding=1)
self.convoT2 = nn.ConvTranspose2d(in_ch, out_ch, 3, padding=1)
self.bnl = nn.BatchNorm2d(out_ch)
self.bn2 = nn.BatchNorm2d(out_ch)
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if upsample:

self.upsampler = nn.ConvTranspose2d(in_ch, out_ch, 1, stride=2,

dilation=2, output_padding=1, padding=0)
def forward(self, x):

identity = x
out = self.convoT1(x)
out = self.bnl(out)
out = nn.functional.relu(out)
out = nn.ReLU(inplace=False) (out)
if self.in_ch == self.out_ch:

out = self.convoT2(out)

out = self.bn2(out)

out = nn.functional.relu(out)
if self.upsample:

out = self.upsampler(out)

identity = self.upsampler(identity)
if self.skip_connections:

if self.in_ch == self.out_ch:

out = out + identity
else:
out = out + identityl[:,self.out_ch:,:,:]

return out

class CustomUnet(DLStudio.SemanticSegmentation.mUNet):
def __init_ (self, skip_connections=True, depth=16):
super(CustomUnet, self).__init_ (skip_connections=True, depth=depth)
self.depth = depth // 2
self.conv_in = nn.Conv2d(3, 64, 3, padding=1)

self.bnlDN = nn.BatchNorm2d(64)
self.bn2DN = nn.BatchNorm2d(128)
self.skip64DN_arr = nn.ModuleList()
for i in range(self.depth):
self.skip64DN_arr.append(SkipBlockDN(64, 64,
skip_connections=skip_connections))
self.skip64dsDN = SkipBlockDN(64, 64, downsample=True,
skip_connections=skip_connections)
self.skip64to128DN = SkipBlockDN(64, 128, skip_connections=skip_connections )
self.skip128DN_arr = nn.ModuleList()
for i in range(self.depth):
self.skip128DN_arr.append(SkipBlockDN(128, 128,
skip_connections=skip_connections))
self.skip128dsDN = SkipBlockDN(128,128, downsample=True,
skip_connections=skip_connections)
Start of the ASPP Module. I got the main instruction from this piazza post:
https://piazza.com/class/m5gxf8zm2ds2gf/post/275
In short, concatenated the output of 4 different convolutions:
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1x1 kernel without dilation

3x3 kernel with dilation=2

3x3 kernel with dilation=4

3x3 kernel with dilation=6

Finally passed through the concatenated output to another convolutional layer
to regain the expected output shape.

self.aspp_convl = nn.Conv2d(128, 128, 1, padding=0)
self.aspp_conv2 = nn.Conv2d(128, 128, 3, padding=2, dilation=2)
self.aspp_conv3 = nn.Conv2d(128, 128, 3, padding=4, dilation=4)
self.aspp_conv4 = nn.Conv2d(128, 128, 3, padding=6, dilation=6)
self.aspp_final_ = nn.Conv2d(512, 128, 1)

self.bnlUP = nn.BatchNorm2d(128)
self.bn2UP = nn.BatchNorm2d(64)
self.skip64UP_arr = nn.ModuleList()
for i in range(self.depth):
self.skip64UP_arr.append(SkipBlockUP(64, 64,
skip_connections=skip_connections))
self.skip64usUP = SkipBlockUP(64, 64, upsample=True,
skip_connections=skip_connections)
self.skip128to64UP = SkipBlockUP(128, 64, skip_connections=skip_connections )
self.skip128UP_arr = nn.ModuleList()
for i in range(self.depth):
self.skip128UP_arr.append(SkipBlockUP(128, 128,
skip_connections=skip_connections))
self.skip128usUP = SkipBlockUP(128,128, upsample=True,
skip_connections=skip_connections)
self.conv_out = nn.ConvTranspose2d(64, 5, 3,
stride=2,dilation=2,output_padding=1,padding=2)

def forward(self, x):

X = nn.MaxPool12d(2,2) (nn.functional. relu(self.conv_in(x)))
for i,skip64 in enumerate(self.skip64DN_arr[:self.depth//4]):
x = skip64(x)

num_channels_to_savel = x.shapel[1] // 2
save_for_upside_1 = x[:,:num_channels_to_savel,:,:].clone()
x = self.skip64dsDN(x)
for i,skip64 in enumerate(self.skip64DN_arr[self.depth//4:]1):
x = skip64(x)
x = self.bn1DN(x)
num_channels_to_save2 = x.shapel[1l] // 2
save_for_upside_2 = x[:,:num_channels_to_save2,:,:].clone()
x = self.skip64to128DN(x)
for i,skip128 in enumerate(self.skip128DN_arrl[:self.depth//4]):
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x = skip128(x)

x = self.bn2DN(x)

num_channels_to_save3 = x.shapel[1] // 2

save_for_upside_3 = x[:, :num_channels_to_save3,:,:].clone()

for i,skip128 in enumerate(self.skip128DN_arr[self.depth//4:]):
x = skip128(x)

x = self.skip128dsDN(x)

Designing the ASPP:
asppl,2,3,4 means no dilation, dilation=2,4,6 respectively.
aspp_concat concatenates these four outputs which then passes
through the final conv layer.

asppl = self.aspp_convi(
aspp2 self.aspp_conv2(
aspp3 = self.aspp_conv3(
aspp4 = self.aspp_conv4(
aspp_concat = torch.cat(
x = self.aspp_final_conv

sppl, aspp2, aspp3, aspp4), dim=1)

X
X
X
X
(
(aspp_concat)

)
)
)
)
a
a

x = self.skip128usUP(x)

for i,skip128 in enumerate(self.skip128UP_arrl[:self.depth//4]):
x = skip128(x)

x[:, :num_channels_to_save3,:,:] = save_for_upside_3

x = self.bnlUP(x)

for i,skip128 in enumerate(self.skip128UP_arrl[:self.depth//4]):
x = skip128(x)

x = self.skip128to64UP(x)

for i,skip64 in enumerate(self.skip64UP_arr[self.depth//4:]):
x = skip64(x)

x[:, :num_channels_to_save2,:,:] = save_for_upside_2

x = self.bn2UP(x)

x = self.skip64usUP(x)

for i,skip64 in enumerate(self.skip64UP_arr[:self.depth//4]):
x = skip64(x)

x[:, :num_channels_to_savel,:,:] = save_for_upside_1

x = self.conv_out(x)

return x

model = CustomUnet(skip_connections=True, depth=16)

number_of_learnable_params = sum(p.numel() for p in model.parameters() if
p.requires_grad)

