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1 Creating Your Own Multi-Instance Object Localization Dataset

To generate the multi-instance object localization dataset, I started by filtering out all images that contained
at least one of any of the following classes – cat, bus, and pizza – with a total pixel area of greater than
40000 square-pixels, which ensures that any labeled objects are in the foreground of the image. This yielded
3954 images for the training dataset and 2059 images for the validation dataset respectively. I then filtered
out duplicate images and standarized the image size of 256 × 256. The latter step also required me to
resize the bounding box information for any objects contained within a resized image. To track the updated
annotations, I created a new COCO manifest annotations file for my specific, resized subset of the original
COCO data. These steps are shown in Lines 33–68 of Listing 1.

Separately, to confirm the accuracy of my dataset, I wrote a plotting routine to generate a 3× 3 grid of
example images, with three images per class, as shown in Figure 1. The code for plotting is shown in Listing
2.

Figure 1: Example images and bounding boxes (green) from each of the three classes: cat (row 1), bus (row
2), and pizza (row 3)

Listing 1: Contents of extract images coco.py

1 from pycocotoo l s . coco import COCO
2 from PIL import Image
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3 import j son
4 import os
5
6 de f save image ( img dir , out d i r , img name , new s i ze ) :
7 img path = os . path . j o i n ( img dir , img name )
8 img = Image . open ( img path ) . r e s i z e ( new s i z e )
9 img . save ( os . path . j o i n ( out d i r , img name ) )

10
11 de f r e s c a l e a nno t a t i o n s ( image , annotat ions , new s i z e ) :
12 f o r annotat ion in annotat ions :
13 annotat ion [ ”bbox” ] [ 0 ] ∗= new s i ze [ 0 ] / image [ ”width” ]
14 annotat ion [ ”bbox” ] [ 1 ] ∗= new s i ze [ 1 ] / image [ ” he ight ” ]
15 annotat ion [ ”bbox” ] [ 2 ] ∗= new s i ze [ 0 ] / image [ ”width” ]
16 annotat ion [ ”bbox” ] [ 3 ] ∗= new s i ze [ 1 ] / image [ ” he ight ” ]
17 re turn annotat ions
18
19 de f w r i t e j s o n ( j s on d i c t , out d i r , f i l ename ) :
20 with open ( os . path . j o i n ( out d i r , f i l ename ) , ”w” ) as f :
21 f . wr i t e ( j son . dumps( j s o n d i c t ) )
22
23 de f c r ea te empty man i f e s t ( datase t ) :
24 mani f e s t = {
25 ” i n f o ” : datase t [ ” i n f o ” ] ,
26 ” l i c e n s e s ” : datase t [ ” l i c e n s e s ” ] ,
27 ” c a t e g o r i e s ” : datase t [ ” c a t e g o r i e s ” ] ,
28 ” annotat ions ” : [ ] ,
29 ” images ” : [ ]
30 }
31 re turn mani f e s t
32
33 i f name == ” main ” :
34 # Set COCO datase t paths
35 #data s e t type = ” t r a i n ”
36 data s e t type = ” va l ”
37 da ta d i r = ” . . / . . / Datasets / coco ”
38 a n n f i l e = os . path . j o i n ( data d i r , f ” annotat ions / i n s t a n c e s { data s e t type }2014 . j son ” )
39 image d i r = os . path . j o i n ( data d i r , f ”{ data s e t type }2014” )
40 output d i r = os . path . j o i n ( ” da ta s e t s ” , da ta s e t type )
41 os . makedirs ( output d i r , e x i s t o k=True )
42
43 # Load COCO datase t
44 coco = COCO( a n n f i l e )
45
46 # Build up a l i s t o f a l l the images that conta in at l e a s t one o f any category
47 c a t e g o r i e s = [ ” p i z za ” , ” cat ” , ”bus” ]
48 c a t i d s = coco . getCatIds ( catNms=ca t e g o r i e s )
49 img ids = [ coco . getImgIds ( ca t Id s=ca t i d ) f o r c a t i d in c a t i d s ]
50 img ids = s e t ( x f o r xs in img ids f o r x in xs ) # unique l i s t o f images
51
52 # F i l t e r the l i s t o f images by those conta in ing ob j e c t s above minimum s i z e
53 counter = 0
54 new s i ze = (256 ,256)
55 new dataset = create empty man i f e s t ( coco . datase t )
56 f o r img id in img ids :
57 ann ids = coco . getAnnIds ( imgIds=img id , ca t Id s=ca t i d s , i scrowd=False )
58 annotat ions = [ ann f o r ann in coco . loadAnns ( ann ids ) i f ann [ ” area ” ] > 40000 ]
59 i f l en ( annotat ions ) :
60 image = coco . loadImgs ( img id ) [ 0 ]
61 new dataset [ ” images ” ] += coco . loadImgs ( img id )
62 new dataset [ ” annotat ions ” ] += r e s c a l e anno t a t i o n s ( image , annotat ions , new s i z e )
63 save image ( image dir , output d i r , image [ ” f i l e name ” ] , new s i z e )
64 counter += 1
65
66 # Write new annotat ions f i l e to make l a t e r p r o c e s s i ng e a s i e r
67 p r i n t ( counter )
68 w r i t e j s o n ( new dataset , output d i r , f ” i n s t a n c e s { data s e t type } . j s on ” )

2



Listing 2: Plotting routine for 3x3 example grid

58 i f name == ” main ” :
59 ”””Create a 3x3 g r id o f images with each row showing three images o f the same c l a s s ”””
60 import matp lo t l i b . pyplot as p l t
61 t r a i n d a t a s e t = Dataset ( da ta s e t type=” t r a i n ” )
62 trans form = tvt . Compose ( [
63 tvt . Normalize ( [ −1 .0 , −1.0 , −1.0 ] , [ 2 . 0 , 2 . 0 , 2 . 0 ] ) ,
64 tvt . ToPILImage ( )
65 ] )
66
67 f i g = p l t . f i g u r e ( )
68 f i g . s e t t i g h t l a y o u t (True )
69 counts = { i : 0 f o r i in range (3 ) }
70 f o r i in range ( l en ( t r a i n d a t a s e t ) ) :
71 image , bboxes , l a b e l s = t r a i n d a t a s e t [ i ]
72 image = np . array ( trans form ( image ) )
73 bbox = bboxes [ 0 ]
74 l a b e l = l a b e l s [ 0 ]
75 i f counts [ l a b e l ] < 3 :
76 [ x , y , w, h ] = bbox
77 image = cv2 . r e c t ang l e ( image , ( i n t ( x ) , i n t ( y ) ) , ( i n t ( x+w) , i n t ( y+h) ) , (36 ,255 ,12)

