ECE 60146: Homework 7

James Allan (jlallan@purdue.edu)
March 16, 2025

1 Creating Your Own Multi-Instance Object Localization Dataset

To generate the multi-instance object localization dataset, I started by filtering out all images that contained
at least one of any of the following classes — cat, bus, and pizza — with a total pixel area of greater than
40000 square-pixels, which ensures that any labeled objects are in the foreground of the image. This yielded
3954 images for the training dataset and 2059 images for the validation dataset respectively. I then filtered
out duplicate images and standarized the image size of 256 x 256. The latter step also required me to
resize the bounding box information for any objects contained within a resized image. To track the updated
annotations, I created a new COCO manifest annotations file for my specific, resized subset of the original
COCO data. These steps are shown in Lines 33-68 of Listing [f}

Separately, to confirm the accuracy of my dataset, I wrote a plotting routine to generate a 3 x 3 grid of
example images, with three images per class, as shown in Figure[I] The code for plotting is shown in Listing
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Figure 1: Example images and bounding boxes (green) from each of the three classes: cat (row 1), bus (row
2), and pizza (row 3)

Listing 1: Contents of extract_images_coco.py

from pycocotools.coco import COCO
from PIL import Image
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import json
import os

def save_image(img_dir, out-dir, img-name, new_size):
img_path = os.path.join(img_dir, img name)
img = Image.open(img_path).resize (new_size)
img.save(os.path.join (out_dir , img name))

def rescale_annotations (image, annotations, new_size):
for annotation in annotations:
annotation [?bbox” ][0] %= new_size [0] / image[” width”]
annotation ["bbox” ][1] %= new_size[1] / image[” height”]
annotation [?bbox” ][2] %= new_size [0] / image[” width”]
annotation ["bbox” ]|[3] *= new_size [1] / image[” height”]
return annotations

def write_json(json_dict , out_dir, filename):
with open(os.path.join (out_dir, filename), "w”) as f:

f.write(json.dumps(json_dict))

def create_empty_manifest(dataset):

manifest = {
7info”: dataset[”info”],
”?licenses”: dataset[”licenses”],
?categories”: dataset[”categories”],
”annotations”: [],
?images”: []

}

return manifest

if __name__. = 7 __main__":
# Set COCO dataset paths
#dataset_type = "train”
dataset_type = "val”
data_dir ="7../../ Datasets/coco”
ann_file = os.path.join (data_dir, f”annotations/instances_{dataset_type}2014.json”)
image_dir = os.path.join(data_dir, f”’{dataset_type}2014”)

output_dir = os.path.join(”datasets”, dataset_type)
os.makedirs (output_dir, exist_ok=True)

# Load COCO dataset
coco = COCO(ann_file)

# Build up a list of all the images that contain at least one of any category

categories = [”"pizza”, "cat”, "bus”]

cat_ids = coco.getCatlds(catNms=categories)

img_ids = [ coco.getImglds(catlds=cat_-id) for cat_-id in cat_ids ]
img_ids = set(x for xs in img_ids for x in xs) # unique list of images

# Filter the list of images by those containing objects above minimum size

counter = 0

new_size = (256,256)

new_dataset = create_empty_manifest(coco.dataset)

for img_.id in img_ids:
ann_ids = coco.getAnnlds(imglds=img_id, catlds=cat_ids, iscrowd=False)
annotations = [ann for ann in coco.loadAnns(ann_ids) if ann[”area”] > 40000]

if len(annotations):
image = coco.loadImgs(img_id) [0]
new_dataset [”"images”] 4= coco.loadImgs (img-id)
new_dataset [?annotations”] 4= rescale_annotations (image, annotations,
save_image (image_dir , output-dir, image[”file_.name”], new_size)
counter 4= 1

# Write new annotations file to make later processing easier
print (counter)
write_json (new_dataset , output-dir, f”instances_{dataset_type}.json”)

new._size)




Listing 2: Plotting routine for 3x3 example grid

if __name_. = 7 __main__":
??” Create a 3x3 grid of images with each row showing three images of the same class”””
import matplotlib.pyplot as plt
train_dataset = Dataset(dataset_type="train”)
transform = tvt.Compose ([
tvt.Normalize([—1.0, —1.0, —1.0], [2.0, 2.0, 2.0]),
tvt . ToPILImage ()

