ECE60146 HWT7

Yuchen Song

Part 1 Extract Multi-instance image from coco

1 3x3 grid image

The images from coco dataset are filtered by categories ['pizza’, ’cat’ bus’], and the fore-

ground object are filtered to have more than 40000 pixels. The sample images are in Figure
1.

Figure 1: 3x3 grid image

Part 2 Dataloader

1 code block showing all parameters for yolo vector are generated

To generate the yolo vector explained in the lecture slides, a costumed yoloDataset class
is being created to generate the image tensor, the yolo tensor and an additional augment
yolo tensor, which refereed from the YOLOLogic, with a nil element to add extra loss for
the yolo cell that does not have a object. The class is :

-~ class————————————————————
2 class YoloDataset(torch.utils.data.Dataset):
3 def __init__(self, train_root, val_root, transform=None,
< train_or_val='train', image_size=256, S=8, B=5, C=3, classes=['bus',
< 'cat', 'pizza'l):

4 self.transform = transform

5 self.train_or_val = train_or_val

6 self.train_root = train_root

7 self.val_root = val_root

8 self.image_size = image_size

9 self.B = B # number of anchor bozes

10 self.S = S # number of yolo cells on each azle
11 self .num_of_cells = S * S # number of yolo cells
12 self.yolo_interval = image_size / S

13 self.C = C # number of classes

14 self.classes = classes

15 if self.train_or_val == 'train':

16 self.database =

< torch.load("/home/syc/Desktop/ECE60146/coco_subset_train.pt")
17 else:

18 self .database =
— torch.load("/home/syc/Desktop/ECE60146/coco_subset_val.pt")
19 self.dataset_size = len(self.database)
20
21 def __len__(self):
22 return self.dataset_size
23
24 def convert_bbox_to_yolo_format(self, bbox):
25 x1, y1, x2, y2 = bbox
26 X_center = (x1 + x2) / 2
27 y_center = (yl1 + y2) / 2
28 w = (x2 - x1)
20 h = (y2 - y1)
30 return [x_center, y_center, w, h]
31
32 def label_to_onehot(self, label):
33 onehot = [0,0,0]

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

def

onehot[label] = 1
return onehot

__getitem__(self, idx):
image_path = self.database[idx] ['image_path']
annotations = self.databasel[idx] ['annotations']

im = Image.open(image_path).convert('RGB')
im = im.resize((self.image_size, self.image_size))
im_tensor = tvt.ToTensor () (im)

if self.transform:
im_tensor = self.transform(im_tensor)

yolo_tensor = torch.zeros(self.num_of_cells, self.B, 5 + self.C)
yolo_tensor_aug = torch.zeros(self.num_of_cells, self.B, 5 + self.C +

- 1)
bbox_tensor = torch.zeros(5,4,dtype=torch.uint8)
bbox_label_tensor = torch.zeros(5,dtype=torch.uint8) + 13
num_objects = len(annotations)
for i in range(num_objects):
bbox = annotations[i] ['bbox']
x1l, y1, w, h = bbox
x2, y2=x1+w, yl +h
bbox = [x1, y1, x2, y2]
label = annotations[i]['category_id']
bbox_tensor[i] = torch.LongTensor (bbox)
bbox_label_tensor[i] = label
anchor_boxes = [[1, 51,[1,3],[1,1],[3,1],[5,1]]
for annotation in annotations:
bbox = annotation['bbox']
class_id = annotation['category_id']
xl, y1, w, h = bbox
x2, y2=x1+w, yl +h

bbox_converted = self.convert_bbox_to_yolo_format([x1l, y1, x2,

< y21)
grid_x = int(bbox_converted[0] /self.yolo_interval)
grid_y = int(bbox_converted[1] /self.yolo_interval)
"'"'"Thts anchor box selection logic is borrowed from
the DLStudio module
— https://engineering.purdue. edu/kak/distYOLO/ """’
AR=h/w
if AR <=0.2:

anch_box_idx = 0
elif 0.2 < AR <=0.5:

anch_box_idx = 1
elif 0.5 < AR <=1.5:

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

96

97

98

99

100

101

102

103

104

105

2

for

anch_box_idx = 2
elif 1.5 < AR <=4:
anch_box_idx = 3
elif 4 < AR:
anch_box_idx = 4
anch_box = anchor_boxes[anch_box_idx]

del_x = bbox_converted[0] - (grid_x * self.yolo_interval +
— self.yolo_interval / 2)

del_x = del_x / self.yolo_interval

del_y = bbox_converted[1] - (grid_y * self.yolo_interval +
- self.yolo_interval / 2)

del_y = del_y / self.yolo_interval

delta_w = w / (anch_box[0] * self.yolo_interval)
delta_h = h / (anch_box[1] * self.yolo_interval)
onehot = self.label_to_onehot(class_id)
yolo_vector = torch.FloatTensor([1, del_x, del_y, delta_w,
< delta_h, *onehot])
yolo_tensor[grid_x * self.S + grid_y, anch_box_idx] = yolo_vector
yolo_tensor_auglgrid_x * self.S + grid_y, anch_box_idx, :-1] =
— yolo_vector
cell _num = grid_x * self.S + grid_y
grid_x = int(cell_num // self.S)
grid_y = int(cell_num %self.S)
h = delta_h * self.yolo_interval * anch_box[1]
w = delta_w * self.yolo_interval * anch_box[0]
icx in range(yolo_tensor_aug.shapel[0]):
for iax in range(yolo_tensor_aug.shapel[1]):

if yolo_tensor_augl[icx, iax, 0] ==

yolo_tensor_auglicx, iax, -1] =1

return im_tensor, yolo_tensor, yolo_tensor_aug, bbox_tensor,

—

bbox_label_tensor

explanation showing all parameters for yolo vector are gener-

The YOLO vector consists of 8 elements

[Do, 0, 8y, dw, Oh, ¢1, Co, 3]

and augmented YOLO vector has 9 elements.

[poa (51’, 597 (5’(,07 5h7 1, C2, C3, bg]

where: p,, the objectness score, which indicates whether an object exists in the anchor box
(po = 1 means an object is present); dx and dy, which are offsets for the bounding box center

4

relative to the anchor box center; dw and dh, which represent scaling factors for the width
and height of the bounding box relative to the anchor box dimensions; ¢y, ¢, c3, which are
the one-hot encoded class probabilities; and bg, an additional indicator where bg = 1 means
no object exists in the given anchor box.

To verify that the YOLO vectors are correctly generated, I implemented a check dataset
function. This function takes the image tensor and the YOLO tensor and decodes the
bounding box coordinates using the same method as during inference. The decoded bounding
box should match the ground truth bounding box.