print("\n\nThe number of learnable parameters in the model: %d\n" %
number_of_learnable_params)
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def run_code_for_testing_semantic_segmentation(net):
net. load_state_dict(torch.load(dls.path_saved_model))
batch_size = dls.batch_size
image_size = dls.image_size
max_num_objects = segmenter.max_num_objects
with torch.no_grad():
for i, data in enumerate(segmenter.test_dataloader):
im_tensor, mask_tensor, bbox_tensor = datal['image'l, datal'mask_tensor'],
datal'bbox_tensor']
if 1 % 50 == 0:
print ("\n\n\n\nShowing output for test batch %d: " % (i+1))
count = 1
outputs = net(im_tensor)

output_bw_tensor = torch.zeros(batch_size, 1, image_size[0@],
image_size[1], dtype=torch.float32)
for image_idx in range(batch_size):
for layer_idx in range(max_num_objects):
for m in range(image_size[@]):
for n in range(image_size[1]):
output_bw_tensor[image_idx, @, m, n] =
torch.max(outputs[image_idx, :, m, nl])
display_tensor = torch.zeros(7 * batch_size, 3, image_sizel[0],
image_size[1], dtype=torch.float32)
for idx in range(batch_size):
for bbox_idx in range(max_num_objects):
bb_tensor = bbox_tensor[idx, bbox_idx]
for k in range(max_num_objects):
il = int(bb_tensor[k][1])
i2 = int(bb_tensor[k][3])
j1 = int(bb_tensor[k] [0])
j2 = int(bb_tensor[k] [2])
output_bw_tensor[idx, il1:i2, j1]
output_bw_tensor[idx, il1:i2, j2]
output_bw_tensor[idx, i1, j1:j21
output_bw_tensor[idx, i2, j1:j21
im_tensor[idx, 0, i1:i2, j1] = 255
im_tensor[idx, 0, i1:i2, j2] = 255
im_tensor[idx, 0, i1, j1:j2] = 255
im_tensor[idx, 0, i2, j1:j2] = 255
display_tensor[:batch_size, :, :, :] = output_bw_tensor
display_tensor[batch_size:2xbatch_size, :, :, :] = im_tensor

os.makedirs("./mixed_results_1r4_el2 b8 sl/masks", exist ok=True)
for batch_im_idx in range(batch_size):
for mask_layer_idx in range(max_num_objects):
for i in range(image_size[0@]):
for j in range(image_size[1]):
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if mask_layer_idx ==
if 25 < outputs[batch_im_idx, mask_layer_idx, i,

outputs[batch_im_idx, mask_layer_idx, i, jl

else:
outputs[batch_im_idx, mask_layer_idx, i, jl

elif mask_layer_idx == 1:
if 65 < outputs[batch_im_idx, mask_layer_idx, i,

outputs[batch_im_idx, mask_layer_idx, i, jl

else:
outputs[batch_im_idx, mask_layer_idx, i, jl

elif mask_layer_idx ==
if 115 < outputs[batch_im_idx, mask_layer_idx, i,

outputs[batch_im_idx, mask_layer_idx, i, jl

else:
outputs[batch_im_idx, mask_layer_idx, i, jl

elif mask_layer_idx == 3:
if 165 < outputs[batch_im_idx, mask_layer_idx, i,

outputs[batch_im_idx, mask_layer_idx, i, jl

else:
outputs[batch_im_idx, mask_layer_idx, i, jl

elif mask_layer_idx ==
if outputs[batch_im_idx, mask_layer_idx, i, jl >

outputs[batch_im_idx, mask_layer_idx, i, jl
else:
outputs[batch_im_idx, mask_layer_idx, i, jl
display_tensor[2xbatch_size + batch_sizexmask_layer_idx +
batch_im_idx, :, :, :] = outputs[batch_im_idx, mask_layer_idx, :, :]
mask_save_path =

"./mixed_results_1r4_el2 b8 sl/masks/batch_{count+1}_image_{batch_im_idx+1}_ class_
sk_layer_idx+1}.png"
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mask_tensor = outputs[batch_im_idx, mask_layer_idx, :,
:].unsqueeze(0@).unsqueeze(0)

torchvision.utils.save_image(mask_tensor, mask_save_path,
normalize=

print(f"Saved mask for batch {count+l}, image
batch_im_idx+1}, class {mask_layer_idx+1} to {mask_save_path}")

save_path =
"./mixed_results_1r4_el2 b8 sl/output_batch_{count+1}.png"

grid = torchvision.utils.make_grid(display_tensor, nrow=batch_size,
normalize= padding=2, pad_value=100)

grid_np = grid.permute(1, 2, 0).cpu().numpy()

plt.figure(figsize=(10, 10))

plt.imshow(grid_np)

plt.axis('off")

plt.tight_layout()

plt.savefig(save_path, dpi=300, bbox_inches='tight")

plt.close()

print(f"Saved visualization to {save_path}")

save_model(model, save_path):
torch.save(model.state_dict(), save_path)
print(f"Model saved to {save_path}")

This is the required dice_function of which the skeleton was provided

dice_loss(preds: torch.Tensor, ground_truth: torch.Tensor, epsilon=1e-6):

preds_flat = preds.view(preds.size(@), preds.size(1), -1)
ground_truth_flat = ground_truth.view(ground_truth.size(@), ground_truth.size(1),
-1)

numerator = torch.sum(preds_flat % ground_truth_flat, dim=-1)
denominator = torch.sum(preds_flat %k 2, dim=-1) + torch.sum(ground_truth_flat xx

2, dim=-1)

dice_coefficient = (2.0 * numerator) / (denominator + epsilon)

dice loss = 1.0 — torch.mean(dice_coefficient)
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return dice_loss

run_code_for_training_for_semantic_segmentation(net):
filename_for_outl = "performance_numbers_" + str(dls.epochs) + ".txt"
FILE1 = open(filename_for_outl, 'w')
net = copy.deepcopy(net)
net = net.to(dls.device)
criterionl = nn.MSELoss()
optimizer = optim.SGD(net.parameters(),

lr=dls.learning_rate, momentum=dls.momentum)

start_time = time.perf_counter()

losses = []
iterations = []
for epoch in range(dls.epochs):
print("")
running_Tloss_segmentation = 0.0
for i, data in enumerate(segmenter.train_dataloader):
im_tensor, mask_tensor, bbox_tensor = data['image'l, datal'mask_tensor'],
datal'bbox_tensor']
im_tensor = im_tensor.to(dls.device)
mask_tensor = mask_tensor.type(torch.FloatTensor)
mask_tensor = mask_tensor.to(dls.device)
bbox_tensor = bbox_tensor.to(dls.device)
optimizer.zero_grad()
output = net(im_tensor)

segmentation_loss = criterionl(output, mask_tensor) + 1xdice_loss(output,
mask_tensor)
segmentation_loss.backward()
optimizer.step()
running_loss_segmentation += segmentation_loss.item()
if i % 500 == 499:
current_time = time.perf_counter()
elapsed_time = current_time - start_time
avg_loss_segmentation = running_loss_segmentation / float(500)
print(" [epoch=%d/%d, iter= elapsed_time= secs] MSE Tloss:

(epoch+1, dls.epochs, i+1, elapsed_time, avg_loss_segmentation))
FILEl.write(" \n" % avg_loss_segmentation)
FILE1.flush()

losses.append(avg_loss_segmentation)
iterations.append(len(losses))

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu




Page 17

running_loss_segmentation = 0.0
FILE1l.close()
print("\nFinished Training\n")

plt.figure(figsize=(10, 6))

plt.plot(iterations, losses, label="MSE + Dice Loss", color="blue")
plt.title("Mixed_Result_1lr4_el2_b8_s1", fontsize=16)
plt.xlabel("Iteration", fontsize=14)

plt.ylabel("MSE + Dice Loss", fontsize=14)

plt.grid( )

plt.legend(fontsize=12)

plt.tight_layout()

save_path = "./loss_vs_iteration_with_aspp_with_1lr4_el2_b8_s1_mixed.png"
plt.savefig(save_path, dpi=1200)

plt.close()

print(f"Saved loss vs. iteration plot to {save_path}")
save_model(net, dls.path_saved_model)

run_code_for_training_for_semantic_segmentation(model)
run_code_for_testing_semantic_segmentation(model)
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Dataset Creation for MSCOCO

This is the segment I had to do most of the brainstorming for this homework. As I could not find
an explicit guideline how to create a similar dataset to PurdueShapes5MultiObjectDataset, I
borrowed some ideas from previous years solution 2. Also posted in the piazza. As per the
suggestion as well as previous solution and largely by looking closely at the structure of the
PurdueShapes5SMultiObjectDataset class line 4660 to line 4789, I modified my own idea to
generate a dataset. I posted the idea in this piazza post which the TA approved. Here is my
workflow:

o First, I filtered through the COCO dataset to choose only those RGB images that fall into
either pizza/cat/bus. But now, additional criteria where the mask dimension should be a
minimum of 200x200.

o For each of the images, I generated a 3D NumPy mask array (with a default 0-array mask
for all the categories) for all the images to make sure each image always has 3 masks
irrespective of the actual number of categories present in the image.

e T also created a dictionary to list the bounding box coordinates of the 3 categories. Then I
saved all this info as a npz file for individual images.

o Finally, in the model training and testing code, I loaded those npz files by creating a
custom dataset class and then used them for training and validation after slight
preprocessing.

Here is the code that I used to generate the npz files from the COCO dataset:

import os

import cv2

import numpy as np

from PIL import Image

from pycocotools.coco import COCO
import json

ann_file = './HW4/data/annotations/instances_train2014.json'
image_dir = './HW4/data/train2014'
output_dir = './dataset_with_train_masks'

os.makedirs(output_dir, exist_ok= )

label_map = {'pizza': 50, 'cat': 100, 'bus': 150}
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coco = COCO(ann_file)

pizza_id = coco.getCatIds(catNms="'pizza') [0]

cat_id = coco.getCatIds(catNms="'cat"') [0]

bus_id = coco.getCatIds(catNms="'bus"') [0]

target_cat_ids = [pizza_id, cat_id, bus_id]

pizza_imgs = set(coco.getImgIds(catIds=pizza_id))

cat_imgs = set(coco.getImgIds(catIds=cat_id))

bus_imgs = set(coco.getImgIds(catIds=bus_id))

all_img_ids = list(pizza_imgs.union(cat_imgs).union(bus_imgs))

for img_id in all_img_ids:
img_info = coco.loadImgs(img_id) [0]
ann_ids = coco.getAnnIds(imgIds=img_id, iscrowd=
anns = coco. loadAnns(ann_ids)

valid_anns = [
ann for ann in anns
if ann['category_id'] target_cat_ids
ann['bbox'] [2] >= 200 ann['bbox'] [3] >= 200
]
if valid_anns:
continue
img_path = os.path.join(image_dir, img_info['file_name'])
image = cv2.imread(img_path)

if image image.shape[2] != 3:
continue
height, width = image.shapel[:2]
resized_image = cv2.resize(image, (256, 256))
R = resized_image[:, :, 0].flatten()
G = resized_image[:, :, 1].flatten()
)

B = resized_image[:, :, 2].flatten

mask_array = np.zeros((3, 256, 256), dtype=np.uint8)
mask_val_to_bbox_map = {50: [], 100: [], 150: []}

for ann in valid_anns:
cat_id = ann['category_id'l]
cat_name = coco.loadCats(cat_id) [0]['name"]
mask_value = label_map[cat_name]
mask = coco.annToMask(ann)
resized_mask = cv2.resize(mask.astype(np.uint8), (256, 256),
interpolation=cv2.INTER_NEAREST)
mask_layer_index = list(label_map.values()).index(mask_value)

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu




Page 20

mask_array[mask_layer_index] [resized_mask == 1] = mask_value

X, Y, W, h = map(int, ann['bbox'])

original_width, original_height = img_info['width'], img_info['height']

resized_width, resized_height = 256, 256

x_resized = int(x * resized_width / original_width)

y_resized = int(y * resized_height / original_height)

w_resized = int(w % resized_width / original_width)
(

h_resized = int(h *x resized_height / original_height)

bbox = [x_resized, y_resized, x_resized + w_resized, y_resized + h_resized]
mask_val_to_bbox_map[mask_value].append(bbox)

output_filename = os.path.splitext(img_info['file_name'l])[0] +
output_path = os.path.join(output_dir, output_filename)

.npz'

np.savez_compressed(
output_path,

mask_array=mask_array,
mask_val_to_bbox_map=mask_val_to_bbox_map
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After creating the npz files, here is the complete code that reads the npz files and use them to
train the model

This code is heavily borrowed from the semantic_segmentation.py,

and the DLStudio SemanticSegmentation Class, especially mUNet.