1)

fig = plt.figure()
fig.set_tight_layout (True)
counts = {i: 0 for i in range(3)}
for i in range(len(train_dataset)):
image, bboxes, labels = train_dataset [i]
image = np.array (transform (image))
bbox = bboxes [0]
label = labels [0]
if counts[label] < 3:

[x, ¥y, w, h] = bbox

image = cv2.rectangle (image, (int(x), int(y)), (int(xt+w), int(y+h)), (36,255,12)
’ 2)

image = cv2.putText(image, train_dataset.label_to_name(label),

(int(x 4+ 10), int(y + 30)), cv2.FONT_HERSHEYSIMPLEX, 0.8, (36,255,12), 2)
counts[label] +=1
plt.subplot (3,3 ,sum(counts. values()))
plt .imshow (image)
elif sum(counts.values()) > 8:
plt.suptitle (" Grid of Images from Each Class”)
plt.show ()
break

2 Building Your Deep Network

For the multi-instance object localization task, I designed a network based on Professor Kak’s NetForYolo
and SkipBlock architecture as provided in his YOLOLogic library. In my case, I decided to use the following
YOLO parameters:

Grid Size 32 x 32 pixels
Number of Cells 8 x 8
Anchor Boxes (5,3,1,1/3,1/5)
Number of Classes 3

Number of Learnable Parameters 59,177,664

Table 1: Table of MyNetForYolo Parameters

This results in a yolo_tensor that has the following shape:

yolo_tensor = [batch,size7 number_of_cells,number_of_anchors, b + number,of,classes]
= [batch_size, 64,5, 8]

Note that I did not take Professor Kak’s approach of adding a ninth parameter to the yolo_tensor
to represent the probability that no class is present in a given cell/anchor pair. I found that adding a
ninth parameter hampered the performance of my network, as, given the sparsity of objects across all the
cells/anchors, the probability mass would concentrate on this ninth parameter and prevent my network for
detecting any objects. Also, after reviewing the original YOLO paper, I found that the ninth parameter
seemed to contain redundant information, as the first parameter in the yolo_tensor is supposed to represent
the “confidence” that an object lies in the given cell/anchor pair anyway. Instead, to detect the presence of an
object, I thresholded the value of yolo_tensorl[:,:,:,0] (usually by 0.25, which I determined empirically



to work well). The network implementation is shown in Listing [3] Note: I originally shared this approach
with others in this class in Question 245 on Piazza as “Anonymous Comp”. Others have since adopted the

approach and found success.

Listing 3: Network Architecture for YOLO (yolo_network.py)

1 import torch

2 import torch.nn as nn

3 import numpy as np

4 from dataloader_coco import Dataset

5

6 class YoloParameters:

7 required_keywords = |

8 ”yolo_interval”

9 "num_classes”

10 ”epochs” |

11 ”batch_size” ,

12 ”?anchors” |

13 ”image_size”

14 ”?learning_rate” ,

15 ”momentum” |

16 ”threshold” ,

17 7display_count”

18 ]

19

20 def __init__(self, sxxkwargs):

21 if not all(key in kwargs for key in self.required_keywords):

22 raise ValueError (f” Missing a required keyword! Required: {self.required_keywords

)

23 for key, value in kwargs.items():

24 setattr (self , key, value)

25 self.cells = (self.image_size[0] // self.yolo_interval , self.image_size[1]
yolo_interval)

26 self . num_cells = self.cells [0] * self.cells[1]

27 self .anchors = np.asarray (self.anchors)

28 self . num_anchors = self.anchors.size

29 self.device = torch.device(”cuda:0”)

30

31 class SkipBlock (nn.Module):

32 777 Adapted from DLStudio.SkipBlock”””

33 def __init__(self, in_ch, out_ch, downsample=False, skip_connections=True):

34 super (). --init__ ()

35 self.downsample = downsample

36 self.skip_connections = skip_connections

37 self.in_.ch = in_ch

38 self.out_.ch = out_ch

39 self.convol = nn.Conv2d(in_ch, in_ch, 3, stride=1, padding=1)

40 self.convo2 = nn.Conv2d(in_ch, out_ch, 3, stride=1, padding=1)

41 self .bnl = nn.BatchNorm2d(in_ch)