The bounding box decoding process follows:

Teenter = (1 + 0.5 4 0x) yolo_interval, Yeenter = (§ + 0.5 4 dy) yolo_interval
where 7, 7 are the grid cell row and column indices and yolo_interval is the cell size.
W= wg 0w, h=hy-0h

where w,, h, are the anchor box dimensions.

w h

X1 = Teenter — 57 Y1 = Ycenter — 5

This ensures that the bounding boxes are properly computed. The following code was
used to test the data loader for both training and validation datasets:

— Loader—-—-——-—-———---"="""-—""———————
2> dataset = YoloDataset("/home/syc/Desktop/ECdelta_xE60146/data/train2014",
3 "/home/syc/Desktop/ECE60146/data/val2014",

< train_or_val='train')

4 train_loader = torch.utils.data.Dataloader(dataset, batch_size=4,

< shuffle=True)
5 dataset_val = YoloDataset("/home/syc/Desktop/ECE60146/data/train2014",
6 "/home/syc/Desktop/ECE60146/data/val2014",

< train_or_val='val')

7 test_loader = torch.utils.data.Dataloader (dataset_val, batch_size=1,

« shuffle=True)

9 A Check Data———-—————————————————————————————
10 def check_data(loader,class_list=['bus', 'cat', 'pizza'l):
11 for batch in loader:
12 im, yolo_tensor, yolo_tensor_aug, bbox_tensor, bbox_label_tensor =
— batch
13 batch_size = im.shape[0]
14 fig, axes = plt.subplots(l, batch_size, figsize=(5 * batch_size, 5))
15 if batch_size ==
16 axes = [axes]
17 anchors = [[1, 5], [1, 31, [1, 11, [3, 11, [5, 111 ‘#predefined anchor

— boxes size

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

yolo_interval 32
cell_per_axle 8
for idx in range(batch_size):
ax = axes[idx]
ax.imshow(im[idx] .permute(l, 2, 0).cpu() .numpy())
num_cells = yolo_tensor.shapel[1] # 64 cells
num_anchors = yolo_tensor.shape[2] # 5 anchors
for cell in range(num_cells):
grid_x = cell // cell_per_axle
grid_y = cell % cell_per_axle
for anch in range(num_anchors):
if yolo_temnsor[idx, cell, anch, 0] ==
del_x = yolo_tensor[idx, cell, anch, 1].item()

del_y = yolo_tensor[idx, cell, anch, 2].item()
del_w = yolo_tensor[idx, cell, anch, 3].item()
del_h = yolo_tensor[idx, cell, anch, 4].item()

anchor_box = anchors[anch]
x_center = (grid_x + 0.5 + del_x) * yolo_interval
y_center = (grid_y + 0.5 + del_y) * yolo_interval
w = del_w * yolo_interval * anchor_box[0]
h = del_h * yolo_interval * anchor_box[1]
x1 = X_center - w/2
yl = y_center - h/2
rect = Rectangle((x1, y1), w, h, edgecolor='g',
— facecolor='none', 1lw=2)
ax.add_patch(rect)
label = torch.argmax(yolo_tensor[idx, cell, anch,
— 5:]).item()
ax.text(xl, y1, class_list[label], color='g',
— fontsize=12)
ax.axis("off")

plt.tight_layout ()

plt.show()

break # Only process one batch

check_data(train_loader)
check_data(test_loader)

The plot of the check for the train loader is Figure 2.

Figure 2: Train Loader validation

The plot of the check for the val loader is Figure 3.

Figure 3: Val Loader validation

Part 3 Training

1 code block showing how yolo tensor is built

The yolo tensors are being generated in the Yolodataset, and pass to a dataloader, when
do the training, it will iterate throgh the data loader and get the needed tensor and use three
loss criterion for training

1 def run_code_for_training(net, train_loader, device="cuda", epochnum=20,
— save_path="./yolo_model.pth",plt_save_path="./training loss.png"):

12

14

17

23

30

2 "'""this function is borrowed from the DLStudio module
< https://engineering.purdue. edu/kak/distYOLO/,

3 the function ts modified to fit the 256 image size and 3 classes, and 8
— yolo cells on each axle. the yolo wector is modified, the dw and dh
- are

4 ratio of the bbox to the anchor box size, instead of the yolo interval,
— the other code are mostly the same, the plotting code are removed'''

5 device = torch.device(device if torch.cuda.is_available() else "cpu")

6 net = net.to(device)

7 class_list = ['bus', 'cat', 'pizza'l]

8 # Define Loss Functions

9 criterionl = nn.BCELoss(reduction='sum')

10 criterion2 = nn.MSELoss(reduction='sum')

11 criterion3 = nn.CrossEntropyLoss(reduction='sum')

13 optimizer = optim.Adam(net.parameters(), lr=le-5)

15 print("\n Starting Training \n")

16 start_time = time.time()

18 loss_history = [1 # Track loss over iterations

19 Loss_totoally = []

20 BCE_loss = []

21 MSE_loss = []

22 CrossEntropy_loss = []

24 # Training Loop

25 for epoch in range(epochnum) :

26 running_loss = 0.0

27 running_bce = 0.0

28 running _mse = 0.0

29 running_ce = 0.0

31 for iter,data in enumerate(train_loader):

32 im_tensor, yolo_tensor, yolo_tensor_aug, bbox_tensor,

— bbox_label_tensor = data
33 im_tensor, yolo_tensor, yolo_tensor_aug = im_tensor.to(device),

<~ yolo_tensor.to(device), yolo_tensor_aug.to(device)

8

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

optimizer.zero_grad() # Reset gradients
predictions = net(im_tensor)

num_yolo_cells = 64

num_anchor_boxes = 5

predictions = predictions.view(-1, num_yolo_cells,

< num_anchor_boxes, 9)

Loss Calculation

loss = torch.tensor (0.0, requires_grad=True).float() .to(device)

Object Presence Loss

loss_obj = criterionl(nn.Sigmoid() (predictions([:,:,:,0]),
< yolo_tensor_augl:,:,:,0])

loss += loss_obj

Bounding Box Loss

loss_bbox = criterion2(predictions[:,:,:,1:5],
— yolo_tensor_augl:,:,:,1:5])

loss += loss_bbox

Class Prediction Loss

targets = yolo_tensor_augl:,:,:,5:].view(-1, 4)
targets = torch.argmax(targets, dim=1)

probs = predictions[:,:,:,5:].view(-1, 4)
loss_class = criterion3(probs, targets)

loss += loss_class

loss.backward()
optimizer.step()

running_loss += loss.item()

running _bce += loss_obj.item()
running_mse += loss_bbox.item()
running ce += loss_class.item()

if iter % 300 == 299:
elapsed_time = time.time() - start_time
avg_loss = running_loss / 300
loss_history.append(avg_loss)
Loss_totoally.append(running_loss)
BCE_loss.append (running_bce/300)
MSE_loss.append (running_mse/300)
CrossEntropy_loss.append (running_ce/300)

print (f"\n[Epoch {epoch+l1}/{epochnum/, Batch {iter+1}]

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

f"Elapsed Time: {int(elapsed_time)} sec | Loss:
— {avg_loss: .4f}")
print(f" BCE Loss: {running bce/300:.4f} | MSE Loss:
— {running mse/300: .4f} | CrossEntropy Loss:
— {running_ce/300: .4f}")
running_loss = 0.0
running_bce =
running_mse =
running_ce = 0.0

0.0
0.0

Save Model Every Epoch
torch.save(net.state_dict(), save_path)
print (f"\nModel saved at {save_path/ (Epoch {epoch+1/)")

Training Finished
print ("\nTraining Complete!\n")

Plot Loss Curve

plt.
.plot(loss_history, label="Loss vs. Iterations")
.plot(BCE_loss, label="BCE Loss")

.plot (MSE_loss, label="MSE Loss")

.plot (CrossEntropy_loss, label="CrossEntropy Loss")
.title("Training Loss Curve")

plt.
plt.
plt.
plt.

plt
plt
plt
plt
plt

figure(figsize=(10,5))

xlabel("Iterations (every 300 steps)")
ylabel("Loss")

legend ()

savefig(plt_save_path)

plt.show()

return net

2 Explanation of How YOLO Tensor is Built

The YOLO tensor is constructed within the YoloDataset class, which processes raw image

data and annotations into a structured format suitable for training the YOLO model. The
output augment yolo tensor used for training follows the format:

where:

Bx(CxAx9

e B is the batch size,

e (' is the number of YOLO grid cells,

10

e A is the number of anchor boxes per cell,

e The 9 elements per anchor box encode object information explained in previous yolo
vector section.

Each image’s ground-truth bounding boxes are mapped into the corresponding YOLO

grid cell.
The YOLO tensor is used with loss functions for object presence, bounding box regression,
and class prediction:

e Binary Cross-Entropy (BCE) loss for object presence.
e Mean Squared Error (MSE) loss for bounding box regression.

e Cross-Entropy loss for class predictions.

