
HW 6: ECE 60146 – Deep Learning 
 
        -Kaushik Karthikeyan 
 
 
 
Task 1: Observation on 1-pixel kernel 
 
A 1x1 kernel can be useful in many cases. A 1x1 kernel would essentially look at each pixel 
one by one without mixing spatial information. Instead, it would apply the convolution 
formula to each pixel by using values from different channels at that location. It is analogous 
to a mini-neural network layer applied to each pixel. It can also be used for downsampling, 
which is an important step while using skip connections. 
 
The difference between the 1 x 1 kernel used in Line (I) and the ones used in Lines (J) and 
(K) is that the kernel used in Line I is a standard 1-pixel kernel used in channel 
transformation whereas the one in Lines (J) and (K) is a kernel with a stride of 2, meaning 
that it would reduce the resolution by a factor of 2. The kernel used in Lines (J) and (K) does 
not change the number of channels as in the one in Line (I).  
 
 
 
 
Task 2: BMEnet with downsampling = {Stride=2, Maxpool} and 
skip_connections=False 
 
 
For this task, we are required to use the BMEnet model given to us in the DLStudio.py file. 
We understand the difference between using skip connections and not using skip connections, 
and also the difference between down sampling using a stride=2 convolutional layer and 
down sampling using a Maxpool layer. First, we implement the BMEnet model with 
Maxpool for down sampling with skip connections on the CIFAR-10 dataset. Below is the 
code for this implementation:  
 



 
Image 2.1: Screenshot of code snippet for maxpool for downsampling 
 
For this task, upon implementing the above code on a Colab GPU for the CIFAR-10 dataset, 
we obtain the following results for the loss curve, confusion matrices, and per-class 
accuracies:  
 



 
Image 2.2: Loss curve for maxpool downsampling, skip_connections=True 
 

 
Image 2.3: Terminal output for maxpool downsampling, skip_connections=True 
 



 
Image 2.4: Confusion Matrix for maxpool downsampling, skip_connections=True 
 
As we notice, the predictions made by this model are evidently terrible. The model guesses a 
single class for all of the images. I will discuss the detailed observations in the next section 
once I display the plots for each of the models tested.  
 
The next model I test is the original method used for downsampling, which is using a 
convolutional layer with stride = 2. The code for this model looks like this:  
 

 
Image 2.5: Code block for downsampling using stride=2 layer 



 
Image 2.6: Loss curve for stride=2 downsampling, skip_connections=True 
 

 
Image 2.7: Terminal output for stride=2 downsampling, skip_connections=True 



 
Image 2.8: Confusion Matrix for stride=2 downsampling, skip_connections=True 
 
As we notice, this model performs great, with a testing accuracy of 77%. In 
order to highlight the importance of skip connections, below is the same model 
run once again, with the only difference being in the line:  
 
bme_net = dls.BMEnet(dls, skip_connections=True, depth=8) 
 
which we now change to:  
 
bme_net = dls.BMEnet(dls, skip_connections=False, depth=8) 
  
Upon running this code, we obtain the following results:   



 

 
Image 2.9: Loss curve for stride=2 downsampling, skip_connections=False 
 

 
Image 2.10: Terminal output for stride=2 downsampling, skip_connections=False 
 



 
Image 2.11: Confusion Matrix for stride=2 downsampling, skip_connections=False 
 
 
 
 
The accuracy of this model being a lot lower than the one with skip_connections highlights 
the importance of the skip block. Skip connections help in solving the vanishing gradient 
problem. When gradients diminish during the backpropagation step, the first few layers learn 
extremely slowly. The presence of skip connections allows gradients to flow more freely. 
However, as this model (model 3) had the parameter skip_connections set to ‘False’, the 
gradients must have diminished faster, causing the poor accuracy.  
 