, 2)
78 image = cv2 . putText ( image , t r a i n d a t a s e t . l abe l to name ( l a b e l ) ,
79 ( i n t ( x + 10) , i n t ( y + 30) ) , cv2 .FONT HERSHEY SIMPLEX, 0 . 8 , (36 ,255 ,12) , 2)
80 counts [ l a b e l ] += 1
81 p l t . subplot (3 , 3 , sum( counts . va lue s ( ) ) )
82 p l t . imshow( image )
83 e l i f sum( counts . va lue s ( ) ) > 8 :
84 p l t . s u p t i t l e ( ”Grid o f Images from Each Class ” )
85 p l t . show ( )
86 break

2 Building Your Deep Network

For the multi-instance object localization task, I designed a network based on Professor Kak’s NetForYolo
and SkipBlock architecture as provided in his YOLOLogic library. In my case, I decided to use the following
YOLO parameters:

Grid Size 32× 32 pixels
Number of Cells 8× 8
Anchor Boxes (5, 3, 1, 1/3, 1/5)

Number of Classes 3
Number of Learnable Parameters 59, 177, 664

Table 1: Table of MyNetForYolo Parameters

This results in a yolo tensor that has the following shape:

yolo tensor = [batch size, number of cells, number of anchors, 5 + number of classes]

= [batch size, 64, 5, 8]

Note that I did not take Professor Kak’s approach of adding a ninth parameter to the yolo tensor

to represent the probability that no class is present in a given cell/anchor pair. I found that adding a
ninth parameter hampered the performance of my network, as, given the sparsity of objects across all the
cells/anchors, the probability mass would concentrate on this ninth parameter and prevent my network for
detecting any objects. Also, after reviewing the original YOLO paper, I found that the ninth parameter
seemed to contain redundant information, as the first parameter in the yolo tensor is supposed to represent
the “confidence” that an object lies in the given cell/anchor pair anyway. Instead, to detect the presence of an
object, I thresholded the value of yolo tensor[:,:,:,0] (usually by 0.25, which I determined empirically

3



to work well). The network implementation is shown in Listing 3. Note: I originally shared this approach
with others in this class in Question 245 on Piazza as “Anonymous Comp”. Others have since adopted the
approach and found success.

Listing 3: Network Architecture for YOLO (yolo network.py)

1 import torch
2 import torch . nn as nn
3 import numpy as np
4 from data l oade r coco import Dataset
5
6 c l a s s YoloParameters :
7 requ i red keywords = [
8 ” y o l o i n t e r v a l ” ,
9 ” num classes ” ,

10 ” epochs ” ,
11 ” ba t ch s i z e ” ,
12 ” anchors ” ,
13 ” image s i z e ” ,
14 ” l e a r n i n g r a t e ” ,
15 ”momentum” ,
16 ” th r e sho ld ” ,
17 ” d i sp l ay count ”
18 ]
19
20 de f i n i t ( s e l f , ∗∗kwargs ) :
21 i f not a l l ( key in kwargs f o r key in s e l f . r equ i red keywords ) :
22 r a i s e ValueError ( f ”Miss ing a r equ i r ed keyword ! Required : { s e l f . r equ i red keywords

}” )
23 f o r key , va lue in kwargs . i tems ( ) :
24 s e t a t t r ( s e l f , key , va lue )
25 s e l f . c e l l s = ( s e l f . image s i z e [ 0 ] // s e l f . y o l o i n t e r v a l , s e l f . image s i z e [ 1 ] // s e l f .

