Page 1

BME646 and ECE60146: Homework 8
Spring 2025
Completed by
Talha Ibn Mahmud
tibnmahm@purdue.edu
34722789

Due Date: Sunday, March 25, 2025, 11:59pm

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 2

Section 3 and 4: Programming Tasks

For this section I introduced the ASPP (Atrous Spatial Pyramid Pooling) layer at the bottleneck of
the mUNet and also introduced the Dice Loss to the model for better convergence.

While running the script, I found out an issue quite like this piazza post. However, the solution

mentioned there did not work for me, and I had to run every model for the first time by deleting
the checkpoint file. This is one of the main reasons my simulation took this much time.

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

https://piazza.com/class/m5qxf8zm2ds2gf/post/274

Page 3

Executing the Script with Modified the Modified Model ASPP at the Bottleneck

For the ASPP design I mainly followed the design of this piazza post. I concatenated the output
of 4 different convolutions: 1x1 kernel without dilation, 3x3 kernel with dilation=2, 3x3 kernel
with dilation=4, and 3x3 kernel with dilation=6. After concatenating, I passed the output to a
final convolutional layer. This is the code snippet from my customUnet (which is basically the
same mUNet with the ASPP module).

CustomUnet (DLStudio.SemanticSegmentation.mUNet):
__init_ (self, skip_connections= , depth=16):
super(CustomUnet, self).__init_ (skip_connections= , depth=depth)
self.depth = depth // 2
self.conv_in = nn.Conv2d(3, 64, 3, padding=1)

self.bnlDN = nn.BatchNorm2d(64)

self.bn2DN = nn.BatchNorm2d(128)

self.skip64DN_arr = nn.ModuleList()

for i in range(self.depth):

self.skip64DN_arr.append(SkipBlockDN(64, 64,

skip_connections=skip_connections))

self.skip64dsDN = SkipBlockDN(64, 64, downsample=
skip_connections=skip_connections)

self.skip64to128DN = SkipBlockDN(64, 128, skip_connections=skip_connections)

self.skip128DN_arr = nn.ModuleList()

for i in range(self.depth):

self.skip128DN_arr.append(SkipBlockDN(128, 128,

skip_connections=skip_connections))

self.skip128dsDN = SkipBlockDN(128,128, downsample=
skip_connections=skip_connections)

Start of the ASPP Module. I got the main instruction from this piazza post:

https://piazza.com/class/m5qxf8zm2ds2gf/post/275

In short, concatenated the output of 4 different convolutions:

1x1 kernel without dilation

3x3 kernel with dilation=2

3x3 kernel with dilation=4

3x3 kernel with dilation=6

Finally passed through the concatenated output to another convolutional layer

to regain the expected output shape.

self.aspp_convl = nn.Conv2d(128, 128, 1, padding=0)

self.aspp_conv2 = nn.Conv2d(128, 128, 3, padding=2, dilation=2)

self.aspp_conv3 = nn.Conv2d(128, 128, 3, padding=4, dilation=4)

self.aspp_conv4 = nn.Conv2d(128, 128, 3, padding=6, dilation=6)

self.aspp_final_conv = nn.Conv2d(512, 128, 1)

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

https://piazza.com/class/m5qxf8zm2ds2gf/post/275

self.bnlUP nn.BatchNorm2d(128)
self.bn2UP nn.BatchNorm2d(64)
self.skip64UP_arr = nn.ModuleList()
for i in range(self.depth):
self.skip64UP_arr.append(SkipBlockUP(64, 64,
skip_connections=skip_connections))
self.skip64usUP = SkipBlockUP(64, 64, upsample=True,
skip_connections=skip_connections)
self.skip128to64UP = SkipBlockUP(128, 64, skip_connections=skip_connections)
self.skip128UP_arr = nn.ModuleList()
for i in range(self.depth):
self.skip128UP_arr.append(SkipBlockUP(128, 128,
skip_connections=skip_connections))
self.skip128usUP = SkipBlockUP(128,128, upsample=True,
skip_connections=skip_connections)
self.conv_out = nn.ConvTranspose2d(64, 5, 3,
stride=2,dilation=2,output_padding=1,padding=2)

def forward(self, x):

x = nn.MaxPool12d(2,2) (nn.functional. relu(self.conv_in(x)))
for i,skip64 in enumerate(self.skip64DN_arr[:self.depth//4]):
x = skip64(x)

num_channels_to_savel = x.shape[1] // 2

save_for_upside_1 = x[:,:num_channels_to_savel,:,:].clone()

x = self.skip64dsDN(x)

for i,skip64 in enumerate(self.skip64DN_arr[self.depth//4:]1):
x = skip64(x)
self.bn1DN(x)

_channels_to_save2 = x.shapell] // 2

save_for_upside_2 = x[:,:num_channels_to_save2,:,:].clone()

x = self.skip64to128DN(x)

for i,skip128 in enumerate(self.skip128DN_arr[:self.depth//4]):
x = skip128(x)

x = self.bn2DN(x)

num_channels_to_save3 = x.shapel[1] // 2

save_for_upside_3 = x[:, :num_channels_to_save3,:,:].clone()

for i,skip128 in enumerate(self.skip128DN_arr[self.depth//4:]):
x = skip128(x)

x = self.skip128dsDN(x)

Designing the ASPP:
asppl,2,3,4 means no dilation, dilation=2,4,6 respectively.
aspp_concat concatenates these four outputs which then passes

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 5

through the final conv layer.
asppl = self.aspp_convi(
aspp2 self.aspp_conv2(
aspp3 = self.aspp_conv3(
aspp4 = self.aspp_conv4(
aspp_concat = torch.cat(
x = self.aspp_final_conv

sppl, aspp2, aspp3, aspp4), dim=1)

X
X
X
X
(
(aspp_concat)

)
)
)
)
a
a

x = self.skip128usUP(x)

for i,skip128 in enumerate(self.skip128UP_arrl[:self.depth//4]):
x = skip128(x)

x[:, :num_channels_to_save3,:,:] = save_for_upside_3

x = self.bnlUP(x)

for i,skip128 in enumerate(self.skip128UP_arrl[:self.depth//4]):
x = skip128(x)

x = self.skip128to64UP(x)

for i,skip64 in enumerate(self.skip64UP_arr[self.depth//4:]1):
x = skip64(x)

x[:, :num_channels_to_save2,:,:] = save_for_upside_2

x = self.bn2UP(x)

x = self.skip64usUP(x)

for i,skip64 in enumerate(self.skip64UP_arr[:self.depth//4]):
x = skip64(x)

x[:, :num_channels_to_savel,:,:] = save_for_upside_1

x = self.conv_out(x)

return x

model = CustomUnet(skip_connections= , depth=16)

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 6

After completing the model architecture, I ran a set of performance analysis by varying the loss
function and these hyperparameters: learning rate, batch size, and epoch. The values that I used
for the hyperparameters are:

Learning rate: 1e-4 and le-5
Batch size: 4, 8, 16

Epoch: 6, 12, 20, 30

In short this is the list of analysis that I did for the PurdueShapes5MultiObjectDataset:

For both datasets, I repeated the same set for MSE only, Dice Only, MSE+ aDice where a was
toggled between 1 and 100, the reason of this will be explained later on this report.

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 7

This is the complete code for analyzing the performance of the mUNet model with ASPP:

This code is heavily borrowed from the semantic_segmentation.py,
and the DLStudio SemanticSegmentation Class, especially mUNet.

import random

import os, sys

import torch.nn as nn

import copy

import torch.optim as optim
import sys,o0s,o0s.path,glob
import torch

import torch.nn as nn

import torch.nn.functional as F
import torchvision

import torchvision.transforms as tvt
import torch.optim as optim
import numpy as np

from PIL import ImageFilter
import numbers

import re

import math

import random

import copy

import matplotlib.pyplot as plt
import gzip

import pickle

import pymsgbox

import time

import logging

from DLStudio import *

from multiprocessing import freeze_support

I will be changing the learning rate, batch size, and epoch to
find the apparently best and worst combination for optimum performance

learning_rate batch_size

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

if _name__ == "_main__
freeze_support()

dls = DLStudio(

dataroot = "./data/",

image_size = [64,64],

path_saved_model = "./saved_model",

momentum = 0.9,

learning_rate = le-4,

epochs = 12,

batch_size = 8,

classes = ('rectangle', 'triangle’, 'disk', 'oval’, 'star'),
use_gpu = True,

segmenter = DLStudio.SemanticSegmentation(
dl_studio = dls,
max_num_objects = 5,

dataserver_train = DLStudio.SemanticSegmentation.PurdueShapes5MultiObjectDataset(
train_or_test = 'train',
dl_studio = dls,
segmenter = segmenter,
dataset_file = "PurdueShapes5MultiObject-10000-train.gz",
)
dataserver_test = DLStudio.SemanticSegmentation.PurdueShapes5MultiObjectDataset/(
train_or_test = 'test',
dl_studio = dls,
segmenter = segmenter,
dataset_file = "PurdueShapes5MultiObject-1000-test.gz"
)
segmenter.dataserver_train = dataserver_train
segmenter.dataserver_test = dataserver_test

segmenter. load_PurdueShapes5MultiObject_dataset(dataserver_train, dataserver_test)
class SkipBlockDN(nn.Module):

This class for the skip connections in the downward leg of the "U"

