
ECE60146 HW7

Yuchen Song

Part 1 Extract Multi-instance image from coco

1 3x3 grid image

The images from coco dataset are filtered by categories [’pizza’, ’cat’,bus’], and the fore-
ground object are filtered to have more than 40000 pixels. The sample images are in Figure
1.

Figure 1: 3x3 grid image

1

Part 2 Dataloader

1 code block showing all parameters for yolo vector are generated

To generate the yolo vector explained in the lecture slides, a costumed yoloDataset class
is being created to generate the image tensor, the yolo tensor and an additional augment
yolo tensor, which refereed from the YOLOLogic, with a nil element to add extra loss for
the yolo cell that does not have a object. The class is :

1 #---------------------------------YoloDataset

class---------------------------------↪→

2 class YoloDataset(torch.utils.data.Dataset):

3 def __init__(self, train_root, val_root, transform=None,

train_or_val='train', image_size=256, S=8, B=5, C=3, classes=['bus',

'cat', 'pizza']):

↪→

↪→

4 self.transform = transform

5 self.train_or_val = train_or_val

6 self.train_root = train_root

7 self.val_root = val_root

8 self.image_size = image_size

9 self.B = B # number of anchor boxes

10 self.S = S # number of yolo cells on each axle

11 self.num_of_cells = S * S # number of yolo cells

12 self.yolo_interval = image_size / S

13 self.C = C # number of classes

14 self.classes = classes

15 if self.train_or_val == 'train':

16 self.database =

torch.load("/home/syc/Desktop/ECE60146/coco_subset_train.pt")↪→

17 else:

18 self.database =

torch.load("/home/syc/Desktop/ECE60146/coco_subset_val.pt")↪→

19 self.dataset_size = len(self.database)

20

21 def __len__(self):

22 return self.dataset_size

23

24 def convert_bbox_to_yolo_format(self, bbox):

25 x1, y1, x2, y2 = bbox

26 x_center = (x1 + x2) / 2

27 y_center = (y1 + y2) / 2

28 w = (x2 - x1)

29 h = (y2 - y1)

30 return [x_center, y_center, w, h]

31

32 def label_to_onehot(self, label):

33 onehot = [0,0,0]

2

34 onehot[label] = 1

35 return onehot

36

37 def __getitem__(self, idx):

38 image_path = self.database[idx]['image_path']

39 annotations = self.database[idx]['annotations']

40

41 im = Image.open(image_path).convert('RGB')

42 im = im.resize((self.image_size, self.image_size))

43 im_tensor = tvt.ToTensor()(im)

44

45 if self.transform:

46 im_tensor = self.transform(im_tensor)

47

48 yolo_tensor = torch.zeros(self.num_of_cells, self.B, 5 + self.C)

49 yolo_tensor_aug = torch.zeros(self.num_of_cells, self.B, 5 + self.C +

1)↪→

50 bbox_tensor = torch.zeros(5,4,dtype=torch.uint8)

51 bbox_label_tensor = torch.zeros(5,dtype=torch.uint8) + 13

52 num_objects = len(annotations)

53 for i in range(num_objects):

54 bbox = annotations[i]['bbox']

55 x1, y1, w, h = bbox

56 x2, y2 = x1 + w, y1 + h

57 bbox = [x1, y1, x2, y2]

58 label = annotations[i]['category_id']

59 bbox_tensor[i] = torch.LongTensor(bbox)

60 bbox_label_tensor[i] = label

61 anchor_boxes = [[1, 5],[1,3],[1,1],[3,1],[5,1]]

62 for annotation in annotations:

63 bbox = annotation['bbox']

64 class_id = annotation['category_id']

65 x1, y1, w, h = bbox

66 x2, y2 = x1 + w, y1 + h

67 bbox_converted = self.convert_bbox_to_yolo_format([x1, y1, x2,

y2])↪→

68 grid_x = int(bbox_converted[0] /self.yolo_interval)

69 grid_y = int(bbox_converted[1] /self.yolo_interval)

70 '''This anchor box selection logic is borrowed from

71 the DLStudio module

https://engineering.purdue.edu/kak/distYOLO/'''↪→

72 AR = h / w

73 if AR <=0.2:

74 anch_box_idx = 0

75 elif 0.2 < AR <=0.5:

76 anch_box_idx = 1

77 elif 0.5 < AR <=1.5:

3

78 anch_box_idx = 2

79 elif 1.5 < AR <=4:

80 anch_box_idx = 3

81 elif 4 < AR:

82 anch_box_idx = 4

83 anch_box = anchor_boxes[anch_box_idx]

84

85 del_x = bbox_converted[0] - (grid_x * self.yolo_interval +

self.yolo_interval / 2)↪→

86 del_x = del_x / self.yolo_interval

87 del_y = bbox_converted[1] - (grid_y * self.yolo_interval +

self.yolo_interval / 2)↪→

88 del_y = del_y / self.yolo_interval

89

90 delta_w = w / (anch_box[0] * self.yolo_interval)

91 delta_h = h / (anch_box[1] * self.yolo_interval)

92 onehot = self.label_to_onehot(class_id)

93 yolo_vector = torch.FloatTensor([1, del_x, del_y, delta_w,

delta_h, *onehot])↪→

94 yolo_tensor[grid_x * self.S + grid_y, anch_box_idx] = yolo_vector

95 yolo_tensor_aug[grid_x * self.S + grid_y, anch_box_idx, :-1] =

yolo_vector↪→

96 cell_num = grid_x * self.S + grid_y

97 grid_x = int(cell_num // self.S)

98 grid_y = int(cell_num %self.S)

99 h = delta_h * self.yolo_interval * anch_box[1]

100 w = delta_w * self.yolo_interval * anch_box[0]

101 for icx in range(yolo_tensor_aug.shape[0]):

102 for iax in range(yolo_tensor_aug.shape[1]):

103 if yolo_tensor_aug[icx, iax, 0] == 0:

104 yolo_tensor_aug[icx, iax, -1] = 1

105 return im_tensor, yolo_tensor, yolo_tensor_aug, bbox_tensor,

bbox_label_tensor↪→

2 explanation showing all parameters for yolo vector are gener-
ated

The YOLO vector consists of 8 elements

[po, δx, δy, δw, δh, c1, c2, c3]

and augmented YOLO vector has 9 elements.

[po, δx, δy, δw, δh, c1, c2, c3, bg]

where: po, the objectness score, which indicates whether an object exists in the anchor box
(po = 1 means an object is present); δx and δy, which are offsets for the bounding box center

4

relative to the anchor box center; δw and δh, which represent scaling factors for the width
and height of the bounding box relative to the anchor box dimensions; c1, c2, c3, which are
the one-hot encoded class probabilities; and bg, an additional indicator where bg = 1 means
no object exists in the given anchor box.

To verify that the YOLO vectors are correctly generated, I implemented a check dataset
function. This function takes the image tensor and the YOLO tensor and decodes the
bounding box coordinates using the same method as during inference. The decoded bounding
box should match the ground truth bounding box.

The bounding box decoding process follows:

xcenter = (i+ 0.5 + δx) yolo interval, ycenter = (j + 0.5 + δy) yolo interval

where i, j are the grid cell row and column indices and yolo interval is the cell size.

w = wa · δw, h = ha · δh

where wa, ha are the anchor box dimensions.

x1 = xcenter −
w

2
, y1 = ycenter −

h

2

This ensures that the bounding boxes are properly computed. The following code was
used to test the data loader for both training and validation datasets:

1 #---------------------------------Train and Test Data

Loader---------------------------------↪→

2 dataset = YoloDataset("/home/syc/Desktop/ECdelta_xE60146/data/train2014",

3 "/home/syc/Desktop/ECE60146/data/val2014",

train_or_val='train')↪→

4 train_loader = torch.utils.data.DataLoader(dataset, batch_size=4,

shuffle=True)↪→

5 dataset_val = YoloDataset("/home/syc/Desktop/ECE60146/data/train2014",

6 "/home/syc/Desktop/ECE60146/data/val2014",

train_or_val='val')↪→

7 test_loader = torch.utils.data.DataLoader(dataset_val, batch_size=1,

shuffle=True)↪→

8

9 #---------------------------------Check Data---------------------------------

10 def check_data(loader,class_list=['bus', 'cat', 'pizza']):

11 for batch in loader:

12 im, yolo_tensor, yolo_tensor_aug, bbox_tensor, bbox_label_tensor =

batch↪→

13 batch_size = im.shape[0]

