
Page 1

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

BME646 and ECE60146: Homework 8

Spring 2025

Completed by

Talha Ibn Mahmud

tibnmahm@purdue.edu

34722789

Due Date: Sunday, March 25, 2025, 11:59pm

Page 2

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Section 3 and 4: Programming Tasks

For this section I introduced the ASPP (Atrous Spatial Pyramid Pooling) layer at the bottleneck of
the mUNet and also introduced the Dice Loss to the model for better convergence.

While running the script, I found out an issue quite like this piazza post. However, the solution
mentioned there did not work for me, and I had to run every model for the first time by deleting
the checkpoint file. This is one of the main reasons my simulation took this much time.

https://piazza.com/class/m5qxf8zm2ds2gf/post/274

Page 3

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Executing the Script with Modified the Modified Model ASPP at the Bottleneck

For the ASPP design I mainly followed the design of this piazza post. I concatenated the output
of 4 different convolutions: 1x1 kernel without dilation, 3x3 kernel with dilation=2, 3x3 kernel
with dilation=4, and 3x3 kernel with dilation=6. After concatenating, I passed the output to a
final convolutional layer. This is the code snippet from my customUnet (which is basically the
same mUNet with the ASPP module).

 # I created a custom mUNet here to introduce the ASPP module at the bottleneck
 class CustomUnet(DLStudio.SemanticSegmentation.mUNet):
 def __init__(self, skip_connections=True, depth=16):
 super(CustomUnet, self).__init__(skip_connections=True, depth=depth)
 self.depth = depth // 2
 self.conv_in = nn.Conv2d(3, 64, 3, padding=1)
 ## For the DN arm of the U:
 self.bn1DN = nn.BatchNorm2d(64)
 self.bn2DN = nn.BatchNorm2d(128)
 self.skip64DN_arr = nn.ModuleList()
 for i in range(self.depth):
 self.skip64DN_arr.append(SkipBlockDN(64, 64,
skip_connections=skip_connections))
 self.skip64dsDN = SkipBlockDN(64, 64, downsample=True,
skip_connections=skip_connections)
 self.skip64to128DN = SkipBlockDN(64, 128, skip_connections=skip_connections)
 self.skip128DN_arr = nn.ModuleList()
 for i in range(self.depth):
 self.skip128DN_arr.append(SkipBlockDN(128, 128,
skip_connections=skip_connections))
 self.skip128dsDN = SkipBlockDN(128,128, downsample=True,
skip_connections=skip_connections)
 '''
 Start of the ASPP Module. I got the main instruction from this piazza post:
 https://piazza.com/class/m5qxf8zm2ds2gf/post/275
 In short, concatenated the output of 4 different convolutions:
 1x1 kernel without dilation
 3x3 kernel with dilation=2
 3x3 kernel with dilation=4
 3x3 kernel with dilation=6
 Finally passed through the concatenated output to another convolutional layer
 to regain the expected output shape.
 '''
 self.aspp_conv1 = nn.Conv2d(128, 128, 1, padding=0)
 self.aspp_conv2 = nn.Conv2d(128, 128, 3, padding=2, dilation=2)
 self.aspp_conv3 = nn.Conv2d(128, 128, 3, padding=4, dilation=4)
 self.aspp_conv4 = nn.Conv2d(128, 128, 3, padding=6, dilation=6)
 self.aspp_final_conv = nn.Conv2d(512, 128, 1)

https://piazza.com/class/m5qxf8zm2ds2gf/post/275

Page 4

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

 ## For the UP arm of the U:
 self.bn1UP = nn.BatchNorm2d(128)
 self.bn2UP = nn.BatchNorm2d(64)
 self.skip64UP_arr = nn.ModuleList()
 for i in range(self.depth):
 self.skip64UP_arr.append(SkipBlockUP(64, 64,
skip_connections=skip_connections))
 self.skip64usUP = SkipBlockUP(64, 64, upsample=True,
skip_connections=skip_connections)
 self.skip128to64UP = SkipBlockUP(128, 64, skip_connections=skip_connections)
 self.skip128UP_arr = nn.ModuleList()
 for i in range(self.depth):
 self.skip128UP_arr.append(SkipBlockUP(128, 128,
skip_connections=skip_connections))
 self.skip128usUP = SkipBlockUP(128,128, upsample=True,
skip_connections=skip_connections)
 self.conv_out = nn.ConvTranspose2d(64, 5, 3,
stride=2,dilation=2,output_padding=1,padding=2)

 def forward(self, x):
 ## Going down to the bottom of the U:
 x = nn.MaxPool2d(2,2)(nn.functional.relu(self.conv_in(x)))
 for i,skip64 in enumerate(self.skip64DN_arr[:self.depth//4]):
 x = skip64(x)

 num_channels_to_save1 = x.shape[1] // 2
 save_for_upside_1 = x[:,:num_channels_to_save1,:,:].clone()
 x = self.skip64dsDN(x)
 for i,skip64 in enumerate(self.skip64DN_arr[self.depth//4:]):
 x = skip64(x)
 x = self.bn1DN(x)
 num_channels_to_save2 = x.shape[1] // 2
 save_for_upside_2 = x[:,:num_channels_to_save2,:,:].clone()
 x = self.skip64to128DN(x)
 for i,skip128 in enumerate(self.skip128DN_arr[:self.depth//4]):
 x = skip128(x)

 x = self.bn2DN(x)
 num_channels_to_save3 = x.shape[1] // 2
 save_for_upside_3 = x[:,:num_channels_to_save3,:,:].clone()
 for i,skip128 in enumerate(self.skip128DN_arr[self.depth//4:]):
 x = skip128(x)
 x = self.skip128dsDN(x)

 '''
 Designing the ASPP:
 aspp1,2,3,4 means no dilation, dilation=2,4,6 respectively.
 aspp_concat concatenates these four outputs which then passes

Page 5

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

 through the final conv layer.
 '''
 aspp1 = self.aspp_conv1(x)
 aspp2 = self.aspp_conv2(x)
 aspp3 = self.aspp_conv3(x)
 aspp4 = self.aspp_conv4(x)
 aspp_concat = torch.cat((aspp1, aspp2, aspp3, aspp4), dim=1)
 x = self.aspp_final_conv(aspp_concat)

 ## Coming up from the bottom of U on the other side:
 x = self.skip128usUP(x)
 for i,skip128 in enumerate(self.skip128UP_arr[:self.depth//4]):
 x = skip128(x)
 x[:,:num_channels_to_save3,:,:] = save_for_upside_3
 x = self.bn1UP(x)
 for i,skip128 in enumerate(self.skip128UP_arr[:self.depth//4]):
 x = skip128(x)
 x = self.skip128to64UP(x)
 for i,skip64 in enumerate(self.skip64UP_arr[self.depth//4:]):
 x = skip64(x)
 x[:,:num_channels_to_save2,:,:] = save_for_upside_2
 x = self.bn2UP(x)
 x = self.skip64usUP(x)
 for i,skip64 in enumerate(self.skip64UP_arr[:self.depth//4]):
 x = skip64(x)
 x[:,:num_channels_to_save1,:,:] = save_for_upside_1
 x = self.conv_out(x)
 return x

 model = CustomUnet(skip_connections=True, depth=16)

Page 6

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

After completing the model architecture, I ran a set of performance analysis by varying the loss
function and these hyperparameters: learning rate, batch size, and epoch. The values that I used
for the hyperparameters are:

Learning rate: 1e-4 and 1e-5

Batch size: 4, 8, 16

Epoch: 6, 12, 20, 30

In short this is the list of analysis that I did for the PurdueShapes5MultiObjectDataset:
learning_rate epoch batch_size
------------- ----- ----------
1e-5 6 4
1e-5 6 16
1e-5 12 4
1e-4 6 4
1e-5 12 8

This is the list of analysis that I did for the MSCOCO:

learning_rate epoch batch_size
------------- ----- ----------
1e-5 20 4
1e-5 30 4
1e-4 20 4
1e-4 30 4

For both datasets, I repeated the same set for MSE only, Dice Only, MSE+ αDice where α was
toggled between 1 and 100, the reason of this will be explained later on this report.

