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Section 3 and 4: Programming Tasks 
 
For this section I introduced the ASPP (Atrous Spatial Pyramid Pooling) layer at the bottleneck of 
the mUNet and also introduced the Dice Loss to the model for better convergence. 
 
While running the script, I found out an issue quite like this piazza post. However, the solution 
mentioned there did not work for me, and I had to run every model for the first time by deleting 
the checkpoint file. This is one of the main reasons my simulation took this much time. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://piazza.com/class/m5qxf8zm2ds2gf/post/274
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Executing the Script with Modified the Modified Model ASPP at the Bottleneck 

For the ASPP design I mainly followed the design of this piazza post. I concatenated the output 
of 4 different convolutions: 1x1 kernel without dilation, 3x3 kernel with dilation=2, 3x3 kernel 
with dilation=4, and 3x3 kernel with dilation=6. After concatenating, I passed the output to a 
final convolutional layer. This is the code snippet from my customUnet (which is basically the 
same mUNet with the ASPP module). 

  # I created a custom mUNet here to introduce the ASPP module at the bottleneck 
  class CustomUnet(DLStudio.SemanticSegmentation.mUNet): 
      def __init__(self, skip_connections=True, depth=16): 
        super(CustomUnet, self).__init__(skip_connections=True, depth=depth) 
        self.depth = depth // 2 
        self.conv_in = nn.Conv2d(3, 64, 3, padding=1) 
        ##  For the DN arm of the U: 
        self.bn1DN  = nn.BatchNorm2d(64) 
        self.bn2DN  = nn.BatchNorm2d(128) 
        self.skip64DN_arr = nn.ModuleList() 
        for i in range(self.depth): 
            self.skip64DN_arr.append(SkipBlockDN(64, 64, 
skip_connections=skip_connections)) 
        self.skip64dsDN = SkipBlockDN(64, 64,   downsample=True, 
skip_connections=skip_connections) 
        self.skip64to128DN = SkipBlockDN(64, 128, skip_connections=skip_connections ) 
        self.skip128DN_arr = nn.ModuleList() 
        for i in range(self.depth): 
            self.skip128DN_arr.append(SkipBlockDN(128, 128, 
skip_connections=skip_connections)) 
        self.skip128dsDN = SkipBlockDN(128,128, downsample=True, 
skip_connections=skip_connections) 
        ''' 
        Start of the ASPP Module. I got the main instruction from this piazza post: 
        https://piazza.com/class/m5qxf8zm2ds2gf/post/275 
        In short, concatenated the output of 4 different convolutions: 
        1x1 kernel without dilation 
        3x3 kernel with dilation=2 
        3x3 kernel with dilation=4 
        3x3 kernel with dilation=6 
        Finally passed through the concatenated output to another convolutional layer  
        to regain the expected output shape. 
        ''' 
        self.aspp_conv1 = nn.Conv2d(128, 128, 1, padding=0) 
        self.aspp_conv2 = nn.Conv2d(128, 128, 3, padding=2, dilation=2) 
        self.aspp_conv3 = nn.Conv2d(128, 128, 3, padding=4, dilation=4) 
        self.aspp_conv4 = nn.Conv2d(128, 128, 3, padding=6, dilation=6) 
        self.aspp_final_conv = nn.Conv2d(512, 128, 1) 
 

https://piazza.com/class/m5qxf8zm2ds2gf/post/275
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        ##  For the UP arm of the U: 
        self.bn1UP  = nn.BatchNorm2d(128) 
        self.bn2UP  = nn.BatchNorm2d(64) 
        self.skip64UP_arr = nn.ModuleList() 
        for i in range(self.depth): 
            self.skip64UP_arr.append(SkipBlockUP(64, 64, 
skip_connections=skip_connections)) 
        self.skip64usUP = SkipBlockUP(64, 64, upsample=True, 
skip_connections=skip_connections) 
        self.skip128to64UP = SkipBlockUP(128, 64, skip_connections=skip_connections ) 
        self.skip128UP_arr = nn.ModuleList() 
        for i in range(self.depth): 
            self.skip128UP_arr.append(SkipBlockUP(128, 128, 
skip_connections=skip_connections)) 
        self.skip128usUP = SkipBlockUP(128,128, upsample=True, 
skip_connections=skip_connections) 
        self.conv_out = nn.ConvTranspose2d(64, 5, 3, 
stride=2,dilation=2,output_padding=1,padding=2) 
 
      def forward(self, x): 
        ##  Going down to the bottom of the U: 
        x = nn.MaxPool2d(2,2)(nn.functional.relu(self.conv_in(x)))           
        for i,skip64 in enumerate(self.skip64DN_arr[:self.depth//4]): 
            x = skip64(x)                 
 
        num_channels_to_save1 = x.shape[1] // 2 
        save_for_upside_1 = x[:,:num_channels_to_save1,:,:].clone() 
        x = self.skip64dsDN(x) 
        for i,skip64 in enumerate(self.skip64DN_arr[self.depth//4:]): 
            x = skip64(x)                 
        x = self.bn1DN(x) 
        num_channels_to_save2 = x.shape[1] // 2 
        save_for_upside_2 = x[:,:num_channels_to_save2,:,:].clone() 
        x = self.skip64to128DN(x) 
        for i,skip128 in enumerate(self.skip128DN_arr[:self.depth//4]): 
            x = skip128(x)                 
 
        x = self.bn2DN(x) 
        num_channels_to_save3 = x.shape[1] // 2 
        save_for_upside_3 = x[:,:num_channels_to_save3,:,:].clone() 
        for i,skip128 in enumerate(self.skip128DN_arr[self.depth//4:]): 
            x = skip128(x)                 
        x = self.skip128dsDN(x) 
 
        ''' 
        Designing the ASPP: 
        aspp1,2,3,4 means no dilation, dilation=2,4,6 respectively.  
        aspp_concat concatenates these four outputs which then passes  
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        through the final conv layer. 
        ''' 
        aspp1 = self.aspp_conv1(x) 
        aspp2 = self.aspp_conv2(x) 
        aspp3 = self.aspp_conv3(x) 
        aspp4 = self.aspp_conv4(x) 
        aspp_concat = torch.cat((aspp1, aspp2, aspp3, aspp4), dim=1) 
        x = self.aspp_final_conv(aspp_concat) 
 
        ## Coming up from the bottom of U on the other side: 
        x = self.skip128usUP(x)           
        for i,skip128 in enumerate(self.skip128UP_arr[:self.depth//4]): 
            x = skip128(x)                 
        x[:,:num_channels_to_save3,:,:] =  save_for_upside_3 
        x = self.bn1UP(x) 
        for i,skip128 in enumerate(self.skip128UP_arr[:self.depth//4]): 
            x = skip128(x)                 
        x = self.skip128to64UP(x) 
        for i,skip64 in enumerate(self.skip64UP_arr[self.depth//4:]): 
            x = skip64(x)                 
        x[:,:num_channels_to_save2,:,:] =  save_for_upside_2 
        x = self.bn2UP(x) 
        x = self.skip64usUP(x) 
        for i,skip64 in enumerate(self.skip64UP_arr[:self.depth//4]): 
            x = skip64(x)                 
        x[:,:num_channels_to_save1,:,:] =  save_for_upside_1 
        x = self.conv_out(x) 
        return x 
 
  model = CustomUnet(skip_connections=True, depth=16) 
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After completing the model architecture, I ran a set of performance analysis by varying the loss 
function and these hyperparameters: learning rate, batch size, and epoch. The values that I used 
for the hyperparameters are: 

Learning rate: 1e-4 and 1e-5 

Batch size: 4, 8, 16 

Epoch: 6, 12, 20, 30 

In short this is the list of analysis that I did for the PurdueShapes5MultiObjectDataset: 
learning_rate      epoch       batch_size 
-------------      -----       ---------- 
1e-5                6               4 
1e-5                6               16 
1e-5                12              4 
1e-4                6               4 
1e-5                12              8 
 
This is the list of analysis that I did for the MSCOCO: 
 
learning_rate      epoch       batch_size 
-------------      -----       ---------- 
1e-5                20              4 
1e-5                30              4 
1e-4                20              4 
1e-4                30              4 
 
For both datasets, I repeated the same set for MSE only, Dice Only, MSE+ αDice where α was 
toggled between 1 and 100, the reason of this will be explained later on this report. 
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This is the complete code for analyzing the performance of the mUNet model with ASPP: 
 
# Completed on March 25 
# 34722789 
 
''' 
This code is heavily borrowed from the semantic_segmentation.py, 
and the DLStudio SemanticSegmentation Class, especially mUNet. 
''' 
 
import random 
import os, sys 
import torch.nn as nn 
import copy 
import torch.optim as optim 
import sys,os,os.path,glob 
import torch 
import torch.nn as nn 
import torch.nn.functional as F 
import torchvision                   
import torchvision.transforms as tvt 
import torch.optim as optim 
import numpy as np 
from PIL import ImageFilter 
import numbers 
import re 
import math 
import random 
import copy 
import matplotlib.pyplot as plt 
import gzip 
import pickle 
import pymsgbox 
import time 
import logging 
from DLStudio import * 
from multiprocessing import freeze_support 
 