14 fig, axes = plt.subplots(1, batch_size, figsize=(5 * batch_size, 5))

15 if batch_size == 1:

16 axes = [axes]

17 anchors = [[1, 5], [1, 3], [1, 1], [3, 1], [5, 1]] #predefined anchor

boxes size↪→

5

18 yolo_interval = 32

19 cell_per_axle = 8

20 for idx in range(batch_size):

21 ax = axes[idx]

22 ax.imshow(im[idx].permute(1, 2, 0).cpu().numpy())

23 num_cells = yolo_tensor.shape[1] # 64 cells

24 num_anchors = yolo_tensor.shape[2] # 5 anchors

25 for cell in range(num_cells):

26 grid_x = cell // cell_per_axle

27 grid_y = cell % cell_per_axle

28 for anch in range(num_anchors):

29 if yolo_tensor[idx, cell, anch, 0] == 1:

30 del_x = yolo_tensor[idx, cell, anch, 1].item()

31 del_y = yolo_tensor[idx, cell, anch, 2].item()

32 del_w = yolo_tensor[idx, cell, anch, 3].item()

33 del_h = yolo_tensor[idx, cell, anch, 4].item()

34 anchor_box = anchors[anch]

35 x_center = (grid_x + 0.5 + del_x) * yolo_interval

36 y_center = (grid_y + 0.5 + del_y) * yolo_interval

37 w = del_w * yolo_interval * anchor_box[0]

38 h = del_h * yolo_interval * anchor_box[1]

39 x1 = x_center - w/2

40 y1 = y_center - h/2

41 rect = Rectangle((x1, y1), w, h, edgecolor='g',

facecolor='none', lw=2)↪→

42 ax.add_patch(rect)

43 label = torch.argmax(yolo_tensor[idx, cell, anch,

5:]).item()↪→

44 ax.text(x1, y1, class_list[label], color='g',

fontsize=12)↪→

45 ax.axis("off")

46 plt.tight_layout()

47 plt.show()

48 break # Only process one batch

49

50 check_data(train_loader)

51 check_data(test_loader)

The plot of the check for the train loader is Figure 2.

6

Figure 2: Train Loader validation

The plot of the check for the val loader is Figure 3.

Figure 3: Val Loader validation

7

Part 3 Training

1 code block showing how yolo tensor is built

The yolo tensors are being generated in the Yolodataset, and pass to a dataloader, when
do the training, it will iterate throgh the data loader and get the needed tensor and use three
loss criterion for training

1 def run_code_for_training(net, train_loader, device="cuda", epochnum=20,

save_path="./yolo_model.pth",plt_save_path="./training_loss.png"):↪→

2 '''this function is borrowed from the DLStudio module

https://engineering.purdue.edu/kak/distYOLO/,↪→

3 the function is modified to fit the 256 image size and 3 classes, and 8

yolo cells on each axle. the yolo vector is modified, the dw and dh

are

↪→

↪→

4 ratio of the bbox to the anchor box size, instead of the yolo interval,

the other code are mostly the same, the plotting code are removed'''↪→

5 device = torch.device(device if torch.cuda.is_available() else "cpu")

6 net = net.to(device)

7 class_list = ['bus', 'cat', 'pizza']

8 # Define Loss Functions

9 criterion1 = nn.BCELoss(reduction='sum')

10 criterion2 = nn.MSELoss(reduction='sum')

11 criterion3 = nn.CrossEntropyLoss(reduction='sum')

12

13 optimizer = optim.Adam(net.parameters(), lr=1e-5)

14

15 print("\n Starting Training \n")

16 start_time = time.time()

17

18 loss_history = [] # Track loss over iterations

19 Loss_totoally = []

20 BCE_loss = []

21 MSE_loss = []

22 CrossEntropy_loss = []

23

24 # Training Loop

25 for epoch in range(epochnum):

26 running_loss = 0.0

27 running_bce = 0.0

28 running_mse = 0.0

29 running_ce = 0.0

30

31 for iter,data in enumerate(train_loader):

32 im_tensor, yolo_tensor, yolo_tensor_aug, bbox_tensor,

bbox_label_tensor = data↪→

33 im_tensor, yolo_tensor, yolo_tensor_aug = im_tensor.to(device),

yolo_tensor.to(device), yolo_tensor_aug.to(device)↪→

8

34

35 optimizer.zero_grad() # Reset gradients

36

37 predictions = net(im_tensor)

38

39 num_yolo_cells = 64

40 num_anchor_boxes = 5

41 predictions = predictions.view(-1, num_yolo_cells,

num_anchor_boxes, 9)↪→

42

43 # Loss Calculation

44 loss = torch.tensor(0.0, requires_grad=True).float().to(device)

45

46 # Object Presence Loss

47 loss_obj = criterion1(nn.Sigmoid()(predictions[:,:,:,0]),

yolo_tensor_aug[:,:,:,0])↪→

48 loss += loss_obj

49

50 # Bounding Box Loss

51 loss_bbox = criterion2(predictions[:,:,:,1:5],

yolo_tensor_aug[:,:,:,1:5])↪→

52 loss += loss_bbox

53 # Class Prediction Loss

54 targets = yolo_tensor_aug[:,:,:,5:].view(-1, 4)

55 targets = torch.argmax(targets, dim=1)

56 probs = predictions[:,:,:,5:].view(-1, 4)

57 loss_class = criterion3(probs, targets)

58 loss += loss_class

59

60 loss.backward()

61 optimizer.step()

62

63 running_loss += loss.item()

64 running_bce += loss_obj.item()

65 running_mse += loss_bbox.item()

66 running_ce += loss_class.item()

67

68 if iter % 300 == 299:

69 elapsed_time = time.time() - start_time

70 avg_loss = running_loss / 300

71 loss_history.append(avg_loss)

72 Loss_totoally.append(running_loss)

73 BCE_loss.append(running_bce/300)

74 MSE_loss.append(running_mse/300)

75 CrossEntropy_loss.append(running_ce/300)

76

77 print(f"\n[Epoch { epoch+1} /{ epochnum} , Batch { iter+1}] "

9

78 f"Elapsed Time: { int(elapsed_time)} sec | Loss:

{ avg_loss: .4f} ")↪→

79 print(f" BCE Loss: { running_bce/300: .4f} | MSE Loss:

{ running_mse/300: .4f} | CrossEntropy Loss:

{ running_ce/300: .4f} ")

↪→

↪→

80 running_loss = 0.0

81 running_bce = 0.0

82 running_mse = 0.0

83 running_ce = 0.0

84

85 # Save Model Every Epoch

86 torch.save(net.state_dict(), save_path)

87 print(f"\nModel saved at { save_path} (Epoch { epoch+1})")

88

89 # Training Finished

90 print("\nTraining Complete!\n")

91

92 # Plot Loss Curve

93 plt.figure(figsize=(10,5))

94 plt.plot(loss_history, label="Loss vs. Iterations")

95 plt.plot(BCE_loss, label="BCE Loss")

96 plt.plot(MSE_loss, label="MSE Loss")

97 plt.plot(CrossEntropy_loss, label="CrossEntropy Loss")

98 plt.title("Training Loss Curve")

99 plt.xlabel("Iterations (every 300 steps)")

100 plt.ylabel("Loss")

101 plt.legend()

102 plt.savefig(plt_save_path)

103 # plt.show()

104

105 return net

106

2 Explanation of How YOLO Tensor is Built

The YOLO tensor is constructed within the YoloDataset class, which processes raw image
data and annotations into a structured format suitable for training the YOLO model. The
output augment yolo tensor used for training follows the format:

B × C × A× 9

where:

• B is the batch size,

• C is the number of YOLO grid cells,

10

• A is the number of anchor boxes per cell,

• The 9 elements per anchor box encode object information explained in previous yolo
vector section.

Each image’s ground-truth bounding boxes are mapped into the corresponding YOLO
grid cell.

The YOLO tensor is used with loss functions for object presence, bounding box regression,
and class prediction:

• Binary Cross-Entropy (BCE) loss for object presence.

• Mean Squared Error (MSE) loss for bounding box regression.

• Cross-Entropy loss for class predictions.

These losses are then backpropagated to update the model parameters.

3 BCE,CE,MSE loss curves

After the 20 epoches training, the average loss of each 300 iteration for all three loss and
total is shown in Figure 4.

