
BME646 and ECE60146: Homework 7

Spring 2025
Due Date: 11:59pm, March 12, 2025

TA: Akshita Kamsali (akamsali@purdue.edu)

Turn in typed solutions via Gradescope. Post questions to Piazza. Ad-
ditional instructions can be found at the end. Late submissions will be
accepted with penalty: -10 points per-late-day, up to 5 days.

This is a VERY challenging homework. Start early!

1 Introduction

This homework has two goals: (1) To show how a complex application of
deep learning may require multiple loss functions, each possibly dealing with
a different portion of the network output; and (2) To introduce you to
the fundamental notions of the YOLO approach to multi-instance object
detection. You need multi-instance object detection when an image contains
multiple objects of interest and you want to predict their class labels and,
at the same time, the coordinates of their bounding boxes.

2 Getting Ready for This Homework

The three following subsections are designed so that you’ll start gently and
then graduate on to more complex cases of object detection and localization.

2.1 Starting with Simple Single-Instance Detection

In order to get ready for this homework, you need to first familiarize yourself
with the mechanics of single-instance object detection where we assume
that there exists only one instance of an object of interest in an image.
Anything else in the image is considered to be structured and/or random

1

noise. For a gentle-introduction to single-instance object detection, play
with the following script in the Examples directory of DLStudio:

object_detection_and_localization.py

This script contains the following statement:

1 model = detector.LOADnet2(skip_connections=True , depth=8)

Now work your way backwards into DLStudio and familiarize yourself with
DLStudio’s inner class DetectAndLocalize that has the definition for the
network Loadnet2 called above. You will also notice that the script
object detection and localization.py uses the PurdueShapes5 dataset
of 32 × 32 images. This dataset is a part of what you will download if
you click on the link “Download the image datasets for the main DLStudio
module” on the main page for DLStudio. Slides 51-56 of the Week 7 lecture
show you a sampling of the images and how they packed in the archive.

2.2 Graduating to More Complex Single-Instance Detection

After the script in Section 2.1 above has made you comfortable with simul-
taneously using two loss functions, nn.CrossEntropy for classification and
nn.MSE for BB regression, you will be ready to experiment with more com-
plex detection and localization scenarios with the help of your instructor’s
YOLOLogic module.

To that end, download and install the YOLOLogic module from the link:

https://engineering.purdue.edu/kak/distYOLO/

and execute the following script

single_instance_object_detection.py

The dataset that is used in the script named above is described in Slides
77 through 80 of the Week 7 lecture. Each image in the dataset has one of

2

https://engineering.purdue.edu/kak/distYOLO/

following three oriented objects: ”Dr. Eval”, ”house”, and ”watertower”.
In addition, every image has significant structured clutter and noise that
compete with the oriented objects that you need to detect and localize. The
name of the dataset archive is

datasets_for_YOLO.tar.gz

Uncompressing this archive will deposit the following training datasets in
your computer:

Purdue_Dr_Eval_Dataset-clutter-10-noise-20-size-10000-train.gz

Purdue_Dr_Eval_Multi_Dataset-clutter-10-noise-20-size-10000-train.gz

The script named above, single instance object detection.py uses the
first of these two.

2.3 Getting Ready for Multi-Instance Object Detection with
YOLO

Your fastest entry into YOLO logic would be through the following script

multi_instance_object_detection.py

This will require the second of the two datasets mentioned previously. The
name of this dataset is PurdueDrEvalMultiDataset. Note the subsring
“Multi” in the name of the daaset. Slides 111-117 of the Week 7 lecture
show you sample images in this dataset. Compared to the dataset you
used for the script in Section 2.2, now each image has multiple instances
of the objects of interest (OOI) and your job is extract them along with
their bounding boxes. The OOIs continue to be “Dr. Eval”, “house” and
“watertower”.

The script named above invokes the code in YOLOLogic’s inner class

3

YoloObjectDetector. Get as good an understanding of this class as you
can since that will help you directly with this homework.

With regard to the logic of YOLO, as you know from your instructor’s Week
7 slides, it is based on the notion of Image Cells and Anchor Boxes. You
divide an image into a grid of cells and you associate N anchor boxes with
each cell in the grid. Each anchor box represents a bounding box with a
different aspect ratio.