Class Path: DLStudio —> SemanticSegmentation -—> SkipBlockDN

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

def __init_ (self, in_ch, out_ch, downsample=False, skip_connections=True):

super(SkipBlockDN, self).__init_ ()
self.downsample = downsample
self.skip_connections = skip_connections
self.in_ch = in_ch
self.out_ch = out_ch
self.convol = nn.Conv2d(in_ch, out_ch, 3, stride=1, padding=1)
self.convo2 = nn.Conv2d(in_ch, out_ch, 3, stride=1, padding=1)
self.bnl = nn.BatchNorm2d(out_ch)
self.bn2 = nn.BatchNorm2d(out_ch)
if downsample:

self.downsampler = nn.Conv2d(in_ch, out_ch, 1, stride=2)
forward(self, x):
identity = x
out = self.convol(x)
out = self.bnl(out)
out = nn.functional.relu(out)
if self.in_ch == self.out_ch:

out = self.convo2(out)

out = self.bn2(out)

out = nn.functional.relu(out)
if self.downsample:

out = self.downsampler(out)

identity = self.downsampler(identity)
if self.skip_connections:

if self.in_ch == self.out_ch:

out = out + identity
else:
out = out + torch.cat((identity, identity), dim=1)

return out

class SkipBlockUP(nn.Module):

This class is for the skip connections in the upward leg of the "U"

Class Path: DLStudio —> SemanticSegmentation -> SkipBlockUP
def __init_ (self, in_ch, out_ch, upsample=False, skip_connections=True):
super(SkipBlockUP, self).__init_ ()
self.upsample = upsample
self.skip_connections = skip_connections
self.in_ch = in_ch
self.out_ch = out_ch
self.convoTl = nn.ConvTranspose2d(in_ch, out_ch, 3, padding=1)
self.convoT2 = nn.ConvTranspose2d(in_ch, out_ch, 3, padding=1)
self.bnl = nn.BatchNorm2d(out_ch)
self.bn2 = nn.BatchNorm2d(out_ch)

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

if upsample:

self.upsampler = nn.ConvTranspose2d(in_ch, out_ch, 1, stride=2,

dilation=2, output_padding=1, padding=0)
def forward(self, x):

identity = x
out = self.convoT1(x)
out = self.bnl(out)
out = nn.functional.relu(out)
out = nn.ReLU(inplace=False) (out)
if self.in_ch == self.out_ch:

out = self.convoT2(out)

out = self.bn2(out)

out = nn.functional.relu(out)
if self.upsample:

out = self.upsampler(out)

identity = self.upsampler(identity)
if self.skip_connections:

if self.in_ch == self.out_ch:

out = out + identity
else:
out = out + identityl[:,self.out_ch:,:,:]

return out

class CustomUnet(DLStudio.SemanticSegmentation.mUNet):
def __init_ (self, skip_connections=True, depth=16):
super(CustomUnet, self).__init_ (skip_connections=True, depth=depth)
self.depth = depth // 2
self.conv_in = nn.Conv2d(3, 64, 3, padding=1)

self.bnlDN = nn.BatchNorm2d(64)
self.bn2DN = nn.BatchNorm2d(128)
self.skip64DN_arr = nn.ModuleList()
for i in range(self.depth):
self.skip64DN_arr.append(SkipBlockDN(64, 64,
skip_connections=skip_connections))
self.skip64dsDN = SkipBlockDN(64, 64, downsample=True,
skip_connections=skip_connections)
self.skip64to128DN = SkipBlockDN(64, 128, skip_connections=skip_connections)
self.skip128DN_arr = nn.ModuleList()
for i in range(self.depth):
self.skip128DN_arr.append(SkipBlockDN(128, 128,
skip_connections=skip_connections))
self.skip128dsDN = SkipBlockDN(128,128, downsample=True,
skip_connections=skip_connections)
Start of the ASPP Module. I got the main instruction from this piazza post:
https://piazza.com/class/m5gxf8zm2ds2gf/post/275
In short, concatenated the output of 4 different convolutions:

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

1x1 kernel without dilation

3x3 kernel with dilation=2

3x3 kernel with dilation=4

3x3 kernel with dilation=6

Finally passed through the concatenated output to another convolutional layer
to regain the expected output shape.

self.aspp_convl = nn.Conv2d(128, 128, 1, padding=0)
self.aspp_conv2 = nn.Conv2d(128, 128, 3, padding=2, dilation=2)
self.aspp_conv3 = nn.Conv2d(128, 128, 3, padding=4, dilation=4)
self.aspp_conv4 = nn.Conv2d(128, 128, 3, padding=6, dilation=6)
self.aspp_final_ = nn.Conv2d(512, 128, 1)

self.bnlUP = nn.BatchNorm2d(128)
self.bn2UP = nn.BatchNorm2d(64)
self.skip64UP_arr = nn.ModuleList()
for i in range(self.depth):
self.skip64UP_arr.append(SkipBlockUP(64, 64,
skip_connections=skip_connections))
self.skip64usUP = SkipBlockUP(64, 64, upsample=True,
skip_connections=skip_connections)
self.skip128to64UP = SkipBlockUP(128, 64, skip_connections=skip_connections)
self.skip128UP_arr = nn.ModuleList()
for i in range(self.depth):
self.skip128UP_arr.append(SkipBlockUP(128, 128,
skip_connections=skip_connections))
self.skip128usUP = SkipBlockUP(128,128, upsample=True,
skip_connections=skip_connections)
self.conv_out = nn.ConvTranspose2d(64, 5, 3,
stride=2,dilation=2,output_padding=1,padding=2)

def forward(self, x):

X = nn.MaxPool12d(2,2) (nn.functional. relu(self.conv_in(x)))
for i,skip64 in enumerate(self.skip64DN_arr[:self.depth//4]):
x = skip64(x)

num_channels_to_savel = x.shapel[1] // 2
save_for_upside_1 = x[:,:num_channels_to_savel,:,:].clone()
x = self.skip64dsDN(x)
for i,skip64 in enumerate(self.skip64DN_arr[self.depth//4:]1):
x = skip64(x)
x = self.bn1DN(x)
num_channels_to_save2 = x.shapel[1l] // 2
save_for_upside_2 = x[:,:num_channels_to_save2,:,:].clone()
x = self.skip64to128DN(x)
for i,skip128 in enumerate(self.skip128DN_arrl[:self.depth//4]):

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

x = skip128(x)

x = self.bn2DN(x)

num_channels_to_save3 = x.shapel[1] // 2

save_for_upside_3 = x[:, :num_channels_to_save3,:,:].clone()

for i,skip128 in enumerate(self.skip128DN_arr[self.depth//4:]):
x = skip128(x)

x = self.skip128dsDN(x)

Designing the ASPP:
asppl,2,3,4 means no dilation, dilation=2,4,6 respectively.
aspp_concat concatenates these four outputs which then passes
through the final conv layer.

asppl = self.aspp_convi(
aspp2 self.aspp_conv2(
aspp3 = self.aspp_conv3(
aspp4 = self.aspp_conv4(
aspp_concat = torch.cat(
x = self.aspp_final_conv

sppl, aspp2, aspp3, aspp4), dim=1)

X
X
X
X
(
(aspp_concat)

)
)
)
)
a
a

x = self.skip128usUP(x)

for i,skip128 in enumerate(self.skip128UP_arrl[:self.depth//4]):
x = skip128(x)

x[:, :num_channels_to_save3,:,:] = save_for_upside_3

x = self.bnlUP(x)

for i,skip128 in enumerate(self.skip128UP_arrl[:self.depth//4]):
x = skip128(x)

x = self.skip128to64UP(x)

for i,skip64 in enumerate(self.skip64UP_arr[self.depth//4:]):
x = skip64(x)

x[:, :num_channels_to_save2,:,:] = save_for_upside_2

x = self.bn2UP(x)

x = self.skip64usUP(x)

for i,skip64 in enumerate(self.skip64UP_arr[:self.depth//4]):
x = skip64(x)

x[:, :num_channels_to_savel,:,:] = save_for_upside_1

x = self.conv_out(x)

return x

model = CustomUnet(skip_connections=True, depth=16)

number_of_learnable_params = sum(p.numel() for p in model.parameters() if
p.requires_grad)

print("\n\nThe number of learnable parameters in the model: %d\n" %
number_of_learnable_params)

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

def run_code_for_testing_semantic_segmentation(net):
net. load_state_dict(torch.load(dls.path_saved_model))
batch_size = dls.batch_size
image_size = dls.image_size
max_num_objects = segmenter.max_num_objects
with torch.no_grad():
for i, data in enumerate(segmenter.test_dataloader):
im_tensor, mask_tensor, bbox_tensor = datal['image'l, datal'mask_tensor'],
datal'bbox_tensor']
if 1 % 50 == 0:
print ("\n\n\n\nShowing output for test batch %d: " % (i+1))
count = 1
outputs = net(im_tensor)

output_bw_tensor = torch.zeros(batch_size, 1, image_size[0@],
image_size[1], dtype=torch.float32)
for image_idx in range(batch_size):
for layer_idx in range(max_num_objects):
for m in range(image_size[@]):
for n in range(image_size[1]):
output_bw_tensor[image_idx, @, m, n] =
torch.max(outputs[image_idx, :, m, nl])
display_tensor = torch.zeros(7 * batch_size, 3, image_sizel[0],
image_size[1], dtype=torch.float32)
for idx in range(batch_size):
for bbox_idx in range(max_num_objects):
bb_tensor = bbox_tensor[idx, bbox_idx]
for k in range(max_num_objects):
il = int(bb_tensor[k][1])
i2 = int(bb_tensor[k][3])
j1 = int(bb_tensor[k] [0])
j2 = int(bb_tensor[k] [2])
output_bw_tensor[idx, il1:i2, j1]
output_bw_tensor[idx, il1:i2, j2]
output_bw_tensor[idx, i1, j1:j21
output_bw_tensor[idx, i2, j1:j21
im_tensor[idx, 0, i1:i2, j1] = 255
im_tensor[idx, 0, i1:i2, j2] = 255
im_tensor[idx, 0, i1, j1:j2] = 255
im_tensor[idx, 0, i2, j1:j2] = 255
display_tensor[:batch_size, :, :, :] = output_bw_tensor
display_tensor[batch_size:2xbatch_size, :, :, :] = im_tensor

os.makedirs("./mixed_results_1r4_el2 b8 sl/masks", exist ok=True)
for batch_im_idx in range(batch_size):
for mask_layer_idx in range(max_num_objects):
for i in range(image_size[0@]):
for j in range(image_size[1]):