Figure 4: Loss Curve

Part 4 Evaluation

1 Code block translate yolo tensor to BB pred and class label

1 anchor_boxes = [[1, 5], [1, 3], [1, 1], [3, 1], [5, 1]]

2 num_of_validation_images = len(test_loader)

3 print("num of test_loader",len(test_loader))

4 with torch.no_grad():

5 for iter, data in enumerate(test_loader):

6 im_tensor, yolo_tensor, yolo_tensor_aug , bbox_tensor,

bbox_label_tensor = data↪→

7 im_tensor, yolo_tensor, yolo_tensor_aug = im_tensor.to(device),

yolo_tensor.to(device), yolo_tensor_aug.to(device)↪→

11

8 predictions = net(im_tensor)

9 predictions = predictions.view(-1, num_yolo_cells,

num_anchor_boxes, 9)↪→

10 # print("predictions",predictions.shape)

11 for ibx in range(predictions.shape[0]):

12 icx_2_best_anchor = {ic: None for ic in

range(predictions.shape[1])}↪→

13 for icx in range(predictions.shape[1]):

14 cell_pred = predictions[ibx, icx]

15 previous_best = 0

16 for anchor in range(cell_pred.shape[0]):

17 if cell_pred[anchor][0] > previous_best:

18 previous_best = anchor

19 best_anchor_icx = previous_best

20 icx_2_best_anchor[icx] = best_anchor_icx

21 sorted_icx = sorted(icx_2_best_anchor, key=lambda x:

predictions[ibx, x, icx_2_best_anchor[x]][0],

reverse=True)

↪→

↪→

22

23 retained_cells = sorted_icx[:5]

24 objects_detected = []

25 predicted_bboxes = []

26 predicted_labels_for_bboxes = []

27 predicted_label_index_vals = []

28 for icx in retained_cells:

29 pred_vec = predictions[ibx, icx, icx_2_best_anchor[icx]]

30 class_label_prdict = pred_vec[-4:]

31 class_label_prob = torch.nn.Softmax(dim=0)(class_label_prdict)

32 class_label_prob = class_label_prob[:-1]

33 if torch.all(class_label_prob < 0.2):

34 predicted_class_label = None

35 else:

36 best_predicted_class_index = (class_label_prob ==

class_label_prob.max())↪→

37 best_predicted_class_index =

torch.nonzero(best_predicted_class_index,

as_tuple=True)

↪→

↪→

38

predicted_label_index_vals.append(best_predicted_class_index[0].item())↪→

39 predicted_class_label =

class_list[best_predicted_class_index[0].item()]↪→

40 predicted_labels_for_bboxes.append(predicted_class_label)

41

42 pred_regression_vec = pred_vec[1:5].cpu()

43 del_x, del_y, delta_w, delta_h = pred_regression_vec

44 grid_x = int(icx // 8)

45 grid_y = int(icx % 8)

12

46 bb_center_x = (grid_x + 0.5 + del_x) * yolo_interval

47 bb_center_y = (grid_y + 0.5 + del_y) * yolo_interval

48 w = delta_w * yolo_interval *

anchor_boxes[icx_2_best_anchor[icx]][0]↪→

49 h = delta_h * yolo_interval *

anchor_boxes[icx_2_best_anchor[icx]][1]↪→

50 bb_top_left_x = bb_center_x - w/2

51 bb_top_left_y = bb_center_y - h/2

52 predicted_bboxes.append([bb_top_left_x, bb_top_left_y,

int(w), int(h)])↪→

53 # print("predicted_bboxes",predicted_bboxes)

54 saved_predicted_bboxes = [predicted_bboxes[i][:] for i in

range(len(predicted_bboxes))]↪→

55 gt_bboxes = torch.squeeze(bbox_tensor).cpu().numpy()

2 Explanation Translate yolo tensor to BB pred and class label

From the prediction, the dimension of the prediction is

B × C × A× 9

where:

• B is the batch size,

• C is the number of YOLO grid cells,

• A is the number of anchor boxes per cell,

• The 9 elements per anchor box encode object information predict by the model.

In the code block, it loops through the batches, cells, and anchor boxes to extract the 9-
element YOLO vectors. A threshold is applied to select the cells with the highest probability
of containing an object. The YOLO vectors values that satisfy the threshold are then used
to decode the predicted bounding box.

Since the cell index provides the center of the anchor box, it is used to get the row and
column index of the yolo cell i and j, and then use the indexes to compute the center of the
predicted bounding box. The second and third elements in the tensor (δx and δy) are used
to refine the bounding box center:

xcenter = (i+ 0.5 + δx) yolo interval, ycenter = (j + 0.5 + δy) yolo interval

The fourth and fifth elements (δw and δh) along with the anchor box dimensions (wa, ha)
are used to compute the bounding box width and height:

w = wa · δw, h = ha · δh

13

Finally, the top-left corner of the bounding box is computed as:

x1 = xcenter −
w

2
, y1 = ycenter −

h

2

This method converts the YOLO tensor predictions into bounding box coordinates for
visualization and IOU calculation

3 24 images

After training the model, the testing phase identifies the best predicted bounding boxes
for evaluation. To analyze the performance,the plots has:

• 18 well-predicted bounding boxes (6 per class: bus, cat, pizza), showing good detection
quality.

• 6 examples of poor predictions(6 per class: bus, cat, pizza), illustrating cases where
the model struggles with accurate localization.

In the plots:

• Green bounding boxes represent the ground truth (GT) annotations extracted from
the YOLO tensor.

• Red bounding boxes represent the model’s predicted bounding boxes obtained from
the YOLO output tensor.

14

Image 1 Image 2 Image 3

Image 4 Image 5 Image 6

Table 1: Good cat prediction images

Image 1 Image 2

Table 2: Bad cat prediction images

15

Image 1 Image 2 Image 3

Image 4 Image 5 Image 6

Table 3: Good pizza prediction images

Image 1 Image 2

Table 4: Bad pizza prediction images

16

Image 1 Image 2 Image 3

Image 4 Image 5 Image 6

Table 5: Good bus prediction images

Image 1 Image 2

Table 6: Bad bus prediction images

In the code, I tried several different network, including the YOLOnet in YOLOLogic
module with different depth, as well as the Resnet with ResNet50 model, the results are
different, in the above plots, the results are from the ResNet.

In the good detection cases, the model successfully identifies and classifies the objects,
with a significant overlap between the predicted and ground truth bounding boxes. The

17

predicted class labels match the ground truth labels with high confidence. Although the
bounding box center and size are close the ground truth, slight misalignment in position and
dimensions are still observed.

In the bad detection cases, the model struggles to localize objects accurately. The pre-
dicted bounding box is significantly smaller than the ground truth. Multiple predicted boxes
are generated for the same object that have similar position and size.The predicted center
is off from the ground truth sometime, leading to incorrect localization.

18

Part 5 code

1 code for filtering data

1 from pycocotools.coco import COCO

2 import numpy as np

3 import skimage.io as io

4 import skimage.color

5 import cv2

6 import torch

7 import os

8

9 # Define paths

10 data_dir = "/home/syc/Desktop/ECE60146"

11 train_json = os.path.join(data_dir, "annotations/instances_train2014.json")

12 val_json = os.path.join(data_dir, "annotations/instances_val2014.json")

13 train_image_dir = os.path.join(data_dir, "train2014")

14 val_image_dir = os.path.join(data_dir, "val2014")

15 train_output_dataset_file = os.path.join(data_dir, "coco_subset_train.pt")

16 val_output_dataset_file = os.path.join(data_dir, "coco_subset_val.pt")

17

18 class_list = ['bus', 'cat', 'pizza']

19 image_size = 256

20

21 coco_train = COCO(train_json)

22 coco_val = COCO(val_json)

23

24 catIds = coco_train.getCatIds(catNms=class_list)

25 categories = coco_train.loadCats(catIds)

26 categories.sort(key=lambda x: x['id'])

27 coco_labels_inverse = {c['id']: idx for idx, c in enumerate(categories)}

28

29 train_imgIds = []

30 val_imgIds = []

31

32 for cat_id in catIds:

33 train_imgIds.extend(coco_train.getImgIds(catIds=[cat_id]))

34 val_imgIds.extend(coco_val.getImgIds(catIds=[cat_id]))

35

36 train_imgIds = list(set(train_imgIds))

37 val_imgIds = list(set(val_imgIds))

38

39 def process_dataset(image_ids, coco, image_dir, max_images):