Page 7

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

This is the complete code for analyzing the performance of the mUNet model with ASPP:

Completed on March 25
34722789

'''
This code is heavily borrowed from the semantic_segmentation.py,
and the DLStudio SemanticSegmentation Class, especially mUNet.
'''

import random
import os, sys
import torch.nn as nn
import copy
import torch.optim as optim
import sys,os,os.path,glob
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
import torchvision.transforms as tvt
import torch.optim as optim
import numpy as np
from PIL import ImageFilter
import numbers
import re
import math
import random
import copy
import matplotlib.pyplot as plt
import gzip
import pickle
import pymsgbox
import time
import logging
from DLStudio import *
from multiprocessing import freeze_support

'''
I will be changing the learning rate, batch size, and epoch to
find the apparently best and worst combination for optimum performance

learning_rate epoch batch_size
------------- ----- ----------
1e-5 6 4
1e-5 6 16
1e-5 12 4

Page 8

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

1e-4 6 4
1e-5 12 8
'''

if __name__ == "__main__":
 freeze_support()

 dls = DLStudio(
 # dataroot = "/home/kak/ImageDatasets/PurdueShapes5MultiObject/",
 dataroot = "./data/",
 image_size = [64,64],
 path_saved_model = "./saved_model",
 momentum = 0.9,
 learning_rate = 1e-4,
 epochs = 12,
 batch_size = 8,
 classes = ('rectangle','triangle','disk','oval','star'),
 use_gpu = True,
)

 segmenter = DLStudio.SemanticSegmentation(
 dl_studio = dls,
 max_num_objects = 5,
)

 dataserver_train = DLStudio.SemanticSegmentation.PurdueShapes5MultiObjectDataset(
 train_or_test = 'train',
 dl_studio = dls,
 segmenter = segmenter,
 dataset_file = "PurdueShapes5MultiObject-10000-train.gz",
)
 dataserver_test = DLStudio.SemanticSegmentation.PurdueShapes5MultiObjectDataset(
 train_or_test = 'test',
 dl_studio = dls,
 segmenter = segmenter,
 dataset_file = "PurdueShapes5MultiObject-1000-test.gz"
)
 segmenter.dataserver_train = dataserver_train
 segmenter.dataserver_test = dataserver_test

 segmenter.load_PurdueShapes5MultiObject_dataset(dataserver_train, dataserver_test)

 class SkipBlockDN(nn.Module):
 """
 This class for the skip connections in the downward leg of the "U"

 Class Path: DLStudio -> SemanticSegmentation -> SkipBlockDN

Page 9

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

 """
 def __init__(self, in_ch, out_ch, downsample=False, skip_connections=True):
 super(SkipBlockDN, self).__init__()
 self.downsample = downsample
 self.skip_connections = skip_connections
 self.in_ch = in_ch
 self.out_ch = out_ch
 self.convo1 = nn.Conv2d(in_ch, out_ch, 3, stride=1, padding=1)
 self.convo2 = nn.Conv2d(in_ch, out_ch, 3, stride=1, padding=1)
 self.bn1 = nn.BatchNorm2d(out_ch)
 self.bn2 = nn.BatchNorm2d(out_ch)
 if downsample:
 self.downsampler = nn.Conv2d(in_ch, out_ch, 1, stride=2)
 def forward(self, x):
 identity = x
 out = self.convo1(x)
 out = self.bn1(out)
 out = nn.functional.relu(out)
 if self.in_ch == self.out_ch:
 out = self.convo2(out)
 out = self.bn2(out)
 out = nn.functional.relu(out)
 if self.downsample:
 out = self.downsampler(out)
 identity = self.downsampler(identity)
 if self.skip_connections:
 if self.in_ch == self.out_ch:
 out = out + identity
 else:
 out = out + torch.cat((identity, identity), dim=1)
 return out

 class SkipBlockUP(nn.Module):
 """
 This class is for the skip connections in the upward leg of the "U"

 Class Path: DLStudio -> SemanticSegmentation -> SkipBlockUP
 """
 def __init__(self, in_ch, out_ch, upsample=False, skip_connections=True):
 super(SkipBlockUP, self).__init__()
 self.upsample = upsample
 self.skip_connections = skip_connections
 self.in_ch = in_ch
 self.out_ch = out_ch
 self.convoT1 = nn.ConvTranspose2d(in_ch, out_ch, 3, padding=1)
 self.convoT2 = nn.ConvTranspose2d(in_ch, out_ch, 3, padding=1)
 self.bn1 = nn.BatchNorm2d(out_ch)
 self.bn2 = nn.BatchNorm2d(out_ch)

Page 10

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

 if upsample:
 self.upsampler = nn.ConvTranspose2d(in_ch, out_ch, 1, stride=2,
dilation=2, output_padding=1, padding=0)
 def forward(self, x):
 identity = x
 out = self.convoT1(x)
 out = self.bn1(out)
 out = nn.functional.relu(out)
 out = nn.ReLU(inplace=False)(out)
 if self.in_ch == self.out_ch:
 out = self.convoT2(out)
 out = self.bn2(out)
 out = nn.functional.relu(out)
 if self.upsample:
 out = self.upsampler(out)
 identity = self.upsampler(identity)
 if self.skip_connections:
 if self.in_ch == self.out_ch:
 out = out + identity
 else:
 out = out + identity[:,self.out_ch:,:,:]
 return out
 # I created a custom mUNet here to introduce the ASPP module at the bottleneck
 class CustomUnet(DLStudio.SemanticSegmentation.mUNet):
 def __init__(self, skip_connections=True, depth=16):
 super(CustomUnet, self).__init__(skip_connections=True, depth=depth)
 self.depth = depth // 2
 self.conv_in = nn.Conv2d(3, 64, 3, padding=1)
 ## For the DN arm of the U:
 self.bn1DN = nn.BatchNorm2d(64)
 self.bn2DN = nn.BatchNorm2d(128)
 self.skip64DN_arr = nn.ModuleList()
 for i in range(self.depth):
 self.skip64DN_arr.append(SkipBlockDN(64, 64,
skip_connections=skip_connections))
 self.skip64dsDN = SkipBlockDN(64, 64, downsample=True,
skip_connections=skip_connections)
 self.skip64to128DN = SkipBlockDN(64, 128, skip_connections=skip_connections)
 self.skip128DN_arr = nn.ModuleList()
 for i in range(self.depth):
 self.skip128DN_arr.append(SkipBlockDN(128, 128,
skip_connections=skip_connections))
 self.skip128dsDN = SkipBlockDN(128,128, downsample=True,
skip_connections=skip_connections)
 '''
 Start of the ASPP Module. I got the main instruction from this piazza post:
 https://piazza.com/class/m5qxf8zm2ds2gf/post/275
 In short, concatenated the output of 4 different convolutions:

Page 11

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

 1x1 kernel without dilation
 3x3 kernel with dilation=2
 3x3 kernel with dilation=4
 3x3 kernel with dilation=6
 Finally passed through the concatenated output to another convolutional layer
 to regain the expected output shape.
 '''
 self.aspp_conv1 = nn.Conv2d(128, 128, 1, padding=0)
 self.aspp_conv2 = nn.Conv2d(128, 128, 3, padding=2, dilation=2)
 self.aspp_conv3 = nn.Conv2d(128, 128, 3, padding=4, dilation=4)
 self.aspp_conv4 = nn.Conv2d(128, 128, 3, padding=6, dilation=6)
 self.aspp_final_conv = nn.Conv2d(512, 128, 1)

 ## For the UP arm of the U:
 self.bn1UP = nn.BatchNorm2d(128)
 self.bn2UP = nn.BatchNorm2d(64)
 self.skip64UP_arr = nn.ModuleList()
 for i in range(self.depth):
 self.skip64UP_arr.append(SkipBlockUP(64, 64,
skip_connections=skip_connections))
 self.skip64usUP = SkipBlockUP(64, 64, upsample=True,
skip_connections=skip_connections)
 self.skip128to64UP = SkipBlockUP(128, 64, skip_connections=skip_connections)
 self.skip128UP_arr = nn.ModuleList()
 for i in range(self.depth):
 self.skip128UP_arr.append(SkipBlockUP(128, 128,
skip_connections=skip_connections))
 self.skip128usUP = SkipBlockUP(128,128, upsample=True,
skip_connections=skip_connections)
 self.conv_out = nn.ConvTranspose2d(64, 5, 3,
stride=2,dilation=2,output_padding=1,padding=2)

 def forward(self, x):
 ## Going down to the bottom of the U:
 x = nn.MaxPool2d(2,2)(nn.functional.relu(self.conv_in(x)))
 for i,skip64 in enumerate(self.skip64DN_arr[:self.depth//4]):
 x = skip64(x)

 num_channels_to_save1 = x.shape[1] // 2
 save_for_upside_1 = x[:,:num_channels_to_save1,:,:].clone()
 x = self.skip64dsDN(x)
 for i,skip64 in enumerate(self.skip64DN_arr[self.depth//4:]):
 x = skip64(x)
 x = self.bn1DN(x)
 num_channels_to_save2 = x.shape[1] // 2
 save_for_upside_2 = x[:,:num_channels_to_save2,:,:].clone()
 x = self.skip64to128DN(x)
 for i,skip128 in enumerate(self.skip128DN_arr[:self.depth//4]):

Page 12

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

 x = skip128(x)

 x = self.bn2DN(x)
 num_channels_to_save3 = x.shape[1] // 2
 save_for_upside_3 = x[:,:num_channels_to_save3,:,:].clone()
 for i,skip128 in enumerate(self.skip128DN_arr[self.depth//4:]):
 x = skip128(x)
 x = self.skip128dsDN(x)

 '''
 Designing the ASPP:
 aspp1,2,3,4 means no dilation, dilation=2,4,6 respectively.
 aspp_concat concatenates these four outputs which then passes
 through the final conv layer.
 '''
 aspp1 = self.aspp_conv1(x)
 aspp2 = self.aspp_conv2(x)
 aspp3 = self.aspp_conv3(x)
 aspp4 = self.aspp_conv4(x)
 aspp_concat = torch.cat((aspp1, aspp2, aspp3, aspp4), dim=1)
 x = self.aspp_final_conv(aspp_concat)