42 self .bn2 = nn.BatchNorm2d (out-ch)

43 self.in2out = nn.Conv2d(in_ch, out_ch, 1)

44 if downsample:

45 ## Setting stride to 2 and kernel_size to 1 amounts to retaining every

46 ## other pixel in the image which halves the size of the image:

47 self.downsamplerl = nn.Conv2d(in_ch, in_ch, 1, stride=2)

48 self.downsampler2 = nn.Conv2d(out_ch, out_ch, 1, stride=2)

49

50 def forward (self, x):

51 identity = x

52 out = self.convol(x)

53 out = self.bnl(out)

54 out = nn.functional.relu(out)

55 out = self.convo2(out)

56 out = self.bn2(out)

57 out = nn.functional.relu(out)

58 if self.downsample:

59 identity = self.downsamplerl(identity)

60 out = self.downsampler2(out)
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if self.skip_-connections:

if (self.in_.ch = self.out_ch) and (self.downsample is False):
out = out + identity
elif (self.in_ch != self.out_ch) and (self.downsample is False):

identity = self.in2out( identity )
out = out + identity
elif (self.in_ch != self.out_ch) and (self.downsample is True):
out = out + torch.cat((identity , identity), dim=1)
return out

class MyNetForYolo(nn.Module) :
777 Adapted from YOLOLogic. YoloObjectDetector.NetForYolo”””

def

def

__init__(self, yolo, skip-connections=True, depth=2):

super (). -_init__()

self.depth = depth // 2

self.convl = nn.Conv2d (3, 64, 3, padding=1)

self.conv2 = nn.Conv2d (64, 64, 3, padding=1)

self.pool = nn.MaxPool2d (2, 2)

self .bnl = nn.BatchNorm2d(64)

self .bn2 = nn.BatchNorm2d (128)

self .bn3 = nn.BatchNorm2d (256)

self.skip64_arr = nn.ModuleList ()

for i in range(self.depth):
self.skip64_arr.append(SkipBlock (64, 64, skip_connections=skip_connections))

self.skip64ds = SkipBlock (64,64 ,downsample=True, skip_connections=skip_connections)

self .skip64tol28 = SkipBlock (64, 128, skip_connections=skip_connections)

self . skipl28_arr = nn.ModuleList ()

for i in range(self.depth):
self.skipl28_arr.append(SkipBlock (128,128 ,skip_connections=skip_connections))

self.skip128ds = SkipBlock (128,128 ,downsample=True, skip_connections=skip_connections

self.skipl128t032 = SkipBlock (128, 32, skip_connections=skip_connections)
self.skip256_arr = nn.ModuleList ()
for i in range(self.depth):
self . skip256_arr.append(SkipBlock (256,256 ,skip_connections=skip_connections))
self.skip256ds = SkipBlock (256,256 ,downsample=True, skip_connections=
skip_connections)
self.fc_seqn = nn.Sequential (
nn. Linear (8192, 4096),
nn.ReLU(inplace=True) ,
nn. Linear (4096, 2048),
nn.ReLU(inplace=True) ,
nn. Linear (2048, yolo.num_cells % yolo.num_anchors * (5+yolo.num_classes))

)
forward (self , x):
x = self.pool(torch.nn.functional.relu(self.convl(x)))

x = nn.MaxPool2d (2,2) (torch .nn. functional.relu(self.conv2(x)))
for i,skip64 in enumerate(self.skip64_arr[:self.depth//4]):
x = skip64(x)
x = self.skip64ds(x)
for i,skip64 in enumerate(self.skip64_arr[self.depth//4:]):
x = skip64(x)
x = self.bnl(x)
x = self.skip64t0128(x)
for i,skipl128 in enumerate(self.skipl28_arr[:self.depth//4]):
x = skip128(x)
x = self.bn2(x)
x = self.skipl128ds(x)
x = self.skipl128t032(x)
x
x
r

x.view(—1, 8192 )
= self.fc_seqn (x)
eturn x




3 Training and Evaluating Your Network

3.1 Dataloading Logic

For dataloading, I used the annotations manifest I created when extracting the images to generate a custom
Torch dataset for images, labels, and bounding boxes (Listing . I then wrapped that dataset in a Torch
Dataloader instance to set batch size and shuffling of the data (Listing |5, Lines 175-182). As each batch of
the dataset is loaded into the network, I wrote a method called create_yolo_tensor to encode the image’s
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bounding box and label into the expected output of the network. Important steps included:

e Assigning each object in the image to the nearest grid cell

e Assigned each object to the anchor box with the closest aspect ratio

e Assigning the object label with one-hot encoding

Listing 4: Implementation of Custom Dataset (dataloader_coco.py)