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

if mask_layer_idx ==
if 25 < outputs[batch_im_idx, mask_layer_idx, i,

outputs[batch_im_idx, mask_layer_idx, i, jl

else:
outputs[batch_im_idx, mask_layer_idx, i, jl

elif mask_layer_idx == 1:
if 65 < outputs[batch_im_idx, mask_layer_idx, i,

outputs[batch_im_idx, mask_layer_idx, i, jl

else:
outputs[batch_im_idx, mask_layer_idx, i, jl

elif mask_layer_idx ==
if 115 < outputs[batch_im_idx, mask_layer_idx, i,

outputs[batch_im_idx, mask_layer_idx, i, jl

else:
outputs[batch_im_idx, mask_layer_idx, i, jl

elif mask_layer_idx == 3:
if 165 < outputs[batch_im_idx, mask_layer_idx, i,

outputs[batch_im_idx, mask_layer_idx, i, jl

else:
outputs[batch_im_idx, mask_layer_idx, i, jl

elif mask_layer_idx ==
if outputs[batch_im_idx, mask_layer_idx, i, jl >

outputs[batch_im_idx, mask_layer_idx, i, jl
else:
outputs[batch_im_idx, mask_layer_idx, i, jl
display_tensor[2xbatch_size + batch_sizexmask_layer_idx +
batch_im_idx, :, :, :] = outputs[batch_im_idx, mask_layer_idx, :, :]
mask_save_path =

"./mixed_results_1r4_el2 b8 sl/masks/batch_{count+1}_image_{batch_im_idx+1}_ class_
sk_layer_idx+1}.png"

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

mask_tensor = outputs[batch_im_idx, mask_layer_idx, :,
:].unsqueeze(0@).unsqueeze(0)

torchvision.utils.save_image(mask_tensor, mask_save_path,
normalize=

print(f"Saved mask for batch {count+l}, image
batch_im_idx+1}, class {mask_layer_idx+1} to {mask_save_path}")

save_path =
"./mixed_results_1r4_el2 b8 sl/output_batch_{count+1}.png"

grid = torchvision.utils.make_grid(display_tensor, nrow=batch_size,
normalize= padding=2, pad_value=100)

grid_np = grid.permute(1, 2, 0).cpu().numpy()

plt.figure(figsize=(10, 10))

plt.imshow(grid_np)

plt.axis('off")

plt.tight_layout()

plt.savefig(save_path, dpi=300, bbox_inches='tight")

plt.close()

print(f"Saved visualization to {save_path}")

save_model(model, save_path):
torch.save(model.state_dict(), save_path)
print(f"Model saved to {save_path}")

This is the required dice_function of which the skeleton was provided

dice_loss(preds: torch.Tensor, ground_truth: torch.Tensor, epsilon=1e-6):

preds_flat = preds.view(preds.size(@), preds.size(1), -1)
ground_truth_flat = ground_truth.view(ground_truth.size(@), ground_truth.size(1),
-1)

numerator = torch.sum(preds_flat % ground_truth_flat, dim=-1)
denominator = torch.sum(preds_flat %k 2, dim=-1) + torch.sum(ground_truth_flat xx

2, dim=-1)

dice_coefficient = (2.0 * numerator) / (denominator + epsilon)

dice loss = 1.0 — torch.mean(dice_coefficient)

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

return dice_loss

run_code_for_training_for_semantic_segmentation(net):
filename_for_outl = "performance_numbers_" + str(dls.epochs) + ".txt"
FILE1 = open(filename_for_outl, 'w')
net = copy.deepcopy(net)
net = net.to(dls.device)
criterionl = nn.MSELoss()
optimizer = optim.SGD(net.parameters(),

lr=dls.learning_rate, momentum=dls.momentum)

start_time = time.perf_counter()

losses = []
iterations = []
for epoch in range(dls.epochs):
print("")
running_Tloss_segmentation = 0.0
for i, data in enumerate(segmenter.train_dataloader):
im_tensor, mask_tensor, bbox_tensor = data['image'l, datal'mask_tensor'],
datal'bbox_tensor']
im_tensor = im_tensor.to(dls.device)
mask_tensor = mask_tensor.type(torch.FloatTensor)
mask_tensor = mask_tensor.to(dls.device)
bbox_tensor = bbox_tensor.to(dls.device)
optimizer.zero_grad()
output = net(im_tensor)

segmentation_loss = criterionl(output, mask_tensor) + 1xdice_loss(output,
mask_tensor)
segmentation_loss.backward()
optimizer.step()
running_loss_segmentation += segmentation_loss.item()
if i % 500 == 499:
current_time = time.perf_counter()
elapsed_time = current_time - start_time
avg_loss_segmentation = running_loss_segmentation / float(500)
print(" [epoch=%d/%d, iter= elapsed_time= secs] MSE Tloss:

(epoch+1, dls.epochs, i+1, elapsed_time, avg_loss_segmentation))
FILEl.write(" \n" % avg_loss_segmentation)
FILE1.flush()

losses.append(avg_loss_segmentation)
iterations.append(len(losses))

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 17

running_loss_segmentation = 0.0
FILE1l.close()
print("\nFinished Training\n")

plt.figure(figsize=(10, 6))

plt.plot(iterations, losses, label="MSE + Dice Loss", color="blue")
plt.title("Mixed_Result_1lr4_el2_b8_s1", fontsize=16)
plt.xlabel("Iteration", fontsize=14)

plt.ylabel("MSE + Dice Loss", fontsize=14)

plt.grid()

plt.legend(fontsize=12)

plt.tight_layout()

save_path = "./loss_vs_iteration_with_aspp_with_1lr4_el2_b8_s1_mixed.png"
plt.savefig(save_path, dpi=1200)

plt.close()

print(f"Saved loss vs. iteration plot to {save_path}")
save_model(net, dls.path_saved_model)

run_code_for_training_for_semantic_segmentation(model)
run_code_for_testing_semantic_segmentation(model)

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 18

Dataset Creation for MSCOCO

This is the segment I had to do most of the brainstorming for this homework. As I could not find
an explicit guideline how to create a similar dataset to PurdueShapes5MultiObjectDataset, I
borrowed some ideas from previous years solution 2. Also posted in the piazza. As per the
suggestion as well as previous solution and largely by looking closely at the structure of the
PurdueShapes5SMultiObjectDataset class line 4660 to line 4789, I modified my own idea to
generate a dataset. I posted the idea in this piazza post which the TA approved. Here is my
workflow:

o First, I filtered through the COCO dataset to choose only those RGB images that fall into
either pizza/cat/bus. But now, additional criteria where the mask dimension should be a
minimum of 200x200.

o For each of the images, I generated a 3D NumPy mask array (with a default 0-array mask
for all the categories) for all the images to make sure each image always has 3 masks
irrespective of the actual number of categories present in the image.

e T also created a dictionary to list the bounding box coordinates of the 3 categories. Then I
saved all this info as a npz file for individual images.

o Finally, in the model training and testing code, I loaded those npz files by creating a
custom dataset class and then used them for training and validation after slight
preprocessing.

Here is the code that I used to generate the npz files from the COCO dataset:

import os

import cv2

import numpy as np

from PIL import Image

from pycocotools.coco import COCO
import json

ann_file = './HW4/data/annotations/instances_train2014.json'
image_dir = './HW4/data/train2014'
output_dir = './dataset_with_train_masks'

os.makedirs(output_dir, exist_ok=)

label_map = {'pizza': 50, 'cat': 100, 'bus': 150}

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

https://piazza.com/class/m5qxf8zm2ds2gf/post/286
https://piazza.com/class/m5qxf8zm2ds2gf/post/289

coco = COCO(ann_file)

pizza_id = coco.getCatIds(catNms="'pizza') [0]

cat_id = coco.getCatIds(catNms="'cat"') [0]

bus_id = coco.getCatIds(catNms="'bus"') [0]

target_cat_ids = [pizza_id, cat_id, bus_id]

pizza_imgs = set(coco.getImgIds(catIds=pizza_id))

cat_imgs = set(coco.getImgIds(catIds=cat_id))

bus_imgs = set(coco.getImgIds(catIds=bus_id))

all_img_ids = list(pizza_imgs.union(cat_imgs).union(bus_imgs))

for img_id in all_img_ids:
img_info = coco.loadImgs(img_id) [0]
ann_ids = coco.getAnnIds(imgIds=img_id, iscrowd=
anns = coco. loadAnns(ann_ids)

valid_anns = [
ann for ann in anns
if ann['category_id'] target_cat_ids
ann['bbox'] [2] >= 200 ann['bbox'] [3] >= 200
]
if valid_anns:
continue
img_path = os.path.join(image_dir, img_info['file_name'])
image = cv2.imread(img_path)

if image image.shape[2] != 3:
continue
height, width = image.shapel[:2]
resized_image = cv2.resize(image, (256, 256))
R = resized_image[:, :, 0].flatten()
G = resized_image[:, :, 1].flatten()
)