''' 
I will be changing the learning rate, batch size, and epoch to  
find the apparently best and worst combination for optimum performance 
 
learning_rate      epoch       batch_size 
-------------      -----       ---------- 
1e-5                6               4 
1e-5                6               16 
1e-5                12              4 
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1e-4                6               4 
1e-5                12              8 
''' 
 

if __name__ == "__main__": 
  freeze_support() 
 
  dls = DLStudio( 
  #                  dataroot = "/home/kak/ImageDatasets/PurdueShapes5MultiObject/", 
                    dataroot = "./data/", 
                    image_size = [64,64], 
                    path_saved_model = "./saved_model", 
                    momentum = 0.9, 
                    learning_rate = 1e-4, 
                    epochs = 12, 
                    batch_size = 8, 
                    classes = ('rectangle','triangle','disk','oval','star'), 
                    use_gpu = True, 
                ) 
 
  segmenter = DLStudio.SemanticSegmentation(  
                    dl_studio = dls,  
                    max_num_objects = 5, 
                ) 
 
  dataserver_train = DLStudio.SemanticSegmentation.PurdueShapes5MultiObjectDataset( 
                            train_or_test = 'train', 
                            dl_studio = dls, 
                            segmenter = segmenter, 
                            dataset_file = "PurdueShapes5MultiObject-10000-train.gz",  
                          ) 
  dataserver_test = DLStudio.SemanticSegmentation.PurdueShapes5MultiObjectDataset( 
                            train_or_test = 'test', 
                            dl_studio = dls, 
                            segmenter = segmenter, 
                            dataset_file = "PurdueShapes5MultiObject-1000-test.gz" 
                          ) 
  segmenter.dataserver_train = dataserver_train 
  segmenter.dataserver_test = dataserver_test 
 
  segmenter.load_PurdueShapes5MultiObject_dataset(dataserver_train, dataserver_test) 
 
  class SkipBlockDN(nn.Module): 
      """ 
      This class for the skip connections in the downward leg of the "U" 
 
      Class Path:   DLStudio  ->  SemanticSegmentation  ->  SkipBlockDN 
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      """ 
      def __init__(self, in_ch, out_ch, downsample=False, skip_connections=True): 
          super(SkipBlockDN, self).__init__() 
          self.downsample = downsample 
          self.skip_connections = skip_connections 
          self.in_ch = in_ch 
          self.out_ch = out_ch 
          self.convo1 = nn.Conv2d(in_ch, out_ch, 3, stride=1, padding=1) 
          self.convo2 = nn.Conv2d(in_ch, out_ch, 3, stride=1, padding=1) 
          self.bn1 = nn.BatchNorm2d(out_ch) 
          self.bn2 = nn.BatchNorm2d(out_ch) 
          if downsample: 
              self.downsampler = nn.Conv2d(in_ch, out_ch, 1, stride=2) 
      def forward(self, x): 
          identity = x                                      
          out = self.convo1(x)                               
          out = self.bn1(out)                               
          out = nn.functional.relu(out) 
          if self.in_ch == self.out_ch: 
              out = self.convo2(out)                               
              out = self.bn2(out)                               
              out = nn.functional.relu(out) 
          if self.downsample: 
              out = self.downsampler(out) 
              identity = self.downsampler(identity) 
          if self.skip_connections: 
              if self.in_ch == self.out_ch: 
                  out = out + identity 
              else: 
                  out = out + torch.cat((identity, identity), dim=1)  
          return out 
 
  class SkipBlockUP(nn.Module): 
      """ 
      This class is for the skip connections in the upward leg of the "U" 
 
      Class Path:   DLStudio  ->  SemanticSegmentation  ->  SkipBlockUP 
      """ 
      def __init__(self, in_ch, out_ch, upsample=False, skip_connections=True): 
          super(SkipBlockUP, self).__init__() 
          self.upsample = upsample 
          self.skip_connections = skip_connections 
          self.in_ch = in_ch 
          self.out_ch = out_ch 
          self.convoT1 = nn.ConvTranspose2d(in_ch, out_ch, 3, padding=1) 
          self.convoT2 = nn.ConvTranspose2d(in_ch, out_ch, 3, padding=1) 
          self.bn1 = nn.BatchNorm2d(out_ch) 
          self.bn2 = nn.BatchNorm2d(out_ch) 
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          if upsample: 
              self.upsampler = nn.ConvTranspose2d(in_ch, out_ch, 1, stride=2, 
dilation=2, output_padding=1, padding=0) 
      def forward(self, x): 
          identity = x                                      
          out = self.convoT1(x)                               
          out = self.bn1(out)                               
          out = nn.functional.relu(out) 
          out  =  nn.ReLU(inplace=False)(out)             
          if self.in_ch == self.out_ch: 
              out = self.convoT2(out)                               
              out = self.bn2(out)                               
              out = nn.functional.relu(out) 
          if self.upsample: 
              out = self.upsampler(out) 
              identity = self.upsampler(identity) 
          if self.skip_connections: 
              if self.in_ch == self.out_ch: 
                  out = out + identity                               
              else: 
                  out = out + identity[:,self.out_ch:,:,:] 
          return out 
  # I created a custom mUNet here to introduce the ASPP module at the bottleneck 
  class CustomUnet(DLStudio.SemanticSegmentation.mUNet): 
      def __init__(self, skip_connections=True, depth=16): 
        super(CustomUnet, self).__init__(skip_connections=True, depth=depth) 
        self.depth = depth // 2 
        self.conv_in = nn.Conv2d(3, 64, 3, padding=1) 
        ##  For the DN arm of the U: 
        self.bn1DN  = nn.BatchNorm2d(64) 
        self.bn2DN  = nn.BatchNorm2d(128) 
        self.skip64DN_arr = nn.ModuleList() 
        for i in range(self.depth): 
            self.skip64DN_arr.append(SkipBlockDN(64, 64, 
skip_connections=skip_connections)) 
        self.skip64dsDN = SkipBlockDN(64, 64,   downsample=True, 
skip_connections=skip_connections) 
        self.skip64to128DN = SkipBlockDN(64, 128, skip_connections=skip_connections ) 
        self.skip128DN_arr = nn.ModuleList() 
        for i in range(self.depth): 
            self.skip128DN_arr.append(SkipBlockDN(128, 128, 
skip_connections=skip_connections)) 
        self.skip128dsDN = SkipBlockDN(128,128, downsample=True, 
skip_connections=skip_connections) 
        ''' 
        Start of the ASPP Module. I got the main instruction from this piazza post: 
        https://piazza.com/class/m5qxf8zm2ds2gf/post/275 
        In short, concatenated the output of 4 different convolutions: 
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        1x1 kernel without dilation 
        3x3 kernel with dilation=2 
        3x3 kernel with dilation=4 
        3x3 kernel with dilation=6 
        Finally passed through the concatenated output to another convolutional layer  
        to regain the expected output shape. 
        ''' 
        self.aspp_conv1 = nn.Conv2d(128, 128, 1, padding=0) 
        self.aspp_conv2 = nn.Conv2d(128, 128, 3, padding=2, dilation=2) 
        self.aspp_conv3 = nn.Conv2d(128, 128, 3, padding=4, dilation=4) 
        self.aspp_conv4 = nn.Conv2d(128, 128, 3, padding=6, dilation=6) 
        self.aspp_final_conv = nn.Conv2d(512, 128, 1) 
 
        ##  For the UP arm of the U: 
        self.bn1UP  = nn.BatchNorm2d(128) 
        self.bn2UP  = nn.BatchNorm2d(64) 
        self.skip64UP_arr = nn.ModuleList() 
        for i in range(self.depth): 
            self.skip64UP_arr.append(SkipBlockUP(64, 64, 
skip_connections=skip_connections)) 
        self.skip64usUP = SkipBlockUP(64, 64, upsample=True, 
skip_connections=skip_connections) 
        self.skip128to64UP = SkipBlockUP(128, 64, skip_connections=skip_connections ) 
        self.skip128UP_arr = nn.ModuleList() 
        for i in range(self.depth): 
            self.skip128UP_arr.append(SkipBlockUP(128, 128, 
skip_connections=skip_connections)) 
        self.skip128usUP = SkipBlockUP(128,128, upsample=True, 
skip_connections=skip_connections) 
        self.conv_out = nn.ConvTranspose2d(64, 5, 3, 
stride=2,dilation=2,output_padding=1,padding=2) 
 
      def forward(self, x): 
        ##  Going down to the bottom of the U: 
        x = nn.MaxPool2d(2,2)(nn.functional.relu(self.conv_in(x)))           
        for i,skip64 in enumerate(self.skip64DN_arr[:self.depth//4]): 
            x = skip64(x)                 
 
        num_channels_to_save1 = x.shape[1] // 2 
        save_for_upside_1 = x[:,:num_channels_to_save1,:,:].clone() 
        x = self.skip64dsDN(x) 
        for i,skip64 in enumerate(self.skip64DN_arr[self.depth//4:]): 
            x = skip64(x)                 
        x = self.bn1DN(x) 
        num_channels_to_save2 = x.shape[1] // 2 
        save_for_upside_2 = x[:,:num_channels_to_save2,:,:].clone() 
        x = self.skip64to128DN(x) 
        for i,skip128 in enumerate(self.skip128DN_arr[:self.depth//4]): 
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            x = skip128(x)                 
 
        x = self.bn2DN(x) 
        num_channels_to_save3 = x.shape[1] // 2 
        save_for_upside_3 = x[:,:num_channels_to_save3,:,:].clone() 
        for i,skip128 in enumerate(self.skip128DN_arr[self.depth//4:]): 
            x = skip128(x)                 
        x = self.skip128dsDN(x) 
 
        ''' 
        Designing the ASPP: 
        aspp1,2,3,4 means no dilation, dilation=2,4,6 respectively.  
        aspp_concat concatenates these four outputs which then passes  
        through the final conv layer. 
        ''' 
        aspp1 = self.aspp_conv1(x) 
        aspp2 = self.aspp_conv2(x) 
        aspp3 = self.aspp_conv3(x) 
        aspp4 = self.aspp_conv4(x) 
        aspp_concat = torch.cat((aspp1, aspp2, aspp3, aspp4), dim=1) 
        x = self.aspp_final_conv(aspp_concat) 
 