y o l o i n t e r v a l )
26 s e l f . num ce l l s = s e l f . c e l l s [ 0 ] ∗ s e l f . c e l l s [ 1 ]
27 s e l f . anchors = np . asar ray ( s e l f . anchors )
28 s e l f . num anchors = s e l f . anchors . s i z e
29 s e l f . dev i c e = torch . dev i c e ( ”cuda : 0 ” )
30
31 c l a s s SkipBlock (nn . Module ) :
32 ”””Adapted from DLStudio . SkipBlock ”””
33 de f i n i t ( s e l f , in ch , out ch , downsample=False , s k i p conne c t i on s=True ) :
34 super ( ) . i n i t ( )
35 s e l f . downsample = downsample
36 s e l f . s k i p conne c t i on s = sk ip conne c t i on s
37 s e l f . i n ch = in ch
38 s e l f . out ch = out ch
39 s e l f . convo1 = nn . Conv2d ( in ch , in ch , 3 , s t r i d e =1, padding=1)
40 s e l f . convo2 = nn . Conv2d ( in ch , out ch , 3 , s t r i d e =1, padding=1)
41 s e l f . bn1 = nn . BatchNorm2d ( in ch )
42 s e l f . bn2 = nn . BatchNorm2d ( out ch )
43 s e l f . in2out = nn . Conv2d ( in ch , out ch , 1)
44 i f downsample :
45 ## Set t i ng s t r i d e to 2 and k e r n e l s i z e to 1 amounts to r e t a i n i n g every
46 ## other p i x e l in the image −−− which ha lve s the s i z e o f the image :
47 s e l f . downsampler1 = nn . Conv2d ( in ch , in ch , 1 , s t r i d e =2)
48 s e l f . downsampler2 = nn . Conv2d ( out ch , out ch , 1 , s t r i d e =2)
49
50 de f forward ( s e l f , x ) :
51 i d e n t i t y = x
52 out = s e l f . convo1 (x )
53 out = s e l f . bn1 ( out )
54 out = nn . f un c t i o na l . r e l u ( out )
55 out = s e l f . convo2 ( out )
56 out = s e l f . bn2 ( out )
57 out = nn . f un c t i o na l . r e l u ( out )
58 i f s e l f . downsample :
59 i d e n t i t y = s e l f . downsampler1 ( i d e n t i t y )
60 out = s e l f . downsampler2 ( out )
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61 i f s e l f . s k i p c onne c t i on s :
62 i f ( s e l f . i n ch == s e l f . out ch ) and ( s e l f . downsample i s Fa l se ) :
63 out = out + i d en t i t y
64 e l i f ( s e l f . i n ch != s e l f . out ch ) and ( s e l f . downsample i s Fa l se ) :
65 i d e n t i t y = s e l f . in2out ( i d e n t i t y )
66 out = out + i d en t i t y
67 e l i f ( s e l f . i n ch != s e l f . out ch ) and ( s e l f . downsample i s True ) :
68 out = out + torch . cat ( ( i d en t i t y , i d e n t i t y ) , dim=1)
69 re turn out
70
71 c l a s s MyNetForYolo (nn . Module ) :
72 ”””Adapted from YOLOLogic . YoloObjectDetector . NetForYolo ”””
73 de f i n i t ( s e l f , yolo , s k i p conne c t i on s=True , depth=2) :
74 super ( ) . i n i t ( )
75 s e l f . depth = depth // 2
76 s e l f . conv1 = nn . Conv2d (3 , 64 , 3 , padding=1)
77 s e l f . conv2 = nn . Conv2d (64 , 64 , 3 , padding=1)
78 s e l f . pool = nn . MaxPool2d (2 , 2)
79 s e l f . bn1 = nn . BatchNorm2d (64)
80 s e l f . bn2 = nn . BatchNorm2d (128)
81 s e l f . bn3 = nn . BatchNorm2d (256)
82 s e l f . s k i p 64 a r r = nn . ModuleList ( )
83 f o r i in range ( s e l f . depth ) :
84 s e l f . s k i p 64 a r r . append ( SkipBlock (64 , 64 , s k i p c onne c t i on s=sk ip conne c t i on s ) )
85 s e l f . sk ip64ds = SkipBlock (64 ,64 , downsample=True , s k i p conne c t i on s=sk ip conne c t i on s )
86 s e l f . sk ip64to128 = SkipBlock (64 , 128 , s k i p conne c t i on s=sk ip conne c t i on s )
87 s e l f . s k i p128 a r r = nn . ModuleList ( )
88 f o r i in range ( s e l f . depth ) :
89 s e l f . s k i p128 a r r . append ( SkipBlock (128 ,128 , s k i p c onne c t i on s=sk ip conne c t i on s ) )
90 s e l f . sk ip128ds = SkipBlock (128 ,128 , downsample=True , s k i p conne c t i on s=sk ip conne c t i on s

)
91 s e l f . sk ip128to32 = SkipBlock (128 , 32 , s k i p conne c t i on s=sk ip conne c t i on s )
92 s e l f . s k i p256 a r r = nn . ModuleList ( )
93 f o r i in range ( s e l f . depth ) :
94 s e l f . s k i p256 a r r . append ( SkipBlock (256 ,256 , s k i p c onne c t i on s=sk ip conne c t i on s ) )
95 s e l f . sk ip256ds = SkipBlock (256 ,256 , downsample=True , s k i p conne c t i on s=

sk ip conne c t i on s )
96 s e l f . f c s e qn = nn . Sequent i a l (
97 nn . Linear (8192 , 4096) ,
98 nn .ReLU( inp l a c e=True ) ,
99 nn . Linear (4096 , 2048) ,

100 nn .ReLU( inp l a c e=True ) ,
101 nn . Linear (2048 , yo lo . num ce l l s ∗ yo lo . num anchors ∗ (5+yolo . num classes ) )
102 )
103
104 de f forward ( s e l f , x ) :
105 x = s e l f . pool ( torch . nn . f un c t i o na l . r e l u ( s e l f . conv1 (x ) ) )
106 x = nn . MaxPool2d (2 , 2 ) ( torch . nn . f un c t i o n a l . r e l u ( s e l f . conv2 (x ) ) )
107 f o r i , sk ip64 in enumerate ( s e l f . s k i p 64 a r r [ : s e l f . depth //4 ] ) :
108 x = sk ip64 (x )
109 x = s e l f . sk ip64ds (x )
110 f o r i , sk ip64 in enumerate ( s e l f . s k i p 64 a r r [ s e l f . depth / / 4 : ] ) :
111 x = sk ip64 (x )
112 x = s e l f . bn1 (x )
113 x = s e l f . sk ip64to128 (x )
114 f o r i , sk ip128 in enumerate ( s e l f . s k i p128 a r r [ : s e l f . depth //4 ] ) :
115 x = skip128 (x )
116 x = s e l f . bn2 (x )
117 x = s e l f . sk ip128ds (x )
118 x = s e l f . sk ip128to32 (x )
119 x = x . view (−1 , 8192 )
120 x = s e l f . f c s e qn (x )
121 re turn x
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3 Training and Evaluating Your Network

3.1 Dataloading Logic

For dataloading, I used the annotations manifest I created when extracting the images to generate a custom
Torch dataset for images, labels, and bounding boxes (Listing 4). I then wrapped that dataset in a Torch
Dataloader instance to set batch size and shuffling of the data (Listing 5, Lines 175–182). As each batch of
the dataset is loaded into the network, I wrote a method called create yolo tensor to encode the image’s
bounding box and label into the expected output of the network. Important steps included:

• Assigning each object in the image to the nearest grid cell

• Assigned each object to the anchor box with the closest aspect ratio

• Converting bounding box position to pixels relative to the nearest grid cell (to keep values in [−1, 1])

• Converting bounding box height/width to fractions of the overall image width (to keep values in [0, 1])