B = resized_image[:, :, 2].flatten

mask_array = np.zeros((3, 256, 256), dtype=np.uint8)
mask_val_to_bbox_map = {50: [], 100: [], 150: []}

for ann in valid_anns:
cat_id = ann['category_id'l]
cat_name = coco.loadCats(cat_id) [0]['name"]
mask_value = label_map[cat_name]
mask = coco.annToMask(ann)
resized_mask = cv2.resize(mask.astype(np.uint8), (256, 256),
interpolation=cv2.INTER_NEAREST)
mask_layer_index = list(label_map.values()).index(mask_value)

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 20

mask_array[mask_layer_index] [resized_mask == 1] = mask_value

X, Y, W, h = map(int, ann['bbox'])

original_width, original_height = img_info['width'], img_info['height']

resized_width, resized_height = 256, 256

x_resized = int(x * resized_width / original_width)

y_resized = int(y * resized_height / original_height)

w_resized = int(w % resized_width / original_width)
(

h_resized = int(h *x resized_height / original_height)

bbox = [x_resized, y_resized, x_resized + w_resized, y_resized + h_resized]
mask_val_to_bbox_map[mask_value].append(bbox)

output_filename = os.path.splitext(img_info['file_name'l])[0] +
output_path = os.path.join(output_dir, output_filename)

.npz'

np.savez_compressed(
output_path,

mask_array=mask_array,
mask_val_to_bbox_map=mask_val_to_bbox_map

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 21

After creating the npz files, here is the complete code that reads the npz files and use them to
train the model

This code is heavily borrowed from the semantic_segmentation.py,

and the DLStudio SemanticSegmentation Class, especially mUNet.

Additionally, idea of customizing the dataset was borrowed heavily

from the PurdueShapes5MultiObjectDataset and the solution2 of spring 2024
(https://engineering.purdue.edu/DeeplLearn/2_best_solutions/2024/Homeworks/HW7/2BestSol
utions/2.pdf)

Just like the previous code,

I will be changing the learning rate, batch size, and epoch to

find the apparently best combination for optimum performance

learning_rate batch_size

le-5
le-4
le-4

after changing batch size some error occured, avoided increasing batch size.

import random

import numpy

import torch

import os, sys

import torch.nn as nn
import copy

import torch.optim as optim
import sys,o0s,o0s.path,glob
import torch

import torch.nn as nn
import torch.nn.functional as F
import torchvision

import torchvision.transforms as tvt
import torch.optim as optim
import numpy as np

from PIL import ImageFilter
import numbers

import re

import math

import random

import copy

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

import matplotlib.pyplot as plt

import gzip

import pickle

import pymsgbox

import time

import logging

from torch.utils.data import Dataloader
from torch.utils.data import Dataset

from DLStudio import *

from multiprocessing import freeze_support

if _name__ == "_main__
freeze_support()

MyNPZDataset(Dataset):
__init_ (self, root_dir):

self.root_dir = root_dir

self.file_list = [f for f in os.listdir(root_dir) if f.endswith('.npz')]
_ len_ _(self):

return len(self.file_list)

__getitem_ (self, idx):

file name = self.file list[idx]

file_path = os.path.join(self.root_dir, self.file_list[idx])

data = np.load(file_path, allow_pickle=)

datal['R']
datal'G']
datal['B']
mask_array = datal'mask_array']
mask_val_to_bbox_map = datal'mask_val_to_bbox_map'].item()
H, W = 256, 256
R.reshape(H, W
G.reshape(H, W

)
)
B.reshape(H, W)
image = np.stack([R, G, Bl, axis=-1)
image = image.astype(np.float32) / 255.0
image = torch.from_numpy(image).permute(2, 0, 1)
mask_tensor = torch.from_numpy(mask_array).float()

bbox_tensor = torch.zeros((3, 4), dtype=torch.float32)
for i, mask_value in enumerate([50, 100, 150]):
bboxes = mask_val_to_bbox_map.get(mask_value, [])
if bboxes:

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

bbox_tensor[i] = torch.tensor(bboxes[0])

return {

"image': image,
'mask_tensor': mask_tensor,
'bbox_tensor': bbox_tensor,
'file_name': file_name

dls = DLStudio(

dataroot = "./data/",

image_size = [256,256],

path_saved_model = "./saved_model",

momentum = 0.9,

learning_rate = le-4,

epochs = 30,

batch_size = 4,

classes = ('rectangle', 'triangle’, 'disk', 'oval’, 'star'),
use_gpu = ,

segmenter = DLStudio.SemanticSegmentation(
dl_studio = dls,
max_num_objects = 3,

train_dir './dataset_with_train_masks'

test_dir = './dataset_with_test_masks'

train_dataset = MyNPZDataset(root_dir=train_dir)

test_dataset = MyNPZDataset(root_dir=test_dir)

train_dataloader = Dataloader(train_dataset, batch_size=dls.batch_size,
shuffle=)

test_dataloader = Dataloader(test_dataset, batch_size=dls.batch_size, shuffle=

segmenter.train_dataloader = train_dataloader

segmenter.test_dataloader = test_dataloader

SkipBlockDN(nn.Module) :

This class for the skip connections in the downward leg of the "U"

Class Path: DLStudio —> SemanticSegmentation -> SkipBlockDN

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

def __init_ (self, in_ch, out_ch, downsample=False, skip_connections=True):

super(SkipBlockDN, self).__init_ ()
self.downsample = downsample
self.skip_connections = skip_connections
self.in_ch = in_ch
self.out_ch = out_ch
self.convol = nn.Conv2d(in_ch, out_ch, 3, stride=1, padding=1)
self.convo2 = nn.Conv2d(in_ch, out_ch, 3, stride=1, padding=1)
self.bnl = nn.BatchNorm2d(out_ch)
self.bn2 = nn.BatchNorm2d(out_ch)
if downsample:

self.downsampler = nn.Conv2d(in_ch, out_ch, 1, stride=2)
forward(self, x):
identity = x
out = self.convol(x)
out = self.bnl(out)
out = nn.functional.relu(out)
if self.in_ch == self.out_ch:

out = self.convo2(out)

out = self.bn2(out)

out = nn.functional.relu(out)
if self.downsample:

out = self.downsampler(out)

identity = self.downsampler(identity)
if self.skip_connections:

if self.in_ch == self.out_ch:

out = out + identity
else:
out = out + torch.cat((identity, identity), dim=1)

return out

class SkipBlockUP(nn.Module):

This class is for the skip connections in the upward leg of the "U"

Class Path: DLStudio —> SemanticSegmentation -> SkipBlockUP
def __init_ (self, in_ch, out_ch, upsample=False, skip_connections=True):
super(SkipBlockUP, self).__init_ ()
self.upsample = upsample
self.skip_connections = skip_connections
self.in_ch = in_ch
self.out_ch = out_ch
self.convoTl = nn.ConvTranspose2d(in_ch, out_ch, 3, padding=1)
self.convoT2 = nn.ConvTranspose2d(in_ch, out_ch, 3, padding=1)
self.bnl = nn.BatchNorm2d(out_ch)
self.bn2 = nn.BatchNorm2d(out_ch)
if upsample:

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

self.upsampler = nn.ConvTranspose2d(in_ch, out_ch, 1, stride=2,
dilation=2, output_padding=1, padding=0)
def forward(self, x):

identity = x
out = self.convoT1(x)
out = self.bnl(out)
out = nn.functional.relu(out)
out = nn.ReLU(inplace=False) (out)
if self.in_ch == self.out_ch:

out = self.convoT2(out)

out = self.bn2(out)

out = nn.functional.relu(out)
if self.upsample:

out = self.upsampler(out)

identity = self.upsampler(identity)
if self.skip_connections:

if self.in_ch == self.out_ch:

out = out + identity
else:
out = out + identityl[:,self.out_ch:,:,:]

return out

class CustomUnet(DLStudio.SemanticSegmentation.mUNet):
def __init_ (self, skip_connections=True, depth=16):
super(CustomUnet, self).__init_ (skip_connections=True, depth=depth)
self.depth = depth // 2
self.conv_in = nn.Conv2d(3, 64, 3, padding=1)

self.bnlDN = nn.BatchNorm2d(64)
self.bn2DN = nn.BatchNorm2d(128)
self.skip64DN_arr = nn.ModuleList()
for i in range(self.depth):
self.skip64DN_arr.append(SkipBlockDN(64, 64,
skip_connections=skip_connections))
self.skip64dsDN = SkipBlockDN(64, 64, downsample=True,
skip_connections=skip_connections)
self.skip64to128DN = SkipBlockDN(64, 128, skip_connections=skip_connections)
self.skip128DN_arr = nn.ModuleList()
for i in range(self.depth):
self.skip128DN_arr.append(SkipBlockDN(128, 128,
skip_connections=skip_connections))
self.skip128dsDN = SkipBlockDN(128,128, downsample=True,
skip_connections=skip_connections)

Start of the ASPP Module. I got the main instruction from this piazza post:
https://piazza.com/class/m5gxf8zm2ds2gf/post/275
In short, concatenated the output of 4 different convolutions:

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

1x1 kernel without dilation

3x3 kernel with dilation=2

3x3 kernel with dilation=4

3x3 kernel with dilation=6

Finally passed through the concatenated output to another convolutional layer
to regain the expeted output shape.