Your first question is likely to be: Why divide the image into a grid of
cells? To respond, the job of estimating the exact location of an object is
assigned to that cell in the grid whose center is closest to the center of the
object itself. Therefore, in order to localize the object, all that needs to be
done is to estimate the offset between the center of the cell and the center
of true bounding box for the object.

But why have multiple anchor boxes at each cell of the grid? As
previously mentioned, anchor boxes are characterized by different aspect
ratios. That is, they are candidate bounding boxes with different height-
to-width ratios. In your instructor’s implementation in the YOLOLogic
module, he creates five different anchor boxes for each cell in the grid, these
being for the aspect ratios: [1 / 5, 1/3, 1/1, 3/1, 5/1] . The idea
here is that the anchor box whose aspect ratio is closest to that of the true
bounding box for the object will speak with the greatest confidence for that
object.

The suggestions made in Sections 2.1, 2.2, and 2.3 above should get you
ready for the homework. You might wish to test your code on the rather sim-
ple datasets mentioned above before testing the code on the COCO dataset
as required by Section 3.2 of this homework.

3 Programming Tasks

This section contains guidelines on how to extract images with one or more
than one instance of the object from the COCO dataset. Finally, implement
the YOLO logic to perform multi-instance detection.

4

3.1 How to Use the COCO Annotations

For this homework, you will need bounding boxes in addition to the labels
from the COCO dataset.

Figure 1: Sample COCO images with bounding box and label annotations
for multi-instances.

In this section, we go over how to access these annotations as shown in Fig.
1. The code below is sufficient to introduce you how to prepare your own
dataset and write your dataloader for this homework.

Before we jump into the code, it is important to understand structures of
the COCO annotations. The COCO annotations are stored in the list of
dictionaries and what follows is an example of such a dictionary:

1 {

2 "id": 1409619 , # annotation ID

3 "category_id": 1, # COCO category ID

4 "iscrowd": 0, # specifies whether the

segmentation is for a single

object or for a group/cluster

of objects

5 "segmentation": [

6 [86.0, 238.8, ..., 382.74 , 241.17]

7], # a list of polygon vertices

around the object (x, y pixel

positions)

8 "image_id": 245915 , # integer ID for COCO image

9 "area": 3556.2197000000015 , # Area measured in pixels

10 "bbox": [86 , 65 , 220 , 334] # bounding box [top left x

position , top left y position ,

5

width , height]

11 }

The following code (refer to inline code comments for details) shows how to
access the required COCO annotation entries and display a randomly chosen
image with desired annotations for visual verification. After importing the
required python modules (e.g. cv2, skimage, pycocotools, etc.), you can
run the given code and visually verify the output yourself.

1 # Input

2 input_json = ’instances_train2014.json’

3 class_list = [’pizza ’, ’cat’, ’bus’]

4

5 ###########################

6 # Mapping from COCO label to Class indices

7 coco_labels_inverse = {}

8 coco = COCO(input_json)

9 catIds = coco.getCatIds(catNms=class_list)

10 categories = coco.loadCats(catIds)

11 categories.sort(key=lambda x: x[’id’])

12 print(categories)

13

14

15 for idx , in_class in enumerate(class_list):

16 for c in categories:

17 if c[’name’] == in_class:

18 coco_labels_inverse[c[’id’]] = idx

19 print(coco_labels_inverse)

20

21 #############################

22 # Retrieve Image list

23 imgIds = coco.getImgIds(catIds=catIds)

24

25 #############################

26 # Display one random image with annotation

27 idx = np.random.randint(0, len(imgIds))

28 img = coco.loadImgs(imgIds[idx])[0]

29 I = io.imread(img[’coco_url ’])

30 # change from grayscale to color

31 if len(I.shape) == 2:

32 I = skimage.color.gray2rgb(I)

33 # pay attention to the flag , iscrowd being set to False

34 annIds = coco.getAnnIds(imgIds=img[’id’], catIds=catIds ,

iscrowd=False)

35 anns = coco.loadAnns(annIds)

36 fig , ax = plt.subplots(1, 1)

37 image = np.uint8(I)

6

38 for ann in anns:

39 [x, y, w, h] = ann[’bbox’]

40 label = coco_labels_inverse[ann[’category_id ’]]

41 image = cv2.rectangle(image , (int(x), int(y)), (int(x + w),

int(y + h)), (36 , 255 , 12), 2)

42 image = cv2.putText(image , class_list[label], (int(x), int(

y - 10)), cv2.