 
Below are two summary tables that help us compare the three models in terms of their overall 
accuracies and per-class accuracies:  
 
 
 
 
 
 
 



Model  Accuracy  

BMEnet() with maxpool downsampling, 
skip_connections=True (MODEL 1) 

10% 

BMEnet() with stride=2 downsampling, 
skip_connections=True (MODEL 2) 77%  

BMEnet() with stride=2 downsampling, 
skip_connections=False (MODEL 3) 

43%  

Table 1: Table showing accuracies of all 3 models  

 
Class Model 1 Model 2 Model 3 
Plane 0% 74% 56% 

Car 0% 90% 54% 

Bird 0% 78% 31% 

Cat 100% 54% 23% 

Deer 0% 68% 29% 

Dog 0% 69% 44% 

Frog 0% 79% 61% 

Horse 0% 80% 46% 

Ship 0% 90% 34% 

Truck 0% 85% 50% 

Table 2: Table showing per-class accuracies of all 3 models  

In this table, Model 1 refers to the model with Maxpool downsampling with 
skip connections. Model 2 refers to the model with Stride=2 downsampling with 
skip connections. Model 3 refers to the model with Stride = 2 downsampling 
without skip connections.  



Observation on Task 2 

 
We observe from Tables 1 and 2, and all the other intermediate results in this 
section, that the model that works best for the given dataset is the Model 2, 
which performs skip connections and downsampling using Stride = 2. The 
reason for superior performance of this model is that when we use stride = 2, the 
feature maps from the identity path and convolutional path have matching 
dimensions and channels. It downsamples while transforming whereas the  
axpool layer used in Model 2 blindly chooses the highest pixel values and 
removes important parts of the image while downsampling. Hence, this reduces 
the spatial resolution and ends up guessing the same class for all of the images.  
 
We can conclude that the Stride =2 convolution allows network to optimally 
downsample whereas using Maxpool, which is not a learnable layer, results in 
disruption of skip connections, causing poor performance and terrible accuracy. 
We also note that as mentioned earlier, the third model (skip_connections = 
False) is able to learn better than the Maxpool layer as it still learns the good 
representations because of the convolutions and activations as in a normal 
convolutional network. However, due to the absence of skip connections, and 
thereby the presence of the vanishing gradient problem, the model 3 fails to 
perform as well as Model 1.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Task 3: Skip Connections with MSCOCO dataset 
 
The first step of this task requires us to create the subset of the dataset with 
2000 images per class split into 1500 training and 500 testing images. We 
extract 2000 such images for each of the five classes :  
[‘airpane’, ‘bus’, ‘cat’, ‘dog’, ‘pizza’].  
 
We do so using the code given below: 
 

 



 
Image 3.1: Code block for creation of dataset 
 
This code also gives us the 5 x 3 table of example images from the subset, showing 3 images 
for each of the five classes as shown below:  



 
 
 
Image 3.2: 5 x 3 table showing example images from dataset 
 
 
Once we have the dataset is created, we modify the code we had for BMENet 
from earlier with the SkipBlock and add a training and evaluation function as in 
HW4. Below is the code for this section:  
 



 
Image 3.3: Code block for training and evaluation of skipBlock on COCO 
 
Upon implementing this code, we obtain the following plots:  
 
 

 
Image 3.3: Loss curve of training on MS-COCO subset 



 
 

 
Image 3.4: Terminal output of evaluation on MS-COCO subset 
 
 

 
Image 3.5: Confusion Matrix of testing on MS-COCO subset 
 
Overall Accuracy: 63% 



Class Accuracy 

Airplane 69.40% 

Bus 78.40% 

Cat 59.80% 

Dog 32.00% 

Pizza 75.40% 

Table 3: 5x1 table showing per-class accuracies  
 
 
Observations 
 
As we observe from the table of accuracies, overall accuracy, loss curve, and 
confusion matrix, the BMENet model performs fairly well on the COCO 
dataset. Although I end up running this model only for 6 epochs due to 
computational bottlenecks, it still has an overall testing accuracy of 63% on 
2500 unseen images.  
 