 ## Coming up from the bottom of U on the other side:
 x = self.skip128usUP(x)
 for i,skip128 in enumerate(self.skip128UP_arr[:self.depth//4]):
 x = skip128(x)
 x[:,:num_channels_to_save3,:,:] = save_for_upside_3
 x = self.bn1UP(x)
 for i,skip128 in enumerate(self.skip128UP_arr[:self.depth//4]):
 x = skip128(x)
 x = self.skip128to64UP(x)
 for i,skip64 in enumerate(self.skip64UP_arr[self.depth//4:]):
 x = skip64(x)
 x[:,:num_channels_to_save2,:,:] = save_for_upside_2
 x = self.bn2UP(x)
 x = self.skip64usUP(x)
 for i,skip64 in enumerate(self.skip64UP_arr[:self.depth//4]):
 x = skip64(x)
 x[:,:num_channels_to_save1,:,:] = save_for_upside_1
 x = self.conv_out(x)
 return x

 model = CustomUnet(skip_connections=True, depth=16)
 number_of_learnable_params = sum(p.numel() for p in model.parameters() if
p.requires_grad)
 print("\n\nThe number of learnable parameters in the model: %d\n" %
number_of_learnable_params)

Page 13

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

 def run_code_for_testing_semantic_segmentation(net):
 net.load_state_dict(torch.load(dls.path_saved_model))
 batch_size = dls.batch_size
 image_size = dls.image_size
 max_num_objects = segmenter.max_num_objects
 with torch.no_grad():
 for i, data in enumerate(segmenter.test_dataloader):
 im_tensor, mask_tensor, bbox_tensor = data['image'], data['mask_tensor'],
data['bbox_tensor']
 if i % 50 == 0:
 print("\n\n\n\nShowing output for test batch %d: " % (i+1))
 count = i
 outputs = net(im_tensor)

 output_bw_tensor = torch.zeros(batch_size, 1, image_size[0],
image_size[1], dtype=torch.float32)
 for image_idx in range(batch_size):
 for layer_idx in range(max_num_objects):
 for m in range(image_size[0]):
 for n in range(image_size[1]):
 output_bw_tensor[image_idx, 0, m, n] =
torch.max(outputs[image_idx, :, m, n])
 display_tensor = torch.zeros(7 * batch_size, 3, image_size[0],
image_size[1], dtype=torch.float32)
 for idx in range(batch_size):
 for bbox_idx in range(max_num_objects):
 bb_tensor = bbox_tensor[idx, bbox_idx]
 for k in range(max_num_objects):
 i1 = int(bb_tensor[k][1])
 i2 = int(bb_tensor[k][3])
 j1 = int(bb_tensor[k][0])
 j2 = int(bb_tensor[k][2])
 output_bw_tensor[idx, 0, i1:i2, j1] = 255
 output_bw_tensor[idx, 0, i1:i2, j2] = 255
 output_bw_tensor[idx, 0, i1, j1:j2] = 255
 output_bw_tensor[idx, 0, i2, j1:j2] = 255
 im_tensor[idx, 0, i1:i2, j1] = 255
 im_tensor[idx, 0, i1:i2, j2] = 255
 im_tensor[idx, 0, i1, j1:j2] = 255
 im_tensor[idx, 0, i2, j1:j2] = 255
 display_tensor[:batch_size, :, :, :] = output_bw_tensor
 display_tensor[batch_size:2*batch_size, :, :, :] = im_tensor

 os.makedirs("./mixed_results_lr4_e12_b8_s1/masks", exist_ok=True)
 for batch_im_idx in range(batch_size):
 for mask_layer_idx in range(max_num_objects):
 for i in range(image_size[0]):
 for j in range(image_size[1]):

Page 14

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

 if mask_layer_idx == 0:
 if 25 < outputs[batch_im_idx, mask_layer_idx, i,
j] < 85:
 outputs[batch_im_idx, mask_layer_idx, i, j] =
255
 else:
 outputs[batch_im_idx, mask_layer_idx, i, j] =
50
 elif mask_layer_idx == 1:
 if 65 < outputs[batch_im_idx, mask_layer_idx, i,
j] < 135:
 outputs[batch_im_idx, mask_layer_idx, i, j] =
255
 else:
 outputs[batch_im_idx, mask_layer_idx, i, j] =
50
 elif mask_layer_idx == 2:
 if 115 < outputs[batch_im_idx, mask_layer_idx, i,
j] < 185:
 outputs[batch_im_idx, mask_layer_idx, i, j] =
255
 else:
 outputs[batch_im_idx, mask_layer_idx, i, j] =
50
 elif mask_layer_idx == 3:
 if 165 < outputs[batch_im_idx, mask_layer_idx, i,
j] < 230:
 outputs[batch_im_idx, mask_layer_idx, i, j] =
255
 else:
 outputs[batch_im_idx, mask_layer_idx, i, j] =
50
 elif mask_layer_idx == 4:
 if outputs[batch_im_idx, mask_layer_idx, i, j] >
210:
 outputs[batch_im_idx, mask_layer_idx, i, j] =
255
 else:
 outputs[batch_im_idx, mask_layer_idx, i, j] =
50

 display_tensor[2*batch_size + batch_size*mask_layer_idx +
batch_im_idx, :, :, :] = outputs[batch_im_idx, mask_layer_idx, :, :]
 # I added the following lines to save the masks
 mask_save_path =
f"./mixed_results_lr4_e12_b8_s1/masks/batch_{count+1}_image_{batch_im_idx+1}_class_{ma
sk_layer_idx+1}.png"

Page 15

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

 mask_tensor = outputs[batch_im_idx, mask_layer_idx, :,
:].unsqueeze(0).unsqueeze(0)
 torchvision.utils.save_image(mask_tensor, mask_save_path,
normalize=True)
 print(f"Saved mask for batch {count+1}, image
{batch_im_idx+1}, class {mask_layer_idx+1} to {mask_save_path}")

 save_path =
f"./mixed_results_lr4_e12_b8_s1/output_batch_{count+1}.png"
 # Slightly changed the following line and added some to save the grid
as image instead of displaying it.
 # I ran all these code on a server, did not access to display.
 grid = torchvision.utils.make_grid(display_tensor, nrow=batch_size,
normalize=True, padding=2, pad_value=100)
 grid_np = grid.permute(1, 2, 0).cpu().numpy()
 plt.figure(figsize=(10, 10))
 plt.imshow(grid_np)
 plt.axis('off')
 plt.tight_layout()
 plt.savefig(save_path, dpi=300, bbox_inches='tight')
 plt.close()
 print(f"Saved visualization to {save_path}")

 def save_model(model, save_path):
 torch.save(model.state_dict(), save_path)
 print(f"Model saved to {save_path}")

 '''
 This is the required dice_function of which the skeleton was provided
 '''
 def dice_loss(preds: torch.Tensor, ground_truth: torch.Tensor, epsilon=1e-6):
 # Flattened the prediction and ground truth vector first
 # Got this idea from the first solution of Spring 2024 Page 4
 #
https://engineering.purdue.edu/DeepLearn/2_best_solutions/2024/Homeworks/HW7/2BestSolu
tions/1.pdf
 preds_flat = preds.view(preds.size(0), preds.size(1), -1)
 ground_truth_flat = ground_truth.view(ground_truth.size(0), ground_truth.size(1),
-1)
 # Step 1: Compute Dice Coefficient
 numerator = torch.sum(preds_flat * ground_truth_flat, dim=-1)
 denominator = torch.sum(preds_flat ** 2, dim=-1) + torch.sum(ground_truth_flat **
2, dim=-1)
 # Step 2: dice_coefficient = 2*numerator / (denominator + epsilon)
 dice_coefficient = (2.0 * numerator) / (denominator + epsilon) # Shape:
[batch_size, num_classes]
 # Step 3: Compute dice_loss = 1 - dice_coefficient
 dice_loss = 1.0 - torch.mean(dice_coefficient)

Page 16

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

 return dice_loss

 def run_code_for_training_for_semantic_segmentation(net):
 filename_for_out1 = "performance_numbers_" + str(dls.epochs) + ".txt"
 FILE1 = open(filename_for_out1, 'w')
 net = copy.deepcopy(net)
 net = net.to(dls.device)
 criterion1 = nn.MSELoss()
 optimizer = optim.SGD(net.parameters(),
 lr=dls.learning_rate, momentum=dls.momentum)
 start_time = time.perf_counter()
 # Used these to generate loss curve
 losses = []
 iterations = []
 for epoch in range(dls.epochs):
 print("")
 running_loss_segmentation = 0.0
 for i, data in enumerate(segmenter.train_dataloader):
 im_tensor, mask_tensor, bbox_tensor = data['image'], data['mask_tensor'],
data['bbox_tensor']
 im_tensor = im_tensor.to(dls.device)
 mask_tensor = mask_tensor.type(torch.FloatTensor)
 mask_tensor = mask_tensor.to(dls.device)
 bbox_tensor = bbox_tensor.to(dls.device)
 optimizer.zero_grad()
 output = net(im_tensor)
 # The following three lines are for MSE loss, Dice Loss, and MSE+Dice loss
respectively.
 # segmentation_loss = criterion1(output, mask_tensor)
 # segmentation_loss = dice_loss(output, mask_tensor)
 segmentation_loss = criterion1(output, mask_tensor) + 1*dice_loss(output,
mask_tensor) # toggled between 1 and 100
 segmentation_loss.backward()
 optimizer.step()
 running_loss_segmentation += segmentation_loss.item()
 if i % 500 == 499:
 current_time = time.perf_counter()
 elapsed_time = current_time - start_time
 avg_loss_segmentation = running_loss_segmentation / float(500)
 print("[epoch=%d/%d, iter=%4d elapsed_time=%3d secs] MSE loss:
%.3f" %
 (epoch+1, dls.epochs, i+1, elapsed_time, avg_loss_segmentation))
 FILE1.write("%.3f\n" % avg_loss_segmentation)
 FILE1.flush()
 # Extra lines that I added to plot the loss curve
 losses.append(avg_loss_segmentation)
 iterations.append(len(losses))