These losses are then backpropagated to update the model parameters.

3 BCE,CE,MSE loss curves

After the 20 epoches training, the average loss of each 300 iteration for all three loss and
total is shown in Figure 4.

Training Loss Curve

0 10 20 40 50 60

30
Iterations (every 300 steps)

Figure 4: Loss Curve

Part 4 Evaluation

1 Code block translate yolo tensor to BB pred and class label

1 anchor_boxes = [[1, 5], [1, 31, [1, 11, [3, 11, [5, 111

2 num_of_validation_images = len(test_loader)
3 print ("num of test_loader",len(test_loader))
4 with torch.no_grad(Q):
5 for iter, data in enumerate(test_loader):
6 im_tensor, yolo_tensor, yolo_tensor_aug , bbox_tensor,
— bbox_label_tensor = data
7 im_tensor, yolo_tensor, yolo_tensor_aug = im_tensor.to(device),

— yolo_tensor.to(device), yolo_tensor_aug.to(device)

11

10

11

12

13

14

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

36

37

38

39

40

41

42

43

44

45

predictions = net(im_tensor)
predictions = predictions.view(-1, num_yolo_cells,
< num_anchor_boxes, 9)
print ("predictions”,predictions. shape)
for ibx in range(predictions.shape[0]):
icx_2_best_anchor = {ic: None for ic in
— range(predictions.shape[1])}
for icx in range(predictions.shape[1]):
cell_pred = predictions[ibx, icx]
previous_best = 0
for anchor in range(cell_pred.shape[0]):
if cell_pred[anchor] [0] > previous_best:
previous_best = anchor
best_anchor_icx = previous_best
icx_2_best_anchor[icx] = best_anchor_icx
sorted_icx = sorted(icx_2_best_anchor, key=lambda x:
< predictions[ibx, x, icx_2_best_anchor[x]] [0],
< reverse=True)

retained_cells = sorted_icx[:5]
objects_detected = []
predicted_bboxes = []
predicted_labels_for_bboxes = []
predicted_label_index_vals = []
for icx in retained_cells:
pred_vec = predictions[ibx, icx, icx_2_best_anchor[icx]]
class_label_prdict = pred_vec[-4:]
class_label_prob = torch.nn.Softmax(dim=0) (class_label_prdict)
class_label_prob = class_label_prob[:-1]
if torch.all(class_label_prob < 0.2):
predicted_class_label = None
else:
best_predicted_class_index = (class_label_prob ==
— class_label_prob.max())
best_predicted_class_index =
< torch.nonzero(best_predicted_class_index,
<~ as_tuple=True)

< predicted_label_index_vals.append(best_predicted_class_index[0] .iter
predicted_class_label =

— class_list[best_predicted_class_index[0].item()]
predicted_labels_for_bboxes.append(predicted_class_label)

pred_regression_vec = pred_vec[1:5].cpu()

del_x, del_y, delta_w, delta_h = pred_regression_vec
grid_x = int(icx // 8)

grid_y = int(icx % 8)

12

46 bb_center_x = (grid_x + 0.5 + del_x) * yolo_interval

a7 bb_center_y = (grid_y + 0.5 + del_y) * yolo_interval
48 w = delta_w * yolo_interval *
— anchor_boxes[icx_2_best_anchor[icx]] [0]
49 h = delta_h * yolo_interval *
— anchor_boxes[icx_2_best_anchor[icx]][1]
50 bb_top_left_x = bb_center_x - w/2
51 bb_top_left_y = bb_center_y - h/2
52 predicted_bboxes.append([bb_top_left_x, bb_top_left_y,
o int(w), int(Ch)]1)
53 # print ("predicted_bbozes”,predicted_bbozes)
54 saved_predicted_bboxes = [predicted_bboxes[i][:] for i in
— range(len(predicted_bboxes))]
55 gt_bboxes = torch.squeeze(bbox_tensor).cpu().numpy ()

2 Explanation Translate yolo tensor to BB pred and class label

From the prediction, the dimension of the prediction is
Bx(CxAx9

where:

e B is the batch size,

e (' is the number of YOLO grid cells,

e A is the number of anchor boxes per cell,

e The 9 elements per anchor box encode object information predict by the model.

In the code block, it loops through the batches, cells, and anchor boxes to extract the 9-
element YOLO vectors. A threshold is applied to select the cells with the highest probability
of containing an object. The YOLO vectors values that satisfy the threshold are then used
to decode the predicted bounding box.

Since the cell index provides the center of the anchor box, it is used to get the row and
column index of the yolo cell ¢ and j, and then use the indexes to compute the center of the
predicted bounding box. The second and third elements in the tensor (dx and dy) are used
to refine the bounding box center:

Teenter = (1 + 0.5 4 0x) yolo_interval, Yeenter = (j + 0.5 4 dy) yolo_interval

The fourth and fifth elements (dw and 0h) along with the anchor box dimensions (wg, h,)
are used to compute the bounding box width and height:

w=w, 0w, h=hy-0h

13

Finally, the top-left corner of the bounding box is computed as:
w h

X1 = Teenter — §a Y1 = Ycenter — 5

This method converts the YOLO tensor predictions into bounding box coordinates for
visualization and IOU calculation

3 24 images

After training the model, the testing phase identifies the best predicted bounding boxes
for evaluation. To analyze the performance,the plots has:

e 18 well-predicted bounding boxes (6 per class: bus, cat, pizza), showing good detection
quality.

e G examples of poor predictions(6 per class: bus, cal, pizza), illustrating cases where
the model struggles with accurate localization.

In the plots:

e Green bounding boxes represent the ground truth (GT) annotations extracted from
the YOLO tensor.

e Red bounding boxes represent the model’s predicted bounding boxes obtained from
the YOLO output tensor.

14

Table 1: Good cat prediction images

Image 1 Image 2

Table 2: Bad cat prediction images

15

Table 4: Bad pizza prediction images

16

Table 6: Bad bus prediction images

In the code, I tried several different network, including the YOLOnet in YOLOLogic
module with different depth, as well as the Resnet with ResNet50 model, the results are
different, in the above plots, the results are from the ResNet.

In the good detection cases, the model successfully identifies and classifies the objects,
with a significant overlap between the predicted and ground truth bounding boxes. The

17

predicted class labels match the ground truth labels with high confidence. Although the
bounding box center and size are close the ground truth, slight misalignment in position and
dimensions are still observed.

In the bad detection cases, the model struggles to localize objects accurately. The pre-
dicted bounding box is significantly smaller than the ground truth. Multiple predicted boxes
are generated for the same object that have similar position and size.The predicted center
is off from the ground truth sometime, leading to incorrect localization.