Converting bounding box position to pixels relative to the nearest grid cell (to keep values in [—1, 1])

Converting bounding box height/width to fractions of the overall image width (to keep values in [0, 1])

Setting the confidence parameter to one with an object is present in a cell/anchor pair

from pycocotools.coco import COCO
from PIL import Image

import os

import sys

import cv2

import torch

import numpy as np

import torchvision.transforms as tvt
import torch

class Dataset (torch. utils.data.Dataset):
def __init__(self, dataset_type):

# Generate list of all image_ids in the dataset_type=train

dataset

self.data_dir = os.path.join(”datasets”, dataset_type)

dataset_type=val

self.coco = COCO(os.path.join(self.data_dir, f”instances_{dataset_type}.json”))

self.ids = [img[”id”] for img in self.coco.dataset[”images” |]

# Create map of COCO labels to zero—indexed labels
labels = self.load_annotations(self.ids)

-

self.label_.map = {label: i for i, label in enumerate(set(labels))}
self .label_map_names = {i: self.coco.loadCats(label) [0][”name” ]

.label_map .items ()}

# Define method for converting PIL image format to
self . transform = tvt.Compose ([

tvt.ToTensor () ,

tvt.Normalize ((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))

1)

def __len__(self):
return len(self.ids)

def __getitem__(self, index):

img_id = self.ids[index]

image = self.load_image(img_id)

bboxes, labels = self.load_annotations(img-id)
mapped_labels = [self.label_map[label] for label in labels]

return image, bboxes, mapped_labels

def load_annotations(self, img-_ids):

annotations = self.coco.loadAnns(self.coco.getAnnlds(imglds=img_ids,

one—hot encoding

label , i in self

iscrowd=False))
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bboxes = [ann[”bbox”] for ann in annotations]
labels = [ann[” category_id”] for ann in annotations]
return bboxes, labels

def load_image (self, img._id):
info = self.coco.loadImgs(img-id) [0]
return self.transform (Image.open(os.path.join(self.data_dir, info[”file_name”])).
convert ("RGB”))

def label_to_name(self , label):
return self.label_map_names|[label]

def collate (batch):

images = torch.tensor(np.array ([item [0] for item in batch]))
bboxes = [item[1] for item in batch]
labels = [item [2] for item in batch]

return images, bboxes, labels

3.2 Training Logic

The training logic was fairly routine, except now I had to use multiple loss functions. Thankfully, Torch
makes it easy to apply separate loss functions to the appropriate yolo_tensor parameters. The losses of
each component were summed together to yield the total loss, as shown in Figure [2l To check the accuracy
during training, I wrote a short method to convert the raw network outputs for confidence and classification
into actual probabilities using Sigmoid and Softmax respectively. The check loop simply prints the ground
truth labels/bboxes and predicted labels/bboxes, which allowed me to watch the convergence of the network
in real time.

Listing 5: Implementation of Training Logic (train network.py)

import torch

import torch.nn as nn

import numpy as np

from dataloader_coco import Dataset

from yolo_network import YoloParameters, MyNetForYolo
import torch.optim as optim

import torchvision

import time

import matplotlib.pyplot as plt

class Logger:
def __init__(self, filename):
self.file = open(filename, "w”)
self . history = []

def write(self, xvalues):
self . history .append(values)
for value in values:
self. file.write(”%.3f,” % value)
self.file.write(”\n”)
self . file . flush ()

def __del__(self):
self. file.close ()

def create_yolo_tensor (yolo, bboxes, labels):

yolo_tensor = torch.zeros(yolo.batch_size, yolo.num_cells, yolo.num_anchors, 5+yolo.
num_classes)

yolo_tensor [:,:,:,3:5] = 0.75 # Make the prior assumption that bbox fills
most of cell

yolo_tensor [:,:,:,5:] = 1.0/yolo.num_classes # Force uniform probability mass

for ibx in range(len(labels)):
for bbox, label in zip(bboxes[ibx], labels[ibx]):
# Find the nearest cell and determine the distance between the GT bbox and the
cell center
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bb_center = |
bbox [0] +
bbox [1] +