        ## Coming up from the bottom of U on the other side: 
        x = self.skip128usUP(x)           
        for i,skip128 in enumerate(self.skip128UP_arr[:self.depth//4]): 
            x = skip128(x)                 
        x[:,:num_channels_to_save3,:,:] =  save_for_upside_3 
        x = self.bn1UP(x) 
        for i,skip128 in enumerate(self.skip128UP_arr[:self.depth//4]): 
            x = skip128(x)                 
        x = self.skip128to64UP(x) 
        for i,skip64 in enumerate(self.skip64UP_arr[self.depth//4:]): 
            x = skip64(x)                 
        x[:,:num_channels_to_save2,:,:] =  save_for_upside_2 
        x = self.bn2UP(x) 
        x = self.skip64usUP(x) 
        for i,skip64 in enumerate(self.skip64UP_arr[:self.depth//4]): 
            x = skip64(x)                 
        x[:,:num_channels_to_save1,:,:] =  save_for_upside_1 
        x = self.conv_out(x) 
        return x 
 
  model = CustomUnet(skip_connections=True, depth=16) 
  number_of_learnable_params = sum(p.numel() for p in model.parameters() if 
p.requires_grad) 
  print("\n\nThe number of learnable parameters in the model: %d\n" % 
number_of_learnable_params) 
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  def run_code_for_testing_semantic_segmentation(net): 
    net.load_state_dict(torch.load(dls.path_saved_model)) 
    batch_size = dls.batch_size 
    image_size = dls.image_size 
    max_num_objects = segmenter.max_num_objects 
    with torch.no_grad(): 
        for i, data in enumerate(segmenter.test_dataloader): 
            im_tensor, mask_tensor, bbox_tensor = data['image'], data['mask_tensor'], 
data['bbox_tensor'] 
            if i % 50 == 0: 
                print("\n\n\n\nShowing output for test batch %d: " % (i+1)) 
                count = i 
                outputs = net(im_tensor)                         
                 
                output_bw_tensor = torch.zeros(batch_size, 1, image_size[0], 
image_size[1], dtype=torch.float32) 
                for image_idx in range(batch_size): 
                    for layer_idx in range(max_num_objects):  
                        for m in range(image_size[0]): 
                            for n in range(image_size[1]): 
                                output_bw_tensor[image_idx, 0, m, n] = 
torch.max(outputs[image_idx, :, m, n]) 
                display_tensor = torch.zeros(7 * batch_size, 3, image_size[0], 
image_size[1], dtype=torch.float32) 
                for idx in range(batch_size): 
                    for bbox_idx in range(max_num_objects):    
                        bb_tensor = bbox_tensor[idx, bbox_idx] 
                        for k in range(max_num_objects): 
                            i1 = int(bb_tensor[k][1]) 
                            i2 = int(bb_tensor[k][3]) 
                            j1 = int(bb_tensor[k][0]) 
                            j2 = int(bb_tensor[k][2]) 
                            output_bw_tensor[idx, 0, i1:i2, j1] = 255 
                            output_bw_tensor[idx, 0, i1:i2, j2] = 255 
                            output_bw_tensor[idx, 0, i1, j1:j2] = 255 
                            output_bw_tensor[idx, 0, i2, j1:j2] = 255 
                            im_tensor[idx, 0, i1:i2, j1] = 255 
                            im_tensor[idx, 0, i1:i2, j2] = 255 
                            im_tensor[idx, 0, i1, j1:j2] = 255 
                            im_tensor[idx, 0, i2, j1:j2] = 255 
                display_tensor[:batch_size, :, :, :] = output_bw_tensor 
                display_tensor[batch_size:2*batch_size, :, :, :] = im_tensor 
 
                os.makedirs("./mixed_results_lr4_e12_b8_s1/masks", exist_ok=True) 
                for batch_im_idx in range(batch_size): 
                    for mask_layer_idx in range(max_num_objects): 
                        for i in range(image_size[0]): 
                            for j in range(image_size[1]): 
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                                if mask_layer_idx == 0: 
                                    if 25 < outputs[batch_im_idx, mask_layer_idx, i, 
j] < 85: 
                                        outputs[batch_im_idx, mask_layer_idx, i, j] = 
255 
                                    else: 
                                        outputs[batch_im_idx, mask_layer_idx, i, j] = 
50 
                                elif mask_layer_idx == 1: 
                                    if 65 < outputs[batch_im_idx, mask_layer_idx, i, 
j] < 135: 
                                        outputs[batch_im_idx, mask_layer_idx, i, j] = 
255 
                                    else: 
                                        outputs[batch_im_idx, mask_layer_idx, i, j] = 
50 
                                elif mask_layer_idx == 2: 
                                    if 115 < outputs[batch_im_idx, mask_layer_idx, i, 
j] < 185: 
                                        outputs[batch_im_idx, mask_layer_idx, i, j] = 
255 
                                    else: 
                                        outputs[batch_im_idx, mask_layer_idx, i, j] = 
50 
                                elif mask_layer_idx == 3: 
                                    if 165 < outputs[batch_im_idx, mask_layer_idx, i, 
j] < 230: 
                                        outputs[batch_im_idx, mask_layer_idx, i, j] = 
255 
                                    else: 
                                        outputs[batch_im_idx, mask_layer_idx, i, j] = 
50 
                                elif mask_layer_idx == 4: 
                                    if outputs[batch_im_idx, mask_layer_idx, i, j] > 
210: 
                                        outputs[batch_im_idx, mask_layer_idx, i, j] = 
255 
                                    else: 
                                        outputs[batch_im_idx, mask_layer_idx, i, j] = 
50 
 
                        display_tensor[2*batch_size + batch_size*mask_layer_idx + 
batch_im_idx, :, :, :] = outputs[batch_im_idx, mask_layer_idx, :, :] 
                        # I added the following lines to save the masks 
                        mask_save_path = 
f"./mixed_results_lr4_e12_b8_s1/masks/batch_{count+1}_image_{batch_im_idx+1}_class_{ma
sk_layer_idx+1}.png" 
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                        mask_tensor = outputs[batch_im_idx, mask_layer_idx, :, 
:].unsqueeze(0).unsqueeze(0) 
                        torchvision.utils.save_image(mask_tensor, mask_save_path, 
normalize=True) 
                        print(f"Saved mask for batch {count+1}, image 
{batch_im_idx+1}, class {mask_layer_idx+1} to {mask_save_path}") 
 
                save_path = 
f"./mixed_results_lr4_e12_b8_s1/output_batch_{count+1}.png" 
                # Slightly changed the following line and added some to save the grid 
as image instead of displaying it. 
                # I ran all these code on a server, did not access to display. 
                grid = torchvision.utils.make_grid(display_tensor, nrow=batch_size, 
normalize=True, padding=2, pad_value=100) 
                grid_np = grid.permute(1, 2, 0).cpu().numpy() 
                plt.figure(figsize=(10, 10)) 
                plt.imshow(grid_np) 
                plt.axis('off')  
                plt.tight_layout() 
                plt.savefig(save_path, dpi=300, bbox_inches='tight') 
                plt.close() 
                print(f"Saved visualization to {save_path}") 
   
  def save_model(model, save_path): 
    torch.save(model.state_dict(), save_path) 
    print(f"Model saved to {save_path}") 
 
  ''' 
  This is the required dice_function of which the skeleton was provided 
  '''   
  def dice_loss(preds: torch.Tensor, ground_truth: torch.Tensor, epsilon=1e-6): 
    # Flattened the prediction and ground truth vector first 
    # Got this idea from the first solution of Spring 2024 Page 4 
    # 
https://engineering.purdue.edu/DeepLearn/2_best_solutions/2024/Homeworks/HW7/2BestSolu
tions/1.pdf 
    preds_flat = preds.view(preds.size(0), preds.size(1), -1) 
    ground_truth_flat = ground_truth.view(ground_truth.size(0), ground_truth.size(1), 
-1) 
    # Step 1: Compute Dice Coefficient 
    numerator = torch.sum(preds_flat * ground_truth_flat, dim=-1) 
    denominator = torch.sum(preds_flat ** 2, dim=-1) + torch.sum(ground_truth_flat ** 
2, dim=-1) 
    # Step 2: dice_coefficient = 2*numerator / (denominator + epsilon) 
    dice_coefficient = (2.0 * numerator) / (denominator + epsilon)  # Shape: 
[batch_size, num_classes] 
    # Step 3: Compute dice_loss  = 1 - dice_coefficient 
    dice_loss = 1.0 - torch.mean(dice_coefficient) 
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    return dice_loss 
 