Additionally, idea of customizing the dataset was borrowed heavily

from the PurdueShapes5MultiObjectDataset and the solution2 of spring 2024
(https://engineering.purdue.edu/DeeplLearn/2_best_solutions/2024/Homeworks/HW7/2BestSol
utions/2.pdf)

Just like the previous code,

I will be changing the learning rate, batch size, and epoch to

find the apparently best combination for optimum performance

learning_rate batch_size

le-5
le-4
le-4

after changing batch size some error occured, avoided increasing batch size.

import random

import numpy

import torch

import os, sys

import torch.nn as nn
import copy

import torch.optim as optim
import sys,o0s,o0s.path,glob
import torch

import torch.nn as nn
import torch.nn.functional as F
import torchvision

import torchvision.transforms as tvt
import torch.optim as optim
import numpy as np

from PIL import ImageFilter
import numbers

import re

import math

import random

import copy
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import matplotlib.pyplot as plt

import gzip

import pickle

import pymsgbox

import time

import logging

from torch.utils.data import Dataloader
from torch.utils.data import Dataset

from DLStudio import *

from multiprocessing import freeze_support

if _name__ == "_main__
freeze_support()

MyNPZDataset(Dataset):
__init_ (self, root_dir):

self.root_dir = root_dir

self.file_list = [f for f in os.listdir(root_dir) if f.endswith('.npz')]
_ len_ _(self):

return len(self.file_list)

__getitem_ (self, idx):

file name = self.file list[idx]

file_path = os.path.join(self.root_dir, self.file_list[idx])

data = np.load(file_path, allow_pickle= )

datal['R']
datal'G']
datal['B']
mask_array = datal'mask_array']
mask_val_to_bbox_map = datal'mask_val_to_bbox_map'].item()
H, W = 256, 256
R.reshape(H, W
G.reshape(H, W

)
)
B.reshape(H, W)
image = np.stack([R, G, Bl, axis=-1)
image = image.astype(np.float32) / 255.0
image = torch.from_numpy(image).permute(2, 0, 1)
mask_tensor = torch.from_numpy(mask_array).float()

bbox_tensor = torch.zeros((3, 4), dtype=torch.float32)
for i, mask_value in enumerate([50, 100, 150]):
bboxes = mask_val_to_bbox_map.get(mask_value, [])
if bboxes:
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bbox_tensor[i] = torch.tensor(bboxes[0])

return {

"image': image,
'mask_tensor': mask_tensor,
'bbox_tensor': bbox_tensor,
'file_name': file_name

dls = DLStudio(

dataroot = "./data/",

image_size = [256,256],

path_saved_model = "./saved_model",

momentum = 0.9,

learning_rate = le-4,

epochs = 30,

batch_size = 4,

classes = ('rectangle', 'triangle’, 'disk', 'oval’, 'star'),
use_gpu = ,

segmenter = DLStudio.SemanticSegmentation(
dl_studio = dls,
max_num_objects = 3,

train_dir './dataset_with_train_masks'

test_dir = './dataset_with_test_masks'

train_dataset = MyNPZDataset(root_dir=train_dir)

test_dataset = MyNPZDataset(root_dir=test_dir)

train_dataloader = Dataloader(train_dataset, batch_size=dls.batch_size,
shuffle= )

test_dataloader = Dataloader(test_dataset, batch_size=dls.batch_size, shuffle=

segmenter.train_dataloader = train_dataloader

segmenter.test_dataloader = test_dataloader

SkipBlockDN(nn.Module) :

This class for the skip connections in the downward leg of the "U"

Class Path: DLStudio —> SemanticSegmentation -> SkipBlockDN
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def __init_ (self, in_ch, out_ch, downsample=False, skip_connections=True):

super(SkipBlockDN, self).__init_ ()
self.downsample = downsample
self.skip_connections = skip_connections
self.in_ch = in_ch
self.out_ch = out_ch
self.convol = nn.Conv2d(in_ch, out_ch, 3, stride=1, padding=1)
self.convo2 = nn.Conv2d(in_ch, out_ch, 3, stride=1, padding=1)
self.bnl = nn.BatchNorm2d(out_ch)
self.bn2 = nn.BatchNorm2d(out_ch)
if downsample:

self.downsampler = nn.Conv2d(in_ch, out_ch, 1, stride=2)
forward(self, x):
identity = x
out = self.convol(x)
out = self.bnl(out)
out = nn.functional.relu(out)
if self.in_ch == self.out_ch:

out = self.convo2(out)

out = self.bn2(out)

out = nn.functional.relu(out)
if self.downsample:

out = self.downsampler(out)

identity = self.downsampler(identity)
if self.skip_connections:

if self.in_ch == self.out_ch:

out = out + identity
else:
out = out + torch.cat((identity, identity), dim=1)

return out

class SkipBlockUP(nn.Module):

This class is for the skip connections in the upward leg of the "U"

Class Path: DLStudio —> SemanticSegmentation -> SkipBlockUP
def __init_ (self, in_ch, out_ch, upsample=False, skip_connections=True):
super(SkipBlockUP, self).__init_ ()
self.upsample = upsample
self.skip_connections = skip_connections
self.in_ch = in_ch
self.out_ch = out_ch
self.convoTl = nn.ConvTranspose2d(in_ch, out_ch, 3, padding=1)
self.convoT2 = nn.ConvTranspose2d(in_ch, out_ch, 3, padding=1)
self.bnl = nn.BatchNorm2d(out_ch)
self.bn2 = nn.BatchNorm2d(out_ch)
if upsample:
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self.upsampler = nn.ConvTranspose2d(in_ch, out_ch, 1, stride=2,
dilation=2, output_padding=1, padding=0)
def forward(self, x):

identity = x
out = self.convoT1(x)
out = self.bnl(out)
out = nn.functional.relu(out)
out = nn.ReLU(inplace=False) (out)
if self.in_ch == self.out_ch:

out = self.convoT2(out)

out = self.bn2(out)

out = nn.functional.relu(out)
if self.upsample:

out = self.upsampler(out)

identity = self.upsampler(identity)
if self.skip_connections:

if self.in_ch == self.out_ch:

out = out + identity
else:
out = out + identityl[:,self.out_ch:,:,:]

return out

class CustomUnet(DLStudio.SemanticSegmentation.mUNet):
def __init_ (self, skip_connections=True, depth=16):
super(CustomUnet, self).__init_ (skip_connections=True, depth=depth)
self.depth = depth // 2
self.conv_in = nn.Conv2d(3, 64, 3, padding=1)

self.bnlDN = nn.BatchNorm2d(64)
self.bn2DN = nn.BatchNorm2d(128)
self.skip64DN_arr = nn.ModuleList()
for i in range(self.depth):
self.skip64DN_arr.append(SkipBlockDN(64, 64,
skip_connections=skip_connections))
self.skip64dsDN = SkipBlockDN(64, 64, downsample=True,
skip_connections=skip_connections)
self.skip64to128DN = SkipBlockDN(64, 128, skip_connections=skip_connections )
self.skip128DN_arr = nn.ModuleList()
for i in range(self.depth):
self.skip128DN_arr.append(SkipBlockDN(128, 128,
skip_connections=skip_connections))
self.skip128dsDN = SkipBlockDN(128,128, downsample=True,
skip_connections=skip_connections)

Start of the ASPP Module. I got the main instruction from this piazza post:
https://piazza.com/class/m5gxf8zm2ds2gf/post/275
In short, concatenated the output of 4 different convolutions:
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1x1 kernel without dilation