self.aspp_convl = nn.Conv2d(128, 128, 1, padding=0)
self.aspp_conv2 = nn.Conv2d(128, 128, 3, padding=2, dilation=2)
self.aspp_conv3 = nn.Conv2d(128, 128, 3, padding=4, dilation=4)
self.aspp_conv4 = nn.Conv2d(128, 128, 3, padding=6, dilation=6)
self.aspp_final_ = nn.Conv2d(512, 128, 1)

self.bnlUP = nn.BatchNorm2d(128)
self.bn2UP = nn.BatchNorm2d(64)
self.skip64UP_arr = nn.ModuleList()
for i in range(self.depth):
self.skip64UP_arr.append(SkipBlockUP(64, 64,
skip_connections=skip_connections))
self.skip64usUP = SkipBlockUP(64, 64, upsample=True,
skip_connections=skip_connections)
self.skip128to64UP = SkipBlockUP(128, 64, skip_connections=skip_connections)
self.skip128UP_arr = nn.ModuleList()
for i in range(self.depth):
self.skip128UP_arr.append(SkipBlockUP(128, 128,
skip_connections=skip_connections))
self.skip128usUP = SkipBlockUP(128,128, upsample=True,
skip_connections=skip_connections)
self.conv_out = nn.ConvTranspose2d(64, 3, 3,
stride=2,dilation=2,output_padding=1,padding=2)

def forward(self, x):

X = nn.MaxPool12d(2,2) (nn.functional. relu(self.conv_in(x)))
for i,skip64 in enumerate(self.skip64DN_arr[:self.depth//4]):
x = skip64(x)

num_channels_to_savel = x.shapel[1] // 2
save_for_upside_1 = x[:,:num_channels_to_savel,:,:].clone()
x = self.skip64dsDN(x)
for i,skip64 in enumerate(self.skip64DN_arr[self.depth//4:]1):
x = skip64(x)
x = self.bn1DN(x)
num_channels_to_save2 = x.shapel[1l] // 2
save_for_upside_2 = x[:,:num_channels_to_save2,:,:].clone()
x = self.skip64to128DN(x)
for i,skip128 in enumerate(self.skip128DN_arrl[:self.depth//4]):

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

x = skip128(x)

x = self.bn2DN(x)

num_channels_to_save3 = x.shapel[1] // 2

save_for_upside_3 = x[:, :num_channels_to_save3,:,:].clone()

for i,skip128 in enumerate(self.skip128DN_arr[self.depth//4:]):
x = skip128(x)

x = self.skip128dsDN(x)

Designing the ASPP:

asppl,2,3,4 means no dilation, dilation=2,4,6 respectively.

aspp_concat concatenates these four outputs which then passes

through the final conv layer.

asppl = self.aspp_convi(

aspp2 self.aspp_conv2(

aspp3 = self.aspp_conv3(

aspp4 = self.aspp_conv4(
((asppl, aspp2, aspp3, aspp4), dim=1)
v(aspp_concat)

aspp_concat = torch.cat

X
X
X
X
(
x = self.aspp_final_conv(

)
)
)
)
a
a

x = self.skip128usUP(x)

for i,skip128 in enumerate(self.skip128UP_arrl[:self.depth//4]):
x = skip128(x)

x[:, :num_channels_to_save3,:,:] = save_for_upside_3

x = self.bnlUP(x)

for i,skip128 in enumerate(self.skip128UP_arrl[:self.depth//4]):
x = skip128(x)

x = self.skip128to64UP(x)

for i,skip64 in enumerate(self.skip64UP_arr[self.depth//4:]):
x = skip64(x)

x[:, :num_channels_to_save2,:,:] = save_for_upside_2

x = self.bn2UP(x)

x = self.skip64usUP(x)

for i,skip64 in enumerate(self.skip64UP_arr[:self.depth//4]):
x = skip64(x)

x[:, :num_channels_to_savel,:,:] = save_for_upside_1

x = self.conv_out(x)

return x

model = CustomUnet(skip_connections=True, depth=16)
number_of_learnable_params = sum(p.numel() for p in model.parameters() if
p.requires_grad)

print("\n\nThe number of learnable parameters in the model: %d\n" %
number_of_learnable_params)

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

def run_code_for_testing_semantic_segmentation(net):

net. load_state_dict(torch.load(dls.path_saved_model))

net = net.to(dls.device)

net.eval()

batch_size = dls.batch_size

image_size = dls.image_size

max_num_objects = segmenter.max_num_objects

with torch.no_grad():

for i, data in enumerate(segmenter.test_dataloader):

im_tensor = datal['image'].to(dls.device)
mask_tensor = datal'mask_tensor']l.to(dls.device)
bbox_tensor = datal'bbox_tensor'].to(dls.device)
file_names = datal'file_name']

if 1 % 50 == 0:
print("\nShowing output for test batch %d: " % (i + 1))
count = 1

print("File names in this batch:", file_names)

outputs = net(im_tensor)

threshold = 0.5

outputs_binary = (outputs > threshold).float()

display_tensor = torch.zeros(5 * batch_size, 3, image_sizel[0],
image_size[1], dtype=torch.float32)

I did not really find any meaning of the first row in the original
code, where we can easily see

the bounding boxes on top of the original images. So, I modified the
first two rows from gray_scaled

bbox and original bbox to original image and original bbox. While
writing the report, I saw that the

images were not showing the actual color. I think I may have messed up
the transformation of the images

or somewhere in the display line. But given the time constraint, I
have decided not to pursue this matter

as the main objective was to compare the masking performance of the
model, not the colorful display.

display_tensor[:batch_size, :, :, :] = im_tensor

for idx in range(batch_size):

for bbox_idx in range(max_num_objects):
bb_tensor = bbox_tensor[idx, bbox_idx]
if torch.any(bb_tensor !'= 0):
i1, i2 = int(bb_tensor[1]), int(bb_tensor[3])
j1, j2 = int(bb_tensor[0]), int(bb_tensor[2])

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

im_tensor[idx, :, il1l:i2, j1]
im_tensor[idx, :, il1l:i2, j2]
im_tensor[idx, :, i1, j1:j2] =
im_tensor[idx, :, i2, j1:j2]
display_tensor[batch_size:2 * batch_size, :, :, :] = im_tensor
for batch_im_idx in range(batch_size):
for mask_layer_idx in range(max_num_objects):
mask = outputs_binary[batch_im_idx, mask_layer_idx, :,
:].unsqueeze(0@).unsqueeze(0)
mask = mask.repeat(1, 3, 1, 1)

display_tensor[2xbatch_size+batch_im_idxxmax_num_objects+mask_layer_idx, :,
mask

os.makedirs("./results_coco_lr4_e30 bs4/masks", exist ok=True)
for batch_im_idx in range(batch_size):
for mask_layer_idx in range(max_num_objects):
mask_save_path =
f"./results_coco_1lr4_e30_bs4/masks/batch_{count+1}_image_<{batch_im_idx+1}_class_{mask_
layer_idx+1}.png"
mask_tensor = outputs[batch_im_idx, mask_layer_idx, :,
:].unsqueeze(0@).unsqueeze(0)
torchvision.utils.save_image(mask_tensor, mask_save_path,
normalize=True)
print(f"Saved mask for batch {i+1}, image {batch_im_idx+1},
class {mask_layer_idx+1} to {mask_save_path}")

save_path = f"./results_coco_lr4_e30_bs4/output_batch_{count+1}.png"

grid = torchvision.utils.make_grid(display_tensor, nrow=batch_size,
normalize=False, padding=2, pad_value=100)

grid_np = grid.permute(1, 2, 0).cpu().numpy()

plt.figure(figsize=(10, 10))

plt.imshow(grid_np)

plt.axis('off")

plt.tight_layout()

plt.savefig(save_path, dpi=300, bbox_inches='tight")

plt.close()

print(f"Saved visualization to {save_path}")

def save_model(model, save_path):
torch.save(model.state_dict(), save_path)
print(f"Model saved to {save_path}")

This is the required dice_function of which the skeleton was provided

def dice_loss(preds: torch.Tensor, ground_truth: torch.Tensor, epsilon=1e-6):

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

preds_flat = preds.view(preds.size(@), preds.size(1), -1)
ground_truth_flat = ground_truth.view(ground_truth.size(@), ground_truth.size(1),
-1)

numerator = torch.sum(preds_flat % ground_truth_flat, dim=-1)
denominator = torch.sum(preds_flat %k 2, dim=-1) + torch.sum(ground_truth_flat xx
2, dim=-1)

dice_coefficient = (2.0 * numerator) / (denominator + epsilon)

dice loss = 1.0 - torch.mean(dice_coefficient)
return dice_loss

run_code_for_training_for_semantic_segmentation(net):
filename_for_outl = "performance_numbers_" + str(dls.epochs) + ".txt"
FILE1 = open(filename_for_outl, 'w')
net = net.to(dls.device)
criterionl = nn.MSELoss()
optimizer = optim.SGD(net.parameters(), lr=dls.learning_rate,
momentum=d1ls.momentum)

start_time = time.perf_counter()
losses = []
iterations = []

for epoch in range(dls.epochs):
print("")
running_Tloss_segmentation = 0.0
for i, data in enumerate(segmenter.train_dataloader):
im_tensor = datal['image'].to(dls.device)
mask_tensor = datal'mask_tensor']l.to(dls.device)

optimizer.zero_grad()
output = net(im_tensor)

segmentation_loss = dice_loss(output, mask_tensor)
segmentation_loss.backward()
optimizer.step()

running_loss_segmentation += segmentation_loss.item()