  def run_code_for_training_for_semantic_segmentation(net):         
    filename_for_out1 = "performance_numbers_" + str(dls.epochs) + ".txt" 
    FILE1 = open(filename_for_out1, 'w') 
    net = copy.deepcopy(net) 
    net = net.to(dls.device) 
    criterion1 = nn.MSELoss() 
    optimizer = optim.SGD(net.parameters(),  
                          lr=dls.learning_rate, momentum=dls.momentum) 
    start_time = time.perf_counter() 
    # Used these to generate loss curve 
    losses = [] 
    iterations = [] 
    for epoch in range(dls.epochs):   
        print("") 
        running_loss_segmentation = 0.0 
        for i, data in enumerate(segmenter.train_dataloader):     
            im_tensor, mask_tensor, bbox_tensor = data['image'], data['mask_tensor'], 
data['bbox_tensor'] 
            im_tensor = im_tensor.to(dls.device) 
            mask_tensor = mask_tensor.type(torch.FloatTensor) 
            mask_tensor = mask_tensor.to(dls.device)                  
            bbox_tensor = bbox_tensor.to(dls.device) 
            optimizer.zero_grad() 
            output = net(im_tensor)  
            # The following three lines are for MSE loss, Dice Loss, and MSE+Dice loss 
respectively. 
            # segmentation_loss = criterion1(output, mask_tensor) 
            # segmentation_loss = dice_loss(output, mask_tensor) 
            segmentation_loss = criterion1(output, mask_tensor) + 1*dice_loss(output, 
mask_tensor) # toggled between 1 and 100 
            segmentation_loss.backward() 
            optimizer.step() 
            running_loss_segmentation += segmentation_loss.item()     
            if i % 500 == 499:     
                current_time = time.perf_counter() 
                elapsed_time = current_time - start_time 
                avg_loss_segmentation = running_loss_segmentation / float(500) 
                print("[epoch=%d/%d, iter=%4d  elapsed_time=%3d secs]   MSE loss: 
%.3f" %  
                      (epoch+1, dls.epochs, i+1, elapsed_time, avg_loss_segmentation)) 
                FILE1.write("%.3f\n" % avg_loss_segmentation) 
                FILE1.flush() 
                # Extra lines that I added to plot the loss curve 
                losses.append(avg_loss_segmentation) 
                iterations.append(len(losses)) 
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                running_loss_segmentation = 0.0 
    FILE1.close() 
    print("\nFinished Training\n") 
    # Plot loss vs. iteration 
    plt.figure(figsize=(10, 6)) 
    plt.plot(iterations, losses, label="MSE + Dice Loss", color="blue") 
    plt.title("Mixed_Result_lr4_e12_b8_s1", fontsize=16) 
    plt.xlabel("Iteration", fontsize=14) 
    plt.ylabel("MSE + Dice Loss", fontsize=14) 
    plt.grid(True) 
    plt.legend(fontsize=12) 
    plt.tight_layout() 
    save_path = "./loss_vs_iteration_with_aspp_with_lr4_e12_b8_s1_mixed.png" 
    plt.savefig(save_path, dpi=1200) 
    plt.close() 
    print(f"Saved loss vs. iteration plot to {save_path}") 
    save_model(net, dls.path_saved_model) 
 
  run_code_for_training_for_semantic_segmentation(model) 
  run_code_for_testing_semantic_segmentation(model)   
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Dataset Creation for MSCOCO 

This is the segment I had to do most of the brainstorming for this homework. As I could not find 
an explicit guideline how to create a similar dataset to PurdueShapes5MultiObjectDataset, I 
borrowed some ideas from previous years solution 2. Also posted in the piazza. As per the 
suggestion as well as previous solution and largely by looking closely at the structure of the 
PurdueShapes5MultiObjectDataset class line 4660 to line 4789, I modified my own idea to 
generate a dataset. I posted the idea in this piazza post which the TA approved. Here is my 
workflow: 

• First, I filtered through the COCO dataset to choose only those RGB images that fall into 
either pizza/cat/bus. But now, additional criteria where the mask dimension should be a 
minimum of 200x200. 

• For each of the images, I generated a 3D NumPy mask array (with a default 0-array mask 
for all the categories) for all the images to make sure each image always has 3 masks 
irrespective of the actual number of categories present in the image. 

• I also created a dictionary to list the bounding box coordinates of the 3 categories. Then I 
saved all this info as a npz file for individual images. 

• Finally, in the model training and testing code, I loaded those npz files by creating a 
custom dataset class and then used them for training and validation after slight 
preprocessing. 

Here is the code that I used to generate the npz files from the COCO dataset: 

# Completed on March 25 
# 34722789 
 
import os 
import cv2 
import numpy as np 
from PIL import Image 
from pycocotools.coco import COCO 
import json 
 
# ann_file = './HW4/data/annotations/instances_val2014.json' 
# image_dir = './HW4/data/val2014' 
# output_dir = './dataset_with_test_masks' 
 
ann_file = './HW4/data/annotations/instances_train2014.json' 
image_dir = './HW4/data/train2014' 
output_dir = './dataset_with_train_masks' 
 
os.makedirs(output_dir, exist_ok=True) 
 
# Kept the first three labels of the PurdueShapes5MultiObjectDataset 
label_map = {'pizza': 50, 'cat': 100, 'bus': 150} 
 

https://piazza.com/class/m5qxf8zm2ds2gf/post/286
https://piazza.com/class/m5qxf8zm2ds2gf/post/289
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coco = COCO(ann_file) 
pizza_id = coco.getCatIds(catNms='pizza')[0] 
cat_id = coco.getCatIds(catNms='cat')[0] 
bus_id = coco.getCatIds(catNms='bus')[0] 
target_cat_ids = [pizza_id, cat_id, bus_id] 
pizza_imgs = set(coco.getImgIds(catIds=pizza_id)) 
cat_imgs = set(coco.getImgIds(catIds=cat_id)) 
bus_imgs = set(coco.getImgIds(catIds=bus_id)) 
all_img_ids = list(pizza_imgs.union(cat_imgs).union(bus_imgs)) 
 
for img_id in all_img_ids: 
    img_info = coco.loadImgs(img_id)[0] 
    ann_ids = coco.getAnnIds(imgIds=img_id, iscrowd=False) 
    anns = coco.loadAnns(ann_ids) 
    # Applying the additional criterion here: height and width each has to be >= 200 
    valid_anns = [ 
        ann for ann in anns  
        if ann['category_id'] in target_cat_ids and  
            ann['bbox'][2] >= 200 and ann['bbox'][3] >= 200 
    ] 
    if not valid_anns: 
        continue 
    img_path = os.path.join(image_dir, img_info['file_name']) 
    image = cv2.imread(img_path) 
 
    # Ran into an issue before, probably one of the images in the dataset was 
grayscale instead of RGB 
    # Putting this RGB checking condition here to solve that issue 
    if image is None or image.shape[2] != 3: 
        continue 
    height, width = image.shape[:2] 
    resized_image = cv2.resize(image, (256, 256)) 
    R = resized_image[:, :, 0].flatten() 
    G = resized_image[:, :, 1].flatten() 
    B = resized_image[:, :, 2].flatten() 
    # Initialize mask array and bounding box map 
    mask_array = np.zeros((3, 256, 256), dtype=np.uint8)   
    mask_val_to_bbox_map = {50: [], 100: [], 150: []}   
     
    # Process each valid annotation 
    for ann in valid_anns: 
        cat_id = ann['category_id'] 
        cat_name = coco.loadCats(cat_id)[0]['name'] 
        mask_value = label_map[cat_name] 
        mask = coco.annToMask(ann) 
        resized_mask = cv2.resize(mask.astype(np.uint8), (256, 256), 
interpolation=cv2.INTER_NEAREST) 
        mask_layer_index = list(label_map.values()).index(mask_value) 
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        mask_array[mask_layer_index][resized_mask == 1] = mask_value 
        x, y, w, h = map(int, ann['bbox']) 
        original_width, original_height = img_info['width'], img_info['height'] 
        resized_width, resized_height = 256, 256 
        x_resized = int(x * resized_width / original_width) 
        y_resized = int(y * resized_height / original_height) 
        w_resized = int(w * resized_width / original_width) 
        h_resized = int(h * resized_height / original_height) 
        # Assigned upper-left corner and lower-right corner similar to 
PurdueShapes5MultiObjectDataset 
        bbox = [x_resized, y_resized, x_resized + w_resized, y_resized + h_resized] 
        mask_val_to_bbox_map[mask_value].append(bbox) 
     
    output_filename = os.path.splitext(img_info['file_name'])[0] + '.npz' 
    output_path = os.path.join(output_dir, output_filename) 
    # Saving the data for individual image as npz file 
    np.savez_compressed( 
        output_path, 
        R=R, 
        G=G, 
        B=B, 
        mask_array=mask_array, 
        mask_val_to_bbox_map=mask_val_to_bbox_map 
    ) 
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After creating the npz files, here is the complete code that reads the npz files and use them to 
train the model 

# Completed on March 25 
# 34722789 
 
''' 
This code is heavily borrowed from the semantic_segmentation.py, 
and the DLStudio SemanticSegmentation Class, especially mUNet. 
Additionally, idea of customizing the dataset was borrowed heavily  
from the PurdueShapes5MultiObjectDataset and the solution2 of spring 2024 
(https://engineering.purdue.edu/DeepLearn/2_best_solutions/2024/Homeworks/HW7/2BestSol
utions/2.pdf) 
Just like the previous code,  
I will be changing the learning rate, batch size, and epoch to  
find the apparently best combination for optimum performance 
learning_rate      epoch       batch_size 
-------------      -----       ---------- 
1e-5                20              4 
1e-5                30              4 
1e-4                20              4 
1e-4                30              4 
 
after changing batch size some error occured, avoided increasing batch size. 
''' 
 
import random 
import numpy 
import torch 
import os, sys 
import torch.nn as nn 
import copy 
import torch.optim as optim 
import sys,os,os.path,glob 
import torch 
import torch.nn as nn 
import torch.nn.functional as F 
import torchvision                   
import torchvision.transforms as tvt 
import torch.optim as optim 
import numpy as np 
from PIL import ImageFilter 
import numbers 
import re 
import math 
import random 
import copy 
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import matplotlib.pyplot as plt 
import gzip 
import pickle 
import pymsgbox 
import time 
import logging 
from torch.utils.data import DataLoader 
from torch.utils.data import Dataset 
from DLStudio import * 
from multiprocessing import freeze_support 
 
if __name__ == "__main__": 
  freeze_support() 
 