Page 17

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

 running_loss_segmentation = 0.0
 FILE1.close()
 print("\nFinished Training\n")
 # Plot loss vs. iteration
 plt.figure(figsize=(10, 6))
 plt.plot(iterations, losses, label="MSE + Dice Loss", color="blue")
 plt.title("Mixed_Result_lr4_e12_b8_s1", fontsize=16)
 plt.xlabel("Iteration", fontsize=14)
 plt.ylabel("MSE + Dice Loss", fontsize=14)
 plt.grid(True)
 plt.legend(fontsize=12)
 plt.tight_layout()
 save_path = "./loss_vs_iteration_with_aspp_with_lr4_e12_b8_s1_mixed.png"
 plt.savefig(save_path, dpi=1200)
 plt.close()
 print(f"Saved loss vs. iteration plot to {save_path}")
 save_model(net, dls.path_saved_model)

 run_code_for_training_for_semantic_segmentation(model)
 run_code_for_testing_semantic_segmentation(model)

Page 18

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Dataset Creation for MSCOCO

This is the segment I had to do most of the brainstorming for this homework. As I could not find
an explicit guideline how to create a similar dataset to PurdueShapes5MultiObjectDataset, I
borrowed some ideas from previous years solution 2. Also posted in the piazza. As per the
suggestion as well as previous solution and largely by looking closely at the structure of the
PurdueShapes5MultiObjectDataset class line 4660 to line 4789, I modified my own idea to
generate a dataset. I posted the idea in this piazza post which the TA approved. Here is my
workflow:

• First, I filtered through the COCO dataset to choose only those RGB images that fall into
either pizza/cat/bus. But now, additional criteria where the mask dimension should be a
minimum of 200x200.

• For each of the images, I generated a 3D NumPy mask array (with a default 0-array mask
for all the categories) for all the images to make sure each image always has 3 masks
irrespective of the actual number of categories present in the image.

• I also created a dictionary to list the bounding box coordinates of the 3 categories. Then I
saved all this info as a npz file for individual images.

• Finally, in the model training and testing code, I loaded those npz files by creating a
custom dataset class and then used them for training and validation after slight
preprocessing.

Here is the code that I used to generate the npz files from the COCO dataset:

Completed on March 25
34722789

import os
import cv2
import numpy as np
from PIL import Image
from pycocotools.coco import COCO
import json

ann_file = './HW4/data/annotations/instances_val2014.json'
image_dir = './HW4/data/val2014'
output_dir = './dataset_with_test_masks'

ann_file = './HW4/data/annotations/instances_train2014.json'
image_dir = './HW4/data/train2014'
output_dir = './dataset_with_train_masks'

os.makedirs(output_dir, exist_ok=True)

Kept the first three labels of the PurdueShapes5MultiObjectDataset
label_map = {'pizza': 50, 'cat': 100, 'bus': 150}

https://piazza.com/class/m5qxf8zm2ds2gf/post/286
https://piazza.com/class/m5qxf8zm2ds2gf/post/289

Page 19

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

coco = COCO(ann_file)
pizza_id = coco.getCatIds(catNms='pizza')[0]
cat_id = coco.getCatIds(catNms='cat')[0]
bus_id = coco.getCatIds(catNms='bus')[0]
target_cat_ids = [pizza_id, cat_id, bus_id]
pizza_imgs = set(coco.getImgIds(catIds=pizza_id))
cat_imgs = set(coco.getImgIds(catIds=cat_id))
bus_imgs = set(coco.getImgIds(catIds=bus_id))
all_img_ids = list(pizza_imgs.union(cat_imgs).union(bus_imgs))

for img_id in all_img_ids:
 img_info = coco.loadImgs(img_id)[0]
 ann_ids = coco.getAnnIds(imgIds=img_id, iscrowd=False)
 anns = coco.loadAnns(ann_ids)
 # Applying the additional criterion here: height and width each has to be >= 200
 valid_anns = [
 ann for ann in anns
 if ann['category_id'] in target_cat_ids and
 ann['bbox'][2] >= 200 and ann['bbox'][3] >= 200
]
 if not valid_anns:
 continue
 img_path = os.path.join(image_dir, img_info['file_name'])
 image = cv2.imread(img_path)

 # Ran into an issue before, probably one of the images in the dataset was
grayscale instead of RGB
 # Putting this RGB checking condition here to solve that issue
 if image is None or image.shape[2] != 3:
 continue
 height, width = image.shape[:2]
 resized_image = cv2.resize(image, (256, 256))
 R = resized_image[:, :, 0].flatten()
 G = resized_image[:, :, 1].flatten()
 B = resized_image[:, :, 2].flatten()
 # Initialize mask array and bounding box map
 mask_array = np.zeros((3, 256, 256), dtype=np.uint8)
 mask_val_to_bbox_map = {50: [], 100: [], 150: []}

 # Process each valid annotation
 for ann in valid_anns:
 cat_id = ann['category_id']
 cat_name = coco.loadCats(cat_id)[0]['name']
 mask_value = label_map[cat_name]
 mask = coco.annToMask(ann)
 resized_mask = cv2.resize(mask.astype(np.uint8), (256, 256),
interpolation=cv2.INTER_NEAREST)
 mask_layer_index = list(label_map.values()).index(mask_value)

Page 20

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

 mask_array[mask_layer_index][resized_mask == 1] = mask_value
 x, y, w, h = map(int, ann['bbox'])
 original_width, original_height = img_info['width'], img_info['height']
 resized_width, resized_height = 256, 256
 x_resized = int(x * resized_width / original_width)
 y_resized = int(y * resized_height / original_height)
 w_resized = int(w * resized_width / original_width)
 h_resized = int(h * resized_height / original_height)
 # Assigned upper-left corner and lower-right corner similar to
PurdueShapes5MultiObjectDataset
 bbox = [x_resized, y_resized, x_resized + w_resized, y_resized + h_resized]
 mask_val_to_bbox_map[mask_value].append(bbox)

 output_filename = os.path.splitext(img_info['file_name'])[0] + '.npz'
 output_path = os.path.join(output_dir, output_filename)
 # Saving the data for individual image as npz file
 np.savez_compressed(
 output_path,
 R=R,
 G=G,
 B=B,
 mask_array=mask_array,
 mask_val_to_bbox_map=mask_val_to_bbox_map
)

Page 21

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

After creating the npz files, here is the complete code that reads the npz files and use them to
train the model

Completed on March 25
34722789

'''
This code is heavily borrowed from the semantic_segmentation.py,
and the DLStudio SemanticSegmentation Class, especially mUNet.
Additionally, idea of customizing the dataset was borrowed heavily
from the PurdueShapes5MultiObjectDataset and the solution2 of spring 2024
(https://engineering.purdue.edu/DeepLearn/2_best_solutions/2024/Homeworks/HW7/2BestSol
utions/2.pdf)
Just like the previous code,
I will be changing the learning rate, batch size, and epoch to
find the apparently best combination for optimum performance
learning_rate epoch batch_size
------------- ----- ----------
1e-5 20 4
1e-5 30 4
1e-4 20 4
1e-4 30 4

after changing batch size some error occured, avoided increasing batch size.
'''

import random
import numpy
import torch
import os, sys
import torch.nn as nn
import copy
import torch.optim as optim
import sys,os,os.path,glob
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
import torchvision.transforms as tvt
import torch.optim as optim
import numpy as np
from PIL import ImageFilter
import numbers
import re
import math
import random
import copy

Page 22

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

import matplotlib.pyplot as plt
import gzip
import pickle
import pymsgbox
import time
import logging
from torch.utils.data import DataLoader
from torch.utils.data import Dataset
from DLStudio import *
from multiprocessing import freeze_support

if __name__ == "__main__":
 freeze_support()

 class MyNPZDataset(Dataset):
 def __init__(self, root_dir):
 # The idea here is to first list the files in the root directory that have npz
extension
 # After getting the list I can extract different information from individual
npz files
 self.root_dir = root_dir
 self.file_list = [f for f in os.listdir(root_dir) if f.endswith('.npz')]
 def __len__(self):
 return len(self.file_list)
 def __getitem__(self, idx):
 file_name = self.file_list[idx]
 file_path = os.path.join(self.root_dir, self.file_list[idx])
 data = np.load(file_path, allow_pickle=True) # the code did not run without
allow_pickle=True
 R = data['R']
 G = data['G']
 B = data['B']
 mask_array = data['mask_array']
 mask_val_to_bbox_map = data['mask_val_to_bbox_map'].item()
 H, W = 256, 256
 R = R.reshape(H, W)
 G = G.reshape(H, W)
 B = B.reshape(H, W)
 image = np.stack([R, G, B], axis=-1)
 image = image.astype(np.float32) / 255.0
 image = torch.from_numpy(image).permute(2, 0, 1)
 mask_tensor = torch.from_numpy(mask_array).float()

 bbox_tensor = torch.zeros((3, 4), dtype=torch.float32)
 for i, mask_value in enumerate([50, 100, 150]):
 bboxes = mask_val_to_bbox_map.get(mask_value, [])
 if bboxes:
 # For better performance, I think this should be modified.