40 dataset = {}

41 for img_id in image_ids:

42 img_info = coco.loadImgs(img_id)[0]

19

43 image_path = os.path.join(image_dir, img_info['file_name'])

44

45 I = io.imread(image_path)

46 if len(I.shape) == 2: #convert to RGB

47 I = skimage.color.gray2rgb(I)

48

49 # Get annotations

50 annIds = coco.getAnnIds(imgIds=img_id, catIds=catIds, iscrowd=False)

51 anns = coco.loadAnns(annIds)

52 valid_annotations = []

53 valid_bbox = []

54 valid_labels = []

55 for ann in anns:

56 if ann['area'] >= 40000: # filter by area

57 x, y, w, h = ann['bbox']

58 label = coco_labels_inverse[ann['category_id']]

59 valid_bbox.append([x, y, w, h])

60 valid_labels.append(label)

61 valid_annotations.append({'bbox': [x, y, w, h], 'category_id':

label})↪→

62

63 # print("valid_annotations", len(valid_annotations))

64 if len(valid_annotations) < 1:

65 continue

66 # resize image and adjust bounding boxes

67 orig_h, orig_w, _ = I.shape

68 scale_x = image_size / orig_w

69 scale_y = image_size / orig_h

70 I_resized = cv2.resize(I, (image_size, image_size))

71 adjusted_annotations = []

72 adjusted_bbox = []

73 for x, y, w, h in valid_bbox:

74 new_x = int(x * scale_x)

75 new_y = int(y * scale_y)

76 new_w = int(w * scale_x)

77 new_h = int(h * scale_y)

78 adjusted_annotations.append({'bbox': [new_x, new_y, new_w, new_h],

'category_id': label, "true_class": class_list[label]})↪→

79 adjusted_bbox.append([new_x, new_y, new_w, new_h])

80 dataset[len(dataset)] = {

81 "image_path": image_path,

82 "annotations": adjusted_annotations

83 }

84

85 if len(dataset) >= max_images:

86 break

87

20

88 return dataset

89

90 # Train Dataset (Max 4000 Images)

91 filtered_dataset_train = process_dataset(train_imgIds, coco_train,

train_image_dir, max_images=4000)↪→

92 torch.save(filtered_dataset_train, train_output_dataset_file)

93 print(f"Training subset saved to { train_output_dataset_file} with

{ len(filtered_dataset_train)} images.")↪→

94

95 # Validation Dataset (Max 2000 Images)

96 filtered_dataset_val = process_dataset(val_imgIds, coco_val, val_image_dir,

max_images=5000)↪→

97 torch.save(filtered_dataset_val, val_output_dataset_file)

98 print(f"Validation subset saved to { val_output_dataset_file} with

{ len(filtered_dataset_val)} images.")↪→

2 code for plot dataset with 3x3 grid

1 import torch

2 import matplotlib.pyplot as plt

3 import cv2

4 import random

5 import numpy as np

6 import skimage.io as io

7 import os

8

9 data_dir = "/home/syc/Desktop/ECE60146"

10 output_dataset_file = os.path.join(data_dir, "coco_subset_train.pt")

11 image_dir = os.path.join(data_dir, "train2014")

12

13 subset = torch.load(output_dataset_file)

14 num_images = len(subset)

15 print(f"Loaded { num_images} images")

16

17 class_list = ['bus', 'cat', 'pizza']

18

19 fig, axes = plt.subplots(3, 3, figsize=(12, 12))

20

21 class_images = {class_name: [] for class_name in class_list}

22

23 for key, data in subset.items():

24 for ann in data["annotations"]:

25 label_idx = ann["category_id"]

26 class_name = class_list[label_idx]

21

27 class_images[class_name].append((key, data))

28

29 for row, class_name in enumerate(class_list):

30 if len(class_images[class_name]) == 0:

31 print(f"No images found for class { class_name} ")

32 continue

33

34 selected_images = random.sample(class_images[class_name], min(3,

len(class_images[class_name]))) # pick 3 images↪→

35

36 for col, (key, data) in enumerate(selected_images):

37 image_path = data["image_path"]

38 annotations = data["annotations"]

39

40 image = io.imread(image_path)

41 image_resized = cv2.resize(image, (256, 256))

42

43 for ann in annotations:

44 x, y, w, h = ann["bbox"]

45 label_idx = ann["category_id"]

46

47 image_resized = cv2.rectangle(image_resized, (int(x), int(y)),

(int(x + w), int(y + h)), (36, 255, 12), 2)↪→

48 image_resized = cv2.putText(image_resized, class_list[label_idx],

(int(x), int(y - 10)),↪→

49 cv2.FONT_HERSHEY_SIMPLEX, 0.5, (36,

255, 12), 2)↪→

50

51 ax = axes[row, col]

52 ax.imshow(image_resized)

53 ax.set_title(f"{ class_name} ")

54 ax.set_axis_off()

55

56 plt.tight_layout()

57 plt.show()

3 code for dataset, dataload, net, training and testing

1 import random

2 import numpy

3 import torch

4 import os, sys

5 import torchvision.models as models

6

22

7 sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__),

'/home/syc/Desktop/ECE60146/HW7/YOLOLogic-2.1.4')))↪→

8 sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__),

'/home/syc/Desktop/ECE60146/DLStudio-2.5.1')))↪→

9 from YOLOLogic import *

10 from DLStudio import *

11 import torch

12 import torch.optim as optim

13 import torch.nn as nn

14 import time

15 import matplotlib.pyplot as plt

16 from matplotlib.patches import Rectangle

17

18 # seed = 0

19 # random.seed(seed)

20 # torch.manual_seed(seed)

21 # torch.cuda.manual_seed(seed)

22 # numpy.random.seed(seed)

23 # torch.backends.cudnn.deterministic=True

24 # torch.backends.cudnn.benchmarks=False

25 # os.environ['PYTHONHASHSEED'] = str(seed)

26 # from YOLOLogic import *

27 import torch

28 import torch.nn as nn

29 import torchvision

30 import torchvision.transforms as tvt

31 import torchvision.transforms.functional as F

32 import torchvision.utils as tutils

33 import torch.optim as optim

34 import numpy as np

35 import time

36

37 from PIL import Image

38 from PIL import ImageDraw

39 from PIL import ImageTk

40 from PIL import ImageFont

41 import sys,os,os.path,glob,signal

42 import re

43 import functools

44 import math

45 import random

46 import copy

47 import pickle

48 if sys.version_info[0] == 3:

49 import tkinter as Tkinter

50 from tkinter.constants import *

51 else:

23

52 import Tkinter

53 from Tkconstants import *

54

55 import matplotlib.pyplot as plt

56 from matplotlib.patches import Rectangle

57 import logging

58 import torch

59 import torchvision.transforms as tvt

60 from PIL import Image

61 import numpy as np

62

63

64

65 #---------------------------------YoloDataset

class---------------------------------↪→

66 class YoloDataset(torch.utils.data.Dataset):

67 def __init__(self, train_root, val_root, transform=None,

train_or_val='train', image_size=256, S=8, B=5, C=3, classes=['bus',

'cat', 'pizza']):

↪→

↪→

68 self.transform = transform

69 self.train_or_val = train_or_val

70 self.train_root = train_root

71 self.val_root = val_root

72 self.image_size = image_size

73 self.B = B # number of anchor boxes

74 self.S = S # number of yolo cells on each axle

75 self.num_of_cells = S * S # number of yolo cells

76 self.yolo_interval = image_size / S

77 self.C = C # number of classes

78 self.classes = classes

79 self.grid_size = self.image_size / S

80 if self.train_or_val == 'train':

81 self.database =

torch.load("/home/syc/Desktop/ECE60146/coco_subset_train.pt")↪→

82 else:

83 self.database =

torch.load("/home/syc/Desktop/ECE60146/coco_subset_val.pt")↪→

84 self.dataset_size = len(self.database)

85

86 def __len__(self):

87 return self.dataset_size

88

89 def convert_bbox_to_yolo_format(self, bbox):

90 x1, y1, x2, y2 = bbox

91 x_center = (x1 + x2) / 2

92 y_center = (y1 + y2) / 2

93 w = (x2 - x1)

24

94 h = (y2 - y1)

95 return [x_center, y_center, w, h]

96

97 def label_to_onehot(self, label):

98 onehot = [0,0,0]

99 onehot[label] = 1

100 return onehot

101

102 def __getitem__(self, idx):