This relatively high accuracy could be attributed to the presence of a deep 
neural network with skip connections. As mentioned multiple times so far in 
this document, the presence of skip connections allow gradients to flow through 
the layers a lot more easily. The vanishing gradient problem is solved, which 
results in deeper layers suffering from unstable learning and low accuracy. Skip 
connections also help in retaining spatial and textural information from earlier 
layers. This is also why it has a classification accuracy of over ~70% for three 
out of the five classes. 
 
Upon looking deeply at the confusion matrix, we also notice that a common 
misclassification occurs between dog and cat. This is easy to understand as both 
dogs and cats share several common features (e.g.: eyes, nose, tail, etc.) This 
means that the model would have perhaps performed better had we given it 
classes that were not as similar to one another. The model’s loss curve also 
shows that the loss was continually decreasing and had not stagnated yet. This 



means that if we had more computational power and had run the model for more 
number of epochs, this would have also resulted in a better accuracy. I believe 
even data augmentation to increase size and robustness of dataset would have 
helped in solving the {dog, cat} misclassification problem.  
 
Finally, we conclude that stride=2 downsampling and skip connections aided 
the BMENet model in preserving spatial information and avoiding the vanishing 
gradient problem, resulting in a relatively high classification accuracy which 
could have been further enhanced given a more robust dataset and more 
computational power.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



SOURCE CODE 
 
 

(1) Task1.py:  
 

 
 
import random 
import numpy 
import torch 
import os, sys 
from DLStudio import * 
import torch.nn as nn 
import torch.nn.functional as F 
import seaborn as sns 
import matplotlib.pyplot as plt 
from sklearn.metrics import confusion_matrix 
import copy 
import torch.optim as optim 
import time 
import logging 
 
 

class BMEnet(nn.Module): # given by Prof. Kak's code, modified slightly 
 
    def __init__(self, num_classes = 5, skip_connections = True, depth = 8): 
        super(BMEnet, self).__init__() 
        self.depth = depth 
        self.conv = nn.Conv2d(3, 64, 3, padding=1) 
        self.skip64_arr = nn.ModuleList() 
        for i in range(self.depth): 
            self.skip64_arr.append(BMEnet.SkipBlock(64, 64, 
skip_connections=skip_connections)) 
        self.skip64to128ds = BMEnet.SkipBlock(64, 128, downsample=True, 
skip_connections=skip_connections ) 
         
        self.skip128_arr = nn.ModuleList() 
        for i in range(self.depth): 
            self.skip128_arr.append(BMEnet.SkipBlock(128, 128, 
skip_connections=skip_connections)) 
        self.skip128to256ds = BMEnet.SkipBlock(128, 256, downsample=True, 
skip_connections=skip_connections ) 
        self.skip256_arr = nn.ModuleList() 
        for i in range(self.depth): 
            self.skip256_arr.append(BMEnet.SkipBlock(256, 256, 
skip_connections=skip_connections)) 
 
        num_ds = 2 # we downsample two times () 



        self.fc1 =  nn.Linear( (32 // (2 ** num_ds))  *  (32 //(2 ** num_ds))  * 
256, 1000) 
        self.fc2 =  nn.Linear(1000, 10) 
 
    def forward(self, x): 
        x = nn.functional.relu(self.conv(x))           
        for skip64 in self.skip64_arr: 
            x = skip64(x)                 
        x = self.skip64to128ds(x) 
        for skip128 in self.skip128_arr: 
            x = skip128(x)                 
        x = self.skip128to256ds(x) 
        for skip256 in self.skip256_arr: 
            x = skip256(x)                 
        x  =  x.view( x.shape[0], - 1 ) 
        x = nn.functional.relu(self.fc1(x)) 
        x = self.fc2(x) 
        return x             
 