Page 23

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

 # Instead of taking only the first coordinate, I should take all of
them if multiple exists
 bbox_tensor[i] = torch.tensor(bboxes[0])

 return {
 # Needed the file_name later for the bonus part, wanted to find the image
demonstrated in the test batches
 'image': image,
 'mask_tensor': mask_tensor,
 'bbox_tensor': bbox_tensor,
 'file_name': file_name
 }

 dls = DLStudio(
 # dataroot = "/home/kak/ImageDatasets/PurdueShapes5MultiObject/",
 dataroot = "./data/",
 image_size = [256,256],
 path_saved_model = "./saved_model",
 momentum = 0.9,
 learning_rate = 1e-4,
 epochs = 30,
 batch_size = 4,
 classes = ('rectangle','triangle','disk','oval','star'),
 use_gpu = True,
)

 segmenter = DLStudio.SemanticSegmentation(
 dl_studio = dls,
 max_num_objects = 3,
)

 train_dir = './dataset_with_train_masks'
 test_dir = './dataset_with_test_masks'
 train_dataset = MyNPZDataset(root_dir=train_dir)
 test_dataset = MyNPZDataset(root_dir=test_dir)
 train_dataloader = DataLoader(train_dataset, batch_size=dls.batch_size,
shuffle=True)
 test_dataloader = DataLoader(test_dataset, batch_size=dls.batch_size, shuffle=False)
 segmenter.train_dataloader = train_dataloader
 segmenter.test_dataloader = test_dataloader

 class SkipBlockDN(nn.Module):
 """
 This class for the skip connections in the downward leg of the "U"

 Class Path: DLStudio -> SemanticSegmentation -> SkipBlockDN
 """

Page 24

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

 def __init__(self, in_ch, out_ch, downsample=False, skip_connections=True):
 super(SkipBlockDN, self).__init__()
 self.downsample = downsample
 self.skip_connections = skip_connections
 self.in_ch = in_ch
 self.out_ch = out_ch
 self.convo1 = nn.Conv2d(in_ch, out_ch, 3, stride=1, padding=1)
 self.convo2 = nn.Conv2d(in_ch, out_ch, 3, stride=1, padding=1)
 self.bn1 = nn.BatchNorm2d(out_ch)
 self.bn2 = nn.BatchNorm2d(out_ch)
 if downsample:
 self.downsampler = nn.Conv2d(in_ch, out_ch, 1, stride=2)
 def forward(self, x):
 identity = x
 out = self.convo1(x)
 out = self.bn1(out)
 out = nn.functional.relu(out)
 if self.in_ch == self.out_ch:
 out = self.convo2(out)
 out = self.bn2(out)
 out = nn.functional.relu(out)
 if self.downsample:
 out = self.downsampler(out)
 identity = self.downsampler(identity)
 if self.skip_connections:
 if self.in_ch == self.out_ch:
 out = out + identity
 else:
 out = out + torch.cat((identity, identity), dim=1)
 return out

 class SkipBlockUP(nn.Module):
 """
 This class is for the skip connections in the upward leg of the "U"

 Class Path: DLStudio -> SemanticSegmentation -> SkipBlockUP
 """
 def __init__(self, in_ch, out_ch, upsample=False, skip_connections=True):
 super(SkipBlockUP, self).__init__()
 self.upsample = upsample
 self.skip_connections = skip_connections
 self.in_ch = in_ch
 self.out_ch = out_ch
 self.convoT1 = nn.ConvTranspose2d(in_ch, out_ch, 3, padding=1)
 self.convoT2 = nn.ConvTranspose2d(in_ch, out_ch, 3, padding=1)
 self.bn1 = nn.BatchNorm2d(out_ch)
 self.bn2 = nn.BatchNorm2d(out_ch)
 if upsample:

Page 25

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

 self.upsampler = nn.ConvTranspose2d(in_ch, out_ch, 1, stride=2,
dilation=2, output_padding=1, padding=0)
 def forward(self, x):
 identity = x
 out = self.convoT1(x)
 out = self.bn1(out)
 out = nn.functional.relu(out)
 out = nn.ReLU(inplace=False)(out)
 if self.in_ch == self.out_ch:
 out = self.convoT2(out)
 out = self.bn2(out)
 out = nn.functional.relu(out)
 if self.upsample:
 out = self.upsampler(out)
 identity = self.upsampler(identity)
 if self.skip_connections:
 if self.in_ch == self.out_ch:
 out = out + identity
 else:
 out = out + identity[:,self.out_ch:,:,:]
 return out
 # I created a custom mUNet here to introduce the ASPP module at the bottleneck
 class CustomUnet(DLStudio.SemanticSegmentation.mUNet):
 def __init__(self, skip_connections=True, depth=16):
 super(CustomUnet, self).__init__(skip_connections=True, depth=depth)
 self.depth = depth // 2
 self.conv_in = nn.Conv2d(3, 64, 3, padding=1)
 ## For the DN arm of the U:
 self.bn1DN = nn.BatchNorm2d(64)
 self.bn2DN = nn.BatchNorm2d(128)
 self.skip64DN_arr = nn.ModuleList()
 for i in range(self.depth):
 self.skip64DN_arr.append(SkipBlockDN(64, 64,
skip_connections=skip_connections))
 self.skip64dsDN = SkipBlockDN(64, 64, downsample=True,
skip_connections=skip_connections)
 self.skip64to128DN = SkipBlockDN(64, 128, skip_connections=skip_connections)
 self.skip128DN_arr = nn.ModuleList()
 for i in range(self.depth):
 self.skip128DN_arr.append(SkipBlockDN(128, 128,
skip_connections=skip_connections))
 self.skip128dsDN = SkipBlockDN(128,128, downsample=True,
skip_connections=skip_connections)

 '''
 Start of the ASPP Module. I got the main instruction from this piazza post:
 https://piazza.com/class/m5qxf8zm2ds2gf/post/275
 In short, concatenated the output of 4 different convolutions:

Page 26

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

 1x1 kernel without dilation
 3x3 kernel with dilation=2
 3x3 kernel with dilation=4
 3x3 kernel with dilation=6
 Finally passed through the concatenated output to another convolutional layer
 to regain the expeted output shape.
 '''
 self.aspp_conv1 = nn.Conv2d(128, 128, 1, padding=0)
 self.aspp_conv2 = nn.Conv2d(128, 128, 3, padding=2, dilation=2)
 self.aspp_conv3 = nn.Conv2d(128, 128, 3, padding=4, dilation=4)
 self.aspp_conv4 = nn.Conv2d(128, 128, 3, padding=6, dilation=6)
 self.aspp_final_conv = nn.Conv2d(512, 128, 1)

 ## For the UP arm of the U:
 self.bn1UP = nn.BatchNorm2d(128)
 self.bn2UP = nn.BatchNorm2d(64)
 self.skip64UP_arr = nn.ModuleList()
 for i in range(self.depth):
 self.skip64UP_arr.append(SkipBlockUP(64, 64,
skip_connections=skip_connections))
 self.skip64usUP = SkipBlockUP(64, 64, upsample=True,
skip_connections=skip_connections)
 self.skip128to64UP = SkipBlockUP(128, 64, skip_connections=skip_connections)
 self.skip128UP_arr = nn.ModuleList()
 for i in range(self.depth):
 self.skip128UP_arr.append(SkipBlockUP(128, 128,
skip_connections=skip_connections))
 self.skip128usUP = SkipBlockUP(128,128, upsample=True,
skip_connections=skip_connections)
 self.conv_out = nn.ConvTranspose2d(64, 3, 3,
stride=2,dilation=2,output_padding=1,padding=2)

 def forward(self, x):
 ## Going down to the bottom of the U:
 x = nn.MaxPool2d(2,2)(nn.functional.relu(self.conv_in(x)))
 for i,skip64 in enumerate(self.skip64DN_arr[:self.depth//4]):
 x = skip64(x)

 num_channels_to_save1 = x.shape[1] // 2
 save_for_upside_1 = x[:,:num_channels_to_save1,:,:].clone()
 x = self.skip64dsDN(x)
 for i,skip64 in enumerate(self.skip64DN_arr[self.depth//4:]):
 x = skip64(x)
 x = self.bn1DN(x)
 num_channels_to_save2 = x.shape[1] // 2
 save_for_upside_2 = x[:,:num_channels_to_save2,:,:].clone()
 x = self.skip64to128DN(x)
 for i,skip128 in enumerate(self.skip128DN_arr[:self.depth//4]):

Page 27

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

 x = skip128(x)

 x = self.bn2DN(x)
 num_channels_to_save3 = x.shape[1] // 2
 save_for_upside_3 = x[:,:num_channels_to_save3,:,:].clone()
 for i,skip128 in enumerate(self.skip128DN_arr[self.depth//4:]):
 x = skip128(x)
 x = self.skip128dsDN(x)