103 image_path = self.database[idx]['image_path']

104 annotations = self.database[idx]['annotations']

105

106 im = Image.open(image_path).convert('RGB')

107 im = im.resize((self.image_size, self.image_size))

108 im_tensor = tvt.ToTensor()(im)

109

110 if self.transform:

111 im_tensor = self.transform(im_tensor)

112

113 yolo_tensor = torch.zeros(self.num_of_cells, self.B, 5 + self.C)

114 yolo_tensor_aug = torch.zeros(self.num_of_cells, self.B, 5 + self.C +

1)↪→

115 bbox_tensor = torch.zeros(5,4,dtype=torch.uint8)

116 bbox_label_tensor = torch.zeros(5,dtype=torch.uint8) + 13

117 num_objects = len(annotations)

118 for i in range(num_objects):

119 bbox = annotations[i]['bbox']

120 x1, y1, w, h = bbox

121 x2, y2 = x1 + w, y1 + h

122 bbox = [x1, y1, x2, y2]

123 label = annotations[i]['category_id']

124 bbox_tensor[i] = torch.LongTensor(bbox)

125 bbox_label_tensor[i] = label

126 anchor_boxes = [[1, 5],[1,3],[1,1],[3,1],[5,1]]

127 for annotation in annotations:

128 bbox = annotation['bbox']

129 class_id = annotation['category_id']

130 x1, y1, w, h = bbox

131 x2, y2 = x1 + w, y1 + h

132 bbox_converted = self.convert_bbox_to_yolo_format([x1, y1, x2,

y2])↪→

133 grid_x = int(bbox_converted[0] /self.grid_size)

134 grid_y = int(bbox_converted[1] /self.grid_size)

135 '''This anchor box selection logic is borrowed from

136 the DLStudio module

https://engineering.purdue.edu/kak/distYOLO/'''↪→

137 AR = h / w

25

138 if AR <=0.2:

139 anch_box_idx = 0

140 elif 0.2 < AR <=0.5:

141 anch_box_idx = 1

142 elif 0.5 < AR <=1.5:

143 anch_box_idx = 2

144 elif 1.5 < AR <=4:

145 anch_box_idx = 3

146 elif 4 < AR:

147 anch_box_idx = 4

148 anch_box = anchor_boxes[anch_box_idx]

149

150 del_x = bbox_converted[0] - (grid_x * self.grid_size +

self.grid_size / 2)↪→

151 del_x = del_x / self.grid_size

152 del_y = bbox_converted[1] - (grid_y * self.grid_size +

self.grid_size / 2)↪→

153 del_y = del_y / self.grid_size

154

155 delta_w = w / (anch_box[0] * self.yolo_interval)

156 delta_h = h / (anch_box[1] * self.yolo_interval)

157 onehot = self.label_to_onehot(class_id)

158 yolo_vector = torch.FloatTensor([1, del_x, del_y, delta_w,

delta_h, *onehot])↪→

159 yolo_tensor[grid_x * self.S + grid_y, anch_box_idx] = yolo_vector

160 yolo_tensor_aug[grid_x * self.S + grid_y, anch_box_idx, :-1] =

yolo_vector↪→

161 cell_num = grid_x * self.S + grid_y

162 grid_x = int(cell_num // self.S)

163 grid_y = int(cell_num %self.S)

164 center_x = grid_x * self.grid_size + self.grid_size / 2 + del_x *

self.grid_size↪→

165 center_y = grid_y * self.grid_size + self.grid_size / 2 + del_y *

self.grid_size↪→

166 h = delta_h * self.yolo_interval * anch_box[1]

167 w = delta_w * self.yolo_interval * anch_box[0]

168 for icx in range(yolo_tensor_aug.shape[0]):

169 for iax in range(yolo_tensor_aug.shape[1]):

170 if yolo_tensor_aug[icx, iax, 0] == 0:

171 yolo_tensor_aug[icx, iax, -1] = 1

172 return im_tensor, yolo_tensor, yolo_tensor_aug, bbox_tensor,

bbox_label_tensor↪→

173

174 #---------------------------------Train and Test Data

Loader---------------------------------↪→

175 dataset = YoloDataset("/home/syc/Desktop/ECdelta_xE60146/data/train2014",

176 "/home/syc/Desktop/ECE60146/data/val2014",

train_or_val='train')↪→

26

177 train_loader = torch.utils.data.DataLoader(dataset, batch_size=4,

shuffle=True)↪→

178 dataset_val = YoloDataset("/home/syc/Desktop/ECE60146/data/train2014",

179 "/home/syc/Desktop/ECE60146/data/val2014",

train_or_val='val')↪→

180 test_loader = torch.utils.data.DataLoader(dataset_val, batch_size=1,

shuffle=True)↪→

181

182 #---------------------------------Check Data---------------------------------

183 def check_data(loader,class_list=['bus', 'cat', 'pizza']):

184 for batch in loader:

185 im, yolo_tensor, yolo_tensor_aug, bbox_tensor, bbox_label_tensor =

batch↪→

186 batch_size = im.shape[0]

187 fig, axes = plt.subplots(1, batch_size, figsize=(5 * batch_size, 5))

188 if batch_size == 1:

189 axes = [axes]

190 anchors = [[1, 5], [1, 3], [1, 1], [3, 1], [5, 1]] #predefined anchor

boxes size↪→

191 grid_size1 = 32

192 cell_per_axle = 8

193 for idx in range(batch_size):

194 ax = axes[idx]

195 ax.imshow(im[idx].permute(1, 2, 0).cpu().numpy())

196 num_cells = yolo_tensor.shape[1] # 64 cells

197 num_anchors = yolo_tensor.shape[2] # 5 anchors

198 for cell in range(num_cells):

199 grid_x = cell // cell_per_axle

200 grid_y = cell % cell_per_axle

201 for anch in range(num_anchors):

202 if yolo_tensor[idx, cell, anch, 0] == 1:

203 del_x = yolo_tensor[idx, cell, anch, 1].item()

204 del_y = yolo_tensor[idx, cell, anch, 2].item()

205 del_w = yolo_tensor[idx, cell, anch, 3].item()

206 del_h = yolo_tensor[idx, cell, anch, 4].item()

207 anchor_box = anchors[anch]

208 x_center = (grid_x + 0.5 + del_x) * grid_size1

209 y_center = (grid_y + 0.5 + del_y) * grid_size1

210 w = del_w * grid_size1 * anchor_box[0]

211 h = del_h * grid_size1 * anchor_box[1]

212 x1 = x_center - w/2

213 y1 = y_center - h/2

214 rect = Rectangle((x1, y1), w, h, edgecolor='g',

facecolor='none', lw=2)↪→

215 ax.add_patch(rect)

216 label = torch.argmax(yolo_tensor[idx, cell, anch,

5:]).item()↪→

27

217 ax.text(x1, y1, class_list[label], color='g',

fontsize=12)↪→

218 ax.axis("off")

219 plt.tight_layout()

220 plt.show()

221 break # Only process one batch

222

223 check_data(train_loader)

224 check_data(test_loader)

225

226 #---------------------------------SkipBlock

class---------------------------------↪→

227 '''This skip block class is borrowed from the DLStudio module

https://engineering.purdue.edu/kak/distYOLO/'''↪→

228 class SkipBlock(nn.Module):

229 def __init__(self, in_ch, out_ch, downsample=False,

skip_connections=True):↪→

230 super(SkipBlock, self).__init__()

231 self.downsample = downsample

232 self.skip_connections = skip_connections

233 self.in_ch = in_ch

234 self.out_ch = out_ch

235 self.convo1 = nn.Conv2d(in_ch, in_ch, 3, stride=1, padding=1)

236 self.convo2 = nn.Conv2d(in_ch, out_ch, 3, stride=1, padding=1)

237 self.bn1 = nn.BatchNorm2d(in_ch)

238 self.bn2 = nn.BatchNorm2d(out_ch)

239 self.in2out = nn.Conv2d(in_ch, out_ch, 1)

240 if downsample:

241 self.downsampler1 = nn.Conv2d(in_ch, in_ch, 1, stride=2)

242 self.downsampler2 = nn.Conv2d(out_ch, out_ch, 1, stride=2)

243

244 def forward(self, x):

245 identity = x

246 out = self.convo1(x)

247 out = self.bn1(out)

248 out = nn.functional.relu(out)

249 out = self.convo2(out)

250 out = self.bn2(out)

251 out = nn.functional.relu(out)