    class SkipBlock(nn.Module): # given by Prof. Kak's code 
          
        def __init__(self, in_ch, out_ch, downsample=False, skip_connections=True): 
            super(BMEnet.SkipBlock, self).__init__() 
            self.downsample = downsample 
            self.skip_connections = skip_connections 
            self.in_ch = in_ch 
            self.out_ch = out_ch 
            self.convo1 = nn.Conv2d(in_ch, in_ch, 3, stride=1, padding=1) 
            self.convo2 = nn.Conv2d(in_ch, out_ch, 3, stride=1, padding=1) 
            self.bn1 = nn.BatchNorm2d(in_ch) 
            self.bn2 = nn.BatchNorm2d(out_ch) 
            self.in2out  =  nn.Conv2d(in_ch, out_ch, 1)        
            if downsample: 
                #################### MY CODE ########################## 
                self.downsampler1 = nn.Conv2d(in_ch, in_ch, 1, stride=2) 
                self.downsampler2 = nn.Conv2d(out_ch, out_ch, 1, stride=2) # CHANGE 
TO MAXPOOL FOR MODEL 1 
                #################### MY CODE ########################## 
 
        def forward(self, x): 
            identity = x                                      
            out = self.convo1(x)                               
            out = self.bn1(out)                               
            out = nn.functional.relu(out) 
            out = self.convo2(out)                               
            out = self.bn2(out)                               
            out = nn.functional.relu(out) 
            if self.downsample: 
                identity = self.downsampler1(identity) 
                out = self.downsampler2(out) 
            if self.skip_connections: 



                if self.in_ch != self.out_ch: 
                    identity = self.in2out(identity)   
                     
                out = out + identity  
 
            return out 
 
 
 

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') 
 
dls = DLStudio( 
                  dataroot = "./data/CIFAR-10/", 
                  image_size = [32,32], 
                  path_saved_model = "./saved_model", 
                  momentum = 0.9, 
                  learning_rate = 1e-4, 
                  epochs = 4, 
                  batch_size = 16, 
                  classes = 
('plane','car','bird','cat','deer','dog','frog','horse','ship','truck'), 
                  use_gpu = True, 
              ) 
 

if __name__ == '__main__': 
    bme_net = BMEnet(dls, skip_connections=True, depth=8).to(device) # for model 3, 
make skip_connections=False 
    dls.load_cifar_10_dataset() 
 
    number_of_learnable_params = sum(p.numel() for p in bme_net.parameters() if 
p.requires_grad) 
    print("\n\nThe number of learnable parameters in the model: %d" % 
number_of_learnable_params) 
 
    dls.run_code_for_training(bme_net, display_images=False) 
 
    dls.run_code_for_testing(bme_net, display_images=False) 
 

 
 

(2) Create_dataset.py (for task2)’ 
 
from pycocotools.coco import COCO 
import os 
from PIL import Image 
import torchvision 
import random 
import matplotlib.pyplot as plt 



 

def save_image(img_info, category_name, sub_directory): # template code almost 
    img_path = os.path.join(image_dir, img_info['file_name']) 
    save_dir = os.path.join(sub_directory, category_name) 
 
    os.makedirs(save_dir, exist_ok=True) 
    img = Image.open(img_path).resize((64, 64)) 
    img.save(os.path.join(save_dir, img_info['file_name'])) 
 
def extract_images(cat_names, train_dir, test_dir, min_instances=1, 
max_instances=10): # from template code almost 
 
    for category in cat_names: 
        cat_ids = coco.getCatIds(catNms=[category])[0] 
        img_ids = coco.getImgIds(catIds=[cat_ids]) 
 
        extracted = 0 # counter to track # of images  
        images = set() # to store non-recurring image ID's 
 
        for img_id in img_ids: 
            img_info = coco.loadImgs(img_id)[0] 
            ann_ids = coco.getAnnIds(imgIds=img_id) 
            anns = coco.loadAnns(ann_ids) 
 