 '''
 Designing the ASPP:
 aspp1,2,3,4 means no dilation, dilation=2,4,6 respectively.
 aspp_concat concatenates these four outputs which then passes
 through the final conv layer.
 '''
 aspp1 = self.aspp_conv1(x)
 aspp2 = self.aspp_conv2(x)
 aspp3 = self.aspp_conv3(x)
 aspp4 = self.aspp_conv4(x)
 aspp_concat = torch.cat((aspp1, aspp2, aspp3, aspp4), dim=1)
 x = self.aspp_final_conv(aspp_concat)

 ## Coming up from the bottom of U on the other side:
 x = self.skip128usUP(x)
 for i,skip128 in enumerate(self.skip128UP_arr[:self.depth//4]):
 x = skip128(x)
 x[:,:num_channels_to_save3,:,:] = save_for_upside_3
 x = self.bn1UP(x)
 for i,skip128 in enumerate(self.skip128UP_arr[:self.depth//4]):
 x = skip128(x)
 x = self.skip128to64UP(x)
 for i,skip64 in enumerate(self.skip64UP_arr[self.depth//4:]):
 x = skip64(x)
 x[:,:num_channels_to_save2,:,:] = save_for_upside_2
 x = self.bn2UP(x)
 x = self.skip64usUP(x)
 for i,skip64 in enumerate(self.skip64UP_arr[:self.depth//4]):
 x = skip64(x)
 x[:,:num_channels_to_save1,:,:] = save_for_upside_1
 x = self.conv_out(x)
 return x

 model = CustomUnet(skip_connections=True, depth=16)

 number_of_learnable_params = sum(p.numel() for p in model.parameters() if
p.requires_grad)
 print("\n\nThe number of learnable parameters in the model: %d\n" %
number_of_learnable_params)

Page 28

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

 def run_code_for_testing_semantic_segmentation(net):
 net.load_state_dict(torch.load(dls.path_saved_model))
 net = net.to(dls.device)
 net.eval()
 batch_size = dls.batch_size
 image_size = dls.image_size
 max_num_objects = segmenter.max_num_objects
 with torch.no_grad():
 for i, data in enumerate(segmenter.test_dataloader):
 im_tensor = data['image'].to(dls.device)
 mask_tensor = data['mask_tensor'].to(dls.device)
 bbox_tensor = data['bbox_tensor'].to(dls.device)
 file_names = data['file_name']

 if i % 50 == 0:
 print("\nShowing output for test batch %d: " % (i + 1))
 count = i
 # Wanted to know which files are being used to demonstrate the model
performance
 print("File names in this batch:", file_names)
 outputs = net(im_tensor)
 threshold = 0.5
 outputs_binary = (outputs > threshold).float()
 display_tensor = torch.zeros(5 * batch_size, 3, image_size[0],
image_size[1], dtype=torch.float32)
 '''
 I did not really find any meaning of the first row in the original
code, where we can easily see
 the bounding boxes on top of the original images. So, I modified the
first two rows from gray_scaled
 bbox and original bbox to original image and original bbox. While
writing the report, I saw that the
 images were not showing the actual color. I think I may have messed up
the transformation of the images
 or somewhere in the display line. But given the time constraint, I
have decided not to pursue this matter
 as the main objective was to compare the masking performance of the
model, not the colorful display.
 '''
 display_tensor[:batch_size, :, :, :] = im_tensor
 for idx in range(batch_size):
 for bbox_idx in range(max_num_objects):
 bb_tensor = bbox_tensor[idx, bbox_idx]
 if torch.any(bb_tensor != 0):
 i1, i2 = int(bb_tensor[1]), int(bb_tensor[3])
 j1, j2 = int(bb_tensor[0]), int(bb_tensor[2])

Page 29

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

 # Assigning pixel value of 1 for the bounding boxes
 im_tensor[idx, :, i1:i2, j1] = 1.0
 im_tensor[idx, :, i1:i2, j2] = 1.0
 im_tensor[idx, :, i1, j1:j2] = 1.0
 im_tensor[idx, :, i2, j1:j2] = 1.0
 display_tensor[batch_size:2 * batch_size, :, :, :] = im_tensor
 for batch_im_idx in range(batch_size):
 for mask_layer_idx in range(max_num_objects):
 mask = outputs_binary[batch_im_idx, mask_layer_idx, :,
:].unsqueeze(0).unsqueeze(0)
 mask = mask.repeat(1, 3, 1, 1)

display_tensor[2*batch_size+batch_im_idx*max_num_objects+mask_layer_idx, :, :, :] =
mask

 os.makedirs("./results_coco_lr4_e30_bs4/masks", exist_ok=True)
 for batch_im_idx in range(batch_size):
 for mask_layer_idx in range(max_num_objects):
 mask_save_path =
f"./results_coco_lr4_e30_bs4/masks/batch_{count+1}_image_{batch_im_idx+1}_class_{mask_
layer_idx+1}.png"
 mask_tensor = outputs[batch_im_idx, mask_layer_idx, :,
:].unsqueeze(0).unsqueeze(0)
 torchvision.utils.save_image(mask_tensor, mask_save_path,
normalize=True)
 print(f"Saved mask for batch {i+1}, image {batch_im_idx+1},
class {mask_layer_idx+1} to {mask_save_path}")

 save_path = f"./results_coco_lr4_e30_bs4/output_batch_{count+1}.png"
 grid = torchvision.utils.make_grid(display_tensor, nrow=batch_size,
normalize=False, padding=2, pad_value=100)
 grid_np = grid.permute(1, 2, 0).cpu().numpy()
 plt.figure(figsize=(10, 10))
 plt.imshow(grid_np)
 plt.axis('off')
 plt.tight_layout()
 plt.savefig(save_path, dpi=300, bbox_inches='tight')
 plt.close()
 print(f"Saved visualization to {save_path}")

 def save_model(model, save_path):
 torch.save(model.state_dict(), save_path)
 print(f"Model saved to {save_path}")

 '''
 This is the required dice_function of which the skeleton was provided
 '''
 def dice_loss(preds: torch.Tensor, ground_truth: torch.Tensor, epsilon=1e-6):

Page 30

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

 # Flattened the prediction and ground truth vector first
 # Got this idea from the first solution of Spring 2024 Page 4
 #
https://engineering.purdue.edu/DeepLearn/2_best_solutions/2024/Homeworks/HW7/2BestSolu
tions/1.pdf
 preds_flat = preds.view(preds.size(0), preds.size(1), -1)
 ground_truth_flat = ground_truth.view(ground_truth.size(0), ground_truth.size(1),
-1)
 # Step 1: Compute Dice Coefficient
 numerator = torch.sum(preds_flat * ground_truth_flat, dim=-1)
 denominator = torch.sum(preds_flat ** 2, dim=-1) + torch.sum(ground_truth_flat **
2, dim=-1)
 # Step 2: dice_coefficient = 2*numerator / (denominator + epsilon)
 dice_coefficient = (2.0 * numerator) / (denominator + epsilon) # Shape:
[batch_size, num_classes]
 # Step 3: Compute dice_loss = 1 - dice_coefficient
 dice_loss = 1.0 - torch.mean(dice_coefficient)
 return dice_loss

 def run_code_for_training_for_semantic_segmentation(net):
 filename_for_out1 = "performance_numbers_" + str(dls.epochs) + ".txt"
 FILE1 = open(filename_for_out1, 'w')
 net = net.to(dls.device)
 criterion1 = nn.MSELoss()
 optimizer = optim.SGD(net.parameters(), lr=dls.learning_rate,
momentum=dls.momentum)

 start_time = time.perf_counter()
 losses = []
 iterations = []

 for epoch in range(dls.epochs):
 print("")
 running_loss_segmentation = 0.0
 for i, data in enumerate(segmenter.train_dataloader):
 im_tensor = data['image'].to(dls.device)
 mask_tensor = data['mask_tensor'].to(dls.device)

 optimizer.zero_grad()
 output = net(im_tensor)
 # segmentation_loss = criterion1(output, mask_tensor)
 segmentation_loss = dice_loss(output, mask_tensor)
 # segmentation_loss = criterion1(output, mask_tensor) + 100 *
dice_loss(output, mask_tensor)
 segmentation_loss.backward()
 optimizer.step()

 running_loss_segmentation += segmentation_loss.item()

Page 31

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

 if i % 500 == 499:
 current_time = time.perf_counter()
 elapsed_time = current_time - start_time
 avg_loss_segmentation = running_loss_segmentation / float(500)
 print("[epoch=%d/%d, iter=%4d elapsed_time=%3d secs] MSE loss:
%.3f" %
 (epoch+1, dls.epochs, i+1, elapsed_time, avg_loss_segmentation))
 FILE1.write("%.3f\n" % avg_loss_segmentation)
 FILE1.flush()
 losses.append(avg_loss_segmentation)
 iterations.append(len(losses))
 running_loss_segmentation = 0.0