252 if self.downsample:

253 identity = self.downsampler1(identity)

254 out = self.downsampler2(out)

255 if self.skip_connections:

256 if (self.in_ch == self.out_ch) and (self.downsample is False):

257 out = out + identity

258 elif (self.in_ch != self.out_ch) and (self.downsample is False):

259 identity = self.in2out(identity)

28

260 out = out + identity

261 elif (self.in_ch != self.out_ch) and (self.downsample is True):

262 out = out + torch.cat((identity, identity), dim=1)

263 return out

264

265

266 ##---------------------------------NetForYolo

class---------------------------------↪→

267 '''This class is borrowed from the DLStudio module

https://engineering.purdue.edu/kak/distYOLO/'''↪→

268 class NetForYolo(nn.Module):

269 '''this class is borrowed from the DLStudio module

https://engineering.purdue.edu/kak/distYOLO/,↪→

270 the network is modified to fit the 256 image size and 3 classes, and 8

yolo cells'''↪→

271 def __init__(self, skip_connections=True, depth=8):

272 super(NetForYolo, self).__init__()

273 # if depth not in [8, 10, 12, 14, 16]:

274 # raise ValueError("Depth must be one of 8, 10, 12, 14, or 16")

275 self.depth = depth // 2

276 self.conv1 = nn.Conv2d(3, 64, 3, padding=1)

277 self.conv2 = nn.Conv2d(64, 64, 3, padding=1)

278 self.pool = nn.MaxPool2d(2, 2)

279 self.bn1 = nn.BatchNorm2d(64)

280

281 self.bn2 = nn.BatchNorm2d(128)

282 self.bn3 = nn.BatchNorm2d(256)

283 self.skip64_arr = nn.ModuleList()

284 for i in range(self.depth):

285 self.skip64_arr.append(SkipBlock(64, 64,

286

skip_connections=skip_connections))↪→

287 self.skip64ds = SkipBlock(64,64,downsample=True,

288

skip_connections=skip_connections)↪→

289 self.skip64to128 = SkipBlock(64, 128,

290

skip_connections=skip_connections

)

↪→

↪→

291 self.skip128_arr = nn.ModuleList()

292 for i in range(self.depth):

293 self.skip128_arr.append(SkipBlock(128,128,

294

skip_connections=skip_connections))↪→

295 self.skip128ds = SkipBlock(128,128,

296 downsample=True,

skip_connections=skip_connections)↪→

29

297 self.skip128to256 = SkipBlock(128, 256,

298

skip_connections=skip_connections

)

↪→

↪→

299 self.skip256_arr = nn.ModuleList()

300 for i in range(self.depth):

301 self.skip256_arr.append(SkipBlock(256,256,

302

skip_connections=skip_connections))↪→

303 self.skip256ds = SkipBlock(256,256,

304 downsample=True,

skip_connections=skip_connections)↪→

305 self.fc_seqn = nn.Sequential(

306 nn.Linear(32768, 16384),

307 nn.ReLU(),

308 nn.Linear(16384, 8192),

309 nn.ReLU(),

310 nn.Linear(8192, 4096),

311 nn.ReLU(),

312 nn.Linear(4096, 2880),

313)

314

315

316 def forward(self, x):

317 x = self.pool(torch.nn.functional.relu(self.conv1(x)))

318 x = nn.MaxPool2d(2,2)(torch.nn.functional.relu(self.conv2(x)))

319

320 for i, skip64 in enumerate(self.skip64_arr[:self.depth//4]):

321 x = skip64(x)

322 x = self.skip64ds(x)

323

324 for i, skip64 in enumerate(self.skip64_arr[self.depth//4:]):

325 x = skip64(x)

326 x = self.bn1(x)

327

328 x = self.skip64to128(x)

329 for i, skip128 in enumerate(self.skip128_arr[:self.depth//4]):

330 x = skip128(x)

331 x = self.bn2(x)

332 x = self.skip128ds(x)

333 x = x.view(-1, 32768)

334 x = self.fc_seqn(x)

335

336 return x

337

338

339

30

340

341 ##---------------------------------ResNetForYolo

class---------------------------------↪→

342 '''This class is from

https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py'''↪→

343 class ResNetForYolo(nn.Module):

344 '''This class is using the ResNet50 model from the torchvision module,

345 the model is to fit the 256 image size and 3 classes, and 9 yolo cells

on each axle, 8x8x5x9 = 2880'''↪→

346 def __init__(self, resnet_type="resnet50", pretrained=True):

347 super(ResNetForYolo, self).__init__()

348

349 resnet = getattr(models, resnet_type)(pretrained=pretrained)

350 self.backbone = nn.Sequential(*list(resnet.children())[:-2])

351

352 # Define the YOLO prediction head

353 self.conv = nn.Conv2d(2048, 1024, kernel_size=3, stride=1, padding=1)

#↪→

354 self.fc = nn.Linear(1024 * 8 * 8, 2880)

355

356 def forward(self, x):

357 x = self.backbone(x)

358 x = self.conv(x)

359 x = x.view(x.shape[0], -1)

360 x = self.fc(x)

361 return x

362

363 ##---------------------------------Training

functions---------------------------------↪→

364 def run_code_for_training(net, train_loader, device="cuda", epochnum=20,

save_path="./yolo_model.pth",plt_save_path="./training_loss.png"):↪→

365 '''this function is borrowed from the DLStudio module

https://engineering.purdue.edu/kak/distYOLO/,↪→

366 the function is modified to fit the 256 image size and 3 classes, and 8

yolo cells on each axle. the yolo vector is modified, the dw and dh

are

↪→

↪→

367 ratio of the bbox to the anchor box size, instead of the yolo interval,

the other code are mostly the same, the plotting code are removed'''↪→

368 device = torch.device(device if torch.cuda.is_available() else "cpu")

369 net = net.to(device)

370 class_list = ['bus', 'cat', 'pizza']

371 # Define Loss Functions

372 criterion1 = nn.BCELoss(reduction='sum')

373 criterion2 = nn.MSELoss(reduction='sum')

374 criterion3 = nn.CrossEntropyLoss(reduction='sum')

375

376 optimizer = optim.Adam(net.parameters(), lr=1e-5)

31

377

378 print("\n Starting Training \n")

379 start_time = time.time()

380

381 loss_history = [] # Track loss over iterations

382 Loss_totoally = []

383 BCE_loss = []

384 MSE_loss = []

385 CrossEntropy_loss = []

386

387 # Training Loop

388 for epoch in range(epochnum):

389 running_loss = 0.0

390 running_bce = 0.0

391 running_mse = 0.0

392 running_ce = 0.0

393

394 for iter,data in enumerate(train_loader):

395 im_tensor, yolo_tensor, yolo_tensor_aug, bbox_tensor,

bbox_label_tensor = data↪→

396 im_tensor, yolo_tensor, yolo_tensor_aug = im_tensor.to(device),

yolo_tensor.to(device), yolo_tensor_aug.to(device)↪→

397

398 optimizer.zero_grad() # Reset gradients

399

400 predictions = net(im_tensor)

401

402 num_yolo_cells = 64

403 num_anchor_boxes = 5

404 predictions = predictions.view(-1, num_yolo_cells,

num_anchor_boxes, 9)↪→

405

406 # Loss Calculation

407 loss = torch.tensor(0.0, requires_grad=True).float().to(device)

408

409 # Object Presence Loss

410 loss_obj = criterion1(nn.Sigmoid()(predictions[:,:,:,0]),

yolo_tensor_aug[:,:,:,0])↪→

411 loss += loss_obj

412

413 # Bounding Box Loss

414 loss_bbox = criterion2(predictions[:,:,:,1:5],

yolo_tensor_aug[:,:,:,1:5])↪→

415 loss += loss_bbox

416 # Class Prediction Loss

417 targets = yolo_tensor_aug[:,:,:,5:].view(-1, 4)

418 targets = torch.argmax(targets, dim=1)

32

419 probs = predictions[:,:,:,5:].view(-1, 4)

420 loss_class = criterion3(probs, targets)

421 loss += loss_class

422

423 loss.backward()

424 optimizer.step()

425

426 running_loss += loss.item()

427 running_bce += loss_obj.item()

428 running_mse += loss_bbox.item()

429 running_ce += loss_class.item()

430

431 if iter % 300 == 299:

432 elapsed_time = time.time() - start_time

433 avg_loss = running_loss / 300

434 loss_history.append(avg_loss)