  class MyNPZDataset(Dataset): 
    def __init__(self, root_dir): 
        # The idea here is to first list the files in the root directory that have npz 
extension 
        # After getting the list I can extract different information from individual 
npz files 
        self.root_dir = root_dir 
        self.file_list = [f for f in os.listdir(root_dir) if f.endswith('.npz')] 
    def __len__(self): 
        return len(self.file_list) 
    def __getitem__(self, idx): 
        file_name = self.file_list[idx] 
        file_path = os.path.join(self.root_dir, self.file_list[idx]) 
        data = np.load(file_path, allow_pickle=True) # the code did not run without 
allow_pickle=True 
        R = data['R'] 
        G = data['G'] 
        B = data['B'] 
        mask_array = data['mask_array'] 
        mask_val_to_bbox_map = data['mask_val_to_bbox_map'].item() 
        H, W = 256, 256 
        R = R.reshape(H, W) 
        G = G.reshape(H, W) 
        B = B.reshape(H, W) 
        image = np.stack([R, G, B], axis=-1) 
        image = image.astype(np.float32) / 255.0 
        image = torch.from_numpy(image).permute(2, 0, 1) 
        mask_tensor = torch.from_numpy(mask_array).float() 
         
        bbox_tensor = torch.zeros((3, 4), dtype=torch.float32) 
        for i, mask_value in enumerate([50, 100, 150]): 
            bboxes = mask_val_to_bbox_map.get(mask_value, []) 
            if bboxes: 
                # For better performance, I think this should be modified. 
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                # Instead of taking only the first coordinate, I should take all of 
them if multiple exists 
                bbox_tensor[i] = torch.tensor(bboxes[0]) 
         
        return { 
            # Needed the file_name later for the bonus part, wanted to find the image 
demonstrated in the test batches 
            'image': image, 
            'mask_tensor': mask_tensor, 
            'bbox_tensor': bbox_tensor, 
            'file_name': file_name 
        } 
 

  dls = DLStudio( 
  #                  dataroot = "/home/kak/ImageDatasets/PurdueShapes5MultiObject/", 
                    dataroot = "./data/", 
                    image_size = [256,256], 
                    path_saved_model = "./saved_model", 
                    momentum = 0.9, 
                    learning_rate = 1e-4, 
                    epochs = 30, 
                    batch_size = 4, 
                    classes = ('rectangle','triangle','disk','oval','star'), 
                    use_gpu = True, 
                ) 
 
  segmenter = DLStudio.SemanticSegmentation(  
                    dl_studio = dls,  
                    max_num_objects = 3, 
                ) 
 
  train_dir = './dataset_with_train_masks' 
  test_dir = './dataset_with_test_masks' 
  train_dataset = MyNPZDataset(root_dir=train_dir) 
  test_dataset = MyNPZDataset(root_dir=test_dir) 
  train_dataloader = DataLoader(train_dataset, batch_size=dls.batch_size, 
shuffle=True) 
  test_dataloader = DataLoader(test_dataset, batch_size=dls.batch_size, shuffle=False) 
  segmenter.train_dataloader = train_dataloader 
  segmenter.test_dataloader = test_dataloader 
 
  class SkipBlockDN(nn.Module): 
      """ 
      This class for the skip connections in the downward leg of the "U" 
 
      Class Path:   DLStudio  ->  SemanticSegmentation  ->  SkipBlockDN 
      """ 
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      def __init__(self, in_ch, out_ch, downsample=False, skip_connections=True): 
          super(SkipBlockDN, self).__init__() 
          self.downsample = downsample 
          self.skip_connections = skip_connections 
          self.in_ch = in_ch 
          self.out_ch = out_ch 
          self.convo1 = nn.Conv2d(in_ch, out_ch, 3, stride=1, padding=1) 
          self.convo2 = nn.Conv2d(in_ch, out_ch, 3, stride=1, padding=1) 
          self.bn1 = nn.BatchNorm2d(out_ch) 
          self.bn2 = nn.BatchNorm2d(out_ch) 
          if downsample: 
              self.downsampler = nn.Conv2d(in_ch, out_ch, 1, stride=2) 
      def forward(self, x): 
          identity = x                                      
          out = self.convo1(x)                               
          out = self.bn1(out)                               
          out = nn.functional.relu(out) 
          if self.in_ch == self.out_ch: 
              out = self.convo2(out)                               
              out = self.bn2(out)                               
              out = nn.functional.relu(out) 
          if self.downsample: 
              out = self.downsampler(out) 
              identity = self.downsampler(identity) 
          if self.skip_connections: 
              if self.in_ch == self.out_ch: 
                  out = out + identity 
              else: 
                  out = out + torch.cat((identity, identity), dim=1)  
          return out 
 
  class SkipBlockUP(nn.Module): 
      """ 
      This class is for the skip connections in the upward leg of the "U" 
 
      Class Path:   DLStudio  ->  SemanticSegmentation  ->  SkipBlockUP 
      """ 
      def __init__(self, in_ch, out_ch, upsample=False, skip_connections=True): 
          super(SkipBlockUP, self).__init__() 
          self.upsample = upsample 
          self.skip_connections = skip_connections 
          self.in_ch = in_ch 
          self.out_ch = out_ch 
          self.convoT1 = nn.ConvTranspose2d(in_ch, out_ch, 3, padding=1) 
          self.convoT2 = nn.ConvTranspose2d(in_ch, out_ch, 3, padding=1) 
          self.bn1 = nn.BatchNorm2d(out_ch) 
          self.bn2 = nn.BatchNorm2d(out_ch) 
          if upsample: 
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              self.upsampler = nn.ConvTranspose2d(in_ch, out_ch, 1, stride=2, 
dilation=2, output_padding=1, padding=0) 
      def forward(self, x): 
          identity = x                                      
          out = self.convoT1(x)                               
          out = self.bn1(out)                               
          out = nn.functional.relu(out) 
          out  =  nn.ReLU(inplace=False)(out)             
          if self.in_ch == self.out_ch: 
              out = self.convoT2(out)                               
              out = self.bn2(out)                               
              out = nn.functional.relu(out) 
          if self.upsample: 
              out = self.upsampler(out) 
              identity = self.upsampler(identity) 
          if self.skip_connections: 
              if self.in_ch == self.out_ch: 
                  out = out + identity                               
              else: 
                  out = out + identity[:,self.out_ch:,:,:] 
          return out 
  # I created a custom mUNet here to introduce the ASPP module at the bottleneck 
  class CustomUnet(DLStudio.SemanticSegmentation.mUNet): 
      def __init__(self, skip_connections=True, depth=16): 
        super(CustomUnet, self).__init__(skip_connections=True, depth=depth) 
        self.depth = depth // 2 
        self.conv_in = nn.Conv2d(3, 64, 3, padding=1) 
        ##  For the DN arm of the U: 
        self.bn1DN  = nn.BatchNorm2d(64) 
        self.bn2DN  = nn.BatchNorm2d(128) 
        self.skip64DN_arr = nn.ModuleList() 
        for i in range(self.depth): 
            self.skip64DN_arr.append(SkipBlockDN(64, 64, 
skip_connections=skip_connections)) 
        self.skip64dsDN = SkipBlockDN(64, 64,   downsample=True, 
skip_connections=skip_connections) 
        self.skip64to128DN = SkipBlockDN(64, 128, skip_connections=skip_connections ) 
        self.skip128DN_arr = nn.ModuleList() 
        for i in range(self.depth): 
            self.skip128DN_arr.append(SkipBlockDN(128, 128, 
skip_connections=skip_connections)) 
        self.skip128dsDN = SkipBlockDN(128,128, downsample=True, 
skip_connections=skip_connections) 
 
        ''' 
        Start of the ASPP Module. I got the main instruction from this piazza post: 
        https://piazza.com/class/m5qxf8zm2ds2gf/post/275 
        In short, concatenated the output of 4 different convolutions: 
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        1x1 kernel without dilation 
        3x3 kernel with dilation=2 
        3x3 kernel with dilation=4 
        3x3 kernel with dilation=6 
        Finally passed through the concatenated output to another convolutional layer  
        to regain the expeted output shape. 
        ''' 
        self.aspp_conv1 = nn.Conv2d(128, 128, 1, padding=0) 
        self.aspp_conv2 = nn.Conv2d(128, 128, 3, padding=2, dilation=2) 
        self.aspp_conv3 = nn.Conv2d(128, 128, 3, padding=4, dilation=4) 
        self.aspp_conv4 = nn.Conv2d(128, 128, 3, padding=6, dilation=6) 
        self.aspp_final_conv = nn.Conv2d(512, 128, 1) 
 
        ##  For the UP arm of the U: 
        self.bn1UP  = nn.BatchNorm2d(128) 
        self.bn2UP  = nn.BatchNorm2d(64) 
        self.skip64UP_arr = nn.ModuleList() 
        for i in range(self.depth): 
            self.skip64UP_arr.append(SkipBlockUP(64, 64, 
skip_connections=skip_connections)) 
        self.skip64usUP = SkipBlockUP(64, 64, upsample=True, 
skip_connections=skip_connections) 
        self.skip128to64UP = SkipBlockUP(128, 64, skip_connections=skip_connections ) 
        self.skip128UP_arr = nn.ModuleList() 
        for i in range(self.depth): 
            self.skip128UP_arr.append(SkipBlockUP(128, 128, 
skip_connections=skip_connections)) 
        self.skip128usUP = SkipBlockUP(128,128, upsample=True, 
skip_connections=skip_connections) 
        self.conv_out = nn.ConvTranspose2d(64, 3, 3, 
stride=2,dilation=2,output_padding=1,padding=2) 
 
      def forward(self, x): 
        ##  Going down to the bottom of the U: 
        x = nn.MaxPool2d(2,2)(nn.functional.relu(self.conv_in(x)))           
        for i,skip64 in enumerate(self.skip64DN_arr[:self.depth//4]): 
            x = skip64(x)                 
 
        num_channels_to_save1 = x.shape[1] // 2 
        save_for_upside_1 = x[:,:num_channels_to_save1,:,:].clone() 
        x = self.skip64dsDN(x) 
        for i,skip64 in enumerate(self.skip64DN_arr[self.depth//4:]): 
            x = skip64(x)                 
        x = self.bn1DN(x) 
        num_channels_to_save2 = x.shape[1] // 2 
        save_for_upside_2 = x[:,:num_channels_to_save2,:,:].clone() 
        x = self.skip64to128DN(x) 
        for i,skip128 in enumerate(self.skip128DN_arr[:self.depth//4]): 
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            x = skip128(x)                 
 
        x = self.bn2DN(x) 
        num_channels_to_save3 = x.shape[1] // 2 
        save_for_upside_3 = x[:,:num_channels_to_save3,:,:].clone() 
        for i,skip128 in enumerate(self.skip128DN_arr[self.depth//4:]): 
            x = skip128(x)                 
        x = self.skip128dsDN(x) 
 