 FILE1.close()
 print("\nFinished Training\n")
 plt.figure(figsize=(10, 6))
 plt.plot(iterations, losses, label="MSE Loss", color="blue")
 plt.title("Results_coco_lr4_e30_bs4", fontsize=16)
 plt.xlabel("Iteration", fontsize=14)
 plt.ylabel("MSE Loss", fontsize=14)
 plt.grid(True)
 plt.legend(fontsize=12)
 plt.tight_layout()
 save_path = "./loss_vs_iteration_with_aspp_coco_lr4_e30_bs4.png"
 plt.savefig(save_path, dpi=1200)
 plt.close()
 print(f"Saved loss vs. iteration plot to {save_path}")
 save_model(net, dls.path_saved_model)

 run_code_for_training_for_semantic_segmentation(model)
 run_code_for_testing_semantic_segmentation(model)

Page 32

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

MSE only Analysis

Training Loss of PurdueShapes5MultiObjectDataset

Fig: Loss curve for learning rate 1e-4, epoch 6, batch 4

Fig: Loss curve for learning rate 1e-5, epoch 6, batch 4

Fig: Loss curve for learning rate 1e-5, epoch 6, batch 16

Page 33

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Fig: Loss curve for learning rate 1e-5, epoch 12, batch 4

Fig: Loss curve for learning rate 1e-5, epoch 12, batch 8

Page 34

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Training Loss of MSCOCO

Fig: Loss curve for learning rate 1e-4, epoch 20, batch 4

Fig: Loss curve for learning rate 1e-4, epoch 30, batch 4

Fig: Loss curve for learning rate 1e-5, epoch 20, batch 4

Page 35

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Fig: Loss curve for learning rate 1e-5, epoch 30, batch 4

Page 36

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Test Results of PurdueShapes5MultiObjectDataset

Output of learning rate 1e-4, epoch 6, batch 4

Batch 1

Page 37

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Batch 51

Page 38

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Batch 101

Page 39

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Batch 151

Page 40

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Batch 201

Page 41

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Output of learning rate 1e-5, epoch 6, batch 4

Batch 1

Page 42

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Batch 51

Page 43

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Batch 101

Page 44

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Batch 151

Page 45

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Batch 201

Page 46

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Output of learning rate 1e-5, epoch 6, batch 16

Batch 1

Page 47

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Batch 51

Page 48

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Output of learning rate 1e-5, epoch 12, batch 4

Batch 1

Page 49

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Batch 51

Page 50

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Batch 101

Page 51

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Batch 151

Page 52

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Batch 201

Page 53

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Output of learning rate 1e-5, epoch 12, batch 8

Batch 1

Page 54

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Batch 51

Page 55

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Batch 101

Page 56

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Test Results of MSCOCO

As I have already mentioned in the source code, while writing a report I found out I have made a
possible mess in the demonstration of the original image, which is why the following test results
will show different color than what is originally present in the COCO dataset. Given the time
constraint, I have decided not to pursue this issue, as I will have to rerun all the MSCOCO based
codes again.

Output of learning rate 1e-4, epoch 20, batch 4

Batch 1

Page 57

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Batch 301

Page 58

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Batch 501

Page 59

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

I have looked at the original images and handpicked 3 images that I will use to compare the results
of different hyperparameter tuning. I am not considering batch here, meaning different images are
from different batches. I will be displaying these handcrafted results from now on.

Output of learning rate 1e-4, epoch 20, batch 4

Page 60

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Output of learning rate 1e-4, epoch 30, batch 4

Page 61

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Output of learning rate 1e-5, epoch 20, batch 4

Page 62

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Output of learning rate 1e-5, epoch 30, batch 4

Page 63

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Brief understanding of mUnet and how it carries out semantic segmentation of
an image.

From the basic mUnet, the architecture has an encoder that reduces spatial resolution while
increasing the channel depth and the decoder that reconstructs the feature maps to the original
image dimension with the help of skip connections to regain the fine details from the earlier layers.
It is basically following and modifying the motivation of U-net. With the addition of the ASPP
module at the bottleneck, right before the decoder, the model can examine the feature maps at
multiple scales which can improve the model performance for detecting objects with varying sizes
and shapes.

Introducing Dice Loss

I created my own dice loss function with the skeleton provided by the TA in the guideline. Also,
had a slight help from previous year’s solution 1. Here is my dice loss function:

 '''
 This is the required dice_function of which the skeleton was provided
 '''
 def dice_loss(preds: torch.Tensor, ground_truth: torch.Tensor, epsilon=1e-6):
 # Flattened the prediction and ground truth vector first
 # Got this idea from the first solution of Spring 2024 Page 4
 #
https://engineering.purdue.edu/DeepLearn/2_best_solutions/2024/Homeworks/HW7/2BestSolu
tions/1.pdf
 preds_flat = preds.view(preds.size(0), preds.size(1), -1)
 ground_truth_flat = ground_truth.view(ground_truth.size(0), ground_truth.size(1),
-1)
 # Step 1: Compute Dice Coefficient
 numerator = torch.sum(preds_flat * ground_truth_flat, dim=-1)
 denominator = torch.sum(preds_flat ** 2, dim=-1) + torch.sum(ground_truth_flat **
2, dim=-1)
 # Step 2: dice_coefficient = 2*numerator / (denominator + epsilon)
 dice_coefficient = (2.0 * numerator) / (denominator + epsilon) # Shape:
[batch_size, num_classes]
 # Step 3: Compute dice_loss = 1 - dice_coefficient
 dice_loss = 1.0 - torch.mean(dice_coefficient)
 return dice_loss

Page 64

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Dice Loss Only Analysis

Training Loss of PurdueShapes5MultiObjectDataset

Fig: Loss curve for learning rate 1e-4, epoch 6, batch 4

Fig: Loss curve for learning rate 1e-5, epoch 6, batch 4

Fig: Loss curve for learning rate 1e-5, epoch 6, batch 16

Page 65

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Fig: Loss curve for learning rate 1e-5, epoch 12, batch 4

Fig: Loss curve for learning rate 1e-5, epoch 12, batch 8

Page 66

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Training Loss of MSCOCO

Fig: Loss curve for learning rate 1e-4, epoch 20, batch 4

Fig: Loss curve for learning rate 1e-4, epoch 30, batch 4

Fig: Loss curve for learning rate 1e-5, epoch 20, batch 4

Page 67

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Fig: Loss curve for learning rate 1e-5, epoch 30, batch 4

Page 68

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Test Results of PurdueShapes5MultiObjectDataset

Output of learning rate 1e-4, epoch 6, batch 4

Batch 1

Page 69

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Batch 51

Page 70

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Batch 101

Page 71

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Batch 151

Page 72

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Batch 201

Page 73

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Output of learning rate 1e-5, epoch 6, batch 4

Batch 1

Page 74

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Batch 51

Page 75

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Batch 101

Page 76

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Batch 151

Page 77

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Batch 201

Page 78

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Output of learning rate 1e-5, epoch 6, batch 16

Batch 1

Page 79

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Batch 51

Page 80

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Output of learning rate 1e-5, epoch 12, batch 4

Batch 1

Page 81

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Batch 51

Page 82

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Batch 101

Page 83

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Batch 151

Page 84

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Batch 201

Page 85

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Output of learning rate 1e-5, epoch 12, batch 8

Batch 1

Page 86

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Batch 51

Page 87

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Batch 101

Page 88

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Test Results of MSCOCO

Output of learning rate 1e-4, epoch 20, batch 4

Page 89

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Output of learning rate 1e-4, epoch 30, batch 4

Page 90

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Output of learning rate 1e-5, epoch 20, batch 4

Page 91

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Output of learning rate 1e-5, epoch 30, batch 4

Page 92

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Disclaimer
When I was writing a report, the initial report exceeded 145 pages, and the software crashed twice.
I did not want to face any further crashes, therefore split the report in two parts. The MSE+Dice
and the rest of the report was written in a separate report which I intend to merge before submitting.
You may find page discrepancy in the report for this.

Page 1

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

When using Dice+MSE loss, do you think there should be a scaling factor to
scale the Dice Loss? Why or why not?

Yes, As the Dice is bounded by [0 to 1], and the MSE loss that I got was in the order of magnitude
of 2, I think both the losses should be of equal magnitude for the model to be unbiased to any of
them. So, either we have to scale the MSE down or scale the Dice loss up. I chose the second
option and created the total loss to be MSE+ αDice. I varied α value to be 100 to have them in the
same magnitude and also played with value of 1 to see the difference.