.5*xbbox [2],
.5xbbox [3]

o o

]

nearest_cell = |
int (np.clip (bb_center [0] // yolo.yolo_interval, 0, yolo.cells[0]—1)),
int (np.clip(bb_center [1] // yolo.yolo_interval, 0, yolo.cells[1l]—1))

]

nearest_cell_center = [ (a+0.5)*yolo.yolo_interval for a in nearest_cell ]

delta = [ (a—b) / yolo.yolo_interval for a, b in zip(bb_center,
nearest_cell_center) |

boxdims = [ a/b for a, b in zip(bbox[2:4], yolo.image_size) ]

# Determine the proper aspect ratio anchor box to use
aspect_ratio = bbox[2] / bbox[3]
if np.isnan(aspect_ratio):
anchor_idx = len(yolo.anchors)—1
else:
anchor_idx = np.argmin( np.abs(aspect_ratio — yolo.anchors) )

# Encode the GT object information in a vector
yolo_vector = torch.zeros(5 + yolo.num-_classes)
yolo_vector [0] =1

yolo_vector [1] = delta[0]

yolo_vector [2] = delta[1]

yolo_vector [3] = boxdims[0]

yolo_vector [4] = boxdims[1]

yolo_vector [5 + label] =1
cell.idx = nearest_cell [1]*xyolo.cells [0] + nearest_cell [0]
yolo_tensor [ibx, cell_.idx , anchor_idx] = yolo_vector

return yolo_tensor

run_training_loop (yolo, net, train_dataloader , label_map_func, display_labels=True,
display_-images=False, debug=False):

criterionl = nn.BCELoss(reduction="sum”)

criterion2 = nn.MSELoss(reduction="sum”)

criterion3 = nn.CrossEntropyLoss(reduction="sum”)

logger = Logger (” performance_numbers_model3.txt”)

net = net.to(yolo.device)

number_of_learnable_params = sum(p.numel() for p in net.parameters() if p.requires_grad)

print (number_of_learnable_params)

optimizer = optim.Adam(net.parameters(), lr=yolo.learning_rate)
start_time = time.perf_counter ()
elapsed_time = 0.0

print (?\n\nStarting training loop...\n\n”)
for epoch in range(yolo.epochs):
running_loss = 0.0

running_bceloss = 0.0

running._regloss = 0.0

running_labloss = 0.0

for i, (images, bboxes, labels) in enumerate(train_dataloader):
yolo_tensor = create_yolo_tensor (yolo, bboxes, labels).to(yolo.device)
images = images.to(yolo.device)

optimizer.zero_grad ()

output = net (images)

predictions = output.view(—1, yolo_tensor.shape[l], yolo_tensor.shape[2],
yolo_tensor .shape [3])

loss = torch.tensor (0.0, requires_grad=True). float ().to(yolo.device)

## Estimating presence/absence of object with the Binary Cross Entropy loss:
bceloss = criterionl (nn.Sigmoid () (predictions[:,:,:,0]), yolo_tensor[:,:,:,0])



98 loss 4= bceloss

99

100 ## MSE loss for the regression params for the object bounding boxes:

101 regression_-loss = criterion2(predictions [:,:,:,1:5], yolo_tensor [:,:,:,1:5])

102 loss += regression_loss

103

104 ## CrossEntropy loss for object class labels:

105 targets = yolo_tensor [:,:,:,5:]

106 targets = targets.view(—1, yolo.num_classes)

107 targets = torch.argmax(targets, dim=1)

108 probs = predictions [:,:,:,5:]

109 probs = probs.view(—1, yolo.num_classes)

110 class_labeling_loss = criterion3 (probs, targets)

111 loss += class_labeling_loss

112

113 ## Backpropagation

114 loss . backward ()

115 optimizer.step ()

116

117 ## Update all running losses

118 running_loss += loss.item ()

119 running_bceloss += bceloss.item ()

120 running_regloss += regression_loss.item ()

121 running_labloss += class_labeling_loss.item ()

122

123 with torch.no_grad():

124 if i % yolo.display_-count = yolo.display_count —1:

125 current_time = time.perf_counter ()