        ''' 
        Designing the ASPP: 
        aspp1,2,3,4 means no dilation, dilation=2,4,6 respectively.  
        aspp_concat concatenates these four outputs which then passes  
        through the final conv layer. 
        ''' 
        aspp1 = self.aspp_conv1(x) 
        aspp2 = self.aspp_conv2(x) 
        aspp3 = self.aspp_conv3(x) 
        aspp4 = self.aspp_conv4(x) 
        aspp_concat = torch.cat((aspp1, aspp2, aspp3, aspp4), dim=1) 
        x = self.aspp_final_conv(aspp_concat) 
 
        ## Coming up from the bottom of U on the other side: 
        x = self.skip128usUP(x)           
        for i,skip128 in enumerate(self.skip128UP_arr[:self.depth//4]): 
            x = skip128(x)                 
        x[:,:num_channels_to_save3,:,:] =  save_for_upside_3 
        x = self.bn1UP(x) 
        for i,skip128 in enumerate(self.skip128UP_arr[:self.depth//4]): 
            x = skip128(x)                 
        x = self.skip128to64UP(x) 
        for i,skip64 in enumerate(self.skip64UP_arr[self.depth//4:]): 
            x = skip64(x)                 
        x[:,:num_channels_to_save2,:,:] =  save_for_upside_2 
        x = self.bn2UP(x) 
        x = self.skip64usUP(x) 
        for i,skip64 in enumerate(self.skip64UP_arr[:self.depth//4]): 
            x = skip64(x)                 
        x[:,:num_channels_to_save1,:,:] =  save_for_upside_1 
        x = self.conv_out(x) 
        return x 
 
  model = CustomUnet(skip_connections=True, depth=16) 
 
  number_of_learnable_params = sum(p.numel() for p in model.parameters() if 
p.requires_grad) 
  print("\n\nThe number of learnable parameters in the model: %d\n" % 
number_of_learnable_params) 
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  def run_code_for_testing_semantic_segmentation(net): 
    net.load_state_dict(torch.load(dls.path_saved_model)) 
    net = net.to(dls.device) 
    net.eval() 
    batch_size = dls.batch_size 
    image_size = dls.image_size 
    max_num_objects = segmenter.max_num_objects 
    with torch.no_grad(): 
        for i, data in enumerate(segmenter.test_dataloader): 
            im_tensor = data['image'].to(dls.device) 
            mask_tensor = data['mask_tensor'].to(dls.device) 
            bbox_tensor = data['bbox_tensor'].to(dls.device) 
            file_names = data['file_name'] 
 
            if i % 50 == 0: 
                print("\nShowing output for test batch %d: " % (i + 1)) 
                count = i 
                # Wanted to know which files are being used to demonstrate the model 
performance 
                print("File names in this batch:", file_names) 
                outputs = net(im_tensor) 
                threshold = 0.5 
                outputs_binary = (outputs > threshold).float() 
                display_tensor = torch.zeros(5 * batch_size, 3, image_size[0], 
image_size[1], dtype=torch.float32) 
                ''' 
                I did not really find any meaning of the first row in the original 
code, where we can easily see 
                the bounding boxes on top of the original images. So, I modified the 
first two rows from gray_scaled 
                bbox and original bbox to original image and original bbox. While 
writing the report, I saw that the  
                images were not showing the actual color. I think I may have messed up 
the transformation of the images 
                or somewhere in the display line. But given the time constraint, I 
have decided not to pursue this matter 
                as the main objective was to compare the masking performance of the 
model, not the colorful display. 
                ''' 
                display_tensor[:batch_size, :, :, :] = im_tensor 
                for idx in range(batch_size): 
                    for bbox_idx in range(max_num_objects): 
                        bb_tensor = bbox_tensor[idx, bbox_idx] 
                        if torch.any(bb_tensor != 0):  
                            i1, i2 = int(bb_tensor[1]), int(bb_tensor[3]) 
                            j1, j2 = int(bb_tensor[0]), int(bb_tensor[2]) 
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                            # Assigning pixel value of 1 for the bounding boxes 
                            im_tensor[idx, :, i1:i2, j1] = 1.0 
                            im_tensor[idx, :, i1:i2, j2] = 1.0 
                            im_tensor[idx, :, i1, j1:j2] = 1.0 
                            im_tensor[idx, :, i2, j1:j2] = 1.0 
                display_tensor[batch_size:2 * batch_size, :, :, :] = im_tensor 
                for batch_im_idx in range(batch_size): 
                    for mask_layer_idx in range(max_num_objects): 
                        mask = outputs_binary[batch_im_idx, mask_layer_idx, :, 
:].unsqueeze(0).unsqueeze(0) 
                        mask = mask.repeat(1, 3, 1, 1) 
                        
display_tensor[2*batch_size+batch_im_idx*max_num_objects+mask_layer_idx, :, :, :] = 
mask 
 
                os.makedirs("./results_coco_lr4_e30_bs4/masks", exist_ok=True) 
                for batch_im_idx in range(batch_size): 
                    for mask_layer_idx in range(max_num_objects): 
                        mask_save_path = 
f"./results_coco_lr4_e30_bs4/masks/batch_{count+1}_image_{batch_im_idx+1}_class_{mask_
layer_idx+1}.png" 
                        mask_tensor = outputs[batch_im_idx, mask_layer_idx, :, 
:].unsqueeze(0).unsqueeze(0) 
                        torchvision.utils.save_image(mask_tensor, mask_save_path, 
normalize=True) 
                        print(f"Saved mask for batch {i+1}, image {batch_im_idx+1}, 
class {mask_layer_idx+1} to {mask_save_path}") 
 
                save_path = f"./results_coco_lr4_e30_bs4/output_batch_{count+1}.png" 
                grid = torchvision.utils.make_grid(display_tensor, nrow=batch_size, 
normalize=False, padding=2, pad_value=100) 
                grid_np = grid.permute(1, 2, 0).cpu().numpy() 
                plt.figure(figsize=(10, 10)) 
                plt.imshow(grid_np) 
                plt.axis('off') 
                plt.tight_layout() 
                plt.savefig(save_path, dpi=300, bbox_inches='tight') 
                plt.close() 
                print(f"Saved visualization to {save_path}") 
   
  def save_model(model, save_path): 
    torch.save(model.state_dict(), save_path) 
    print(f"Model saved to {save_path}") 
   
  ''' 
  This is the required dice_function of which the skeleton was provided 
  '''   
  def dice_loss(preds: torch.Tensor, ground_truth: torch.Tensor, epsilon=1e-6): 



Page 30 
 

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu 

    # Flattened the prediction and ground truth vector first 
    # Got this idea from the first solution of Spring 2024 Page 4 
    # 
https://engineering.purdue.edu/DeepLearn/2_best_solutions/2024/Homeworks/HW7/2BestSolu
tions/1.pdf 
    preds_flat = preds.view(preds.size(0), preds.size(1), -1) 
    ground_truth_flat = ground_truth.view(ground_truth.size(0), ground_truth.size(1), 
-1) 
    # Step 1: Compute Dice Coefficient 
    numerator = torch.sum(preds_flat * ground_truth_flat, dim=-1) 
    denominator = torch.sum(preds_flat ** 2, dim=-1) + torch.sum(ground_truth_flat ** 
2, dim=-1) 
    # Step 2: dice_coefficient = 2*numerator / (denominator + epsilon) 
    dice_coefficient = (2.0 * numerator) / (denominator + epsilon)  # Shape: 
[batch_size, num_classes] 
    # Step 3: Compute dice_loss  = 1 - dice_coefficient 
    dice_loss = 1.0 - torch.mean(dice_coefficient) 
    return dice_loss 
 
  def run_code_for_training_for_semantic_segmentation(net): 
    filename_for_out1 = "performance_numbers_" + str(dls.epochs) + ".txt" 
    FILE1 = open(filename_for_out1, 'w') 
    net = net.to(dls.device) 
    criterion1 = nn.MSELoss() 
    optimizer = optim.SGD(net.parameters(), lr=dls.learning_rate, 
momentum=dls.momentum) 
     
    start_time = time.perf_counter() 
    losses = [] 
    iterations = [] 
     
    for epoch in range(dls.epochs): 
        print("") 
        running_loss_segmentation = 0.0 
        for i, data in enumerate(segmenter.train_dataloader): 
            im_tensor = data['image'].to(dls.device) 
            mask_tensor = data['mask_tensor'].to(dls.device) 
             
            optimizer.zero_grad() 
            output = net(im_tensor) 
            # segmentation_loss = criterion1(output, mask_tensor) 
            segmentation_loss = dice_loss(output, mask_tensor) 
            # segmentation_loss = criterion1(output, mask_tensor) + 100 * 
dice_loss(output, mask_tensor) 
            segmentation_loss.backward() 
            optimizer.step() 
             
            running_loss_segmentation += segmentation_loss.item() 
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            if i % 500 == 499: 
                current_time = time.perf_counter() 
                elapsed_time = current_time - start_time 
                avg_loss_segmentation = running_loss_segmentation / float(500) 
                print("[epoch=%d/%d, iter=%4d  elapsed_time=%3d secs]   MSE loss: 
%.3f" %  
                      (epoch+1, dls.epochs, i+1, elapsed_time, avg_loss_segmentation)) 
                FILE1.write("%.3f\n" % avg_loss_segmentation) 
                FILE1.flush() 
                losses.append(avg_loss_segmentation) 
                iterations.append(len(losses)) 
                running_loss_segmentation = 0.0 
     