FONT_HERSHEY_SIMPLEX ,

43 0.8, (36 , 255 , 12), 2)

44 ax.imshow(image)

45 ax.set_axis_off ()

46 plt.axis(’tight’)

47 plt.show()

3.2 Creating Your Own Multi-Instance Object Localization
Dataset

In this exercise, you will create your own dataset based on following steps:

1. You need to write a script similar to previous homeworks that filters
through the images and annotations to generate your training and
testing dataset such that any image in your dataset meets the following
criteria:

• Contains at least one foreground object. A foreground object must
be from one of the three categories: [’pizza’, ’cat’, ’bus’].

Additionally, the area of any foreground object must be larger
than 200×200 = 40000 pixels1. There can be multiple foreground
objects in an image since we are dealing with multi-instance ob-
ject localization for this homework.

If there is none, that image should be discarded.

• When saving your images to disk, resize them to 256×256. Note
that you would also need to scale the bounding box parameters
accordingly after resizing.

• Again, use images from 2014 Train images for the training set
and 2014 Val images for the testing set.

1Also, you can use the area entry in the annotation dictionary instead of calculating it
yourself.

7

Again, you have total freedom on how you organize your dataset as
long as it meets the above requirements. If done correctly, you will
end up with approximately 4k training images and 2k testing images

2. In your report, make a figure of a selection of images from your created
dataset. You should plot at least 3 images from each of the three
classes with the annotations of all the present foreground objects. A
3x3 grid of images.

3.3 Building Your Deep Neural Network

1. Once you have prepared the dataset, you now need to implement your
deep convolutional neural network (CNN) for multi-instance object
classification and localization. You can directly base your CNN archi-
tecture on the NetForYOLO network in the YOLOLogic module after
adjusting for YOLO parameters. Again, you have total freedom re-
garding your choice for the network to use. It is possible that for the
COCO images, you would need a beefed up skip block for connec-
tion skipping. In addition to perhaps augmenting your instructor’s
SkipBlock, you should also look at the skip blocks in the ResNet
paper:

https://arxiv.org/abs/1512.03385

You can access the ResNet code at:

https://github.com/pytorch/vision/blob/master/

torchvision/models/resnet.py

As you will see, ResNet has two different kinds of skip blocks, named
BasicBlock and BottleNeck. BasicBlock is used as a building-block
in ResNet-18 and ResNet-34. The numbers 18 and 34 refer to the
number of layers in these two networks. For deeper networks, ResNet
uses the BottleNeck class.

2. The key design choice you’ll need to make is on the organization of the
predicted parameters by your network. As you have learned in your
instructor’s Week 7 lecture, your CNN should output a yolo_tensor

for each image at the input.

8

https://arxiv.org/abs/1512.03385
https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py
https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py

3. The exact shape of your predicted yolo_tensor is dependent on how
you choose to implement image gridding and the anchor boxes. It is
highly recommended that, before starting your own YOLO implemen-
tation, you review the Week 7 lecture and familiarize yourself thor-
oughly with the notions of yolo_vector and yolo_tensor.

4. In your report, designate a code block for your network architecture.

5. Additionally, clearly state the shape of your output yolo_tensor and
explain in detail how that shape is resulted from your design param-
eters, e.g. the total number of cells and the number of anchor boxes
per cell, etc.

3.4 Training and Evaluating Your Network

Now that you have finished designing your deep CNN, it is finally time to
put your glorious multi-object detector in action. What is described in this
section is probably the most challenging part of the homework. To train
and evaluate your YOLO framework, you should follow the steps below:

1. Write your own dataloader. While everyone’s implementation will
differ, it is highly recommended that the following items should be
returned by your __getitem__ method for multi-instance object lo-
calization:

(a) The image tensor;

(b) For each foreground object present in the image:

i. Index of the assigned cell;

ii. Index of the assigned anchor box;

iii. Groundtruth yolo_vector.

The tricky part here is how to best assign a cell and an anchor box
given a GT bounding box. For this part, you will have to implement
your own logic. Typically, one would start with finding the best cell,
and subsequently, choose the anchor box with the highest IoU with
the GT bounding box. You would need to pass on the indices of the
chosen cell and anchor box for the calculation of the losses explained
later in this section.