3x3 kernel with dilation=2

3x3 kernel with dilation=4

3x3 kernel with dilation=6

Finally passed through the concatenated output to another convolutional layer
to regain the expeted output shape.

self.aspp_convl = nn.Conv2d(128, 128, 1, padding=0)
self.aspp_conv2 = nn.Conv2d(128, 128, 3, padding=2, dilation=2)
self.aspp_conv3 = nn.Conv2d(128, 128, 3, padding=4, dilation=4)
self.aspp_conv4 = nn.Conv2d(128, 128, 3, padding=6, dilation=6)
self.aspp_final_ = nn.Conv2d(512, 128, 1)

self.bnlUP = nn.BatchNorm2d(128)
self.bn2UP = nn.BatchNorm2d(64)
self.skip64UP_arr = nn.ModuleList()
for i in range(self.depth):
self.skip64UP_arr.append(SkipBlockUP(64, 64,
skip_connections=skip_connections))
self.skip64usUP = SkipBlockUP(64, 64, upsample=True,
skip_connections=skip_connections)
self.skip128to64UP = SkipBlockUP(128, 64, skip_connections=skip_connections )
self.skip128UP_arr = nn.ModuleList()
for i in range(self.depth):
self.skip128UP_arr.append(SkipBlockUP(128, 128,
skip_connections=skip_connections))
self.skip128usUP = SkipBlockUP(128,128, upsample=True,
skip_connections=skip_connections)
self.conv_out = nn.ConvTranspose2d(64, 3, 3,
stride=2,dilation=2,output_padding=1,padding=2)

def forward(self, x):

X = nn.MaxPool12d(2,2) (nn.functional. relu(self.conv_in(x)))
for i,skip64 in enumerate(self.skip64DN_arr[:self.depth//4]):
x = skip64(x)

num_channels_to_savel = x.shapel[1] // 2
save_for_upside_1 = x[:,:num_channels_to_savel,:,:].clone()
x = self.skip64dsDN(x)
for i,skip64 in enumerate(self.skip64DN_arr[self.depth//4:]1):
x = skip64(x)
x = self.bn1DN(x)
num_channels_to_save2 = x.shapel[1l] // 2
save_for_upside_2 = x[:,:num_channels_to_save2,:,:].clone()
x = self.skip64to128DN(x)
for i,skip128 in enumerate(self.skip128DN_arrl[:self.depth//4]):
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x = skip128(x)

x = self.bn2DN(x)

num_channels_to_save3 = x.shapel[1] // 2

save_for_upside_3 = x[:, :num_channels_to_save3,:,:].clone()

for i,skip128 in enumerate(self.skip128DN_arr[self.depth//4:]):
x = skip128(x)

x = self.skip128dsDN(x)

Designing the ASPP:

asppl,2,3,4 means no dilation, dilation=2,4,6 respectively.

aspp_concat concatenates these four outputs which then passes

through the final conv layer.

asppl = self.aspp_convi(

aspp2 self.aspp_conv2(

aspp3 = self.aspp_conv3(

aspp4 = self.aspp_conv4(
((asppl, aspp2, aspp3, aspp4), dim=1)
v(aspp_concat)

aspp_concat = torch.cat

X
X
X
X
(
x = self.aspp_final_conv(

)
)
)
)
a
a

x = self.skip128usUP(x)

for i,skip128 in enumerate(self.skip128UP_arrl[:self.depth//4]):
x = skip128(x)

x[:, :num_channels_to_save3,:,:] = save_for_upside_3

x = self.bnlUP(x)

for i,skip128 in enumerate(self.skip128UP_arrl[:self.depth//4]):
x = skip128(x)

x = self.skip128to64UP(x)

for i,skip64 in enumerate(self.skip64UP_arr[self.depth//4:]):
x = skip64(x)

x[:, :num_channels_to_save2,:,:] = save_for_upside_2

x = self.bn2UP(x)

x = self.skip64usUP(x)

for i,skip64 in enumerate(self.skip64UP_arr[:self.depth//4]):
x = skip64(x)

x[:, :num_channels_to_savel,:,:] = save_for_upside_1

x = self.conv_out(x)

return x

model = CustomUnet(skip_connections=True, depth=16)
number_of_learnable_params = sum(p.numel() for p in model.parameters() if
p.requires_grad)

print("\n\nThe number of learnable parameters in the model: %d\n" %
number_of_learnable_params)
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def run_code_for_testing_semantic_segmentation(net):

net. load_state_dict(torch.load(dls.path_saved_model))

net = net.to(dls.device)

net.eval()

batch_size = dls.batch_size

image_size = dls.image_size

max_num_objects = segmenter.max_num_objects

with torch.no_grad():

for i, data in enumerate(segmenter.test_dataloader):

im_tensor = datal['image'].to(dls.device)
mask_tensor = datal'mask_tensor']l.to(dls.device)
bbox_tensor = datal'bbox_tensor'].to(dls.device)
file_names = datal'file_name']

if 1 % 50 == 0:
print("\nShowing output for test batch %d: " % (i + 1))
count = 1

print("File names in this batch:", file_names)

outputs = net(im_tensor)

threshold = 0.5

outputs_binary = (outputs > threshold).float()

display_tensor = torch.zeros(5 * batch_size, 3, image_sizel[0],
image_size[1], dtype=torch.float32)

I did not really find any meaning of the first row in the original
code, where we can easily see

the bounding boxes on top of the original images. So, I modified the
first two rows from gray_scaled

bbox and original bbox to original image and original bbox. While
writing the report, I saw that the

images were not showing the actual color. I think I may have messed up
the transformation of the images

or somewhere in the display line. But given the time constraint, I
have decided not to pursue this matter

as the main objective was to compare the masking performance of the
model, not the colorful display.

display_tensor[:batch_size, :, :, :] = im_tensor

for idx in range(batch_size):

for bbox_idx in range(max_num_objects):
bb_tensor = bbox_tensor[idx, bbox_idx]
if torch.any(bb_tensor !'= 0):
i1, i2 = int(bb_tensor[1]), int(bb_tensor[3])
j1, j2 = int(bb_tensor[0]), int(bb_tensor[2])
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im_tensor[idx, :, il1l:i2, j1]
im_tensor[idx, :, il1l:i2, j2]
im_tensor[idx, :, i1, j1:j2] =
im_tensor[idx, :, i2, j1:j2]
display_tensor[batch_size:2 * batch_size, :, :, :] = im_tensor
for batch_im_idx in range(batch_size):
for mask_layer_idx in range(max_num_objects):
mask = outputs_binary[batch_im_idx, mask_layer_idx, :,
:].unsqueeze(0@).unsqueeze(0)
mask = mask.repeat(1, 3, 1, 1)