            obj_counts = {} # counts occurence of each category 
            for ann in anns: 
                obj_category = coco.loadCats(ann['category_id'])[0]['name'] 
                obj_counts[obj_category] = obj_counts.get(obj_category, 0) + 1 
 
            if obj_counts.get(category, 0) >= min_instances: 
                images.add(img_id) 
 
            if (len(images) >= 2000): # need only 2000 images of any given class 
                break 
         
        train_dir_class = os.path.join(train_dir, category) 
        test_dir_class = os.path.join(test_dir, category) 
 
        os.makedirs(train_dir_class, exist_ok=True) 
        os.makedirs(test_dir_class, exist_ok=True) 
 
        image_list = list(images)[:2000] # 2000 out of all images selected 
        training_images = image_list[:1500] # first 1500 chosen for training 
        test_images = image_list[1500:] # last 500 chosen for testing 
 
        for img_id in training_images: 
            img_info = coco.loadImgs(img_id)[0] 
            save_image(img_info, category, train_dir) # save in train dir for 
training 
             



        for img_id in test_images: 
            img_info = coco.loadImgs(img_id)[0] 
            save_image(img_info, category, test_dir) # save in test dir for eval 
         
    return 
 

if __name__ == '__main__': 
         
    ann_file = 'instances_train2014.json' # has annotations of coco dataset 
    image_dir = 'train2014' # contains the actual images 
    output_dir = 'final_dataset/' # my dataset stored here 
 
    coco = COCO(ann_file) # load dataset  
 
    os.makedirs(output_dir, exist_ok=True) 
    train_dir = os.path.join(output_dir, 'train') 
    test_dir = os.path.join(output_dir, 'test') 
    os.makedirs(train_dir, exist_ok=True) 
    os.makedirs(test_dir, exist_ok=True) 
 
    classes_chosen = ['airplane', 'bus', 'cat', 'dog', 'pizza'] # classes chosen 
 

    fig, ax = plt.subplots(5, 3, figsize = (10, 8)) 
    fig.suptitle('Example images from COCO dataset subset') 
 
    extract_images(classes_chosen, train_dir, test_dir) 
 
    for i in range(len(classes_chosen)): # plots 5 x 3 table 
         
        class_folder = os.path.join(train_dir, classes_chosen[i]) 
        example_images = random.sample(os.listdir(class_folder), 3) 
 
        for j in range(3): 
            ax[i][j].imshow(Image.open(os.path.join(class_folder, 
example_images[j]))) 
            ax[i][j].set_title(classes_chosen[i]) 
            ax[i][j].axis('off') 
 
    plt.tight_layout(rect = [0, 0, 1, 0.95]) 
    plt.show() 
 

 
 

(3) Task2.py ( for training and eval on COCO) 
 
from pycocotools.coco import COCO 
import os 
import numpy 



from PIL import Image 
import random 
import torch 
from torchvision import datasets, transforms 
from torch.utils.data import DataLoader, Subset  
import matplotlib.pyplot as plt 
import time 
from sklearn.metrics import confusion_matrix, accuracy_score 
import torch.nn as nn 
import torch.nn.functional as F 
import seaborn as sns 
import pandas as pd 
from DLStudio import * 
 

# class taken and modified from HW2 
class CustomDataset(torch.utils.data.Dataset): # class for creation of custom 
dataset, same as HW4 
    def __init__(self, root, class_names, transform=None): 
        self.root = root 
        self.class_names = class_names 
        self.transform = transform 
        self.class_to_index = {} # dict stores mapping from class to index 
        self.image_paths = [] 
        self.labels = [] 
 
        index = 0 
        for class_ in class_names: 
            self.class_to_index[class_] = index 
             
            class_dir = os.path.join(root, class_) 
            if (os.path.exists(class_dir)): 
                for image in os.listdir(class_dir): 
                    self.image_paths.append(os.path.join(class_dir, image)) 
                    self.labels.append(index) # stores corresponding label 
            index += 1 
 