Mixed loss (MSE+ 1*Dice) Analysis

Training Loss of PurdueShapes5MultiObjectDataset

Fig: Loss curve for learning rate 1e-4, epoch 6, batch 4

Fig: Loss curve for learning rate 1e-5, epoch 6, batch 4

Page 2

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Fig: Loss curve for learning rate 1e-5, epoch 6, batch 16

Fig: Loss curve for learning rate 1e-5, epoch 12, batch 4

Fig: Loss curve for learning rate 1e-5, epoch 12, batch 8

Page 3

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Training Loss of MSCOCO

Fig: Loss curve for learning rate 1e-4, epoch 20, batch 4

Fig: Loss curve for learning rate 1e-4, epoch 30, batch 4

Fig: Loss curve for learning rate 1e-5, epoch 20, batch 4

Page 4

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Fig: Loss curve for learning rate 1e-5, epoch 30, batch 4

Page 5

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Test Results of PurdueShapes5MultiObjectDataset

Output of learning rate 1e-4, epoch 6, batch 4

Batch 1

Page 6

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Batch 51

Page 7

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Batch 101

Page 8

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Batch 151

Page 9

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Batch 201

Page 10

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Output of learning rate 1e-5, epoch 6, batch 4

Batch 1

Page 11

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Batch 51

Page 12

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Batch 101

Page 13

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Batch 151

Page 14

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Batch 201

Page 15

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Output of learning rate 1e-5, epoch 6, batch 16

Batch 1

Page 16

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Batch 51

Page 17

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Output of learning rate 1e-5, epoch 12, batch 4

Batch 1

Page 18

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Batch 51

Page 19

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Batch 101

Page 20

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Batch 151

Page 21

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Batch 201

Page 22

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Output of learning rate 1e-4, epoch 12, batch 8

Batch 1

Page 23

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Batch 51

Page 24

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Batch 101

Page 25

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Test Results of MSCOCO

Output of learning rate 1e-4, epoch 20, batch 4

Page 26

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Output of learning rate 1e-4, epoch 30, batch 4

Page 27

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Output of learning rate 1e-5, epoch 20, batch 4

Page 28

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Output of learning rate 1e-5, epoch 30, batch 4

Page 29

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Mixed loss (MSE+ 100*Dice) Analysis

Training Loss of PurdueShapes5MultiObjectDataset

Fig: Loss curve for learning rate 1e-4, epoch 6, batch 4

Fig: Loss curve for learning rate 1e-5, epoch 6, batch 4

Fig: Loss curve for learning rate 1e-5, epoch 6, batch 16

Page 30

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Fig: Loss curve for learning rate 1e-5, epoch 12, batch 4

Fig: Loss curve for learning rate 1e-5, epoch 12, batch 8

Page 31

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Training Loss of MSCOCO

Fig: Loss curve for learning rate 1e-4, epoch 20, batch 4

Fig: Loss curve for learning rate 1e-4, epoch 30, batch 4

Fig: Loss curve for learning rate 1e-5, epoch 20, batch 4

Page 32

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Fig: Loss curve for learning rate 1e-5, epoch 30, batch 4

Page 33

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Test Results of PurdueShapes5MultiObjectDataset

Output of learning rate 1e-4, epoch 6, batch 4

Batch 1

Page 34

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Batch 51

Page 35

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Batch 101

Page 36

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Batch 151

Page 37

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Batch 201

Page 38

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Output of learning rate 1e-5, epoch 6, batch 4

Batch 1

Page 39

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Batch 51

Page 40

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Batch 101

Page 41

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Batch 151

Page 42

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Batch 201

Page 43

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Output of learning rate 1e-5, epoch 6, batch 16

Batch 1

Page 44

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Batch 51

Page 45

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Output of learning rate 1e-5, epoch 12, batch 4

Batch 1

Page 46

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Batch 51

Page 47

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Batch 101

Page 48

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Batch 151

Page 49

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Batch 201

Page 50

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Output of learning rate 1e-4, epoch 12, batch 8

Batch 1

Page 51

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Batch 51

Page 52

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Batch 101

Page 53

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Test Results of MSCOCO

Output of learning rate 1e-4, epoch 20, batch 4

Page 54

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Output of learning rate 1e-4, epoch 30, batch 4

Page 55

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Output of learning rate 1e-5, epoch 20, batch 4

Page 56

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Output of learning rate 1e-5, epoch 30, batch 4

Page 57

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Best and Worst-case Training-loss vs. iterations for 4 cases

Case 1: MSE only

Best Case for PurdueShapes5MultiObjectDataset

Fig: Loss curve for learning rate 1e-4, epoch 6, batch 4

Test Output of learning rate 1e-4, epoch 6, batch 4

Batch 1

Batch 51

Batch 101

Page 58

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Best Case for MSCOCO

Fig: Loss curve for learning rate 1e-5, epoch 30, batch 4

Page 59

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Output of learning rate 1e-5, epoch 30, batch 4

Page 60

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Worst Case for PurdueShapes5MultiObjectDataset

Fig: Loss curve for learning rate 1e-5, epoch 6, batch 16

Page 61

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Output of learning rate 1e-5, epoch 6, batch 16

Batch 1

Batch 51

Page 62

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Worst Case for MSCOCO

Fig: Loss curve for learning rate 1e-4, epoch 20, batch 4

Page 63

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Test Output of learning rate 1e-4, epoch 20, batch 4

Page 64

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Case 2: Dice Loss only

Best Case for PurdueShapes5MultiObjectDataset

Fig: Loss curve for learning rate 1e-4, epoch 6, batch 4

Output of learning rate 1e-4, epoch 6, batch 4

Batch 1

Page 65

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Best Case for MSCOCO

Fig: Loss curve for learning rate 1e-4, epoch 30, batch 4

Page 66

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Output of learning rate 1e-4, epoch 30, batch 4

Page 67

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Worst Case for PurdueShapes5MultiObjectDataset

Fig: Loss curve for learning rate 1e-5, epoch 6, batch 16

Page 68

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Output of learning rate 1e-5, epoch 6, batch 16

Batch 1

Page 69

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Worst Case for MSCOCO

Fig: Loss curve for learning rate 1e-5, epoch 20, batch 4

Page 70

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Output of learning rate 1e-5, epoch 20, batch 4

Page 71

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Case 3: MSE+Dice with Scale of 1

Best Case for PurdueShapes5MultiObjectDataset

Fig: Loss curve for learning rate 1e-4, epoch 6, batch 4

Output of learning rate 1e-4, epoch 6, batch 4

Batch 1

Page 72

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Best Case for MSCOCO

Fig: Loss curve for learning rate 1e-4, epoch 30, batch 4

Page 73

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Output of learning rate 1e-4, epoch 30, batch 4

Page 74

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Worst Case for PurdueShapes5MultiObjectDataset

Fig: Loss curve for learning rate 1e-5, epoch 6, batch 16

Page 75

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Output of learning rate 1e-5, epoch 6, batch 16

Batch 1

Page 76

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Worst Case for MSCOCO

Fig: Loss curve for learning rate 1e-4, epoch 20, batch 4

Page 77

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Output of learning rate 1e-4, epoch 20, batch 4

Page 78

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Case 4: MSE+Dice with Scale of 100

Best Case for PurdueShapes5MultiObjectDataset

Fig: Loss curve for learning rate 1e-4, epoch 6, batch 4

Page 79

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Output of learning rate 1e-4, epoch 6, batch 4

Batch 1

Page 80

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Best Case for MSCOCO

Fig: Loss curve for learning rate 1e-5, epoch 30, batch 4

Page 81

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Output of learning rate 1e-5, epoch 30, batch 4

Page 82

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Worst Case for PurdueShapes5MultiObjectDataset

Fig: Loss curve for learning rate 1e-5, epoch 6, batch 16

Page 83

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Output of learning rate 1e-5, epoch 6, batch 16

Batch 1

Page 84

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Worst Case for MSCOCO

Fig: Loss curve for learning rate 1e-5, epoch 20, batch 4

Page 85

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Output of learning rate 1e-5, epoch 20, batch 4

Page 86

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Summary of Hyperparameters

Case Dataset Best/Worst LR Epoch Batch
1

(MSE)
Purdue Best 1e-4 6 4
COCO Best 1e-5 30 4
Purdue Worst 1e-5 6 16
COCO Worst 1e-4 20 4

2
(dice)

Purdue Best 1e-4 6 4
COCO Best 1e-4 30 4
Purdue Worst 1e-5 6 16
COCO Worst 1e-5 20 4

3
(scale 1)

Purdue Best 1e-4 6 4
COCO Best 1e-4 30 4
Purdue Worst 1e-5 6 16
COCO Worst 1e-4 20 4

4
(scale 100)

Purdue Best 1e-4 6 4
COCO Best 1e-5 30 4
Purdue Worst 1e-5 6 16
COCO Worst 1e-5 20 4

Insights into potential factors contributing to the observed variations in

performance.

The most potential factor is I think the epoch, the longer time I ran, the better result I got. Also,
increasing the batch size was not a good intuition, it gave me the worst results.

Qualitative observations on the model test results for MSE loss vs Dice loss vs.
Dice+MSE loss

By the look of the test outputs, introducing dice loss and scaling it properly has caused the model
to improve slightly. MSE loss alone is the significant loss function that improves the model, dice
loss on the other hand does not generate good result.

Page 87

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Bonus

MSCOCO images side by side of SAM and mUNet

mUNet

Hover and click Box Everything

Page 88

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

PurdueShapes5MultiObjectDataset images side by side of SAM and mUNet

This is the mUNet output:

This is the corresponding SAM output:

Hover and click

Box Everything

Page 89

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Qualitative Observations (Edge Accuracy, Completeness, FP, FN)

If compared with Box method of SAM, I think my model is superior in the sense of edge accuracy,
however SAM is superior in Completeness for most of the cases. Although the box method
includes some unnecessary parts from the image which is especially prevalent in the
PurdueShapes5MultiObjectDataset. Also, the everything method is unsuitable in this case as it
tries to break the object into several segments (e.g. different parts of bus). But, for overall
performance, the hover and click method of SAM is the best among my method and the three
options of SAM.