    FILE1.close() 
    print("\nFinished Training\n") 
    plt.figure(figsize=(10, 6)) 
    plt.plot(iterations, losses, label="MSE Loss", color="blue") 
    plt.title("Results_coco_lr4_e30_bs4", fontsize=16) 
    plt.xlabel("Iteration", fontsize=14) 
    plt.ylabel("MSE Loss", fontsize=14) 
    plt.grid(True) 
    plt.legend(fontsize=12) 
    plt.tight_layout() 
    save_path = "./loss_vs_iteration_with_aspp_coco_lr4_e30_bs4.png" 
    plt.savefig(save_path, dpi=1200) 
    plt.close() 
    print(f"Saved loss vs. iteration plot to {save_path}") 
    save_model(net, dls.path_saved_model) 
 
  run_code_for_training_for_semantic_segmentation(model) 
  run_code_for_testing_semantic_segmentation(model)   
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MSE only Analysis 
 

Training Loss of PurdueShapes5MultiObjectDataset 
 

 
Fig: Loss curve for learning rate 1e-4, epoch 6, batch 4 

 

 
Fig: Loss curve for learning rate 1e-5, epoch 6, batch 4 

 
 

 
Fig: Loss curve for learning rate 1e-5, epoch 6, batch 16 
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Fig: Loss curve for learning rate 1e-5, epoch 12, batch 4 

 
 

 
Fig: Loss curve for learning rate 1e-5, epoch 12, batch 8 
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Training Loss of MSCOCO 
 

 
Fig: Loss curve for learning rate 1e-4, epoch 20, batch 4 

 

 
Fig: Loss curve for learning rate 1e-4, epoch 30, batch 4 

 

 
Fig: Loss curve for learning rate 1e-5, epoch 20, batch 4 
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Fig: Loss curve for learning rate 1e-5, epoch 30, batch 4 
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Test Results of PurdueShapes5MultiObjectDataset 
 

Output of learning rate 1e-4, epoch 6, batch 4 
 

 
Batch 1 
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Batch 51 
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Batch 101 
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Batch 151 
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Batch 201 



Page 41 
 

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu 

Output of learning rate 1e-5, epoch 6, batch 4 
 

 
Batch 1 
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Batch 51 
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Batch 101 
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Batch 151 
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Batch 201 
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Output of learning rate 1e-5, epoch 6, batch 16 
 

 
Batch 1 
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Batch 51 
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Output of learning rate 1e-5, epoch 12, batch 4 
 

 
Batch 1 
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Batch 51 
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Batch 101 
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Batch 151 
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Batch 201 
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Output of learning rate 1e-5, epoch 12, batch 8 
 

 
Batch 1 
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Batch 51 
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Batch 101 
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Test Results of MSCOCO 
 
As I have already mentioned in the source code, while writing a report I found out I have made a 
possible mess in the demonstration of the original image, which is why the following test results 
will show different color than what is originally present in the COCO dataset. Given the time 
constraint, I have decided not to pursue this issue, as I will have to rerun all the MSCOCO based 
codes again. 
 

Output of learning rate 1e-4, epoch 20, batch 4 

 
Batch 1 
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Batch 301 
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Batch 501 
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I have looked at the original images and handpicked 3 images that I will use to compare the results 
of different hyperparameter tuning. I am not considering batch here, meaning different images are 
from different batches. I will be displaying these handcrafted results from now on. 

 
Output of learning rate 1e-4, epoch 20, batch 4 
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Output of learning rate 1e-4, epoch 30, batch 4 
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Output of learning rate 1e-5, epoch 20, batch 4 
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Output of learning rate 1e-5, epoch 30, batch 4 
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Brief understanding of mUnet and how it carries out semantic segmentation of 
an image. 

 
From the basic mUnet, the architecture has an encoder that reduces spatial resolution while 
increasing the channel depth and the decoder that reconstructs the feature maps to the original 
image dimension with the help of skip connections to regain the fine details from the earlier layers. 
It is basically following and modifying the motivation of U-net. With the addition of the ASPP 
module at the bottleneck, right before the decoder, the model can examine the feature maps at 
multiple scales which can improve the model performance for detecting objects with varying sizes 
and shapes.  
 

Introducing Dice Loss 
 
I created my own dice loss function with the skeleton provided by the TA in the guideline. Also, 
had a slight help from previous year’s solution 1. Here is my dice loss function: 
 
  ''' 
  This is the required dice_function of which the skeleton was provided 
  '''   
  def dice_loss(preds: torch.Tensor, ground_truth: torch.Tensor, epsilon=1e-6): 
    # Flattened the prediction and ground truth vector first 
    # Got this idea from the first solution of Spring 2024 Page 4 
    # 
https://engineering.purdue.edu/DeepLearn/2_best_solutions/2024/Homeworks/HW7/2BestSolu
tions/1.pdf 
    preds_flat = preds.view(preds.size(0), preds.size(1), -1) 
    ground_truth_flat = ground_truth.view(ground_truth.size(0), ground_truth.size(1), 
-1) 
    # Step 1: Compute Dice Coefficient 
    numerator = torch.sum(preds_flat * ground_truth_flat, dim=-1) 
    denominator = torch.sum(preds_flat ** 2, dim=-1) + torch.sum(ground_truth_flat ** 
2, dim=-1) 
    # Step 2: dice_coefficient = 2*numerator / (denominator + epsilon) 
    dice_coefficient = (2.0 * numerator) / (denominator + epsilon)  # Shape: 
[batch_size, num_classes] 
    # Step 3: Compute dice_loss  = 1 - dice_coefficient 
    dice_loss = 1.0 - torch.mean(dice_coefficient) 
    return dice_loss 
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Dice Loss Only Analysis 
 

Training Loss of PurdueShapes5MultiObjectDataset 

 
Fig: Loss curve for learning rate 1e-4, epoch 6, batch 4 

 

 
Fig: Loss curve for learning rate 1e-5, epoch 6, batch 4 

 
 

 
Fig: Loss curve for learning rate 1e-5, epoch 6, batch 16 
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Fig: Loss curve for learning rate 1e-5, epoch 12, batch 4 

 
 

 
Fig: Loss curve for learning rate 1e-5, epoch 12, batch 8 
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Training Loss of MSCOCO 
 

 
Fig: Loss curve for learning rate 1e-4, epoch 20, batch 4 

 

 
Fig: Loss curve for learning rate 1e-4, epoch 30, batch 4 

 

 
Fig: Loss curve for learning rate 1e-5, epoch 20, batch 4 
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Fig: Loss curve for learning rate 1e-5, epoch 30, batch 4 
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Test Results of PurdueShapes5MultiObjectDataset 
 

Output of learning rate 1e-4, epoch 6, batch 4 

 
Batch 1 
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Batch 51 
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Batch 101 
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Batch 151 
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Batch 201 
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Output of learning rate 1e-5, epoch 6, batch 4 
 

 
Batch 1 

 



Page 74 
 

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu 

 
Batch 51 
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Batch 101 
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Batch 151 
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Batch 201 
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Output of learning rate 1e-5, epoch 6, batch 16 
 

 
Batch 1 
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Batch 51 
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Output of learning rate 1e-5, epoch 12, batch 4 

 

 
Batch 1 
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Batch 51 
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Output of learning rate 1e-5, epoch 12, batch 8 

 

 
Batch 1 
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Batch 51 
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Batch 101 
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Test Results of MSCOCO 
 

Output of learning rate 1e-4, epoch 20, batch 4 
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Output of learning rate 1e-4, epoch 30, batch 4 
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Output of learning rate 1e-5, epoch 20, batch 4 
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Output of learning rate 1e-5, epoch 30, batch 4 
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Disclaimer 
When I was writing a report, the initial report exceeded 145 pages, and the software crashed twice. 
I did not want to face any further crashes, therefore split the report in two parts. The MSE+Dice 
and the rest of the report was written in a separate report which I intend to merge before submitting. 
You may find page discrepancy in the report for this. 
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When using Dice+MSE loss, do you think there should be a scaling factor to 
scale the Dice Loss? Why or why not? 

 
Yes, As the Dice is bounded by [0 to 1], and the MSE loss that I got was in the order of magnitude 
of 2, I think both the losses should be of equal magnitude for the model to be unbiased to any of 
them. So, either we have to scale the MSE down or scale the Dice loss up. I chose the second 
option and created the total loss to be MSE+ αDice. I varied α value to be 100 to have them in the 
same magnitude and also played with value of 1 to see the difference. 
 