    def __len__(self): 
        return len(self.image_paths) 
 
    def __getitem__(self, index): 
        img_path = self.image_paths[index] 
        label = self.labels[index] 
        image = Image.open(img_path).convert("RGB") 
        if self.transform: 
            image = self.transform(image) 
        return image, label 
 

class BMEnet(nn.Module): # given by Prof. Kak's code, modified slightly, same as 
task1 



 
    def __init__(self, num_classes = 5, skip_connections = True, depth = 8): 
        super(BMEnet, self).__init__() 
        self.depth = depth 
        self.conv = nn.Conv2d(3, 64, 3, padding=1) 
        self.skip64_arr = nn.ModuleList() 
        for i in range(self.depth): 
            self.skip64_arr.append(BMEnet.SkipBlock(64, 64, 
skip_connections=skip_connections)) 
        self.skip64to128ds = BMEnet.SkipBlock(64, 128, downsample=True, 
skip_connections=skip_connections ) 
         
        self.skip128_arr = nn.ModuleList() 
        for i in range(self.depth): 
            self.skip128_arr.append(BMEnet.SkipBlock(128, 128, 
skip_connections=skip_connections)) 
        self.skip128to256ds = BMEnet.SkipBlock(128, 256, downsample=True, 
skip_connections=skip_connections ) 
        self.skip256_arr = nn.ModuleList() 
        for i in range(self.depth): 
            self.skip256_arr.append(BMEnet.SkipBlock(256, 256, 
skip_connections=skip_connections)) 
 
        num_ds = 2 # we downsample two times () 
        self.fc1 =  nn.Linear( (32 // (2 ** num_ds))  *  (32 //(2 ** num_ds))  * 
256, 1000) 
        self.fc2 =  nn.Linear(1000, 10) 
 
    def forward(self, x): 
        x = nn.functional.relu(self.conv(x))           
        for skip64 in self.skip64_arr: 
            x = skip64(x)                 
        x = self.skip64to128ds(x) 
        for skip128 in self.skip128_arr: 
            x = skip128(x)                 
        x = self.skip128to256ds(x) 
        for skip256 in self.skip256_arr: 
            x = skip256(x)                 
        x  =  x.view( x.shape[0], - 1 ) 
        x = nn.functional.relu(self.fc1(x)) 
        x = self.fc2(x) 
        return x             
 
    class SkipBlock(nn.Module): # given by Prof. Kak's code 
          
        def __init__(self, in_ch, out_ch, downsample=False, skip_connections=True): 
            super(BMEnet.SkipBlock, self).__init__() 
            self.downsample = downsample 
            self.skip_connections = skip_connections 
            self.in_ch = in_ch 
            self.out_ch = out_ch 



            self.convo1 = nn.Conv2d(in_ch, in_ch, 3, stride=1, padding=1) 
            self.convo2 = nn.Conv2d(in_ch, out_ch, 3, stride=1, padding=1) 
            self.bn1 = nn.BatchNorm2d(in_ch) 
            self.bn2 = nn.BatchNorm2d(out_ch) 
            self.in2out  =  nn.Conv2d(in_ch, out_ch, 1)        
            if downsample: 
                #################### MY CODE ########################## 
                self.downsampler1 = nn.Conv2d(in_ch, in_ch, 1, stride=2) 
                self.downsampler2 = nn.Conv2d(out_ch, out_ch, 1, stride=2) # CHANGE 
TO MAXPOOL FOR MODEL 1 
                #################### MY CODE ########################## 
 
        def forward(self, x): 
            identity = x                                      
            out = self.convo1(x)                               
            out = self.bn1(out)                               
            out = nn.functional.relu(out) 
            out = self.convo2(out)                               
            out = self.bn2(out)                               
            out = nn.functional.relu(out) 
            if self.downsample: 
                identity = self.downsampler1(identity) 
                out = self.downsampler2(out) 
            if self.skip_connections: 
                if self.in_ch != self.out_ch: 
                    identity = self.in2out(identity)   
 