display_tensor[2xbatch_size+batch_im_idxxmax_num_objects+mask_layer_idx, :,
mask

os.makedirs("./results_coco_lr4_e30 bs4/masks", exist ok=True)
for batch_im_idx in range(batch_size):
for mask_layer_idx in range(max_num_objects):
mask_save_path =
f"./results_coco_1lr4_e30_bs4/masks/batch_{count+1}_image_<{batch_im_idx+1}_class_{mask_
layer_idx+1}.png"
mask_tensor = outputs[batch_im_idx, mask_layer_idx, :,
:].unsqueeze(0@).unsqueeze(0)
torchvision.utils.save_image(mask_tensor, mask_save_path,
normalize=True)
print(f"Saved mask for batch {i+1}, image {batch_im_idx+1},
class {mask_layer_idx+1} to {mask_save_path}")

save_path = f"./results_coco_lr4_e30_bs4/output_batch_{count+1}.png"

grid = torchvision.utils.make_grid(display_tensor, nrow=batch_size,
normalize=False, padding=2, pad_value=100)

grid_np = grid.permute(1, 2, 0).cpu().numpy()

plt.figure(figsize=(10, 10))

plt.imshow(grid_np)

plt.axis('off")

plt.tight_layout()

plt.savefig(save_path, dpi=300, bbox_inches='tight")

plt.close()

print(f"Saved visualization to {save_path}")

def save_model(model, save_path):
torch.save(model.state_dict(), save_path)
print(f"Model saved to {save_path}")

This is the required dice_function of which the skeleton was provided

def dice_loss(preds: torch.Tensor, ground_truth: torch.Tensor, epsilon=1e-6):
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preds_flat = preds.view(preds.size(@), preds.size(1), -1)
ground_truth_flat = ground_truth.view(ground_truth.size(@), ground_truth.size(1),
-1)

numerator = torch.sum(preds_flat % ground_truth_flat, dim=-1)
denominator = torch.sum(preds_flat %k 2, dim=-1) + torch.sum(ground_truth_flat xx
2, dim=-1)

dice_coefficient = (2.0 * numerator) / (denominator + epsilon)

dice loss = 1.0 - torch.mean(dice_coefficient)
return dice_loss

run_code_for_training_for_semantic_segmentation(net):
filename_for_outl = "performance_numbers_" + str(dls.epochs) + ".txt"
FILE1 = open(filename_for_outl, 'w')
net = net.to(dls.device)
criterionl = nn.MSELoss()
optimizer = optim.SGD(net.parameters(), lr=dls.learning_rate,
momentum=d1ls.momentum)

start_time = time.perf_counter()
losses = []
iterations = []

for epoch in range(dls.epochs):
print("")
running_Tloss_segmentation = 0.0
for i, data in enumerate(segmenter.train_dataloader):
im_tensor = datal['image'].to(dls.device)
mask_tensor = datal'mask_tensor']l.to(dls.device)

optimizer.zero_grad()
output = net(im_tensor)

segmentation_loss = dice_loss(output, mask_tensor)
segmentation_loss.backward()
optimizer.step()

running_loss_segmentation += segmentation_loss.item()
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if i % 500 == 499:
current_time = time.perf_counter()
elapsed_time = current_time - start_time
avg_loss_segmentation = running_loss_segmentation / float(500)
print(" [epoch=%d/%d, iter= elapsed_time= secs] MSE Tloss:

(epoch+1, dls.epochs, i+1, elapsed_time, avg_loss_segmentation))
FILEl.write(" \n" % avg_loss_segmentation)
FILE1.flush()
losses.append(avg_loss_segmentation)
iterations.append(len(losses))
running_loss_segmentation = 0.0

FILE1l.close()

print("\nFinished Training\n")

plt.figure(figsize=(10, 6))

plt.plot(iterations, losses, label="MSE Loss", color="blue")
plt.title("Results_coco_lr4_e30_bs4", fontsize=16)
plt.xlabel("Iteration", fontsize=14)

plt.ylabel("MSE Loss", fontsize=14)

plt.grid( )

plt.legend(fontsize=12)

plt.tight_layout()

save_path = "./loss_vs_iteration_with_aspp_coco_1lr4_e30_bs4.png"
plt.savefig(save_path, dpi=1200)

plt.close()

print(f'"Saved loss vs. iteration plot to {save_path}")
save_model(net, dls.path_saved_model)

run_code_for_training_for_semantic_segmentation(model)
run_code_for_testing_semantic_segmentation(model)
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MSE only Analysis

Training Loss of PurdueShapes5SMultiObjectDataset
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Training Loss of MSCOCO
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Test Results of PurdueShapes5MultiObjectDataset

Output of learning rate 1e-4, epoch 6, batch 4

Batch 1
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Batch 101
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Batch 151
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Output of learning rate 1e-5, epoch 6, batch 4
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Batch 151
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Output of learning rate 1e-5, epoch 6, batch 16
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Output of learning rate 1le-5, epoch 12, batch 4
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Batch 151
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Output of learning rate le-5, epoch 12, batch 8

Batch 1

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu



Page 54

Batch 51

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu



Batch 101

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu



Page 56

Test Results of MSCOCO

As I have already mentioned in the source code, while writing a report I found out I have made a
possible mess in the demonstration of the original image, which is why the following test results
will show different color than what is originally present in the COCO dataset. Given the time
constraint, I have decided not to pursue this issue, as I will have to rerun all the MSCOCO based
codes again.

Output of learning rate 1e-4, epoch 20, batch 4

Batch 1
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I have looked at the original images and handpicked 3 images that I will use to compare the results
of different hyperparameter tuning. I am not considering batch here, meaning different images are
from different batches. I will be displaying these handcrafted results from now on.

Output of learning rate 1e-4, epoch 20, batch 4
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Output of learning rate 1e-4, epoch 30, batch 4
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Output of learning rate 1e-5, epoch 20, batch 4
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Output of learning rate 1e-5, epoch 30, batch 4
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Brief understanding of mUnet and how it carries out semantic segmentation of
an image.

From the basic mUnet, the architecture has an encoder that reduces spatial resolution while
increasing the channel depth and the decoder that reconstructs the feature maps to the original
image dimension with the help of skip connections to regain the fine details from the earlier layers.
It is basically following and modifying the motivation of U-net. With the addition of the ASPP
module at the bottleneck, right before the decoder, the model can examine the feature maps at
multiple scales which can improve the model performance for detecting objects with varying sizes
and shapes.