• Assigning the object label with one-hot encoding

• Setting the confidence parameter to one with an object is present in a cell/anchor pair

Listing 4: Implementation of Custom Dataset (dataloader coco.py)

1 from pycocotoo l s . coco import COCO
2 from PIL import Image
3 import os
4 import sys
5 import cv2
6 import torch
7 import numpy as np
8 import t o r c hv i s i o n . t rans forms as tvt
9 import torch

10
11 c l a s s Dataset ( torch . u t i l s . data . Dataset ) :
12 de f i n i t ( s e l f , da ta s e t type ) :
13 # Generate l i s t o f a l l image ids in the da ta s e t type=t r a i n or da ta s e t type=va l

datase t
14 s e l f . d a t a d i r = os . path . j o i n ( ” da ta s e t s ” , da ta s e t type )
15 s e l f . coco = COCO( os . path . j o i n ( s e l f . data d i r , f ” i n s t a n c e s { data s e t type } . j s on ” ) )
16 s e l f . i d s = [ img [ ” id ” ] f o r img in s e l f . coco . datase t [ ” images ” ] ]
17
18 # Create map o f COCO l a b e l s to zero−indexed l a b e l s f o r one−hot encoding
19 , l a b e l s = s e l f . l o ad annota t i on s ( s e l f . i d s )
20 s e l f . label map = { l a b e l : i f o r i , l a b e l in enumerate ( s e t ( l a b e l s ) ) }
21 s e l f . label map names = { i : s e l f . coco . loadCats ( l a b e l ) [ 0 ] [ ”name” ] f o r l abe l , i in s e l f

. label map . items ( ) }
22
23 # Def ine method f o r conver t ing PIL image format to [ −1.0 , 1 . 0 ] t en so r
24 s e l f . t rans form = tvt . Compose ( [
25 tvt . ToTensor ( ) ,
26 tvt . Normalize ( ( 0 . 5 , 0 . 5 , 0 . 5 ) , ( 0 . 5 , 0 . 5 , 0 . 5 ) )
27 ] )
28
29 de f l e n ( s e l f ) :
30 re turn l en ( s e l f . i d s )
31
32 de f g e t i t em ( s e l f , index ) :
33 img id = s e l f . i d s [ index ]
34 image = s e l f . load image ( img id )
35 bboxes , l a b e l s = s e l f . l o ad annota t i on s ( img id )
36 mapped labels = [ s e l f . label map [ l a b e l ] f o r l a b e l in l a b e l s ]
37 re turn image , bboxes , mapped labels
38
39 de f l oad annota t i on s ( s e l f , img ids ) :
40 annotat ions = s e l f . coco . loadAnns ( s e l f . coco . getAnnIds ( imgIds=img ids , i scrowd=False ) )
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41 bboxes = [ ann [ ”bbox” ] f o r ann in annotat ions ]
42 l a b e l s = [ ann [ ” c a t e go ry i d ” ] f o r ann in annotat ions ]
43 re turn bboxes , l a b e l s
44
45 de f load image ( s e l f , img id ) :
46 i n f o = s e l f . coco . loadImgs ( img id ) [ 0 ]
47 re turn s e l f . t rans form ( Image . open ( os . path . j o i n ( s e l f . data d i r , i n f o [ ” f i l e name ” ] ) ) .

convert ( ”RGB” ) )
48
49 de f l abe l to name ( s e l f , l a b e l ) :
50 re turn s e l f . label map names [ l a b e l ]
51
52 de f c o l l a t e ( batch ) :
53 images = torch . t en so r (np . array ( [ item [ 0 ] f o r item in batch ] ) )
54 bboxes = [ item [ 1 ] f o r item in batch ]
55 l a b e l s = [ item [ 2 ] f o r item in batch ]
56 re turn images , bboxes , l a b e l s

3.2 Training Logic

The training logic was fairly routine, except now I had to use multiple loss functions. Thankfully, Torch
makes it easy to apply separate loss functions to the appropriate yolo tensor parameters. The losses of
each component were summed together to yield the total loss, as shown in Figure 2. To check the accuracy
during training, I wrote a short method to convert the raw network outputs for confidence and classification
into actual probabilities using Sigmoid and Softmax respectively. The check loop simply prints the ground
truth labels/bboxes and predicted labels/bboxes, which allowed me to watch the convergence of the network
in real time.

Listing 5: Implementation of Training Logic (train network.py)

1 import torch
2 import torch . nn as nn
3 import numpy as np
4 from data l oade r coco import Dataset
5 from yolo network import YoloParameters , MyNetForYolo
6 import torch . optim as optim
7 import t o r c hv i s i o n
8 import time
9 import matp lo t l i b . pyplot as p l t

10
11 c l a s s Logger :
12 de f i n i t ( s e l f , f i l ename ) :
13 s e l f . f i l e = open ( f i l ename , ”w” )
14 s e l f . h i s t o r y = [ ]
15
16 de f wr i t e ( s e l f , ∗ va lue s ) :
17 s e l f . h i s t o r y . append ( va lue s )
18 f o r va lue in va lue s :
19 s e l f . f i l e . wr i t e ( ”%.3 f , ” % value )
20 s e l f . f i l e . wr i t e ( ”\n” )
21 s e l f . f i l e . f l u s h ( )
22
23 de f d e l ( s e l f ) :
24 s e l f . f i l e . c l o s e ( )
25
26 de f c r e a t e y o l o t e n s o r ( yolo , bboxes , l a b e l s ) :
27 yo l o t en s o r = torch . z e r o s ( yo lo . ba t ch s i z e , yo lo . num cel l s , yo lo . num anchors , 5+yolo .