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 31

if i % 500 == 499:
current_time = time.perf_counter()
elapsed_time = current_time - start_time
avg_loss_segmentation = running_loss_segmentation / float(500)
print(" [epoch=%d/%d, iter= elapsed_time= secs] MSE Tloss:

(epoch+1, dls.epochs, i+1, elapsed_time, avg_loss_segmentation))
FILEl.write(" \n" % avg_loss_segmentation)
FILE1.flush()
losses.append(avg_loss_segmentation)
iterations.append(len(losses))
running_loss_segmentation = 0.0

FILE1l.close()

print("\nFinished Training\n")

plt.figure(figsize=(10, 6))

plt.plot(iterations, losses, label="MSE Loss", color="blue")
plt.title("Results_coco_lr4_e30_bs4", fontsize=16)
plt.xlabel("Iteration", fontsize=14)

plt.ylabel("MSE Loss", fontsize=14)

plt.grid()

plt.legend(fontsize=12)

plt.tight_layout()

save_path = "./loss_vs_iteration_with_aspp_coco_1lr4_e30_bs4.png"
plt.savefig(save_path, dpi=1200)

plt.close()

print(f'"Saved loss vs. iteration plot to {save_path}")
save_model(net, dls.path_saved_model)

run_code_for_training_for_semantic_segmentation(model)
run_code_for_testing_semantic_segmentation(model)

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Talha Ibn Mahmud

Page 32

MSE only Analysis

Training Loss of PurdueShapes5SMultiObjectDataset

Result_Ird_e6_b4

= MSE Loss

240+

=
W
-

MSE Loss
g

3804

00+

o 5 10 20 25 k1]

15
Iteration

Fig: Loss curve for learning rate 1e-4, epoch 6, batch 4

Result_Ir5_e6_b4

460 — MSE Loss

420

MSE Loss
a
2

2
=

380

5 10 15 20 25 30
Iteration

o

Fig: Loss curve for learning rate 1e-5, epoch 6, batch 4

Result_IrS_e6_bl6

— MSE LoSS

aeo <

4504

MSE Loss
i
<

§

a204

al04

2 3 H 5 &
Iteration

Fig: Loss curve for learning rate 1e-5, epoch 6, batch 16

34722789 tibnmahm@purdue.edu

Page 33

Result_Ir5_e12_b4

460 {
= MSE Loss

440 4

-
<]
S

MSE Loss
g

360 <

0 10 20 0 40 50 60

Iteration

Fig: Loss curve for learning rate 1e-5, epoch 12, batch 4

Result Ir5_e12 b8

~——— MSE Loss

480

&

MSE Loss
8

400

10 15 20 25

0 5
Iteration

Fig: Loss curve for learning rate 1e-5, epoch 12, batch 8

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 34

Training Loss of MSCOCO

Results_coco_Ir4_e20_bs4

—— MSE Loss

1200

110

1100

MSE Loss

1030

1000

23 20 73 100 jra) 13.0 173 200
Iteration

Fig: Loss curve for learning rate 1e-4, epoch 20, batch 4

Results_coco Ird e30 bs4

1250

- MSE Loss
1200
150
2
2 100
-
w
w
= Joso
1000
950
o 5 10 15 20 b33 30

Iteration

Fig: Loss curve for learning rate 1e-4, epoch 30, batch 4

Results coco_Ir5_e20 _bsd

1250 1

= MSE LoSS
|
12004
11501
g
- 4
o 11004
w
=
10504
10004
950
25 50 75 100 125 150 175 200

Iteration

Fig: Loss curve for learning rate 1e-5, epoch 20, batch 4

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 35

Results_coco_Ir5 e30_bs4
1250 — MSE LoSS

1200

1150

1100

MSE Loss

1050

1000

350

W0
5 10 15 20 25 30

Iteration

Fig: Loss curve for learning rate 1e-5, epoch 30, batch 4

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 36

Test Results of PurdueShapes5MultiObjectDataset

Output of learning rate 1e-4, epoch 6, batch 4

Batch 1

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 37

-

N
K
)|
<

\ |

Batch 51

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 38

Batch 101

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 39

Batch 151

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 40

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Batch 201

Page 41

Output of learning rate 1e-5, epoch 6, batch 4

Batch 1

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 42

Batch 51

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Talha Ibn Mahmud

Batch 101

34722789

Page 43

tibnmahm@purdue.edu

Page 44

Batch 151

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 45

Batch 201

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 46

Output of learning rate 1e-5, epoch 6, batch 16

B2
= |
EEEETEE

Batch 1

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 47

S e ks

Batch 51

tibnmahm@purdue.edu

34722789

Talha Ibn Mahmud

Page 48

Output of learning rate 1le-5, epoch 12, batch 4

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 49

Batch 51

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 50

B
&

I

Batch 101

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 51

Batch 151

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 52

Batch 201

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 53

Output of learning rate le-5, epoch 12, batch 8

Batch 1

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 54

Batch 51

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Batch 101

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 56

Test Results of MSCOCO

As I have already mentioned in the source code, while writing a report I found out I have made a
possible mess in the demonstration of the original image, which is why the following test results
will show different color than what is originally present in the COCO dataset. Given the time
constraint, I have decided not to pursue this issue, as I will have to rerun all the MSCOCO based
codes again.

Output of learning rate 1e-4, epoch 20, batch 4

Batch 1

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 57

Batch 301

tibnmahm@purdue.edu

34722789

Talha Ibn Mahmud

Page 58

Batch 501

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 59

I have looked at the original images and handpicked 3 images that I will use to compare the results
of different hyperparameter tuning. I am not considering batch here, meaning different images are
from different batches. I will be displaying these handcrafted results from now on.

Output of learning rate 1e-4, epoch 20, batch 4

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 60

Output of learning rate 1e-4, epoch 30, batch 4

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 61

Output of learning rate 1e-5, epoch 20, batch 4

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 62

Output of learning rate 1e-5, epoch 30, batch 4

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 63

Brief understanding of mUnet and how it carries out semantic segmentation of
an image.

From the basic mUnet, the architecture has an encoder that reduces spatial resolution while
increasing the channel depth and the decoder that reconstructs the feature maps to the original
image dimension with the help of skip connections to regain the fine details from the earlier layers.
It is basically following and modifying the motivation of U-net. With the addition of the ASPP
module at the bottleneck, right before the decoder, the model can examine the feature maps at
multiple scales which can improve the model performance for detecting objects with varying sizes
and shapes.

Introducing Dice Loss
I created my own dice loss function with the skeleton provided by the TA in the guideline. Also,

had a slight help from previous year’s solution 1. Here is my dice loss function:

This is the required dice_function of which the skeleton was provided

dice_loss(preds: torch.Tensor, ground_truth: torch.Tensor, epsilon=1e-6):

preds_flat = preds.view(preds.size(@), preds.size(1), -1)
ground_truth_flat = ground_truth.view(ground_truth.size(@), ground_truth.size(1),
-1)

numerator = torch.sum(preds_flat % ground_truth_flat, dim=-1)
denominator = torch.sum(preds_flat %k 2, dim=-1) + torch.sum(ground_truth_flat xx
2, dim=-1)

dice_coefficient = (2.0 * numerator) / (denominator + epsilon)

dice loss = 1.0 - torch.mean(dice_coefficient)
return dice_loss

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Dice Loss Only Analysis

Training Loss of PurdueShapesSMultiObjectDataset

Dice_Result_Ir4_e6_b4

f
9961 —— Dice Loss

094+

00214

Dice Loss

o
©
=

0.88 {

o 5 10 15 20 25 30
Iteration

Fig: Loss curve for learning rate 1e-4, epoch 6, batch 4

Dice_Result_Ir5_e6_bd

1.00 = Dice Loss

2]

Dice Loss
-
2

b4

09z

0%

Q0 5 10 0 % 0

15
Iteration

Fig: Loss curve for learning rate 1e-5, epoch 6, batch 4

Dice_Result_Ir5_e6_bl6

~—— Dice Loss
1015

1005

1.000

ce Loss

0995

D

0990

0985

0980

1 2 3 B s 3
Iteration

Fig: Loss curve for learning rate 1e-5, epoch 6, batch 16

Page 64

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 65

Dice_Result_Ir5 el12 b4

—— Dice Loss
1.004
058+
§n£¢-
-
@
S
B e
0sz4
0504
0 10 20 £ “ £y L

Iteration

Fig: Loss curve for learning rate 1e-5, epoch 12, batch 4

Dice Result Ir5_el2 b8

—— Dice Loss

0.98

Dice Loss
L-3
=
3

e
>
-

092

090

o s 10 15 20 2
Iteration

Fig: Loss curve for learning rate 1e-5, epoch 12, batch 8

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 66

Training Loss of MSCOCO

Results_coco_Ird_e20_bs4_dice

1.000

—— Dice Loss
0,995 +
0.990
o 0.985
)
g
]
8 0.980
(a]
0.575
0.970
0,665
25 50 5 100 125 15.0 175 20,0