18

Part 5 code

1

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

42

code for filtering data

from pycocotools.coco import COCO
import numpy as np

import skimage.io as io

import skimage.color

import cv2

import torch

import os

Define paths

data_dir = "/home/syc/Desktop/ECE60146"

train_json = os.path.join(data_dir, "annotations/instances_train2014.json")
val_json = os.path.join(data_dir, "annotations/instances_val2014.json")
train_image_dir = os.path.join(data_dir, "train2014")

val_image_dir = os.path.join(data_dir, "val2014")

train_output_dataset_file = os.path.join(data_dir, "coco_subset_train.pt")
val_output_dataset_file = os.path.join(data_dir, "coco_subset_val.pt")

['bus', 'cat', 'pizza'l]
256

class_list
image_size

coco_train = COCO(train_json)
coco_val = COCO(val_json)

catlds = coco_train.getCatIds(catNms=class_list)

categories = coco_train.loadCats(catIds)

categories.sort(key=lambda x: x['id'])

coco_labels_inverse = {c['id']: idx for idx, c in enumerate(categories)}

train_imgIds = []
val_imglds = []

for cat_id in catIds:
train_imgIds.extend(coco_train.getImglds(catIds=[cat_id]))
val_imgIds.extend(coco_val.getImgIds(catIds=[cat_id]))

train_imgIds = list(set(train_imgIds))
val_imgIds = list(set(val_imgIds))

def process_dataset(image_ids, coco, image_dir, max_images):
dataset = {}
for img_id in image_ids:
img_info = coco.loadImgs(img_id) [0]

19

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

image_path = os.path.join(image_dir, img_info['file_name'])

I = io.imread(image_path)
if len(I.shape) ==

Get annotations
annlds = coco.getAnnIds(imgIds=img_id, catIds=catlds, iscrowd=False)
anns = coco.loadAnns(annIds)

valid_annotations =

valid_bbox =
valid_labels

(]
= [

for ann in anns:
if ann['area'] >= 40000:

X, V¥, w, h = ann['bbox']

#convert to RGB
I = skimage.color.gray2rgb(I)

]

filter by area

label = coco_labels_inverse[ann['category_id']]

valid_bbox.append([x, y, w, hl)
valid_labels.append(label)
valid_annotations.append ({'bbox':

—

labell})

print ("valid_annotations”,
if len(valid_annotations) < 1:

continue

resize image and adjust bounding bozxes

orig_h, orig_w, _ = I.shape
scale_x = image_size / orig w
scale_y = image_size / orig_h
cv2.resize(I, (image_size, image_size))

I_resized =

adjusted_annotations

adjusted_bbox = []

for x, y, w, h in valid_bbox:

new_x =
new_y =

new_w
new_h

adjusted_annotations.append({'bbox"':

int(x *
int(y *
int(w *
int(h *

= [

scale_x)
scale_y)
scale_x)
scale_y)

[x, y, w, h], 'category_id':

len(valid_annotations))

[new_x, new_y, new_w, new_h],

< 'category_id': label, "true_class": class_list[labell})
adjusted_bbox.append([new_x, new_y, new_w, new_h])
dataset[len(dataset)] = {

"image_path": image_path,
"annotations": adjusted_annotations

if len(dataset) >= max_images:

break

20

88

89

91

92

93

94

95

96

97

return dataset

Train Dataset (Maz 4000 Images)

filtered_dataset_train = process_dataset(train_imgIds, coco_train,

<~ train_image_dir, max_images=4000)

torch.save(filtered_dataset_train, train_output_dataset_file)
print(f"Training subset saved to {train_output_dataset_file/ with
— {len(filtered_dataset_train) /} images.")

Validation Dataset (Max 2000 Images)

filtered_dataset_val = process_dataset(val_imgIds, coco_val, val_image_dir,

<~ max_images=5000)

torch.save(filtered_dataset_val, val_output_dataset_file)
print(f"Validation subset saved to {val_output_dataset_file/ with
< {len(filtered_dataset_val) / images.")

code for plot dataset with 3x3 grid

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

import torch

import matplotlib.pyplot as plt
import cv2

import random

import numpy as np

import skimage.io as io

import os

data_dir = "/home/syc/Desktop/ECE60146"

output_dataset_file = os.path.join(data_dir, "coco_subset_train.pt")
image_dir = os.path.join(data_dir, "train2014")

subset = torch.load(output_dataset_file)

num_images = len(subset)
print(f"Loaded {num_images/ images")

class_list = ['bus', 'cat', 'pizza']

fig, axes = plt.subplots(3, 3, figsize=(12, 12))

class_images = {class_name: [] for class_name in class_list}

for key, data in subset.items():
for ann in data["annotations"]:
label_idx = ann["category_id"

class_name = class_list[label_idx]

]

21

27

28

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

class_images[class_name] .append((key, data))

for row, class_name in enumerate(class_list):
if len(class_images[class_name]) ==
print(£"No images found for class {class_name/")
continue

selected_images = random.sample(class_images[class_name], min(3,
— len(class_images([class_namel))) # pick 3 images

for col, (key, data) in enumerate(selected_images):
image_path = data["image_path"]
annotations = data["annotations"]

image = io.imread(image_path)
image_resized = cv2.resize(image, (256, 256))

for ann in annotations:
X, ¥y, w, h = ann["bbox"]
label_idx = ann["category_id"]

image_resized = cv2.rectangle(image_resized, (int(x), int(y)),
< (int(x + w), int(y + h)), (36, 255, 12), 2)
image_resized = cv2.putText(image_resized, class_list[label_idx],
<~ (@(int(x), int(y - 10)),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (36,
— 255, 12), 2)

ax = axes[row, coll]
ax.imshow(image_resized)
ax.set_title(f"{class_name/}")
ax.set_axis_off ()

plt.tight_layout ()
plt.show()

code for dataset, dataload, net, training and testing

import random

import numpy

import torch

import os, sys

import torchvision.models as models

22

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file_),
< '/home/syc/Desktop/ECE60146/HW7/Y0OLOLogic-2.1.4')))
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file_),
— '/home/syc/Desktop/ECE60146/DLStudio-2.5.1"')))

from YOLOLogic import *

from DLStudio import *

import torch

import torch.optim as optim

import torch.nn as nn

import time

import matplotlib.pyplot as plt

from matplotlib.patches import Rectangle

seed = 0

random.seed(seed)

torch.manual_seed(seed)

torch.cuda.manual_seed(seed)

numpy.random. seed (seed)

torch.backends. cudnn.deterministic=True
torch.backends. cudnn.benchmarks=False

os.environ['PYTHONHASHSEED'] = str(seed)
from YOLOLogic import *

import torch

import torch.nn as nn

import torchvision

import torchvision.transforms as tvt
import torchvision.transforms.functional as F
import torchvision.utils as tutils

import torch.optim as optim

import numpy as np

import time

from PIL import Image

from PIL import ImageDraw

from PIL import ImageTk

from PIL import ImageFont

import sys,os,os.path,glob,signal

import re

import functools

import math

import random

import copy

import pickle

if sys.version_info[0] ==
import tkinter as Tkinter
from tkinter.constants import *

else:

23

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

import Tkinter
from Tkconstants import *

import matplotlib.pyplot as plt

from matplotlib.patches import Rectangle
import logging

import torch

import torchvision.transforms as tvt
from PIL import Image

import numpy as np

-~ class———————————————————————————————=
class YoloDataset(torch.utils.data.Dataset):

def

—

—

def __

def

__init__(self, train_root, val_root, transform=None,
train_or_val='train', image_size=256, S=8, B=5, C=3, classes=['bus',
'cat', 'pizza'l]):
self.transform = transform
self.train_or_val = train_or_val
self.train_root = train_root
self.val_root = val_root
self.image_size = image_size
self.B = B # number of anchor bozes
self.S = S # number of yolo cells on each azle
self .num_of_cells = S * S # number of yolo cells
self.yolo_interval = image_size / S
self.C = C # number of classes
self.classes = classes
self.grid_size = self.image_size / S
if self.train_or_val == 'train':
self.database =
< torch.load("/home/syc/Desktop/ECE60146/coco_subset_train.pt")
else:
self.database =
< torch.load("/home/syc/Desktop/ECE60146/coco_subset_val.pt")
self .dataset_size = len(self.database)

len__(self):
return self.dataset_size

convert_bbox_to_yolo_format(self, bbox):
x1l, y1, x2, y2 = bbox

X_center = (x1 + x2) / 2

y_center = (y1 + y2) / 2

w = (x2 - x1)