                out = out + identity  
 
            return out 
 
 

def training_function(train_data_loader, net): # same as HW4 
    net = net.to(device) 
    param_count = 0 
    for param in net.parameters(): 
        if (param.requires_grad): 
            param_count += param.numel() # for num-param table 
 
    criterion = torch.nn.CrossEntropyLoss() 
    optimizer = torch.optim.Adam(net.parameters(), lr = 1e-4) 
 
    epochs = 1 
    training_loss_list = [] 
    for epoch in range(epochs): 
        running_loss = 0.0 
        for i, data in enumerate(train_data_loader): # training as per template 
            inputs, labels = data 
            inputs = inputs.to(device) 
            labels = labels.to(device) 



            optimizer.zero_grad() 
            outputs = net(inputs) 
            loss = criterion(outputs, labels) 
            loss.backward() 
            optimizer.step() 
            running_loss += loss.item() 
 
        epoch_loss = running_loss / len(train_data_loader) 
        training_loss_list.append(epoch_loss) 
        print(f'epoch: {epoch + 1}, loss: {epoch_loss:.4f}') 
    print('\n') 
 
    print('Training complete') 
 
    return training_loss_list, param_count 
 
def testing_function(test_loader, net): # same as HW4 
    net.eval() 
    predictions_list = [] 
    labels_list = [] 
    misclass_list = [] 
    with torch.no_grad(): 
        for inputs, labels in test_loader: 
            inputs = inputs.to(device) 
            labels = labels.to(device) 
            outputs = net(inputs) 
            prediction = outputs.argmax(dim = 1) 
            fin_pred = prediction.cpu().tolist() 
            fin_label = labels.cpu().tolist() 
            predictions_list += fin_pred 
            labels_list += fin_label 
 
    accuracy = accuracy_score(labels_list, predictions_list) * 100 
     
    print('\n') 
    print(f'Validation accuracy: {accuracy:.2f}%') 
    print('\n') 
 
    conf_mat = confusion_matrix(labels_list, predictions_list) 
 
    plt.figure(figsize = (8, 6)) 
    sns.heatmap(conf_mat, annot = True, fmt = 'd', cmap = 'Blues', xticklabels = 
classes, yticklabels = classes) 
    plt.xlabel('Predicted class') 
    plt.ylabel('Actual') 
    plt.title('Confusion Matrix') 
    plt.show() 
 
    return accuracy 
 
def plot_training_loss(training_loss_list): # same as HW4 



 
    plt.figure(figsize = (8, 6)) 
    x = range(0, 6) 
    y = training_loss_list 
    plt.plot(x, y) 
    plt.xlabel('Epochs') 
    plt.ylabel('Loss') 
    plt.title('Training loss curve') 
    plt.show() 
    return 
 
 

if __name__ == '__main__': 
 
    classes = ['airplane', 'bus', 'cat', 'dog', 'pizza'] 
 
    transform = transforms.Compose([ 
            transforms.Resize((32, 32)), 
            transforms.ToTensor(), 
            transforms.Normalize((0.5,), (0.5,)) 
        ]) # normalize images 
     
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') 
 
    training_data = CustomDataset(os.path.join('coco_dataset/', 'train'), classes, 
transform=transform) 
    train_loader = DataLoader(training_data, batch_size = 16, shuffle = True) 
     
    testing_data = CustomDataset(os.path.join('coco_dataset/', 'test'), classes, 
transform=transform) 
    test_loader = DataLoader(testing_data, batch_size = 16, shuffle = True) 
 
    net = BMEnet() 
    print('\n') 
    training_loss_list, param_count = training_function(train_loader, net) 
 
    print('Number of parameters: ', param_count) 
 
    plot_training_loss(training_loss_list) 
    print('\n') 
    accuracy = testing_function(test_loader, net) 
 
 

 
END 