Mixed loss (MSE+ 1*Dice) Analysis 
 

Training Loss of PurdueShapes5MultiObjectDataset 
 

 
Fig: Loss curve for learning rate 1e-4, epoch 6, batch 4 

 

 
Fig: Loss curve for learning rate 1e-5, epoch 6, batch 4 
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Fig: Loss curve for learning rate 1e-5, epoch 6, batch 16 

 
 

 
Fig: Loss curve for learning rate 1e-5, epoch 12, batch 4 

 
 

 
Fig: Loss curve for learning rate 1e-5, epoch 12, batch 8 
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Training Loss of MSCOCO 
 

 
Fig: Loss curve for learning rate 1e-4, epoch 20, batch 4 

 

 
Fig: Loss curve for learning rate 1e-4, epoch 30, batch 4 

 
 

 
Fig: Loss curve for learning rate 1e-5, epoch 20, batch 4 
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Fig: Loss curve for learning rate 1e-5, epoch 30, batch 4 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Page 5 
 

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu 

Test Results of PurdueShapes5MultiObjectDataset 
 

Output of learning rate 1e-4, epoch 6, batch 4 
 

 
Batch 1 
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Batch 151 
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Batch 201 
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Output of learning rate 1e-5, epoch 6, batch 4 
 

 
Batch 1 
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Batch 51 
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Batch 101 
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Batch 151 
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Batch 201 

 
 
 



Page 15 
 

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu 

Output of learning rate 1e-5, epoch 6, batch 16 
 

 
Batch 1 
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Batch 51 



Page 17 
 

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu 

 
Output of learning rate 1e-5, epoch 12, batch 4 

 

 
Batch 1 
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Batch 51 
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Output of learning rate 1e-4, epoch 12, batch 8 
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Batch 51 
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Batch 101 
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Test Results of MSCOCO 
 

Output of learning rate 1e-4, epoch 20, batch 4 
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Output of learning rate 1e-4, epoch 30, batch 4 
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Output of learning rate 1e-5, epoch 20, batch 4 
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Output of learning rate 1e-5, epoch 30, batch 4 
 

 
 

  

 
 

  

 
 

  

 
 

  

 
 

  

 
 

 
 



Page 29 
 

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu 

Mixed loss (MSE+ 100*Dice) Analysis 
 

Training Loss of PurdueShapes5MultiObjectDataset 
 

 
Fig: Loss curve for learning rate 1e-4, epoch 6, batch 4 

 

 
Fig: Loss curve for learning rate 1e-5, epoch 6, batch 4 

 
 

 
Fig: Loss curve for learning rate 1e-5, epoch 6, batch 16 
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Fig: Loss curve for learning rate 1e-5, epoch 12, batch 4 

 
 

 
Fig: Loss curve for learning rate 1e-5, epoch 12, batch 8 
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Training Loss of MSCOCO 
 

 
Fig: Loss curve for learning rate 1e-4, epoch 20, batch 4 

 

 
Fig: Loss curve for learning rate 1e-4, epoch 30, batch 4 

 
 

 
Fig: Loss curve for learning rate 1e-5, epoch 20, batch 4 
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Fig: Loss curve for learning rate 1e-5, epoch 30, batch 4 
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Test Results of PurdueShapes5MultiObjectDataset 
 

Output of learning rate 1e-4, epoch 6, batch 4 
 

 
Batch 1 
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Batch 51 
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Batch 101 
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Batch 151 

 



Page 37 
 

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu 

 

 
Batch 201 
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Output of learning rate 1e-5, epoch 6, batch 4 
 

 
Batch 1 
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Batch 51 
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Batch 101 
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Batch 151 
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Batch 201 
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Output of learning rate 1e-5, epoch 6, batch 16 
 

 
Batch 1 
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Batch 51 
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Output of learning rate 1e-5, epoch 12, batch 4 

 

 
Batch 1 
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Batch 51 
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Batch 101 
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Batch 151 

 
 



Page 49 
 

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu 

 

 
Batch 201 
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Output of learning rate 1e-4, epoch 12, batch 8 

 

 
Batch 1 
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Batch 51 

 



Page 52 
 

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu 

 
Batch 101 
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Test Results of MSCOCO 
 

Output of learning rate 1e-4, epoch 20, batch 4 
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Output of learning rate 1e-4, epoch 30, batch 4 
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Output of learning rate 1e-5, epoch 20, batch 4 
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Output of learning rate 1e-5, epoch 30, batch 4 
 

 
 

  

 
 

  

 
 

  

 
 

  

 
 

  

 
 
 
 



Page 57 
 

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu 

Best and Worst-case Training-loss vs. iterations for 4 cases 
 

Case 1: MSE only 
 

Best Case for PurdueShapes5MultiObjectDataset 
 

 
Fig: Loss curve for learning rate 1e-4, epoch 6, batch 4 

 
Test Output of learning rate 1e-4, epoch 6, batch 4 

 

 
Batch 1 

 
Batch 51 

 
Batch 101 
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Best Case for MSCOCO 
 

 
Fig: Loss curve for learning rate 1e-5, epoch 30, batch 4 
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Output of learning rate 1e-5, epoch 30, batch 4 
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Worst Case for PurdueShapes5MultiObjectDataset 
 

 
Fig: Loss curve for learning rate 1e-5, epoch 6, batch 16 
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Output of learning rate 1e-5, epoch 6, batch 16 

 
Batch 1 

 
Batch 51 

 
 
 
 
 
 
 
 
 
 
 
 



Page 62 
 

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu 

Worst Case for MSCOCO 
 

 
Fig: Loss curve for learning rate 1e-4, epoch 20, batch 4 
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Test Output of learning rate 1e-4, epoch 20, batch 4 
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Case 2: Dice Loss only 
 

Best Case for PurdueShapes5MultiObjectDataset 
 

 
Fig: Loss curve for learning rate 1e-4, epoch 6, batch 4 

 
Output of learning rate 1e-4, epoch 6, batch 4 

 
Batch 1 
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Best Case for MSCOCO 
 

 
Fig: Loss curve for learning rate 1e-4, epoch 30, batch 4 
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Output of learning rate 1e-4, epoch 30, batch 4 
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Worst Case for PurdueShapes5MultiObjectDataset 
 

 
Fig: Loss curve for learning rate 1e-5, epoch 6, batch 16 
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Output of learning rate 1e-5, epoch 6, batch 16 
 

 
Batch 1 
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Worst Case for MSCOCO 

 

 
Fig: Loss curve for learning rate 1e-5, epoch 20, batch 4 
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Output of learning rate 1e-5, epoch 20, batch 4 
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Case 3: MSE+Dice with Scale of 1 
 

Best Case for PurdueShapes5MultiObjectDataset 
 

 
Fig: Loss curve for learning rate 1e-4, epoch 6, batch 4 

 
Output of learning rate 1e-4, epoch 6, batch 4 

 

 
Batch 1 
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Best Case for MSCOCO 

 

 
Fig: Loss curve for learning rate 1e-4, epoch 30, batch 4 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Page 73 
 

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu 

Output of learning rate 1e-4, epoch 30, batch 4 
 

 
 

  

 
 

  

 
 

  

 
 

  

 
 

  

 
 
 

 



Page 74 
 

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu 

Worst Case for PurdueShapes5MultiObjectDataset 
 

 
Fig: Loss curve for learning rate 1e-5, epoch 6, batch 16 
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Output of learning rate 1e-5, epoch 6, batch 16 
 

 
Batch 1 



Page 76 
 

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu 

 
Worst Case for MSCOCO 

 

 
Fig: Loss curve for learning rate 1e-4, epoch 20, batch 4 
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Output of learning rate 1e-4, epoch 20, batch 4 
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Case 4: MSE+Dice with Scale of 100 
 

Best Case for PurdueShapes5MultiObjectDataset 
 

 
Fig: Loss curve for learning rate 1e-4, epoch 6, batch 4 
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Output of learning rate 1e-4, epoch 6, batch 4 
 

 
Batch 1 
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Best Case for MSCOCO 
 

 
Fig: Loss curve for learning rate 1e-5, epoch 30, batch 4 
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Output of learning rate 1e-5, epoch 30, batch 4 
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Worst Case for PurdueShapes5MultiObjectDataset 
 

 
Fig: Loss curve for learning rate 1e-5, epoch 6, batch 16 
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Output of learning rate 1e-5, epoch 6, batch 16 
 

 
Batch 1 
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Worst Case for MSCOCO 
 

 
Fig: Loss curve for learning rate 1e-5, epoch 20, batch 4 
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Output of learning rate 1e-5, epoch 20, batch 4 
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Summary of Hyperparameters 
 

Case Dataset Best/Worst LR Epoch Batch 
1 

(MSE) 
Purdue Best 1e-4 6 4 
COCO Best 1e-5 30 4 
Purdue Worst 1e-5 6 16 
COCO Worst 1e-4 20 4 

2 
(dice) 

Purdue Best 1e-4 6 4 
COCO Best 1e-4 30 4 
Purdue Worst 1e-5 6 16 
COCO Worst 1e-5 20 4 

3 
(scale 1) 

Purdue Best 1e-4 6 4 
COCO Best 1e-4 30 4 
Purdue Worst 1e-5 6 16 
COCO Worst 1e-4 20 4 

4 
(scale 100) 

Purdue Best 1e-4 6 4 
COCO Best 1e-5 30 4 
Purdue Worst 1e-5 6 16 
COCO Worst 1e-5 20 4 

 
Insights into potential factors contributing to the observed variations in 

performance. 
 
The most potential factor is I think the epoch, the longer time I ran, the better result I got. Also, 
increasing the batch size was not a good intuition, it gave me the worst results. 
 

Qualitative observations on the model test results for MSE loss vs Dice loss vs. 
Dice+MSE loss 

 
By the look of the test outputs, introducing dice loss and scaling it properly has caused the model 
to improve slightly. MSE loss alone is the significant loss function that improves the model, dice 
loss on the other hand does not generate good result. 
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Bonus 
 

MSCOCO images side by side of SAM and mUNet 
 

mUNet 
 

Hover and click Box Everything 
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PurdueShapes5MultiObjectDataset images side by side of SAM and mUNet 

 
This is the mUNet output: 
 

 
 
This is the corresponding SAM output: 
 

Hover and click 
 

Box Everything 
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Qualitative Observations (Edge Accuracy, Completeness, FP, FN) 

 
If compared with Box method of SAM, I think my model is superior in the sense of edge accuracy, 
however SAM is superior in Completeness for most of the cases. Although the box method 
includes some unnecessary parts from the image which is especially prevalent in the 
PurdueShapes5MultiObjectDataset. Also, the everything method is unsuitable in this case as it 
tries to break the object into several segments (e.g. different parts of bus). But, for overall 
performance, the hover and click method of SAM is the best among my method and the three 
options of SAM. 