435 Loss_totoally.append(running_loss)

436 BCE_loss.append(running_bce/300)

437 MSE_loss.append(running_mse/300)

438 CrossEntropy_loss.append(running_ce/300)

439

440 print(f"\n[Epoch { epoch+1} /{ epochnum} , Batch { iter+1}] "

441 f"Elapsed Time: { int(elapsed_time)} sec | Loss:

{ avg_loss: .4f} ")↪→

442 print(f" BCE Loss: { running_bce/300: .4f} | MSE Loss:

{ running_mse/300: .4f} | CrossEntropy Loss:

{ running_ce/300: .4f} ")

↪→

↪→

443 running_loss = 0.0

444 running_bce = 0.0

445 running_mse = 0.0

446 running_ce = 0.0

447

448 # Save Model Every Epoch

449 torch.save(net.state_dict(), save_path)

450 print(f"\nModel saved at { save_path} (Epoch { epoch+1})")

451

452 # Training Finished

453 print("\nTraining Complete!\n")

454

455 # Plot Loss Curve

456 plt.figure(figsize=(10,5))

457 plt.plot(loss_history, label="Loss vs. Iterations")

458 plt.plot(BCE_loss, label="BCE Loss")

459 plt.plot(MSE_loss, label="MSE Loss")

460 plt.plot(CrossEntropy_loss, label="CrossEntropy Loss")

461 plt.title("Training Loss Curve")

462 plt.xlabel("Iterations (every 300 steps)")

33

463 plt.ylabel("Loss")

464 plt.legend()

465 plt.savefig(plt_save_path)

466 # plt.show()

467

468 return net

469

470 def IoU_calculator(box1, box2):

471 '''this function is borrowed from the DLStudio module

https://engineering.purdue.edu/kak/distYOLO/,'''↪→

472 """

473 Computes Intersection over Union (IoU) between two boxes.

474

475 Args:

476 box1, box2: Lists or arrays in [x1, y1, x2, y2] format.

477

478 Returns:

479 iou (float): Intersection over union score.

480 """

481 x1 = max(box1[0], box2[0])

482 y1 = max(box1[1], box2[1])

483 x2 = min(box1[2], box2[2])

484 y2 = min(box1[3], box2[3])

485

486 inter_w = max(0, x2 - x1)

487 inter_h = max(0, y2 - y1)

488 intersection = inter_w * inter_h

489

490 area1 = (box1[2] - box1[0]) * (box1[3] - box1[1])

491 area2 = (box2[2] - box2[0]) * (box2[3] - box2[1])

492 union = area1 + area2 - intersection

493

494 if union == 0:

495 return 0.0

496 return intersection / union

497

498 def test_yolo_model(net, test_loader, device="cuda",

model_path="./yolo_model_new.pth", display_images=True):↪→

499 '''this function is borrowed from the DLStudio module

https://engineering.purdue.edu/kak/distYOLO/,↪→

500 the function is modified to fit the 256 image size and 3 classes, the yolo

vector is modified, the dw and dh are↪→

501 ratio of the bbox to the anchor box size, instead of the yolo interval,

the other code are mostly the same'''↪→

502 yolo_debug = False

503 device = device

504 net.load_state_dict(torch.load(model_path))

34

505 net = net.to(device)

506 yolo_interval = 256 / 8

507 num_yolo_cells = 64

508 num_anchor_boxes = 5

509 confusion_matrix = torch.zeros(3, 3)

510 class_list = ['bus', 'cat', 'pizza']

511 class_correct = [0] * 3

512 class_total = [0] * 3

513 totals_for_conf_mat = 0

514 totals_correct = 0

515 iou_scores = [0.0] * 3

516 anchor_boxes = [[1, 5], [1, 3], [1, 1], [3, 1], [5, 1]]

517 num_of_validation_images = len(test_loader)

518 print("num of test_loader",len(test_loader))

519 with torch.no_grad():

520 for iter, data in enumerate(test_loader):

521 im_tensor, yolo_tensor, yolo_tensor_aug , bbox_tensor,

bbox_label_tensor = data↪→

522 im_tensor, yolo_tensor, yolo_tensor_aug = im_tensor.to(device),

yolo_tensor.to(device), yolo_tensor_aug.to(device)↪→

523 predictions = net(im_tensor)

524 predictions = predictions.view(-1, num_yolo_cells,

num_anchor_boxes, 9)↪→

525 # print("predictions",predictions.shape)

526 for ibx in range(predictions.shape[0]):

527 icx_2_best_anchor = {ic: None for ic in

range(predictions.shape[1])}↪→

528 for icx in range(predictions.shape[1]):

529 cell_pred = predictions[ibx, icx]

530 previous_best = 0

531 for anchor in range(cell_pred.shape[0]):

532 if cell_pred[anchor][0] > previous_best:

533 previous_best = anchor

534 best_anchor_icx = previous_best

535 icx_2_best_anchor[icx] = best_anchor_icx

536 sorted_icx = sorted(icx_2_best_anchor, key=lambda x:

predictions[ibx, x, icx_2_best_anchor[x]][0],

reverse=True)

↪→

↪→

537

538 retained_cells = sorted_icx[:5]

539 objects_detected = []

540 predicted_bboxes = []

541 predicted_labels_for_bboxes = []

542 predicted_label_index_vals = []

543 for icx in retained_cells:

544 pred_vec = predictions[ibx, icx, icx_2_best_anchor[icx]]

545 class_label_prdict = pred_vec[-4:]

35

546 class_label_prob = torch.nn.Softmax(dim=0)(class_label_prdict)

547 class_label_prob = class_label_prob[:-1]

548 if torch.all(class_label_prob < 0.2):

549 predicted_class_label = None

550 else:

551 best_predicted_class_index = (class_label_prob ==

class_label_prob.max())↪→

552 best_predicted_class_index =

torch.nonzero(best_predicted_class_index,

as_tuple=True)

↪→

↪→

553

predicted_label_index_vals.append(best_predicted_class_index[0].item())↪→

554 predicted_class_label =

class_list[best_predicted_class_index[0].item()]↪→

555 predicted_labels_for_bboxes.append(predicted_class_label)

556

557 pred_regression_vec = pred_vec[1:5].cpu()

558 del_x, del_y, delta_w, delta_h = pred_regression_vec

559 grid_x = int(icx // 8)

560 grid_y = int(icx % 8)

561 bb_center_x = (grid_x + 0.5 + del_x) * yolo_interval

562 bb_center_y = (grid_y + 0.5 + del_y) * yolo_interval

563 w = delta_w * yolo_interval *

anchor_boxes[icx_2_best_anchor[icx]][0]↪→

564 h = delta_h * yolo_interval *

anchor_boxes[icx_2_best_anchor[icx]][1]↪→

565 bb_top_left_x = bb_center_x - w/2

566 bb_top_left_y = bb_center_y - h/2

567 predicted_bboxes.append([bb_top_left_x, bb_top_left_y,

int(w), int(h)])↪→

568 # print("predicted_bboxes",predicted_bboxes)

569 saved_predicted_bboxes = [predicted_bboxes[i][:] for i in

range(len(predicted_bboxes))]↪→

570 gt_bboxes = torch.squeeze(bbox_tensor).cpu().numpy()

571 for pred_bbox in predicted_bboxes:

572 w, h = pred_bbox[2], pred_bbox[3]

573 pred_bbox[2] = pred_bbox[0] + w

574 pred_bbox[3] = pred_bbox[1] + h

575 mapping_from_pred_to_gt = {i: None for i in

range(len(predicted_bboxes))}↪→

576 for i in range(len(predicted_bboxes)):

577 gt_possibles = {k : 0.0 for k in range(5)} ## 0.0 for

IoU↪→

578 for j in range(len(gt_bboxes)):

579 if all(gt_bboxes[j][x] == 0 for x in range(4)): continue

4 is for the four coords of a bbox↪→

580 if (gt_bboxes[j].all() == 0): continue ## 4 is for

the four coords of a bbox↪→

36

581 gt_possibles[j] = IoU_calculator(predicted_bboxes[i],

gt_bboxes[j])↪→

582 sorted_gt_possibles = sorted(gt_possibles, key=lambda x:

gt_possibles[x], reverse=True)↪→

583 # if sorted_gt_possibles[0] != 0:

584 # print("sorted_gt_possibles",sorted_gt_possibles)

585 # if display_images:

586 # print("For predicted bbox %d: the best gt bbox is: %d" %

(i, sorted_gt_possibles[0]))↪→

587 mapping_from_pred_to_gt[i] = (sorted_gt_possibles[0],

gt_possibles[sorted_gt_possibles[0]])↪→

588 gt_labels = torch.squeeze(bbox_label_tensor).cpu().numpy()

589 # print("\ngt_labels: ", gt_labels)

590 ## These are the predicted numeric class labels for the predicted

bboxes in the image↪→

591 pred_labels_ints = predicted_label_index_vals

592 for i,bbox_pred in enumerate(predicted_bboxes):

593 if display_images:

594 print("for i=%d , the predicted label: %s the

ground_truth label: %s " % (i,

predicted_labels_for_bboxes[i],

↪→

↪→

595

class_list[gt_labels[mapping_from_pred_to_gt[i][0]]]))↪→

596 if gt_labels[pred_labels_ints[i]] != 13:

597

confusion_matrix[gt_labels[mapping_from_pred_to_gt[i][0]]][pred_labels_ints[i]]

+= 1

↪→

↪→

598 totals_for_conf_mat += 1

599 class_total[gt_labels[mapping_from_pred_to_gt[i][0]]] += 1

600 if gt_labels[mapping_from_pred_to_gt[i][0]] ==

pred_labels_ints[i]:↪→

601 totals_correct += 1

602 class_correct[gt_labels[mapping_from_pred_to_gt[i][0]]] +=

1↪→

603 iou_scores[gt_labels[mapping_from_pred_to_gt[i][0]]] +=

mapping_from_pred_to_gt[i][1]↪→

604 ## If the user wants to see the image with the predicted bboxes

and also the predicted labels:↪→

605 if display_images:

606 predicted_bboxes = saved_predicted_bboxes

607 if yolo_debug:

608 print("[batch image=%d] objects found in descending

probability order: " % ibx,

predicted_labels_for_bboxes)

↪→

↪→

609 logger = logging.getLogger()

610 old_level = logger.level

611 logger.setLevel(100)

37

612 fig = plt.figure(figsize=[12,12])

613 ax = fig.add_subplot(111)

614 display_scale = 2

615 new_im_tensor = torch.nn.functional.interpolate(im_tensor,

scale_factor=display_scale, mode='bilinear',

align_corners=False)

↪→

↪→

616

ax.imshow(np.transpose(torchvision.utils.make_grid(new_im_tensor,

normalize=True, padding=3, pad_value=255).cpu(), (1,2,0)))

↪→

↪→

617 for i,bbox_pred in enumerate(predicted_bboxes):

618 x,y,w,h = np.array(bbox_pred)

619 x,y,w,h = [item * display_scale for item in (x,y,w,h)]

620 rect = Rectangle((x,y),w,h,angle=0.0,edgecolor='r',fill =

False,lw=2)↪→

621 ax.add_patch(rect)

622 ax.annotate(predicted_labels_for_bboxes[i], (x,y-1),

color='red', weight='bold', fontsize=10*display_scale)↪→

623 gt_box_index = mapping_from_pred_to_gt[i][0]

'[0]' becaause mapping returns (index,prob) pair↪→

624 x1,y1,x2,y2 = np.array(gt_bboxes[gt_box_index])

625 x,y,w,h = x1,y1,x2-x1,y2-y1

626 x,y,w,h = [item * display_scale for item in (x,y,w,h)]

627 label = class_list[gt_labels[gt_box_index]]

628 ax.annotate(label, (x,y-1), color='g', weight='bold',

fontsize=10*display_scale)↪→

629 rect = Rectangle((x,y),w,h,angle=0.0,edgecolor='g',fill =

False,lw=2)↪→

630 ax.add_patch(rect)

631 # plt.savefig(dir_name_for_results + "/" + str(iter) +

".png")↪→

632 plt.show()

633 logger.setLevel(old_level)

634 ## Our next job is to present to the user the information collected for the

confusion matrix for the validation dataset:↪→

635 if True:

636 print("\nConfusion Matrix: ", confusion_matrix)

637 print("\nclass_correct: ", class_correct)

638 print("\nclass_total: ", class_total)

639 print("\ntotals_for_conf_mat: ", totals_for_conf_mat)

640 print("\ntotals_correct: ", totals_correct)

641 for j in range(len(class_list)):

642 print('Prediction accuracy for %5s : %2d %% ' % (class_list[j], 100 *

class_correct[j] / class_total[j]))↪→

643 print("\n\n\nOverall accuracy of multi-instance detection on %d test

images: %d %% " % (num_of_validation_images,↪→

644

100

*

sum(class_correct)

/

float(sum(class_total))))

↪→

↪→

↪→

↪→

↪→

38

645 print("""\nNOTE 1: This accuracy does not factor in the missed detection.

This number is related to just the↪→

646 mis-labeling errors for the detected instances. Percentage of the missed

detections are shown in↪→

647 the last column of the table shown below.""")

648 print("\n\nDisplaying the confusion matrix:\n")

649 out_str = " "

650 for j in range(len(class_list)): out_str += "%15s " % class_list[j]

651 out_str += "%15s " % "missing"

652 print(out_str + "\n")

653 for i,label in enumerate(class_list):

654 out_percents = [100 * confusion_matrix[i,j] / float(class_total[i])

for j in range(len(class_list))]↪→

655 missing_percent = 100 - sum(out_percents)

656 out_percents.append(missing_percent)

657 out_percents = ["%.2f " % item.item() for item in out_percents]

658 out_str = "%10s : " % class_list[i]

659 for j in range(len(class_list)+1): out_str += "%15s " %

out_percents[j]↪→

660 print(out_str)

661 print("\n\nNOTE 2: 'missing' means that an object instance of that label

was NOT extracted from the image.")↪→

662 print("\nNOTE 3: 'prediction accuracy' means the labeling accuracy for the

extracted objects.")↪→

663 print("\nNOTE 4: True labels are in the left-most column and the predicted

labels at the top of the table.")↪→

664

665 ## Finally, we present to the user the IoU scores for each of the object

types:↪→

666 iou_score_by_label = {class_list[i] : 0.0 for i in range(len(class_list))}

667 for i,label in enumerate(class_list):

668 iou_score_by_label[class_list[i]] =

iou_scores[i]/float(class_total[i])↪→

669 print("\n\nIoU scores for the different types of objects: ")

670 for obj_type in iou_score_by_label:

671 print("\n %10s : %.4f " % (obj_type,

iou_score_by_label[obj_type]))↪→

672

673 #---------------------------------Define the

models---------------------------------↪→

674 net0 = ResNetForYolo() # net using ResNet50

675 net1 = NetForYolo(skip_connections=True, depth=4) # net borrowing from the

YOLOLogic with depth 4↪→

676 net2 = NetForYolo(skip_connections=False, depth=2)# net borrowing from the

YOLOLogic with depth 2↪→

677 net3 = NetForYolo(skip_connections=True, depth=8)# net borrowing from the

YOLOLogic with depth 8↪→

39

678 #---------------------------------Train and Test the

models---------------------------------↪→

679 net0 = run_code_for_training(net0, train_loader, device="cuda", epochnum=20,

save_path="./yolo_model_resnet.pth",

plt_save_path="training_loss_resnet.png")

↪→

↪→

680 net1 = run_code_for_training(net1, train_loader, device="cuda", epochnum=20,

save_path="./yolo_model_skip4.pth",

plt_save_path="./training_loss_skip4.png")

↪→

↪→

681 net2 = run_code_for_training(net2, train_loader, device="cuda", epochnum=20,

save_path="./yolo_model_skip2.pth",

plt_save_path="./training_loss_skip2.png")

↪→

↪→

682 net3 = run_code_for_training(net3, train_loader, device="cuda", epochnum=20,

save_path="./yolo_model_skip8.pth",

plt_save_path="./training_loss_skip8.png")

↪→

↪→

683

684 test_yolo_model(net0, test_loader, device="cpu",

model_path="./yolo_model_resnet.pth", display_images=False)↪→

685 test_yolo_model(net1, test_loader, device="cuda",

model_path="./yolo_model_skip4.pth", display_images=False)↪→

686 test_yolo_model(net2, test_loader, device="cuda",

model_path="./yolo_model_skip2.pth", display_images=False)↪→

687 test_yolo_model(net3, test_loader, device="cuda",

model_path="./yolo_model_skip8.pth", display_images=False)↪→

688

689

690

40