24

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

136

137

def

def

h = (y2 - y1)

return [x_center, y_center, w, h]

label_to_onehot(self, label):
onehot = [0,0,0]

onehot [label] = 1

return onehot

__getitem__(self, idx):

image_path = self.database[idx] ['image_path']
annotations = self.databasel[idx] ['annotations']

im = Image.open(image_path).convert('RGB')
im.resize((self.image_size, self.image_size))

im

im_tensor = tvt.ToTensor() (im)

if self.transform:

im_tensor = self.transform(im_tensor)

yolo_tensor = torch.zeros(self.num_of_cells, self.B, 5 + self.C)
yolo_tensor_aug = torch.zeros(self.num_of_cells, self.B, 5 + self.C +

- 1)

bbox_tensor = torch.zeros(5,4,dtype=torch.uint8)
bbox_label_tensor = torch.zeros(5,dtype=torch.uint8) + 13

num_objects = len(annotations)

for i in range(num_objects):

bbox = annotations[i] ['bbox']

x1, y1, w, h = bbox
x2, y2 =x1 +w, yl1 +h
bbox = [x1, y1, x2, y2]

label = annotations[i]['category_id']
bbox_tensor[i] = torch.LongTensor (bbox)

bbox_label_tensor[i] = label

anchor_boxes = [[1, 5],[1,3],

(1,11, 3,1]1,[5,1]1]

for annotation in annotatiomns:

bbox = annotation['bbox']

class_id = annotation['category_id']

x1, y1, w, h = bbox
x2, y2=x1 +w, y1 +h

bbox_converted = self.convert_bbox_to_yolo_format([x1l, y1, x2,

grid_x = int(bbox_converted[0] /self.grid_size)
int (bbox_converted[1] /self.grid_size)
"'"'This anchor boxz selection logic is borrowed from

grid_y

the DLStudio module

< https://engineering.purdue. edu/kak/distYOLO/ """’

AR =h / w

25

138 if AR <=0.2:

139 anch_box_idx = 0

140 elif 0.2 < AR <=0.5:

141 anch_box_idx = 1

142 elif 0.5 < AR <=1.5:

143 anch_box_idx = 2

144 elif 1.5 < AR <=4:

145 anch_box_idx = 3

146 elif 4 < AR:

147 anch_box_idx = 4

148 anch_box = anchor_boxes[anch_box_idx]

149

150 del_x = bbox_converted[0] - (grid_x * self.grid_size +
— self.grid_size / 2)

151 del_x = del_x / self.grid_size

152 del_y = bbox_converted[1] - (grid_y * self.grid_size +
— self.grid_size / 2)

153 del_y = del_y / self.grid_size

154

155 delta_w = w / (anch_box[0] * self.yolo_interval)

156 delta_h = h / (anch_box[1] * self.yolo_interval)

157 onehot = self.label_to_onehot(class_id)

158 yolo_vector = torch.FloatTensor([1, del_x, del_y, delta_w,
s delta_h, *onehot])

159 yolo_tensor[grid_x * self.S + grid_y, anch_box_idx] = yolo_vector

160 yolo_tensor_auglgrid_x * self.S + grid_y, anch_box_idx, :-1] =
— yolo_vector

161 cell_num = grid_x * self.S + grid_y

162 grid_x = int(cell_num // self.S)

163 grid_y = int(cell_num %self.S)

164 center_x = grid_x * self.grid_size + self.grid_size / 2 + del_x *
— self.grid_size

165 center_y = grid_y * self.grid_size + self.grid_size / 2 + del_y *
— self.grid_size

166 h = delta_h * self.yolo_interval * anch_box[1]

167 w = delta_w * self.yolo_interval * anch_box[0]

168 for icx in range(yolo_tensor_aug.shapel[0]):

169 for iax in range(yolo_tensor_aug.shapel[1]):

170 if yolo_tensor_auglicx, iax, 0] ==

171 yolo_tensor_auglicx, iax, -1] = 1

172 return im_tensor, yolo_tensor, yolo_tensor_aug, bbox_tensor,

— bbox_label_tensor
173
L Train and Test Data
— Loader-———--———————=——————————————————————
175 dataset = YoloDataset("/home/syc/Desktop/ECdelta_xE60146/data/train2014",
176 "/home/syc/Desktop/ECE60146/data/val2014",
< train_or_val='train')

26

177 train_loader = torch.utils.data.Dataloader(dataset, batch_size=4,
— shuffle=True)
17s dataset_val = YoloDataset("/home/syc/Desktop/ECE60146/data/train2014",
179 "/home/syc/Desktop/ECE60146/data/val2014",
< train_or_val='val')
180 test_loader = torch.utils.data.Dataloader(dataset_val, batch_size=1,
<. shuffle=True)

181

182 e R Check Datag-—————-——————————————————————————

183 def check_data(loader,class_list=['bus', 'cat', 'pizza'l):

184 for batch in loader:

185 im, yolo_tensor, yolo_tensor_aug, bbox_tensor, bbox_label_tensor =
— batch

186 batch_size = im.shape[0]

187 fig, axes = plt.subplots(l, batch_size, figsize=(5 * batch_size, 5))

188 if batch_size ==

189 axes = [axes]

190 anchors = [[1, 5], [t1, 31, [1, 11, [3, 11, [5, 11]1 #predefined anchor
— bozes size

191 grid_sizel = 32

192 cell_per_axle = 8

193 for idx in range(batch_size):

104 ax = axes[idx]

195 ax.imshow(im[idx] .permute(1, 2, 0).cpu() .numpy())

196 num_cells = yolo_tensor.shapel[1] # 64 cells

197 num_anchors = yolo_tensor.shape[2] # 5 anchors

198 for cell in range(num_cells):

199 grid_x = cell // cell_per_axle

200 grid_y = cell 7 cell_per_axle

201 for anch in range(num_anchors):

202 if yolo_tensor[idx, cell, anch, 0] ==

203 del_x = yolo_tensor[idx, cell, anch, 1].item()

204 del_y = yolo_tensor[idx, cell, anch, 2].item()

205 del_w = yolo_tensor[idx, cell, anch, 3].item()

206 del_h = yolo_tensor[idx, cell, anch, 4].item()

207 anchor_box = anchors[anch]

208 x_center = (grid_x + 0.5 + del_x) * grid_sizel

209 y_center = (grid_y + 0.5 + del_y) * grid_sizel

210 w = del_w * grid_sizel * anchor_box[0]

211 h = del_h * grid_sizel * anchor_box[1]

212 x1 = x_center - w/2

213 yl = y_center - h/2

214 rect = Rectangle((x1, yl1), w, h, edgecolor='g',
-, facecolor='none', lw=2)

215 ax.add_patch(rect)

216 label = torch.argmax(yolo_tensor[idx, cell, anch,

- 5:1).item()

27

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

ax.text(x1l, y1, class_list[label], color='g',
— fontsize=12)
ax.axis("off")
plt.tight_layout ()
plt.show()
break # Only process one batch

check_data(train_loader)
check_data(test_loader)

- class——————"""""""———————————————————
"'"'This skip block class is borrowed from the DLStudio module
<~ https://engineering.purdue. edu/kak/distYOLO/ """’
class SkipBlock(nn.Module) :
def __init__(self, in_ch, out_ch, downsample=False,
< skip_connections=True) :
super (SkipBlock, self).__init__()
self.downsample = downsample
self.skip_connections = skip_connections
self.in_ch = in_ch
self.out_ch = out_ch
self.convol = nn.Conv2d(in_ch, in_ch, 3, stride=1, padding=1)
self.convo2 = nn.Conv2d(in_ch, out_ch, 3, stride=1, padding=1)
self.bnl = nn.BatchNorm2d(in_ch)
self.bn2 = nn.BatchNorm2d(out_ch)
self.in2out = nn.Conv2d(in_ch, out_ch, 1)
if downsample:
self.downsamplerl
self.downsampler2

nn.Conv2d(in_ch, in_ch, 1, stride=2)
nn.Conv2d(out_ch, out_ch, 1, stride=2)

def forward(self, x):

identity = x

out = self.convol(x)

out = self.bnl(out)

out = nn.functional.relu(out)

out = self.convo2(out)

out = self.bn2(out)

out = nn.functional.relu(out)

if self.downsample:
identity = self.downsamplerl(identity)
out = self.downsampler2(out)

if self.skip_connections:

if (self.in_ch == self.out_ch) and (self.downsample is False):

out = out + identity

elif (self.in_ch != self.out_ch) and (self.downsample is False):

identity = self.in2out(identity)