126 elapsed_time = current_time — start_time

127 print ("\n[epoch:%d/%d, iter=%4d elapsed_time=%5d secs|” % (epoch+1,yolo

.epochs, i+1, elapsed_-time))

128

129 print (running_loss , running_bceloss, running_regloss, running_labloss)

130 logger . write (

131 running_loss / yolo.display_count ,

132 running_bceloss / yolo.display_-count,

133 running_regloss / yolo.display_count,

134 running_labloss / yolo.display_count

135 )

136 running_loss = 0.0

137 running_bceloss = 0.0

138 running_regloss = 0.0

139 running_labloss = 0.0

140

141 # Convert raw output to probabilities

142 predictions [:,:,:,0] = nn.Sigmoid () (predictions[:,:,:,0])

143 predictions [:,:,:,5:] = nn.Softmax(dim=—1)(predictions [:,:,:,5:])

144

145 # Show the detected labels

146 for ibx in range(predictions.shape[0]):

147 detection.mask = predictions [ibx ,:,:,0] > yolo.threshold

148 detections = predictions [ibx, detection_mask]

149 detected_labels = |

150 label_map_func(label.item()) for label in torch.argmax(
detections [:,5:], dim=-—1)

151 ]

152 truth_mask = yolo_tensor [ibx,:,:,0] =1

153 truth = yolo_tensor [ibx, truth_mask]

154 truth_labels = |

155 label_map_func(label.item()) for label in torch.argmax(truth
[:,5:], dim=-1)

156 ]

157 print (f”Batch: {ibx}”)

158 print (£” Truth: {truth_labels} {truth[:,1:5]}”)

159 print (f”Detected: {detected_labels} {detections[:,1:5]}\n”)

160

161 torch.save(net.state_dict (), "saved_model3”)

162
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if __name_.. = 7 __main__":
yolo = YoloParameters(

yolo_interval =32,
num-_classes=3,
epochs=33,
batch_size=8,
anchors=(5.0, 3.0, 1.0, 1.0/3.0, 1.0/5.0),
image_size=(256,256) ,
learning_rate=1le—4,
momentum=0.9,
threshold =0.25,
display_count=100

)
train_dataset = Dataset(dataset_type="train”)
train_dataloader = torch.utils.data.DataLoader (

train_dataset ,
batch_size=yolo.batch_size ,
shuffle=True,
num_workers=2,
collate_fn=Dataset.collate

)

net = MyNetForYolo(yolo, depth=12)
run_training_loop (yolo, net, train_dataloader , label_-map_func=train_dataset.
label_to_name)

3.3 Testing Logic

The testing logic was slightly more involved. For each image and corresponding network output, I had to
first determine if the network had actually detected any objects in the image. I did this using the threshold
approach T described in the previous section. In my case, if the confidence parameter of a given cell/anchor
pair exceeded 0.25, I declared an object present. Otherwise, I declared no object present. Next, I had to
again convert the Yolo-encoded bounding boxes into image bounding boxes using the image grid and size
parameters. Finally, I had to plot the ground-truth and detected image labels and bounding boxes on the
image before displaying with matplotlib.

As an additional measure, I wrote a short routine to determine if for a given image the network correctly
or incorrectly detected all the objects in the image. I used this routine to assemble a “good” list and a “bad”
list for each of the classes, thereby generating the image grids in Figures |3| and

Listing 6: Implementation of Testing Logic (test_network.py)

import torch

import torch.nn as nn

import numpy as np

from dataloader_coco import Dataset

from yolo_network import YoloParameters, MyNetForYolo
import torchvision

import torchvision.transforms as tvt

import time

import cv2

import matplotlib.pyplot as plt

from train_network import create_yolo_tensor

def filter_bboxes_and_labels(yolo_tensor, threshold, label_-map_func):
truth_mask = yolo_tensor [:,:,0] >= threshold
truth = yolo_tensor [truth_mask]
if truth.shape[0] > O:
bboxes = truth[:,1:5]. tolist ()

labels = [ label-map_func(label.item()) for label in torch.argmax(truth[:,5:], dim
=) ]
cells = torch.arange(truth_mask.shape[0]) [torch.any(truth_-mask, dim=—1)]. tolist ()
return bboxes, labels, cells
return [}, [], []
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61