iteration

Fig: Loss curve for learning rate 1e-4, epoch 20, batch 4

Results coco _Ir4_e30 bsd dice

0,095 —— Dice Loss

0990

0985

0.980

Dice Loss
o
e
3

090

0,965

0960

0955

0 5 10 15 20 25 0
Iteration

Fig: Loss curve for learning rate 1e-4, epoch 30, batch 4

Results_coco_IrS_e20_bs4_dice

1.0015 4 —— Dice Loss

1.0010 4

1.0005 ¢

1.0000 ¢

Dice Loss

0.5995 ¢

0.590 +

0.9985 +

—— e — e S— — -

- - - -
25 50 15 100 125 150 s 200
Iteration

Fig: Loss curve for learning rate 1e-5, epoch 20, batch 4

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 67

Results_coco_Ir5_e30_bs4_dice

~— Dice Loss
1.002

1.001

1.000

Dice Loss
=3 =
£ b3
2 &

=3
g

0.99¢

0 5 10 20 5 3

13
Iteration

Fig: Loss curve for learning rate 1e-5, epoch 30, batch 4

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 68

Test Results of PurdueShapes5SMultiObjectDataset

Output of learning rate 1e-4, epoch 6, batch 4

Batch 1

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 69

Batch 51

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 70

Batch 101

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Talha Ibn Mahmud

Batch 151

34722789

tibnmahm@purdue.edu

Page 71

Page 72

Batch 201

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 73

Output of learning rate 1e-5, epoch 6, batch 4

Batch 1

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 74

Batch 51

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 75

4

11
NI . | R
H =

Batch 101

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 76

Batch 151

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 77

Batch 201

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 78

Output of learning rate 1e-5, epoch 6, batch 16

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 79

Batch 51

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Talha Ibn Mahmud

Page 80

Output of learning rate 1e-5, epoch 12, batch 4

DD

E
1 [

BN NN

Batch 1

34722789 tibnmahm@purdue.edu

Page 81

Batch 51

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 82

RS

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 83

Batch 151

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 84

Batch 201

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 85

Output of learning rate le-5, epoch 12, batch 8

Batch 1

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 86

Batch 51

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 87

L . o) 2aan4 |

==) Sl 7 (] i
22232 f’ _“J, —

Batch 101

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 88

Test Results of MSCOCO

Output of learning rate 1e-4, epoch 20, batch 4

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 89

Output of learning rate 1e-4, epoch 30, batch 4

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 90

Output of learning rate 1e-5, epoch 20, batch 4

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 91

Output of learning rate 1e-5, epoch 30, batch 4

R e T
s =L

| 2221

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 92

Disclaimer
When I was writing a report, the initial report exceeded 145 pages, and the software crashed twice.
I did not want to face any further crashes, therefore split the report in two parts. The MSE+Dice
and the rest of the report was written in a separate report which I intend to merge before submitting.
You may find page discrepancy in the report for this.

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 1

When using Dice+MSE loss, do you think there should be a scaling factor to
scale the Dice Loss? Why or why not?

Yes, As the Dice is bounded by [0 to 1], and the MSE loss that I got was in the order of magnitude
of 2, I think both the losses should be of equal magnitude for the model to be unbiased to any of
them. So, either we have to scale the MSE down or scale the Dice loss up. I chose the second
option and created the total loss to be MSE+ aDice. I varied a value to be 100 to have them in the
same magnitude and also played with value of 1 to see the difference.

Mixed loss (MSE+ 1*Dice) Analysis

Training Loss of PurdueShapes5SMultiObjectDataset

Mixed Result Ir4 e6 b4 sl

—— MSE + Dice Loss

MSE + Dice Loss
»

Jso

. V\/\/

v - v
20 2 30

b s 10 18
Iteration

Fig: Loss curve for learning rate 1e-4, epoch 6, batch 4

Mixed_Result_Ir5_e6_ba_s1

= MSE + Dice Loss

MSE + Dice Loss

g
8

380

0 5 10 15 20 5 30
Iteration

Fig: Loss curve for learning rate 1e-5, epoch 6, batch 4

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 2

Mixed_Result_Ir5_e6_bl6_sl

4701
e MSE + Dice Loss
460 4
450
w
")
|
Y a0
(=]
+
e
-4
410
410
1 2 3 q 5 €
Iteration

Fig: Loss curve for learning rate 1e-5, epoch 6, batch 16

Mixed_Result Ir5_e12 b4 sl

450 = MSE + Dice Loss

440

»
i
]

MSE + Dice Loss
-
S

380

360

0 10 20 ’V" 40 50 »h
Iteration

Fig: Loss curve for learning rate 1e-5, epoch 12, batch 4

Mixed Result_Ird e12 b8 sl

== MSE + Dice Loss
450

>
~
3

400

MSE + Dice Loss

o
=

350

a s 10 pLY P s
Iteration

Fig: Loss curve for learning rate 1e-5, epoch 12, batch 8

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Fig: Loss curve for learning rate 1e-4, epoch 20, batch 4

1250

120

I
L4

100

Dice Loss

10%

1000

Fig: Loss curve for learning rate 1e-4, epoch 30, batch 4

1250

1200

1150

Dice Loss

1100

1050

1000

Dice Loss
g

Training Loss of MSCOCO

Results_coco_Ird_e20_bs4_s1_mixed

= Dice Loss

50 5 100 125 150
Iteration

Results_coco_Ir4_e30_bs4 sl _mixed

200

— Dice Loss

0

s 10 5 0

Iteration

Results_coco_Ir5_e20_bs4_s1_mixed

25

30

— Dice Loss “

Fig: Loss curve for learning rate 1e-5, epoch 20, batch 4

Talha Ibn Mahmud

50 75 10.0 25 150
Iteration

34722789

175 200

Page 3

tibnmahm@purdue.edu

Page 4

Results_coco_Ir5_e30 _bs4_s1_mixed

1150

Dice Loss
g

0 s 10 15 20 25 i0
Iteration

Fig: Loss curve for learning rate 1e-5, epoch 30, batch 4

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 5

Test Results of PurdueShapes5MultiObjectDataset

Output of learning rate 1e-4, epoch 6, batch 4

Batch 1

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 6

Batch 51

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 7

Batch 101

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 8

Batch 151

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 9

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Batch 201

Page 10

Output of learning rate 1e-5, epoch 6, batch 4

Batch 1

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Batch 51

Talha Ibn Mahmud 34722789

Page 11

tibnmahm@purdue.edu

Page 12

Batch 101

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 13

Batch 151

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 14

Batch 201

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 15

Output of learning rate 1e-5, epoch 6, batch 16

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 16

IIIII

Batch 51

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 17

Output of learning rate 1e-5, epoch 12, batch 4

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 18

Batch 51

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 19

Batch 101

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 20

il

Batch 151

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 21

Batch 201

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 22

Output of learning rate 1e-4, epoch 12, batch 8

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 23

Batch 51

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Talha Ibn Mahmud

Batch 101

34722789

tibnmahm@purdue.edu

Page 25

Test Results of MSCOCO

Output of learning rate 1e-4, epoch 20, batch 4

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 26

Output of learning rate 1e-4, epoch 30, batch 4

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 27

Output of learning rate 1e-5, epoch 20, batch 4

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 28

Output of learning rate 1e-5, epoch 30, batch 4

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Talha Ibn Mahmud

Page 29

Mixed loss (MSE+ 100*Dice) Analysis

Training Loss of PurdueShapes5SMultiObjectDataset

Mixed_Result_Ir4_e6_b4_s100

—— MSE + Dice Loss

@
3
2

MSE + Dice Loss
I

»
=
S

aan

0 s 10 15 2 25 %
Iteration

Fig: Loss curve for learning rate 1e-4, epoch 6, batch 4

Mixed_Result_lrS_eG_Eg_leO
e —— MSE + Dice Loss

MSE + Dice Loss
w
8

"
2
S

460

a 5 10 15 20 2)

Iteration

Fig: Loss curve for learning rate 1e-5, epoch 6, batch 4

Mixed Result_Ir5_e6_bl6_s100

560 —— MSE + Dice Loss

540

MSE + Dice Loss

500

490

2 3 4 5 6

Iteration

Fig: Loss curve for learning rate 1e-5, epoch 6, batch 16

34722789 tibnmahm@purdue.edu

Page 30

Mixed_Result_Ir5_el2_b4_s100

560 —— MSE + Dice Loss

540

MSE + Dice Loss
g &

&

460

o 10 0 E 40 S0 0
Iteration

Fig: Loss curve for learning rate 1e-5, epoch 12, batch 4

Mixed Result Ir5 e12 b8 s100

== MSE + Dice Loss

540

500

MSE + Dice Loss

480

280

0 s 10 15 20 5
Iteration

Fig: Loss curve for learning rate 1e-5, epoch 12, batch 8

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 31

Training Loss of MSCOCO

Results coco Ird e20 bsd s100_mixed

- Dice Loss
1300 4
12504
2
3 1200 1
o
&
o
1150
1100 4
1050 4
25 Y s 100 15 150 175 200