9

Also bear in mind how exactly the BB-related parameters δx, δy, σw
and σh are stored in a yolo_vector. The first two, δx and δy, are
simply the offsets between the GT box center and the anchor box
center. While the last two, σw and σh, can be the “ratios” between
the GT and anchor widths and heights:

wGT = σw · wanchor,

hGT = σh · hanchor.

2. Create your own training code (or adjust existing code) for training
your network. This time, you’ll need three different types of losses:
a binary cross-entropy loss for detecting objects, a cross-entropy loss
for classifying objects, and another loss for refining bounding box po-
sitions, MSE loss.

3. Develop your own evaluation code (or make modifications to existing
code). As explained in Slides 131-136 of your instructor’s Week 7
lecture, in comparison with single-instance detectors, evaluating the
performance of a multi-instance detector is complex. Therefore, for
this assignment, we only require you to present your multi-instance
detection and localization results in a qualitative manner. This means
that for each test image, you should display the predicted bounding
boxes and their corresponding class labels alongside the ground truth
annotations.

Specifically, you’ll need to create your own method for translating the
predicted yolo_tensor into bounding box predictions and class label
predictions that can be visually represented. You have the flexibility
to implement this logic according to your own approach.

4. In your report, explain how you have implemented your dataloading,
training and evaluation logic. Additionally, include a plot of all three
losses over training iterations (you should train your network for at
least 10-15 epochs).

For presenting the outputs of your YOLO detector, display your multi-
instance localization and detection results for at least 8 different im-
ages from the test set. Again, for a given test image, you should plot
the predicted bounding boxes and class labels along with the GT an-
notations for all foreground objects. You should present your best
multi-instance results in at least 6 images while you can use the other
2 images to illustrate the current shortcomings of your multi-instance

10

detector per class. That makes a total of atleast 18 images + 6 im-
ages = 24 images. Additionally, you should include a paragraph that
discusses the performance of your YOLO detector.

4 Bonus (20pts)

Use the DIoU Loss function from DLStudio instead of the Mean Squared
Error (MSE) loss for bounding box regression when training your YOLO
network to reproduce the deliverables outlined in 3.4, including the train-
ing loss curves and a set of 24 annotated images. You may interact with
object_detection_and_localization_iou.py as a sandbox to become fa-
miliar with IoU loss.

For further information on application of various IoU-based loss functions in
training YOLO networks, you may refer to [1]. This paper is for your own
reading.

5 Submission Instructions

Include a typed report explaining how you solved the given programming
tasks. You may refer to the homework solutions posted at the class website
for the previous years for examples of how to structure your report

1. Turn in a PDF file and mark all pages on gradescope.

2. Submit your code files(s) as zip file.

3. Code and Output Placement: Include the output directly next to
the corresponding code block in your submission. Avoid placing the
code and output in separate sections as this can make it difficult to
follow.

4. Output Requirement: Ensure that all your code produces outputs
and that these outputs are included in the submitted PDF. Submis-
sions without outputs may not receive full credit, even if the code
appears correct.

11

5. For this homework, you are encouraged to use .ipynb for development
and the report. If you use .ipynb, please convert code to .py and
submit that as source code. Do NOT submit .ipynb notebooks.

6. You can resubmit a homework assignment as many times as you want
up to the deadline. Each submission will overwrite any previous sub-
mission. If you are submitting late, do it only once. Otherwise,
we cannot guarantee that your latest submission will be pulled for
grading and will not accept related regrade requests.

7. The sample solutions from previous years are for reference only. Your
code and final report must be your own work.

References

[1] Xiangjie Luo, Zhihao Cai, Bo Shao, and Yingxun Wang. Unified-iou:
For high-quality object detection, 2024. URL https://arxiv.org/abs/

2408.06636.

12

https://arxiv.org/abs/2408.06636
https://arxiv.org/abs/2408.06636

	Introduction
	Getting Ready for This Homework
	Starting with Simple Single-Instance Detection
	Graduating to More Complex Single-Instance Detection
	Getting Ready for Multi-Instance Object Detection with YOLO

	Programming Tasks
	How to Use the COCO Annotations
	Creating Your Own Multi-Instance Object Localization Dataset
	Building Your Deep Neural Network
	Training and Evaluating Your Network

	Bonus (20pts)
	Submission Instructions