Introducing Dice Loss
I created my own dice loss function with the skeleton provided by the TA in the guideline. Also,

had a slight help from previous year’s solution 1. Here is my dice loss function:

This is the required dice_function of which the skeleton was provided

dice_loss(preds: torch.Tensor, ground_truth: torch.Tensor, epsilon=1e-6):

preds_flat = preds.view(preds.size(@), preds.size(1), -1)
ground_truth_flat = ground_truth.view(ground_truth.size(@), ground_truth.size(1),
-1)

numerator = torch.sum(preds_flat % ground_truth_flat, dim=-1)
denominator = torch.sum(preds_flat %k 2, dim=-1) + torch.sum(ground_truth_flat xx
2, dim=-1)

dice_coefficient = (2.0 * numerator) / (denominator + epsilon)

dice loss = 1.0 - torch.mean(dice_coefficient)
return dice_loss
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Dice Loss Only Analysis

Training Loss of PurdueShapesSMultiObjectDataset
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Training Loss of MSCOCO
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Results_coco_Ir5_e30_bs4_dice
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Fig: Loss curve for learning rate 1e-5, epoch 30, batch 4
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Test Results of PurdueShapes5SMultiObjectDataset

Output of learning rate 1e-4, epoch 6, batch 4

Batch 1
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Batch 51
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Output of learning rate 1e-5, epoch 6, batch 4

Batch 1
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Batch 51

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu



Page 75

4

11
NI . | R
H =

Batch 101

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu



Page 76

Batch 151
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Batch 201

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu



Page 78

Output of learning rate 1e-5, epoch 6, batch 16
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Output of learning rate 1e-5, epoch 12, batch 4
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Batch 51
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Batch 151
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Output of learning rate le-5, epoch 12, batch 8
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Test Results of MSCOCO

Output of learning rate 1e-4, epoch 20, batch 4
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Output of learning rate 1e-4, epoch 30, batch 4
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Output of learning rate 1e-5, epoch 20, batch 4
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Output of learning rate 1e-5, epoch 30, batch 4
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Disclaimer
When I was writing a report, the initial report exceeded 145 pages, and the software crashed twice.
I did not want to face any further crashes, therefore split the report in two parts. The MSE+Dice
and the rest of the report was written in a separate report which I intend to merge before submitting.
You may find page discrepancy in the report for this.
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When using Dice+MSE loss, do you think there should be a scaling factor to
scale the Dice Loss? Why or why not?

Yes, As the Dice is bounded by [0 to 1], and the MSE loss that I got was in the order of magnitude
of 2, I think both the losses should be of equal magnitude for the model to be unbiased to any of
them. So, either we have to scale the MSE down or scale the Dice loss up. I chose the second
option and created the total loss to be MSE+ aDice. I varied a value to be 100 to have them in the
same magnitude and also played with value of 1 to see the difference.

Mixed loss (MSE+ 1*Dice) Analysis

Training Loss of PurdueShapes5SMultiObjectDataset
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Fig: Loss curve for learning rate 1e-5, epoch 6, batch 4
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Fig: Loss curve for learning rate 1e-5, epoch 6, batch 16
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Fig: Loss curve for learning rate 1e-5, epoch 12, batch 8
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Fig: Loss curve for learning rate 1e-5, epoch 30, batch 4
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Test Results of PurdueShapes5MultiObjectDataset

Output of learning rate 1e-4, epoch 6, batch 4

Batch 1
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Batch 101
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Batch 151
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Output of learning rate 1e-5, epoch 6, batch 4
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Batch 101
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Batch 151
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Batch 201
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Output of learning rate 1e-5, epoch 6, batch 16
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Output of learning rate 1e-5, epoch 12, batch 4

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu



Page 18

Batch 51

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu



Page 19

Batch 101
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Batch 201
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Output of learning rate 1e-4, epoch 12, batch 8
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Test Results of MSCOCO

Output of learning rate 1e-4, epoch 20, batch 4
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Output of learning rate 1e-4, epoch 30, batch 4
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Output of learning rate 1e-5, epoch 20, batch 4
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Output of learning rate 1e-5, epoch 30, batch 4
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Mixed loss (MSE+ 100*Dice) Analysis

Training Loss of PurdueShapes5SMultiObjectDataset
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Mixed_Result_lrS_eG_Eg_leO
e —— MSE + Dice Loss

MSE + Dice Loss
w
8

"
2
S

460

a 5 10 15 20 2 )

Iteration

Fig: Loss curve for learning rate 1e-5, epoch 6, batch 4

Mixed Result_Ir5_e6_bl6_s100

560 —— MSE + Dice Loss

540

MSE + Dice Loss

500

490

2 3 4 5 6

Iteration

Fig: Loss curve for learning rate 1e-5, epoch 6, batch 16

34722789 tibnmahm@purdue.edu



Page 30

Mixed_Result_Ir5_el2_b4_s100

560 —— MSE + Dice Loss

540

MSE + Dice Loss
g &

&

460

o 10 0 E 40 S0 0
Iteration

Fig: Loss curve for learning rate 1e-5, epoch 12, batch 4

Mixed Result Ir5 e12 b8 s100

== MSE + Dice Loss

540

500

MSE + Dice Loss

480

280

0 s 10 15 20 5
Iteration

Fig: Loss curve for learning rate 1e-5, epoch 12, batch 8

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu



Page 31

Training Loss of MSCOCO
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Fig: Loss curve for learning rate 1e-5, epoch 30, batch 4
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Test Results of PurdueShapes5MultiObjectDataset

Output of learning rate 1e-4, epoch 6, batch 4
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Output of learning rate 1e-5, epoch 6, batch 4
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Batch 101
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Batch 151
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Batch 201
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Output of learning rate 1e-5, epoch 6, batch 16
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Output of learning rate 1le-5, epoch 12, batch 4
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Batch 51
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Batch 101
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Batch 151

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu



Page 49

Batch 201
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Output of learning rate 1e-4, epoch 12, batch 8
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Batch 51
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Batch 101
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Test Results of MSCOCO

Output of learning rate 1e-4, epoch 20, batch 4

|
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Output of learning rate 1e-4, epoch 30, batch 4

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu



Page 55

Output of learning rate 1e-5, epoch 20, batch 4
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Output of learning rate 1e-5, epoch 30, batch 4
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Best and Worst-case Training-loss vs. iterations for 4 cases
Case 1: MSE only

Best Case for PurdueShapes5MultiObjectDataset

Result_Ird_e6_b4

—— MSE Loss

MSE Loss

s

Lol A

Iteration

5 10

Fig: Loss curve for learning rate 1e-4, epoch 6, batch 4

Test Output of learning rate 1e-4, epoch 6, batch 4

Batch 101
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Best Case for MSCOCO

Results coco Ir5 e30 bs4
1250 ——— MSE Loss

MSE Loss

5 10 15 20 25 EL
Iteration

Fig: Loss curve for learning rate 1e-5, epoch 30, batch 4
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Output of learning rate 1e-5, epoch 30, batch 4
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Worst Case for PurdueShapes5MultiObjectDataset