63
64
65
66

67

68
69

70

71
72
73

74
75
76
7

78
79
80
81

def

def

def

convert_yolo_to_image_bbox (yolo, yolo_bbox, yolo_cell):
cell_idxs = |

yolo_cell % yolo.cells [0], # x

yolo_cell // yolo.cells[1] # ¥y
]
xc = (cell_idxs [0] + yolo_bbox[0]) * yolo.yolo-interval
yc = (cell_idxs [1] + yolo_bbox[1]) * yolo.yolo_interval

w = np.clip (yolo_-bbox [2] * yolo.image_size[0], 0, yolo.image_size[0])
h = np.clip(yolo_bbox[3] #* yolo.image_size[1l], 0, yolo.image_size[1l])
x = np.clip(

xc — 0.5%xw, 0, yolo.image_size [0]
y = np.clip(yc — 0.5%xh, 0, yolo.image_size[1]
return x, y, w, h

)
)

add_yolo_bboxes_to_image (yolo, image, yolo_bboxes, labels, cells, color=(36,255,12)):
for bbox, label, cell in zip(yolo_-bboxes, labels, cells):
X, y, w, h = convert_yolo_to_image_bbox (yolo, bbox, cell)
image = cv2.rectangle (image, (int(x), int(y)), (int(x+w),
image = cv2.putText(image, label, (int(x+10), int(y+20)),
0.8, color, 2)
return image

int (y+h)), color, 2)
cv2 .FONT_HERSHEY _SIMPLEX,

run_testing_loop (yolo, net, test_dataloader , label_map_func):
tensor_to_image = tvt.Compose ([

tvt.Normalize([—-1.0, —1.0, —1.0], [2.0, 2.0, 2.0]),

tvt . ToPILImage ()

1)

good_image_map = {a: [] for a in [”cat”, "bus”, ”pizza”]}
good_-images_per_class = 6
good_image_counter = 0
bad_image_-map = {a: [] for a in [”cat”, "bus”, 7pizza”]}
bad_images_per_class = 2
bad_image_counter = 0
for i, (images, bboxes, labels) in enumerate(test_dataloader):
yolo_tensor = create_yolo_tensor (yolo, bboxes, labels)
images = images.to(yolo.device)
with torch.no_grad():
output = net (images)
predictions = output.view(—1, yolo_tensor.shape[l], yolo_tensor.shape[2],
yolo_tensor .shape [3])
predictions [:,:,:,0] = nn.Sigmoid () (predictions[:,:,:,0])
predictions [:,:,:,5:] = nn.Softmax (dim=—1)(predictions [:,:,:,5:])
predictions = predictions.to(”cpu”)

for ibx in range(images.shape[0]):

truth_bboxes, truth_labels, truth_cells = filter_bboxes_and_labels(
yolo_tensor [ibx], 1.0, label_map_func)

pred_bboxes, pred_labels, pred_cells = filter_bboxes_and_labels(predictions |
ibx], yolo.threshold, label_map_func)

this_image = np.array(tensor_to_image (images[ibx].to(”cpu”)))

this_.image = add_yolo_bboxes_to_image(yolo, this_.image, truth_bboxes,
truth_-labels , truth_cells)

this_image = add_yolo_bboxes_to_image(yolo, this_.image, pred_bboxes,
pred_labels , pred-cells, color=(255,0,0))

# If we found the right classes, add this_.image to the good list
if all(plabel in truth_labels for plabel in pred_labels) and len(pred_labels
) = len(truth_labels):
not_added = True
good_image_counter 4= 1
for plabel in pred_labels:
if len(good_-image_map[plabel]) < good_images_per_class and not_added

good_image_map [plabel ].append(this_image)
not_added = False

# 1If we found the wrong classes (or none at all), add this_.image to the bad
list
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99
100
101
102
103
104
105
106
107
108

109
110
111
112
113
114
115
116
117
118
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120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141

print (good_-image_counter , bad_-image_counter, good-image_counter + bad_image_counter)