num classes )
28 yo l o t en s o r [ : , : , : , 3 : 5 ] = 0 .75 # Make the p r i o r assumption that bbox f i l l s

most o f c e l l
29 yo l o t en s o r [ : , : , : , 5 : ] = 1 .0/ yo lo . num classes # Force uniform p r obab i l i t y mass
30 f o r ibx in range ( l en ( l a b e l s ) ) :
31 f o r bbox , l a b e l in z ip ( bboxes [ ibx ] , l a b e l s [ ibx ] ) :
32 # Find the nea r e s t c e l l and determine the d i s t ance between the GT bbox and the

c e l l c en t e r
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33 bb cente r = [
34 bbox [ 0 ] + 0 .5∗ bbox [ 2 ] ,
35 bbox [ 1 ] + 0 .5∗ bbox [ 3 ]
36 ]
37 n e a r e s t c e l l = [
38 i n t (np . c l i p ( bb cente r [ 0 ] // yo lo . y o l o i n t e r v a l , 0 , yo lo . c e l l s [0 ] −1) ) ,
39 i n t (np . c l i p ( bb cente r [ 1 ] // yo lo . y o l o i n t e r v a l , 0 , yo lo . c e l l s [1 ] −1) )
40 ]
41 n e a r e s t c e l l c e n t e r = [ ( a+0.5)∗ yo lo . y o l o i n t e r v a l f o r a in n e a r e s t c e l l ]
42 de l t a = [ ( a−b) / yo lo . y o l o i n t e r v a l f o r a , b in z ip ( bb center ,

n e a r e s t c e l l c e n t e r ) ]
43 boxdims = [ a/b f o r a , b in z ip ( bbox [ 2 : 4 ] , yo lo . image s i z e ) ]
44
45 # Determine the proper aspect r a t i o anchor box to use
46 a s p e c t r a t i o = bbox [ 2 ] / bbox [ 3 ]
47 i f np . i snan ( a s p e c t r a t i o ) :
48 anchor idx = len ( yo lo . anchors )−1
49 e l s e :
50 anchor idx = np . argmin ( np . abs ( a s p e c t r a t i o − yo lo . anchors ) )
51
52 # Encode the GT ob j e c t in fo rmat ion in a vec to r
53 yo l o v e c t o r = torch . z e r o s (5 + yolo . num classes )
54 yo l o v e c t o r [ 0 ] = 1
55 yo l o v e c t o r [ 1 ] = de l t a [ 0 ]
56 yo l o v e c t o r [ 2 ] = de l t a [ 1 ]
57 yo l o v e c t o r [ 3 ] = boxdims [ 0 ]
58 yo l o v e c t o r [ 4 ] = boxdims [ 1 ]
59 yo l o v e c t o r [ 5 + l a b e l ] = 1
60 c e l l i d x = n e a r e s t c e l l [ 1 ] ∗ yo lo . c e l l s [ 0 ] + n e a r e s t c e l l [ 0 ]
61 yo l o t en s o r [ ibx , c e l l i d x , anchor idx ] = yo l o v e c t o r
62
63 re turn yo l o t en s o r
64
65
66 de f r un t r a i n i n g l o op ( yolo , net , t r a i n da ta l oade r , labe l map func , d i s p l a y l a b e l s=True ,

d i sp l ay image s=False , debug=False ) :
67 c r i t e r i o n 1 = nn . BCELoss ( r educt i on=”sum” )
68 c r i t e r i o n 2 = nn .MSELoss( r educt i on=”sum” )
69 c r i t e r i o n 3 = nn . CrossEntropyLoss ( r educt i on=”sum” )
70 l ogg e r = Logger ( ”performance numbers model3 . txt ” )
71 net = net . to ( yo lo . dev i c e )
72
73 number o f l earnab le params = sum(p . numel ( ) f o r p in net . parameters ( ) i f p . r e qu i r e s g r ad )
74 p r i n t ( number o f l earnab le params )
75
76 opt imize r = optim .Adam( net . parameters ( ) , l r=yolo . l e a r n i n g r a t e )
77 s t a r t t ime = time . p e r f c oun t e r ( )
78 e l apsed t ime = 0 .0
79
80 p r i n t ( ”\n\ nStar t ing t r a i n i n g loop . . . \ n\n” )
81 f o r epoch in range ( yo lo . epochs ) :
82 runn i ng l o s s = 0 .0
83 runn ing bc e l o s s = 0 .0
84 runn i ng r e g l o s s = 0 .0
85 runn i n g l ab l o s s = 0 .0
86 f o r i , ( images , bboxes , l a b e l s ) in enumerate ( t r a i n da t a l o ad e r ) :
87 yo l o t en s o r = c r e a t e y o l o t e n s o r ( yolo , bboxes , l a b e l s ) . to ( yo lo . dev i c e )
88 images = images . to ( yo lo . dev i c e )
89
90 opt imize r . z e ro g rad ( )
91 output = net ( images )
92 p r e d i c t i o n s = output . view (−1 , y o l o t en s o r . shape [ 1 ] , y o l o t en s o r . shape [ 2 ] ,

y o l o t en s o r . shape [ 3 ] )
93
94 l o s s = torch . t enso r ( 0 . 0 , r e qu i r e s g r ad=True ) . f l o a t ( ) . to ( yo lo . dev i c e )
95
96 ## Estimating presence / absence o f ob j e c t with the Binary Cross Entropy l o s s :
97 b c e l o s s = c r i t e r i o n 1 (nn . Sigmoid ( ) ( p r e d i c t i o n s [ : , : , : , 0 ] ) , y o l o t en s o r [ : , : , : , 0 ] )
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98 l o s s += bc e l o s s
99