28

261

262

263

264

266

267

268

270

271

272

273

274

275

276

277

278

279

280

281

282

284

285

286

287

289

290

291

292

293

294

296

out = out + identity

elif (self.in_ch != self.out_ch) and (self.downsample is True):
out = out + torch.cat((identity, identity), dim=1)

return out

- class————————————

""'"Thts

class is borrowed from the DLStudio module

< https://engineering.purdue. edu/kak/distYOLO/ """’
class NetForYolo(nn.Module):
"""this class ts borrowed from the DLStudio module

N
the

—

def

https://engineering.purdue. edu/kak/distYOLO/,

network i1s modified to fit the 256 image size and 3 classes, and 8

yolo cells'''

__init__(self, skip_connections=True, depth=8):
super (NetForYolo, self).__init__()
4if depth not <n [8, 10, 12, 14, 16]:

ratse ValueError("Depth must be one of 8, 10, 12, 14, or 16")

self.depth = depth // 2

self.convl = nn.Conv2d(3, 64, 3, padding=1)
self.conv2 nn.Conv2d (64, 64, 3, padding=1)
self.pool = nn.MaxPoo0l2d(2, 2)

self.bnl = nn.BatchNorm2d(64)
self.bn2 = nn.BatchNorm2d(128)
self.bn3 = nn.BatchNorm2d(256)

self .skip64_arr = nn.ModuleList()
for i in range(self.depth):
self.skip64_arr.append(SkipBlock(64, 64,

self.skip64ds = SkipBlock(64,64,downsample=True,

self .skip64tol128 = SkipBlock(64, 128,

self .skip128_arr = nn.ModuleList()
for i in range(self.depth):
self .skip128_arr.append(SkipBlock(128,128,

self.skip128ds = SkipBlock(128,128,

29

— skip_connec

— skip_cos

— skip_connec

=)

— skip_connec

downsample=True,
— skip_connections=skip_conne

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

def

self .skip128t0256 = SkipBlock(128, 256,

— skip_connec
o)
self .skip256_arr = nn.ModuleList()
for i in range(self.depth):
self .skip256_arr.append(SkipBlock(256,256,

— skip_connec
self.skip256ds = SkipBlock(256,256,
downsample=True,
— skip_connections=skip_conne
self.fc_seqn = nn.Sequential(
nn.Linear (32768, 16384),

nn.RelLUQ),
nn.Linear (16384, 8192),
nn.ReLU(Q),
nn.Linear (8192, 4096),
nn.RelLUQ),

nn.Linear (4096, 2880),

forward(self, x):
x = self.pool(torch.nn.functional.relu(self.convl(x)))
X = nn.MaxPool2d(2,2) (torch.nn.functional.relu(self.conv2(x)))

for i, skip64 in enumerate(self.skip64_arr[:self.depth//4]):
x = skip64(x)
x = self.skip64ds(x)

for i, skip64 in enumerate(self.skip64_arr[self.depth//4:]):
x = skip64(x)
x = self.bnl(x)

x = self.skip64to128(x)
for i, skip128 in enumerate(self.skip128_arr[:self.depth//4]):
x = skip128(x)

x = self.bn2(x)

x = self.skip128ds(x)
x = x.view(-1, 32768)
x = self.fc_seqn(x)
return x

30

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

—

""'"Thts class ts from

—

https://9ithub. com/pytorch/vision/blob/main/torchvision/models/resnet.py'""’

class ResNetForYolo(nn.Module):

"'"'This class ts using the ResNet50 model from the torchvistion module,
the model s to fit the 256 image size and 3 classes, and 9 yolo cells
— on each azxle, 8x8x5x9 = 2880'"'

def __init__(self, resnet_type="resnet50", pretrained=True):

super (ResNetForYolo, self).__init__Q)

resnet = getattr(models, resnet_type) (pretrained=pretrained)
self .backbone = nn.Sequential (*list(resnet.children()) [:-2])

Define the YOLO prediction head

self.conv = nn.Conv2d (2048, 1024, kernel_size=3, stride=1, padding=1)
— #

self.fc = nn.Linear (1024 * 8 * 8, 2880)

def forward(self, x):

x = self.backbone(x)
x = self.conv(x)
x = x.view(x.shape[0], -1)
x = self.fc(x)
return x
e Training
— functions————————————————————————————————-—
def run_code_for_training(net, train_loader, device="cuda", epochnum=20,
— save_path="./yolo_model.pth",plt_save_path="./training loss.png"):

"""this function is borrowed from the DLStudio module

< https://engineering.purdue.edu/kak/distYOLO/,

the function %s modified to fit the 256 image size and 3 classes, and 8
— wyolo cells on each azxle. the yolo wvector ts modified, the dw and dh
< are

ratio of the bbox to the anchor box size, instead of the yolo interval,
— the other code are mostly the same, the plotting code are removed'''
device = torch.device(device if torch.cuda.is_available() else "cpu")
net = net.to(device)

class_list = ['bus', 'cat', 'pizza']

Define Loss Functions

criterionl = nn.BCELoss(reduction='sum')

criterion2 = nn.MSELoss(reduction='sum')

criterion3 = nn.CrossEntropyLoss(reduction="'sum')

optimizer = optim.Adam(net.parameters(), lr=le-5)

31

377

378

379

380

381

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

407

408

409

410

411

412

413

414

415

416

417

418

print ("\
start_ti

loss_his
Loss_tot
BCE_loss
MSE_loss
CrossEnt

Traint
for epoc

n Starting Training \n")
me = time.time()

tory = [1 # Track loss over tterations
oally = []
= [
=0
ropy_loss = []
ng Loop
h in range(epochnum) :

running_loss = 0.0

running_bce
running_mse

0.0
0.0

running_ce = 0.0

for

iter,data in enumerate(train_loader):

im_tensor, yolo_tensor, yolo_tensor_aug, bbox_tensor,

— bbox_label_tensor = data

im_tensor, yolo_tensor, yolo_tensor_aug = im_tensor.to(device),
— yolo_tensor.to(device), yolo_tensor_aug.to(device)

optimizer.zero_grad() # Reset gradients
predictions = net(im_tensor)

num_yolo_cells = 64

num_anchor_boxes = 5

predictions = predictions.view(-1, num_yolo_cells,
< num_anchor_boxes, 9)

Loss Calculation
loss = torch.tensor (0.0, requires_grad=True).float() .to(device)

Object Presence Loss

loss_obj = criterionl(nn.Sigmoid() (predictions([:,:,:,0]),
— yolo_tensor_augl:,:,:,0])

loss += loss_obj

Bounding Box Loss

loss_bbox = criterion2(predictions[:,:,:,1:5],
— yolo_tensor_augl[:,:,:,1:5])

loss += loss_bbox

Class Prediction Loss

targets = yolo_tensor_augl:,:,:,5:].view(-1, 4)
targets = torch.argmax(targets, dim=1)