#if not any(plabel in truth_labels for plabel in pred_labels):
else:

not_added = True

bad_-image_counter 4= 1

for tlabel in truth_labels:

if len(bad-image_map[tlabel]) < bad_-images_per_class and not_added:

bad_image_map [ tlabel ].append(this_image)
not_added = False

if all(len(a) >= 0 for a in good.image_map.values()):

fig = plt.figure()
fig.set_tight_layout (True)
for row, image_set in enumerate(good_image_-map.values()):
for col, image in enumerate(image_set):
plt .subplot (len (good_-image_map), good_-images_per_class , rows
good_images_per_class + col + 1)
plt .imshow (image)
plt.suptitle (”Grid of Successfully Identified Images”
plt .show ()

if all(len(a) >= 0 for a in bad_-image_map.values()):

fig = plt.figure()
fig.set_tight_layout (True)
for row, image_set in enumerate(bad_.image_map.values()):
for col, image in enumerate(image_set):
plt.subplot(len (bad_image.map), bad_images_per_class, rowx
bad_images_per_class + col + 1)
plt .imshow (image)
plt.suptitle (”Grid of Incorrectly Identified Images”)
plt .show ()

if __name__. = 7 __main__":
yolo = YoloParameters(

)

yolo_interval =32,

num_classes=3,

epochs=33,

batch_size =38,

anchors=(5.0, 3.0, 1.0, 1.0/3.0, 1.0/5.0),
image_size =(256,256) ,

learning_rate=le—4,

momentum=0.9,

threshold =0.25,

display_count=100

test_dataset = Dataset(dataset_type="val”)

test

)

net
net .
net
net .

run_testing_loop (yolo, net, test_dataloader, label_map_func=test_dataset.label_to_name)

_dataloader = torch.utils.data.DataLoader (
test_dataset ,

batch_size=yolo.batch_size ,

shuffle=True,

num_workers=2,

collate_fn=Dataset.collate

= MyNetForYolo(yolo, depth=12)

load_state_dict (torch.load (”saved_-model3”, weights_only=True))
= net.to(yolo.device)

eval ()
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3.4 Performance

On the whole, the network is mostly functional as multi-object detector and localizer. I had an absolutely
terrible time getting this network to converge. I think a large part of my issues were with the encoding of the
yolo_tensor. Through proper scaling of parameters and dropping the extra probability mass term, I was
able to improve my performance enough to converge to the model I have now, which is able to detect and
localize with moderate success, as shown in the image grids below. When the model detects the presence of
an object, it generally does well classifying it and determining an accurate bounding box. More often than
not, though, the network struggles to detect the presence of any objects with the thresholding approach. At
a threshold of 0.25, the network corrected the correct object (and proper number of objects) approximately
40% of the time. I think the issue is not that the network failed to detect, so much as my thresholding
and bounding box selection method is lacking. My probability of false alarm is low, but my probability of
detection is lower than I would like with this approach. With better investigation of the threshold term or
some of the fancy multiple bounding box decisionmaking discussed on Piazza, I bet I could improve that
score a lot.
I also suspect that I might be able to improve performance further by:

e FEncoding all yolo_tensor parameters to be between 0 and 1. Scaling the bounding box parameters
by cell size instead of image size allowed the height and width to exceed the range of [—1,1] and
significantly reduced the performance of my network, as far as I could tell.

e Further investigating network layout and parameter counts. I would specifically like to implement the
original YOLO network and test its performance on the same dataset.

e Increasing the number of training images, either through real data or augmentation.

e Investigating regularization as a method to avoid overfitting, as judging from the training loss vs testing
loss performance, I definitely overtrained some of my earlier models.

Losses for MyNetForYolo on COCO Dataset

—— Total
BCE

—— MSE

— CE

Log of Loss
w £ w o

N

un

0 2000 4000 6000 8000 10000 12000
Iterations

Figure 2: Training loss for each of the three loss functions in MyNetForYolo, where BCE is the binary cross-

entropy loss for the confidence parameter, MSE is the mean-square error loss for bounding boxes, and CE is
the cross-entropy loss for image classifier.
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Grid of Successfully Identified Images

Figure 3: Examples of correctly identified images with ground-truth labels/bboxes in green and predicted
labels/bboxes in red for each of the three classes: cat (row 1), bus (row 2), and pizza (row 3).

Figure 4: Examples of incorrectly identified images with ground-truth labels/bboxes in green and predicted
labels/bboxes in red for each of the three classes: cat (row 1), bus (row 2), and pizza (row 3). For images
where no red box appears, my network failed to detect the presence of any object in the image.
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