100 ## MSE l o s s f o r the r e g r e s s i o n params f o r the ob j e c t bounding boxes :
101 r e g r e s s i o n l o s s = c r i t e r i o n 2 ( p r e d i c t i o n s [ : , : , : , 1 : 5 ] , y o l o t en s o r [ : , : , : , 1 : 5 ] )
102 l o s s += r e g r e s s i o n l o s s
103
104 ## CrossEntropy l o s s f o r ob j e c t c l a s s l a b e l s :
105 t a r g e t s = yo l o t en s o r [ : , : , : , 5 : ]
106 t a r g e t s = t a r g e t s . view (−1 , yo lo . num classes )
107 t a r g e t s = torch . argmax ( ta rge t s , dim=1)
108 probs = p r ed i c t i o n s [ : , : , : , 5 : ]
109 probs = probs . view (−1 , yo lo . num classes )
110 c l a s s l a b e l i n g l o s s = c r i t e r i o n 3 ( probs , t a r g e t s )
111 l o s s += c l a s s l a b e l i n g l o s s
112
113 ## Backpropagation
114 l o s s . backward ( )
115 opt imize r . s tep ( )
116
117 ## Update a l l running l o s s e s
118 runn i ng l o s s += l o s s . item ( )
119 runn ing bc e l o s s += bc e l o s s . item ( )
120 runn i ng r e g l o s s += r e g r e s s i o n l o s s . item ( )
121 runn i n g l ab l o s s += c l a s s l a b e l i n g l o s s . item ( )
122
123 with torch . no grad ( ) :
124 i f i % yolo . d i sp l ay count == yolo . d i sp lay count −1:
125 cur r en t t ime = time . p e r f c oun t e r ( )
126 e l apsed t ime = cur r ent t ime − s t a r t t ime
127 p r i n t ( ”\n [ epoch:%d/%d , i t e r=%4d e lapsed t ime=%5d s e c s ] ” % ( epoch+1, yo lo

. epochs , i +1, e l apsed t ime ) )
128
129 p r i n t ( runn ing l o s s , runn ing bce l o s s , r unn ing r eg l o s s , r unn i ng l ab l o s s )
130 l ogg e r . wr i t e (
131 runn i ng l o s s / yo lo . d i sp lay count ,
132 runn ing bc e l o s s / yo lo . d i sp lay count ,
133 runn i ng r e g l o s s / yo lo . d i sp lay count ,
134 runn i ng l ab l o s s / yo lo . d i sp l ay count
135 )
136 runn i ng l o s s = 0 .0
137 runn ing bc e l o s s = 0 .0
138 runn i ng r e g l o s s = 0 .0
139 runn i ng l ab l o s s = 0 .0
140
141 # Convert raw output to p r o b a b i l i t i e s
142 p r e d i c t i o n s [ : , : , : , 0 ] = nn . Sigmoid ( ) ( p r e d i c t i o n s [ : , : , : , 0 ] )
143 p r e d i c t i o n s [ : , : , : , 5 : ] = nn . Softmax (dim=−1)( p r e d i c t i o n s [ : , : , : , 5 : ] )
144
145 # Show the detec ted l a b e l s
146 f o r ibx in range ( p r e d i c t i o n s . shape [ 0 ] ) :
147 detect ion mask = p r ed i c t i o n s [ ibx , : , : , 0 ] > yo lo . th r e sho ld
148 d e t e c t i on s = p r ed i c t i o n s [ ibx , detect ion mask ]
149 d e t e c t e d l a b e l s = [
150 labe l map func ( l a b e l . item ( ) ) f o r l a b e l in torch . argmax (

d e t e c t i on s [ : , 5 : ] , dim=−1)
151 ]
152 truth mask = yo l o t en s o r [ ibx , : , : , 0 ] == 1
153 truth = yo l o t en s o r [ ibx , truth mask ]
154 t r u t h l a b e l s = [
155 labe l map func ( l a b e l . item ( ) ) f o r l a b e l in torch . argmax ( truth

[ : , 5 : ] , dim=−1)
156 ]
157 p r i n t ( f ”Batch : { ibx }” )
158 p r i n t ( f ”Truth : { t r u t h l a b e l s } { t ruth [ : , 1 : 5 ] } ” )
159 p r i n t ( f ”Detected : { d e t e c t e d l a b e l s } { de t e c t i on s [ : , 1 : 5 ] } \ n” )
160
161 torch . save ( net . s t a t e d i c t ( ) , ” saved model3 ” )
162
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163 i f name == ” main ” :
164 yo lo = YoloParameters (
165 y o l o i n t e r v a l =32,
166 num classes=3,
167 epochs=33,
168 ba t ch s i z e =8,
169 anchors =(5.0 , 3 . 0 , 1 . 0 , 1 . 0 / 3 . 0 , 1 . 0 / 5 . 0 ) ,
170 image s i z e =(256 ,256) ,
171 l e a r n i n g r a t e=1e−4,
172 momentum=0.9 ,
173 th r e sho ld =0.25 ,
174 d i sp l ay count=100
175 )
176 t r a i n d a t a s e t = Dataset ( da ta s e t type=” t r a i n ” )
177 t r a i n da t a l o ad e r = torch . u t i l s . data . DataLoader (
178 t r a i n da t a s e t ,
179 ba t ch s i z e=yolo . ba t ch s i z e ,
180 s h u f f l e=True ,
181 num workers=2,
182 c o l l a t e f n=Dataset . c o l l a t e
183 )
184
185 net = MyNetForYolo ( yolo , depth=12)
186 r un t r a i n i n g l o op ( yolo , net , t r a i n da ta l oade r , l abe l map func=t r a i n d a t a s e t .

l abe l to name )

3.3 Testing Logic

The testing logic was slightly more involved. For each image and corresponding network output, I had to
first determine if the network had actually detected any objects in the image. I did this using the threshold
approach I described in the previous section. In my case, if the confidence parameter of a given cell/anchor
pair exceeded 0.25, I declared an object present. Otherwise, I declared no object present. Next, I had to
again convert the Yolo-encoded bounding boxes into image bounding boxes using the image grid and size
parameters. Finally, I had to plot the ground-truth and detected image labels and bounding boxes on the
image before displaying with matplotlib.

As an additional measure, I wrote a short routine to determine if for a given image the network correctly
or incorrectly detected all the objects in the image. I used this routine to assemble a “good” list and a “bad”
list for each of the classes, thereby generating the image grids in Figures 3 and 4.