32

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

460

461

462

probs = predictions[:,:,:,5:].view(-1, 4)
loss_class = criterion3(probs, targets)
loss += loss_class

loss.backward()
optimizer.step()

running_loss += loss.item()

running_bce += loss_obj.item()
running mse += loss_bbox.item()
running_ce += loss_class.item()

if iter % 300 == 299:
elapsed_time = time.time() - start_time
avg_loss = running_loss / 300
loss_history.append(avg_loss)
Loss_totoally.append(running_loss)
BCE_loss.append (running_bce/300)
MSE_loss.append (running_mse/300)
CrossEntropy_loss.append(running_ce/300)

print (f"\n[Epoch {epoch+l1}/{epochnum/, Batch {iter+1j/] "
f"Elapsed Time: {int(elapsed_time)} sec | Loss:
— {avg_loss: .4f}")

print(f" BCE Loss: {running bce/300:.4f} | MSE Loss:

— {running mse/300: .4f} | CrossEntropy Loss:

— {running_ce/300: .4f}")

running_loss = 0.0

0.0

0.0

running_ce = 0.0

running_bce
running_mse

Save Model Every Epoch
torch.save(net.state_dict(), save_path)
print(£"\nModel saved at {save_path/ (Epoch {epoch+1})")

Training Finished
print ("\nTraining Complete!\n")

Plot Loss Curve

plt.
.plot(loss_history, label="Loss vs. Iterations")
.plot(BCE_loss, label="BCE Loss")

.plot(MSE_loss, label="MSE Loss")

.plot (CrossEntropy_loss, label="CrossEntropy Loss")
plt.
plt.

plt
plt
plt
plt

figure(figsize=(10,5))

title("Training Loss Curve")
xlabel("Iterations (every 300 steps)")

33

464

465

466

467

469

470

471

472

473

474

475

476

477

479

480

481

482

483

484

485

486

487

488

490

491

492

493

494

496

497

498

500

501

502

503

504

def

def

plt.ylabel("Loss")
plt.legend()
plt.savefig(plt_save_path)
plt.show()

return net

IoU_calculator(boxl, box2):

""'"this function is borrowed from the DLStudio module
< https://engineering.purdue. edu/kak/distYOLO/, """’

nmnn

Computes Intersection over Union (IoU) between two bozes.

Args:

boxzl, box2: Lists or arrays in [zl, y1, z2, y2] format.

Returns:

iou (float): Intersection over union score.

nimnn

x1 = max(box1[0], box2[0])
y1 = max(box1[1], box2[1])
x2 = min(box1[2], box2[2])
y2 = min(box1[3], box2[3])

inter_w = max(0, x2 - x1)
inter_h = max(0, y2 - y1)
intersection = inter_w * inter_h

areal = (box1[2] - box1[0]) * (box1[3] - box1[1])
area2 = (box2[2] - box2[0]) * (box2[3] - box2[1])
union = areal + area2 - intersection

if union == O:

return 0.0
return intersection / union

test_yolo_model(net, test_loader, device="cuda",
model_path="./yolo_model_new.pth", display_images=True):

""'"this function is borrowed from the DLStudio module

< https://engineering.purdue.edu/kak/distYOLO/,

the function 1s modified to fit the 256 image size and 3 classes,
— wector i1s modified, the dw and dh are

the yolo

ratio of the bbox to the anchor box size, instead of the yolo interval,

— the other code are mostly the same

yolo_debug = False
device = device

net.load_state_dict(torch.load(model_path))

34

[

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

533

534

535

536

537

538

539

540

542

543

544

545

net = net.to(device)
yolo_interval = 256 / 8
num_yolo_cells = 64
num_anchor_boxes = 5
confusion_matrix = torch.zeros(3, 3)
class_list = ['bus', 'cat', 'pizza'l]
class_correct = [0] * 3
class_total = [0] * 3
totals_for_conf_mat = 0
totals_correct = 0
iou_scores = [0.0] * 3
anchor_boxes = [[1, 5], [1, 31, [1, 11, [3, 11, [5, 111
num_of_validation_images = len(test_loader)
print ("num of test_loader",len(test_loader))
with torch.no_grad(Q):
for iter, data in enumerate(test_loader):
im_tensor, yolo_tensor, yolo_tensor_aug , bbox_tensor,
— bbox_label_tensor = data
im_tensor, yolo_tensor, yolo_tensor_aug = im_tensor.to(device),
< yolo_tensor.to(device), yolo_tensor_aug.to(device)
predictions = net(im_tensor)
predictions = predictions.view(-1, num_yolo_cells,
< num_anchor_boxes, 9)
print ("predictions”,predictions. shape)
for ibx in range(predictions.shapel[0]):
icx_2_best_anchor = {ic: None for ic in
< range(predictions.shape[1])}
for icx in range(predictions.shapel[1]):
cell_pred = predictions[ibx, icx]
previous_best = 0
for anchor in range(cell_pred.shape[0]):
if cell_pred[anchor] [0] > previous_best:
previous_best = anchor
best_anchor_icx = previous_best
icx_2_best_anchor[icx] = best_anchor_icx
sorted_icx = sorted(icx_2_best_anchor, key=lambda x:
< predictions[ibx, x, icx_2_best_anchor[x]][0],
— reverse=True)
retained_cells = sorted_icx[:5]
objects_detected = []
predicted_bboxes = []
predicted_labels_for_bboxes = []
predicted_label_index_vals = []
for icx in retained_cells:
pred_vec = predictions[ibx, icx, icx_2_best_anchor[icx]]
class_label_prdict = pred_vec[-4:]

35

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

class_label_prob = torch.nn.Softmax(dim=0) (class_label_prdict)
class_label_prob = class_label_prob[:-1]
if torch.all(class_label_prob < 0.2):
predicted_class_label = None
else:
best_predicted_class_index = (class_label_prob ==
— class_label_prob.max())
best_predicted_class_index =
— torch.nonzero(best_predicted_class_index,
< as_tuple=True)

<~ predicted_label_index_vals.append(best_predicted_class_index[0].ite
predicted_class_label =

<~ class_list[best_predicted_class_index[0].item()]
predicted_labels_for_bboxes.append(predicted_class_label)

pred_regression_vec = pred_vec[1:5].cpu()
del_x, del_y, delta_w, delta_h = pred_regression_vec
grid_x = int(icx // 8)
grid_y = int(icx % 8)
bb_center_x = (grid_x + 0.5 + del_x) * yolo_interval
bb_center_y = (grid_y + 0.5 + del_y) * yolo_interval
w = delta_w * yolo_interval *
— anchor_boxes[icx_2_best_anchor[icx]] [0]
h = delta_h * yolo_interval *
— anchor_boxes[icx_2_best_anchor[icx]] [1]
bb_top_left_x = bb_center_x - w/2
bb_top_left_y = bb_center_y - h/2
predicted_bboxes.append([bb_top_left_x, bb_top_left_y,
« int(w), int(Ch)]1)
print ("predicted_bbozes",predicted_bbozes)
saved_predicted_bboxes = [predicted_bboxes[i][:] for i in
— range(len(predicted_bboxes))]
gt_bboxes = torch.squeeze(bbox_tensor) .cpu() .numpy ()
for pred_bbox in predicted_bboxes:
w, h = pred_bbox[2], pred_bbox[3]
pred_bbox[2] = pred_bbox[0] + w
pred_bbox[3] = pred_bbox[1] + h
mapping_from_pred_to_gt = {i: None for i in
- range(len(predicted_bboxes))}
for i in range(len(predicted_bboxes)):

gt_possibles = {k : 0.0 for k in range(5)} ## 0.0 for
— ToU
for j in range(len(gt_bboxes)):
if all(gt_bboxes[j]l[x] == 0 for x in range(4)): continue
— ## 4 15 for the four coords of a bbox
if (gt_bboxes[j].all() == 0): continue ## 4 is for