Result_IrS_e6_bl16

- MSE LoSS

ae0 4

MSE Loss

1 2 3 4 3 6
Iteration

Fig: Loss curve for learning rate 1e-5, epoch 6, batch 16
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Output of learning rate 1e-5, epoch 6, batch 16
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Batch 1 Batch 51

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu



Page 62

Worst Case for MSCOCO

Results_coco_Ir4_e20_bs4

—— MSE Loss

12004

11904

1100 {

MSE Loss

1090 4

1000 1

23 2.0 15 10.0 123 15.0 173 200

Iteration

Fig: Loss curve for learning rate 1e-4, epoch 20, batch 4
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Test Output of learning rate 1e-4, epoch 20, batch 4
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Case 2: Dice Loss only

Best Case for PurdueShapes5MultiObjectDataset

Dice_Result Ir4_eG_b4

3
Raration

Fig: Loss curve for learning rate 1e-4, epoch 6, batch 4

Output of learning rate 1e-4, epoch 6, batch 4
{ | 1

Batch 1
Talha Ibn Mahmud
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Best Case for MSCOCO

Results_coco Ir4_e30 bs4 dice

—— Dice Lass

0.965

0 5 10 20 25 30

15
Iteration

Fig: Loss curve for learning rate 1e-4, epoch 30, batch 4
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Output of learning rate 1e-4, epoch 30, batch 4
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Worst Case for PurdueShapes5MultiObjectDataset

Dice_Result_Ir5_e6_bl6

Dice Loss

1 2 3 4 s &
Iteration

Fig: Loss curve for learning rate 1e-5, epoch 6, batch 16
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Output of learning rate 1e-5, epoch 6, batch 16
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Dice Loss
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Worst Case for MSCOCO

Results_coco_Ir5_e20_bs4_dice
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1.0000 <

25

30

— Dice Loss

15 100 125 150 s
Iteration

200

Fig: Loss curve for learning rate 1e-5, epoch 20, batch 4
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Output of learning rate 1e-5, epoch 20, batch 4
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Case 3: MSE+Dice with Scale of 1

Best Case for PurdueShapes5MultiObjectDataset

Mied Resuk_Ird_eb b4 sl

MSE + Dice Loss
-

SN A \ /‘,-"\‘ A \\ A~ //
V \ / N
\/

Itaration

Fig: Loss curve for learning rate 1e-4, epoch 6, batch 4

Output of learning rate 1e-4, epoch 6, batch 4
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Best Case for MSCOCO

Results _coco_Ird_e30 bsd s1_mixed

w— Dice Loss

1200 4

&
z
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Dice Loss

g
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0 s 10 20 % 3

15
Iteration

Fig: Loss curve for learning rate 1e-4, epoch 30, batch 4
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Output of learning rate 1e-4, epoch 30, batch 4
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Worst Case for PurdueShapes5MultiObjectDataset

Mixed Result_Ir5 e6 _bl6 sl
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4704 1
== MSE + Dice Loss

MSE + Dice Loss

1 2 3 €

Iteration

Fig: Loss curve for learning rate 1e-5, epoch 6, batch 16
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Output of learning rate 1e-5, epoch 6, batch 16
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Worst Case for MSCOCO

__ Results_coco_Ird_e20_bsé_s1_mixed

= Dice Loss

Dice Loss

1050

175 200

100 125 150
Iteration

Fig: Loss curve for learning rate 1e-4, epoch 20, batch 4
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Output of learning rate 1e-4, epoch 20, batch 4
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Case 4: MSE+Dice with Scale of 100

Best Case for PurdueShapes5MultiObjectDataset

Mixed_Result_Ir4_e6_b4_s100

—— MSE + Dice Loss

"
3
3

MSE + Dice LosS
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Iteration

Fig: Loss curve for learning rate 1e-4, epoch 6, batch 4
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Output of learning rate 1e-4, epoch 6, batch 4

Batch 1
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Best Case for MSCOCO
Results_coco_Ir5_e30_bs4_s100_mixed
1350 - Dice Loss |
1300
12%0
v
g 1200
-
g
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Fig: Loss curve for learning rate 1e-5, epoch 30, batch 4
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Output of learning rate 1e-5, epoch 30, batch 4
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Worst Case for PurdueShapes5MultiObjectDataset

Mixed Result_Ir5_e6_bl6 s100

5604 —— MSE + Dice Loss

5504
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MSE + Dice Loss

5004

490 4
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Fig: Loss curve for learning rate 1e-5, epoch 6, batch 16
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Output of learning rate 1e-5, epoch 6, batch 16
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Worst Case for MSCOCO

Results_coco_Ir5 €20 bs4 s100_mixed

— Dice Loss
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Fig: Loss curve for learning rate 1e-5, epoch 20, batch 4
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Output of learning rate 1e-5, epoch 20, batch 4
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Summary of Hyperparameters
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Case Dataset Best/Worst LR Epoch Batch

1 Purdue Best le-4 6 4

(MSE) COCO Best le-5 30 4
Purdue Worst le-5 6 16

COCO Worst le-4 20 4

2 Purdue Best le-4 6 4

(dice) COCO Best le-4 30 4
Purdue Worst le-5 6 16

COCO Worst le-5 20 4

3 Purdue Best le-4 6 4

(scale 1) COCO Best le-4 30 4
Purdue Worst le-5 6 16

COCO Worst le-4 20 4

4 Purdue Best le-4 6 4

(scale 100) COCO Best le-5 30 4
Purdue Worst le-5 6 16

COCO Worst le-5 20 4

Insights into potential factors contributing to the observed variations in
performance.

The most potential factor is I think the epoch, the longer time I ran, the better result I got. Also,
increasing the batch size was not a good intuition, it gave me the worst results.

Qualitative observations on the model test results for MSE loss vs Dice loss vs.
Dice+MSE loss

By the look of the test outputs, introducing dice loss and scaling it properly has caused the model
to improve slightly. MSE loss alone is the significant loss function that improves the model, dice
loss on the other hand does not generate good result.
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Bonus

MSCOCO images side by side of SAM and mUNet

mUNet Hover and click Box Everything
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PurdueShapes5MultiObjectDataset images side by side of SAM and mUNet

This is the mUNet output:

This is the corresponding SAM output:

Hover and click Box Everything
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Qualitative Observations (Edge Accuracy, Completeness, FP, FN)

If compared with Box method of SAM, I think my model is superior in the sense of edge accuracy,
however SAM is superior in Completeness for most of the cases. Although the box method
includes some unnecessary parts from the image which is especially prevalent in the
PurdueShapes5SMultiObjectDataset. Also, the everything method is unsuitable in this case as it
tries to break the object into several segments (e.g. different parts of bus). But, for overall
performance, the hover and click method of SAM is the best among my method and the three
options of SAM.
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