Listing 6: Implementation of Testing Logic (test network.py)

1 import torch
2 import torch . nn as nn
3 import numpy as np
4 from data l oade r coco import Dataset
5 from yolo network import YoloParameters , MyNetForYolo
6 import t o r c hv i s i o n
7 import t o r c hv i s i o n . t rans forms as tvt
8 import time
9 import cv2

10 import matp lo t l i b . pyplot as p l t
11 from tra in network import c r e a t e y o l o t e n s o r
12
13 de f f i l t e r b b o x e s a n d l a b e l s ( yo l o t en so r , thresho ld , l abe l map func ) :
14 truth mask = yo l o t en s o r [ : , : , 0 ] >= thre sho ld
15 truth = yo l o t en s o r [ truth mask ]
16 i f t ruth . shape [ 0 ] > 0 :
17 bboxes = truth [ : , 1 : 5 ] . t o l i s t ( )
18 l a b e l s = [ labe l map func ( l a b e l . item ( ) ) f o r l a b e l in torch . argmax ( truth [ : , 5 : ] , dim

=−1) ]
19 c e l l s = torch . arange ( truth mask . shape [ 0 ] ) [ torch . any ( truth mask , dim=−1) ] . t o l i s t ( )
20 re turn bboxes , l ab e l s , c e l l s
21 re turn [ ] , [ ] , [ ]
22
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23 de f conve r t yo lo to image bbox ( yolo , yolo bbox , y o l o c e l l ) :
24 c e l l i d x s = [
25 y o l o c e l l % yolo . c e l l s [ 0 ] , # x
26 y o l o c e l l // yo lo . c e l l s [ 1 ] # y
27 ]
28 xc = ( c e l l i d x s [ 0 ] + yolo bbox [ 0 ] ) ∗ yo lo . y o l o i n t e r v a l
29 yc = ( c e l l i d x s [ 1 ] + yolo bbox [ 1 ] ) ∗ yo lo . y o l o i n t e r v a l
30 w = np . c l i p ( yolo bbox [ 2 ] ∗ yo lo . image s i z e [ 0 ] , 0 , yo lo . image s i z e [ 0 ] )
31 h = np . c l i p ( yolo bbox [ 3 ] ∗ yo lo . image s i z e [ 1 ] , 0 , yo lo . image s i z e [ 1 ] )
32 x = np . c l i p ( xc − 0 .5∗w, 0 , yo lo . image s i z e [ 0 ] )
33 y = np . c l i p ( yc − 0 .5∗h , 0 , yo lo . image s i z e [ 1 ] )
34 re turn x , y , w, h
35
36 de f add yo lo bboxes to image ( yolo , image , yolo bboxes , l ab e l s , c e l l s , c o l o r =(36 ,255 ,12) ) :
37 f o r bbox , l abe l , c e l l in z ip ( yolo bboxes , l ab e l s , c e l l s ) :
38 x , y , w, h = conver t yo lo to image bbox ( yolo , bbox , c e l l )
39 image = cv2 . r e c t ang l e ( image , ( i n t ( x ) , i n t ( y ) ) , ( i n t ( x+w) , i n t ( y+h) ) , co lo r , 2)
40 image = cv2 . putText ( image , l abe l , ( i n t ( x+10) , i n t ( y+20) ) , cv2 .FONT HERSHEY SIMPLEX,

0 . 8 , co lo r , 2)
41 re turn image
42
43 de f r un t e s t i n g l o op ( yolo , net , t e s t da t a l o ade r , l abe l map func ) :
44 t en so r to image = tvt . Compose ( [
45 tvt . Normalize ( [ −1 .0 , −1.0 , −1.0 ] , [ 2 . 0 , 2 . 0 , 2 . 0 ] ) ,
46 tvt . ToPILImage ( )
47 ] )
48
49 good image map = {a : [ ] f o r a in [ ” cat ” , ”bus” , ” p i z za ” ]}
50 good image s pe r c l a s s = 6
51 good image counter = 0
52 bad image map = {a : [ ] f o r a in [ ” cat ” , ”bus” , ” p i zza ” ]}
53 bad image s pe r c l a s s = 2
54 bad image counter = 0
55 f o r i , ( images , bboxes , l a b e l s ) in enumerate ( t e s t d a t a l o ad e r ) :
56 yo l o t en s o r = c r e a t e y o l o t e n s o r ( yolo , bboxes , l a b e l s )
57 images = images . to ( yo lo . dev i c e )
58 with torch . no grad ( ) :
59 output = net ( images )
60 p r e d i c t i o n s = output . view (−1 , y o l o t en s o r . shape [ 1 ] , y o l o t en s o r . shape [ 2 ] ,

y o l o t en s o r . shape [ 3 ] )
61 p r e d i c t i o n s [ : , : , : , 0 ] = nn . Sigmoid ( ) ( p r e d i c t i o n s [ : , : , : , 0 ] )
62 p r e d i c t i o n s [ : , : , : , 5 : ] = nn . Softmax (dim=−1)( p r e d i c t i o n s [ : , : , : , 5 : ] )
63 p r e d i c t i o n s = p r ed i c t i o n s . to ( ”cpu” )
64
65 f o r ibx in range ( images . shape [ 0 ] ) :
66 truth bboxes , t r u t h l a b e l s , t r u t h c e l l s = f i l t e r b b o x e s a n d l a b e l s (

y o l o t en s o r [ ibx ] , 1 . 0 , l abe l map func )
67 pred bboxes , p r ed l abe l s , p r e d c e l l s = f i l t e r b b o x e s a n d l a b e l s ( p r e d i c t i o n s [

ibx ] , yo lo . thresho ld , l abe l map func )
68 th i s image = np . array ( t en so r to image ( images [ ibx ] . to ( ”cpu” ) ) )
69 th i s image = add yo lo bboxes to image ( yolo , th i s image , truth bboxes ,

t r u t h l a b e l s , t r u t h c e l l s )
70 th i s image = add yo lo bboxes to image ( yolo , th i s image , pred bboxes ,

p r ed l abe l s , p r e d c e l l s , c o l o r =(255 ,0 ,0) )
71
72 # I f we found the r i g h t c l a s s e s , add th i s image to the good l i s t
73 i f a l l ( p l ab e l in t r u t h l a b e l s f o r p l ab e l in p r e d l a b e l s ) and l en ( p r e d l a b e l s