— the four coords of a bbozx

36

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

gt_possibles[j] = IoU_calculator(predicted_bboxes[i],
< gt_bboxes[j])
sorted_gt_possibles = sorted(gt_possibles, key=lambda x:
— gt_possibles[x], reverse=True)
1f sorted_gt_possibles[0] != 0:
print ("sorted_gt_possibles”,sorted_gt_possibles)
1f display_images:
print ("For predicted bboz Jd: the best gt bbozx is: Jd" J
- (%, sorted_gt_possibles[0]))
mapping_from_pred_to_gt[i] = (sorted_gt_possibles[0],
— gt_possibles[sorted_gt_possibles[0]])
gt_labels = torch.squeeze(bbox_label_tensor).cpu() .numpy()
print ("\ngt_labels: ", gt_labels)
These are the predicted numeric class labels for the predicted
— bbozxzes in the image
pred_labels_ints = predicted_label_index_vals
for i,bbox_pred in enumerate(predicted_bboxes):
if display_images:
print("for i=//d, the predicted label: /s the
— ground_truth label: /s" % (i,
< predicted_labels_for_bboxes[i],

— class_list[gt_1
if gt_labels[pred_labels_ints[i]] !'= 13:

— confusion_matrix[gt_labels[mapping_from_pred_to_gt[i] [0]]] [pred_lab
o += 1
totals_for_conf_mat += 1
class_total[gt_labels[mapping from_pred_to_gt[i] [0]]] += 1
if gt_labels[mapping_from_pred_to_gt[i] [0]] ==
< pred_labels_ints[i]:
totals_correct += 1
class_correct [gt_labels[mapping_from_pred_to_gt[i] [0]]] +=
- 1
iou_scores[gt_labels[mapping_from_pred_to_gt[i] [0]]] +=
<~ mapping_from_pred_to_gt[i] [1]
If the user wants to see the image with the predicted bbozes
— and also the predicted labels:
if display_images:
predicted_bboxes = saved_predicted_bboxes
if yolo_debug:
print (" [batch image=/d] objects found in descending
< probability order: " ¥ ibx,
< predicted_labels_for_bboxes)
logger = logging.getLogger ()
old_level = logger.level
logger.setLevel (100)

37

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

fig = plt.figure(figsize=[12,12])

ax = fig.add_subplot(111)

display_scale = 2

new_im_tensor = torch.nn.functional.interpolate(im_tensor,
— scale_factor=display_scale, mode='bilinear',

< align_corners=False)

< ax.imshow(np.transpose(torchvision.utils.make_grid(new_im_tensor,
< normalize=True, padding=3, pad_value=255).cpu(), (1,2,0)))
for i,bbox_pred in enumerate(predicted_bboxes):
X,y,w,h = np.array(bbox_pred)
X,y,w,h = [item * display_scale for item in (x,y,w,h)]
rect = Rectangle((x,y),w,h,angle=0.0,edgecolor="r',fill =
« False,lw=2)
ax.add_patch(rect)
ax.annotate(predicted_labels_for_bboxes[i], (x,y-1),
— color='red', weight='bold', fontsize=10*display_scale)
gt_box_index = mapping_from_pred_to_gt[i] [0]
— ## '[0]' becaause mapping returns (index,prodb) pair
x1,y1,x2,y2 = np.array(gt_bboxes[gt_box_index])
x,y,w,h = x1,y1,x2-x1,y2-y1
x,y,w,h = [item * display_scale for item in (x,y,w,h)]
label = class_list[gt_labels[gt_box_index]]
ax.annotate(label, (x,y-1), color='g', weight='bold',
— fontsize=10*display_scale)
rect = Rectangle((x,y),w,h,angle=0.0,edgecolor="g',fill =
« False,lw=2)
ax.add_patch(rect)
plt.savefig(dir_name_for_results + "/" + str(iter) +
o ".png")
plt.show()
logger.setLevel(old_level)

Our next job s to present to the user the information collected for the

—

confusion matrixz for the wvalidation dataset:
if True:
print ("\nConfusion Matrix: ", confusion_matrix)
print("\nclass_correct: ", class_correct)
print("\nclass_total: ", class_total)
print ("\ntotals_for_conf_mat: ", totals_for_conf_mat)
", totals_correct)
for j in range(len(class_list)):
print('Prediction accuracy for /b5s : J2d /7' % (class_list[jl, 100 =x
— class_correct[j] / class_totalljl))
print ("\n\n\nOverall accuracy of multi-instance detection on /d test
<~ images: /d //" 7 (num_of_validation_images,

print("\ntotals_correct:

38

Lroroge
n
E

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

print ("""\nNOTE 1: This accuracy does not factor in the missed detection.

— This number is related to just the

mis-labeling errors for the detected instances. Percentage of the missed

— detections are shown in
the last column of the table shown below.""")
print ("\n\nDisplaying the confusion matrix:\n")

out_str = " "
for j in range(len(class_list)): out_str += "/15s" % class_list[j]
out_str += "J15s" % "missing"

print (out_str + "\n")

for i,label in enumerate(class_list):
out_percents = [100 * confusion_matrix[i,j] / float(class_totall[i])
« for j in range(len(class_list))]
missing_percent = 100 - sum(out_percents)
out_percents.append(missing_percent)
out_percents = ["/.2f" % item.item() for item in out_percents]

out_str = "/10s: " 7, class_list[i]
for j in range(len(class_list)+1): out_str += "J15s"

— out_percents[j]
print(out_str)
print ("\n\nNOTE 2: 'missing' means that an object instance of that label
— was NOT extracted from the image.")

print ("\nNOTE 3: 'prediction accuracy' means the labeling accuracy for the

< extracted objects.")

print ("\nNOTE 4: True labels are in the left-most column and the predicted

< labels at the top of the table.")

Fainally, we present to the user the IoU scores for each of the object

— types:

iou_score_by_label = {class_list[i] : 0.0 for i in range(len(class_list))}

for i,label in enumerate(class_list):
iou_score_by_label[class_list[i]] =
< iou_scores[i]/float(class_totall[il)
print ("\n\nIoU scores for the different types of objects: ")
for obj_type in iou_score_by_label:
print ("\n J410s : Z.4f" % (obj_type,
— iou_score_by_label[obj_typel))

— models————————————————————————————————-

net0 = ResNetForYolo() # net using Reslet50

netl = NetForYolo(skip_connections=True, depth=4) # net borrowing from the
— YOLOLogic with depth 4

net2 = NetForYolo(skip_connections=False, depth=2)# net borrowing from the
— YOLOLogic with depth 2

net3 = NetForYolo(skip_connections=True, depth=8)# net borrowing from the
— YOLOLogic with depth 8

39

678

679

680

681

682

683

684

685

686

687

688

689

690

R Train and Test the

— models————————————————— - ———————

net0 = run_code_for_training(netO, train_loader, device="cuda",
— save_path="./yolo_model_resnet.pth",

<~ plt_save_path="training loss_resnet.png")

netl = run_code_for_training(netl, train_loader, device='"cuda",
— save_path="./yolo_model_skip4.pth",

— plt_save_path="./training loss_skip4.png")

net2 = run_code_for_training(net2, train_loader, device="cuda",
< save_path="./yolo_model_skip2.pth",

— plt_save_path="./training_loss_skip2.png")

net3 = run_code_for_training(net3, train_loader, device="cuda",
— save_path="./yolo_model_skip8.pth",

— plt_save_path="./training_loss_skip8.png")

test_yolo_model (netO, test_loader, device="cpu",
— model_path="./yolo_model_resnet.pth", display_images=False)
test_yolo_model(netl, test_loader, device='"cuda",
< model_path="./yolo_model_skip4.pth", display_images=False)
test_yolo_model (net2, test_loader, device='"cuda",
— model_path="./yolo_model_skip2.pth", display_images=False)
test_yolo_model (net3, test_loader, device='"cuda",
< model_path="./yolo_model_skip8.pth", display_images=False)

epochnum=20,

epochnum=20,

epochnum=20,

epochnum=20,

40