Iteration

Fig: Loss curve for learning rate 1e-4, epoch 20, batch 4

Results_coco_Ir4_e30_bs4 s100_mixed

1300 ~—— Dice Loss

1250

1200

Dice Loss
S

1100

1050

o s 10 20 25 30

15
Iteration

Fig: Loss curve for learning rate 1e-4, epoch 30, batch 4

Results_coco_Ir5 €20 _bs4 s100_mixed

— Dice Loss

1300

1250

055

2 1200

Dice L

1150

100

1050
25 50 75 10.0 125 15.0 175 200

Iteration

Fig: Loss curve for learning rate 1e-5, epoch 20, batch 4

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 32

Results_coco_Ir5_e30_bs4_s100_mixed

1350 — Dice Loss |

1300

1250

1200

Dice Loss
P

1100

1050

0 5 10 15 20 25 30
Iteration

Fig: Loss curve for learning rate 1e-5, epoch 30, batch 4

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 33

Test Results of PurdueShapes5MultiObjectDataset

Output of learning rate 1e-4, epoch 6, batch 4

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 34

Batch 51

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 35

Batch 101

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 36

Batch 151

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 37

Batch 201

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 38

Output of learning rate 1e-5, epoch 6, batch 4

Batch 1

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

) 1
| |

Batch 51

Talha Ibn Mahmud 34722789

Page 39

tibnmahm@purdue.edu

Page 40

Batch 101

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 41

Batch 151

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 42

Batch 201

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 43

Output of learning rate 1e-5, epoch 6, batch 16

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 44

Batch 51

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 45

Output of learning rate 1le-5, epoch 12, batch 4

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 46

Batch 51

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 47

Batch 101

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 48

Batch 151

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 49

Batch 201

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 50

Output of learning rate 1e-4, epoch 12, batch 8

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 51

Batch 51

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Batch 101

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 53

Test Results of MSCOCO

Output of learning rate 1e-4, epoch 20, batch 4

|

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 54

Output of learning rate 1e-4, epoch 30, batch 4

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 55

Output of learning rate 1e-5, epoch 20, batch 4

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 56

Output of learning rate 1e-5, epoch 30, batch 4

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 57

Best and Worst-case Training-loss vs. iterations for 4 cases
Case 1: MSE only

Best Case for PurdueShapes5MultiObjectDataset

Result_Ird_e6_b4

—— MSE Loss

MSE Loss

s

Lol A

Iteration

5 10

Fig: Loss curve for learning rate 1e-4, epoch 6, batch 4

Test Output of learning rate 1e-4, epoch 6, batch 4

Batch 101

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 58

Best Case for MSCOCO

Results coco Ir5 e30 bs4
1250 ——— MSE Loss

MSE Loss

5 10 15 20 25 EL
Iteration

Fig: Loss curve for learning rate 1e-5, epoch 30, batch 4

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 59

Output of learning rate 1e-5, epoch 30, batch 4

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 60

Worst Case for PurdueShapes5MultiObjectDataset

Result_IrS_e6_bl16

- MSE LoSS

ae0 4

MSE Loss

1 2 3 4 3 6
Iteration

Fig: Loss curve for learning rate 1e-5, epoch 6, batch 16

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 61

Output of learning rate 1e-5, epoch 6, batch 16

IIIIII
O P e

Batch 1 Batch 51

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 62

Worst Case for MSCOCO

Results_coco_Ir4_e20_bs4

—— MSE Loss

12004

11904

1100 {

MSE Loss

1090 4

1000 1

23 2.0 15 10.0 123 15.0 173 200

Iteration

Fig: Loss curve for learning rate 1e-4, epoch 20, batch 4

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 63

Test Output of learning rate 1e-4, epoch 20, batch 4

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Case 2: Dice Loss only

Best Case for PurdueShapes5MultiObjectDataset

Dice_Result Ir4_eG_b4

3
Raration

Fig: Loss curve for learning rate 1e-4, epoch 6, batch 4

Output of learning rate 1e-4, epoch 6, batch 4
{ | 1

Batch 1
Talha Ibn Mahmud

34722789

tibnmahm@purdue.edu

Page 64

Page 65

Best Case for MSCOCO

Results_coco Ir4_e30 bs4 dice

—— Dice Lass

0.965

0 5 10 20 25 30

15
Iteration

Fig: Loss curve for learning rate 1e-4, epoch 30, batch 4

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 66

Output of learning rate 1e-4, epoch 30, batch 4

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 67

Worst Case for PurdueShapes5MultiObjectDataset

Dice_Result_Ir5_e6_bl6

Dice Loss

1 2 3 4 s &
Iteration

Fig: Loss curve for learning rate 1e-5, epoch 6, batch 16

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 68

Output of learning rate 1e-5, epoch 6, batch 16

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Talha Ibn Mahmud

1.0015 ¢

1.0005 4

Dice Loss

09995 ¢

0.5690 ¢

0.9985 +

Worst Case for MSCOCO

Results_coco_Ir5_e20_bs4_dice

Page 69

1.0000 <

25

30

— Dice Loss

15 100 125 150 s
Iteration

200

Fig: Loss curve for learning rate 1e-5, epoch 20, batch 4

34722789

tibnmahm@purdue.edu

Page 70

Output of learning rate 1e-5, epoch 20, batch 4

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 71

Case 3: MSE+Dice with Scale of 1

Best Case for PurdueShapes5MultiObjectDataset

Mied Resuk_Ird_eb b4 sl

MSE + Dice Loss
-

SN A \ /‘,-"\‘ A \\ A~ //
V \ / N
\/

Itaration

Fig: Loss curve for learning rate 1e-4, epoch 6, batch 4

Output of learning rate 1e-4, epoch 6, batch 4

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 72

Best Case for MSCOCO

Results _coco_Ird_e30 bsd s1_mixed

w— Dice Loss

1200 4

&
z

1100 4

Dice Loss

g

1000 4

0 s 10 20 % 3

15
Iteration

Fig: Loss curve for learning rate 1e-4, epoch 30, batch 4

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 73

Output of learning rate 1e-4, epoch 30, batch 4

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Worst Case for PurdueShapes5MultiObjectDataset

Mixed Result_Ir5 e6 _bl6 sl

Page 74

4704 1
== MSE + Dice Loss

MSE + Dice Loss

1 2 3 €

Iteration

Fig: Loss curve for learning rate 1e-5, epoch 6, batch 16

Talha Ibn Mahmud

34722789

tibnmahm@purdue.edu

Page 75

Output of learning rate 1e-5, epoch 6, batch 16

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 76

Worst Case for MSCOCO

__ Results_coco_Ird_e20_bsé_s1_mixed

= Dice Loss

Dice Loss

1050

175 200

100 125 150
Iteration

Fig: Loss curve for learning rate 1e-4, epoch 20, batch 4

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 77

Output of learning rate 1e-4, epoch 20, batch 4

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 78

Case 4: MSE+Dice with Scale of 100

Best Case for PurdueShapes5MultiObjectDataset

Mixed_Result_Ir4_e6_b4_s100

—— MSE + Dice Loss

"
3
3

MSE + Dice LosS
~ 5

&
&
S

aan

0 5 10 15 20 25 %
Iteration

Fig: Loss curve for learning rate 1e-4, epoch 6, batch 4

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 79

Output of learning rate 1e-4, epoch 6, batch 4

Batch 1

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 80

Best Case for MSCOCO
Results_coco_Ir5_e30_bs4_s100_mixed
1350 - Dice Loss |
1300
12%0
v
g 1200
-
g
Q 1150
1100
1050
1000

0 5 10 15 20 25 30
Iteration

Fig: Loss curve for learning rate 1e-5, epoch 30, batch 4

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 81

Output of learning rate 1e-5, epoch 30, batch 4

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 82

Worst Case for PurdueShapes5MultiObjectDataset

Mixed Result_Ir5_e6_bl6 s100

5604 —— MSE + Dice Loss

5504

5404

MSE + Dice Loss

5004

490 4

3 4 5 6
Iteration

Fig: Loss curve for learning rate 1e-5, epoch 6, batch 16

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 83

Output of learning rate 1e-5, epoch 6, batch 16

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 84

Worst Case for MSCOCO

Results_coco_Ir5 €20 bs4 s100_mixed

— Dice Loss

1250

0S5

: 1200

Dice |

8

100

1050
25 50 15 10.0 125 15.0 175 200

Iteration

Fig: Loss curve for learning rate 1e-5, epoch 20, batch 4

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 85

Output of learning rate 1e-5, epoch 20, batch 4

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Summary of Hyperparameters

Page 86

Case Dataset Best/Worst LR Epoch Batch

1 Purdue Best le-4 6 4

(MSE) COCO Best le-5 30 4
Purdue Worst le-5 6 16

COCO Worst le-4 20 4

2 Purdue Best le-4 6 4

(dice) COCO Best le-4 30 4
Purdue Worst le-5 6 16

COCO Worst le-5 20 4

3 Purdue Best le-4 6 4

(scale 1) COCO Best le-4 30 4
Purdue Worst le-5 6 16

COCO Worst le-4 20 4

4 Purdue Best le-4 6 4

(scale 100) COCO Best le-5 30 4
Purdue Worst le-5 6 16

COCO Worst le-5 20 4

Insights into potential factors contributing to the observed variations in
performance.

The most potential factor is I think the epoch, the longer time I ran, the better result I got. Also,
increasing the batch size was not a good intuition, it gave me the worst results.

Qualitative observations on the model test results for MSE loss vs Dice loss vs.
Dice+MSE loss

By the look of the test outputs, introducing dice loss and scaling it properly has caused the model
to improve slightly. MSE loss alone is the significant loss function that improves the model, dice
loss on the other hand does not generate good result.

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 87

Bonus

MSCOCO images side by side of SAM and mUNet

mUNet Hover and click Box Everything

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Page 88

PurdueShapes5MultiObjectDataset images side by side of SAM and mUNet

This is the mUNet output:

This is the corresponding SAM output:

Hover and click Box Everything

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

Qualitative Observations (Edge Accuracy, Completeness, FP, FN)

If compared with Box method of SAM, I think my model is superior in the sense of edge accuracy,
however SAM is superior in Completeness for most of the cases. Although the box method
includes some unnecessary parts from the image which is especially prevalent in the
PurdueShapes5SMultiObjectDataset. Also, the everything method is unsuitable in this case as it
tries to break the object into several segments (e.g. different parts of bus). But, for overall
performance, the hover and click method of SAM is the best among my method and the three
options of SAM.

Talha Ibn Mahmud 34722789 tibnmahm@purdue.edu