) == len ( t r u t h l a b e l s ) :
74 not added = True
75 good image counter += 1
76 f o r p l abe l in p r e d l a b e l s :
77 i f l en ( good image map [ p l abe l ] ) < good image s pe r c l a s s and not added

:
78 good image map [ p l abe l ] . append ( th i s image )
79 not added = False
80
81 # I f we found the wrong c l a s s e s ( or none at a l l ) , add th i s image to the bad

l i s t
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82 #i f not any ( p l abe l in t r u t h l a b e l s f o r p l abe l in p r e d l a b e l s ) :
83 e l s e :
84 not added = True
85 bad image counter += 1
86 f o r t l a b e l in t r u t h l a b e l s :
87 i f l en ( bad image map [ t l a b e l ] ) < bad image s pe r c l a s s and not added :
88 bad image map [ t l a b e l ] . append ( th i s image )
89 not added = False
90
91 p r i n t ( good image counter , bad image counter , good image counter + bad image counter )
92
93 i f a l l ( l en ( a ) >= 0 f o r a in good image map . va lue s ( ) ) :
94 f i g = p l t . f i g u r e ( )
95 f i g . s e t t i g h t l a y o u t (True )
96 f o r row , image se t in enumerate ( good image map . va lue s ( ) ) :
97 f o r co l , image in enumerate ( image se t ) :
98 p l t . subplot ( l en ( good image map ) , good image s pe r c l a s s , row∗

good image s pe r c l a s s + co l + 1)
99 p l t . imshow( image )

100 p l t . s u p t i t l e ( ”Grid o f S u c c e s s f u l l y I d e n t i f i e d Images” )
101 p l t . show ( )
102
103 i f a l l ( l en ( a ) >= 0 f o r a in bad image map . va lue s ( ) ) :
104 f i g = p l t . f i g u r e ( )
105 f i g . s e t t i g h t l a y o u t (True )
106 f o r row , image se t in enumerate ( bad image map . va lue s ( ) ) :
107 f o r co l , image in enumerate ( image se t ) :
108 p l t . subplot ( l en ( bad image map ) , bad image s pe r c l a s s , row∗

bad image s pe r c l a s s + co l + 1)
109 p l t . imshow( image )
110 p l t . s u p t i t l e ( ”Grid o f I n c o r r e c t l y I d e n t i f i e d Images” )
111 p l t . show ( )
112
113
114 i f name == ” main ” :
115 yo lo = YoloParameters (
116 y o l o i n t e r v a l =32,
117 num classes=3,
118 epochs=33,
119 ba t ch s i z e =8,
120 anchors =(5.0 , 3 . 0 , 1 . 0 , 1 . 0 / 3 . 0 , 1 . 0 / 5 . 0 ) ,
121 image s i z e =(256 ,256) ,
122 l e a r n i n g r a t e=1e−4,
123 momentum=0.9 ,
124 th r e sho ld =0.25 ,
125 d i sp l ay count=100
126 )
127 t e s t d a t a s e t = Dataset ( da ta s e t type=” va l ” )
128 t e s t d a t a l o ad e r = torch . u t i l s . data . DataLoader (
129 t e s t da t a s e t ,
130 ba t ch s i z e=yolo . ba t ch s i z e ,
131 s h u f f l e=True ,
132 num workers=2,
133 c o l l a t e f n=Dataset . c o l l a t e
134 )
135
136 net = MyNetForYolo ( yolo , depth=12)
137 net . l o a d s t a t e d i c t ( torch . load ( ” saved model3 ” , we ight s on ly=True ) )
138 net = net . to ( yo lo . dev i c e )
139 net . eva l ( )
140
141 r un t e s t i n g l o op ( yolo , net , t e s t da t a l o ade r , l abe l map func=t e s t d a t a s e t . l abe l to name )
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3.4 Performance

On the whole, the network is mostly functional as multi-object detector and localizer. I had an absolutely
terrible time getting this network to converge. I think a large part of my issues were with the encoding of the
yolo tensor. Through proper scaling of parameters and dropping the extra probability mass term, I was
able to improve my performance enough to converge to the model I have now, which is able to detect and
localize with moderate success, as shown in the image grids below. When the model detects the presence of
an object, it generally does well classifying it and determining an accurate bounding box. More often than
not, though, the network struggles to detect the presence of any objects with the thresholding approach. At
a threshold of 0.25, the network corrected the correct object (and proper number of objects) approximately
40% of the time. I think the issue is not that the network failed to detect, so much as my thresholding
and bounding box selection method is lacking. My probability of false alarm is low, but my probability of
detection is lower than I would like with this approach. With better investigation of the threshold term or
some of the fancy multiple bounding box decisionmaking discussed on Piazza, I bet I could improve that
score a lot.

I also suspect that I might be able to improve performance further by:

• Encoding all yolo tensor parameters to be between 0 and 1. Scaling the bounding box parameters
by cell size instead of image size allowed the height and width to exceed the range of [−1, 1] and
significantly reduced the performance of my network, as far as I could tell.

• Further investigating network layout and parameter counts. I would specifically like to implement the
original YOLO network and test its performance on the same dataset.

• Increasing the number of training images, either through real data or augmentation.

• Investigating regularization as a method to avoid overfitting, as judging from the training loss vs testing
loss performance, I definitely overtrained some of my earlier models.
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Figure 2: Training loss for each of the three loss functions in MyNetForYolo, where BCE is the binary cross-
entropy loss for the confidence parameter, MSE is the mean-square error loss for bounding boxes, and CE is
the cross-entropy loss for image classifier.
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Figure 3: Examples of correctly identified images with ground-truth labels/bboxes in green and predicted
labels/bboxes in red for each of the three classes: cat (row 1), bus (row 2), and pizza (row 3).

Figure 4: Examples of incorrectly identified images with ground-truth labels/bboxes in green and predicted
labels/bboxes in red for each of the three classes: cat (row 1), bus (row 2), and pizza (row 3). For images
where no red box appears, my network failed to detect the presence of any object in the image.
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