
HW 6: ECE 60146 – Deep Learning

 -Kaushik Karthikeyan

Task 1: Observation on 1-pixel kernel

A 1x1 kernel can be useful in many cases. A 1x1 kernel would essentially look at each pixel
one by one without mixing spatial information. Instead, it would apply the convolution
formula to each pixel by using values from different channels at that location. It is analogous
to a mini-neural network layer applied to each pixel. It can also be used for downsampling,
which is an important step while using skip connections.

The difference between the 1 x 1 kernel used in Line (I) and the ones used in Lines (J) and
(K) is that the kernel used in Line I is a standard 1-pixel kernel used in channel
transformation whereas the one in Lines (J) and (K) is a kernel with a stride of 2, meaning
that it would reduce the resolution by a factor of 2. The kernel used in Lines (J) and (K) does
not change the number of channels as in the one in Line (I).

Task 2: BMEnet with downsampling = {Stride=2, Maxpool} and
skip_connections=False

For this task, we are required to use the BMEnet model given to us in the DLStudio.py file.
We understand the difference between using skip connections and not using skip connections,
and also the difference between down sampling using a stride=2 convolutional layer and
down sampling using a Maxpool layer. First, we implement the BMEnet model with
Maxpool for down sampling with skip connections on the CIFAR-10 dataset. Below is the
code for this implementation:

Image 2.1: Screenshot of code snippet for maxpool for downsampling

For this task, upon implementing the above code on a Colab GPU for the CIFAR-10 dataset,
we obtain the following results for the loss curve, confusion matrices, and per-class
accuracies:

Image 2.2: Loss curve for maxpool downsampling, skip_connections=True

Image 2.3: Terminal output for maxpool downsampling, skip_connections=True

Image 2.4: Confusion Matrix for maxpool downsampling, skip_connections=True

As we notice, the predictions made by this model are evidently terrible. The model guesses a
single class for all of the images. I will discuss the detailed observations in the next section
once I display the plots for each of the models tested.

The next model I test is the original method used for downsampling, which is using a
convolutional layer with stride = 2. The code for this model looks like this:

Image 2.5: Code block for downsampling using stride=2 layer

Image 2.6: Loss curve for stride=2 downsampling, skip_connections=True

Image 2.7: Terminal output for stride=2 downsampling, skip_connections=True

Image 2.8: Confusion Matrix for stride=2 downsampling, skip_connections=True

As we notice, this model performs great, with a testing accuracy of 77%. In
order to highlight the importance of skip connections, below is the same model
run once again, with the only difference being in the line:

bme_net = dls.BMEnet(dls, skip_connections=True, depth=8)

which we now change to:

bme_net = dls.BMEnet(dls, skip_connections=False, depth=8)

Upon running this code, we obtain the following results:

Image 2.9: Loss curve for stride=2 downsampling, skip_connections=False

Image 2.10: Terminal output for stride=2 downsampling, skip_connections=False

Image 2.11: Confusion Matrix for stride=2 downsampling, skip_connections=False

The accuracy of this model being a lot lower than the one with skip_connections highlights
the importance of the skip block. Skip connections help in solving the vanishing gradient
problem. When gradients diminish during the backpropagation step, the first few layers learn
extremely slowly. The presence of skip connections allows gradients to flow more freely.
However, as this model (model 3) had the parameter skip_connections set to ‘False’, the
gradients must have diminished faster, causing the poor accuracy.

Below are two summary tables that help us compare the three models in terms of their overall
accuracies and per-class accuracies:

Model Accuracy

BMEnet() with maxpool downsampling,
skip_connections=True (MODEL 1)

10%

BMEnet() with stride=2 downsampling,
skip_connections=True (MODEL 2) 77%

BMEnet() with stride=2 downsampling,
skip_connections=False (MODEL 3)

43%

Table 1: Table showing accuracies of all 3 models

Class Model 1 Model 2 Model 3
Plane 0% 74% 56%

Car 0% 90% 54%

Bird 0% 78% 31%

Cat 100% 54% 23%

Deer 0% 68% 29%

Dog 0% 69% 44%

Frog 0% 79% 61%

Horse 0% 80% 46%

Ship 0% 90% 34%

Truck 0% 85% 50%

Table 2: Table showing per-class accuracies of all 3 models

In this table, Model 1 refers to the model with Maxpool downsampling with
skip connections. Model 2 refers to the model with Stride=2 downsampling with
skip connections. Model 3 refers to the model with Stride = 2 downsampling
without skip connections.

Observation on Task 2

We observe from Tables 1 and 2, and all the other intermediate results in this
section, that the model that works best for the given dataset is the Model 2,
which performs skip connections and downsampling using Stride = 2. The
reason for superior performance of this model is that when we use stride = 2, the
feature maps from the identity path and convolutional path have matching
dimensions and channels. It downsamples while transforming whereas the
axpool layer used in Model 2 blindly chooses the highest pixel values and
removes important parts of the image while downsampling. Hence, this reduces
the spatial resolution and ends up guessing the same class for all of the images.

We can conclude that the Stride =2 convolution allows network to optimally
downsample whereas using Maxpool, which is not a learnable layer, results in
disruption of skip connections, causing poor performance and terrible accuracy.
We also note that as mentioned earlier, the third model (skip_connections =
False) is able to learn better than the Maxpool layer as it still learns the good
representations because of the convolutions and activations as in a normal
convolutional network. However, due to the absence of skip connections, and
thereby the presence of the vanishing gradient problem, the model 3 fails to
perform as well as Model 1.

Task 3: Skip Connections with MSCOCO dataset

The first step of this task requires us to create the subset of the dataset with
2000 images per class split into 1500 training and 500 testing images. We
extract 2000 such images for each of the five classes :
[‘airpane’, ‘bus’, ‘cat’, ‘dog’, ‘pizza’].

We do so using the code given below:

Image 3.1: Code block for creation of dataset

This code also gives us the 5 x 3 table of example images from the subset, showing 3 images
for each of the five classes as shown below:

Image 3.2: 5 x 3 table showing example images from dataset

Once we have the dataset is created, we modify the code we had for BMENet
from earlier with the SkipBlock and add a training and evaluation function as in
HW4. Below is the code for this section:

Image 3.3: Code block for training and evaluation of skipBlock on COCO

Upon implementing this code, we obtain the following plots:

Image 3.3: Loss curve of training on MS-COCO subset

Image 3.4: Terminal output of evaluation on MS-COCO subset

Image 3.5: Confusion Matrix of testing on MS-COCO subset

Overall Accuracy: 63%

Class Accuracy

Airplane 69.40%

Bus 78.40%

Cat 59.80%

Dog 32.00%

Pizza 75.40%

Table 3: 5x1 table showing per-class accuracies

Observations

As we observe from the table of accuracies, overall accuracy, loss curve, and
confusion matrix, the BMENet model performs fairly well on the COCO
dataset. Although I end up running this model only for 6 epochs due to
computational bottlenecks, it still has an overall testing accuracy of 63% on
2500 unseen images.

This relatively high accuracy could be attributed to the presence of a deep
neural network with skip connections. As mentioned multiple times so far in
this document, the presence of skip connections allow gradients to flow through
the layers a lot more easily. The vanishing gradient problem is solved, which
results in deeper layers suffering from unstable learning and low accuracy. Skip
connections also help in retaining spatial and textural information from earlier
layers. This is also why it has a classification accuracy of over ~70% for three
out of the five classes.

Upon looking deeply at the confusion matrix, we also notice that a common
misclassification occurs between dog and cat. This is easy to understand as both
dogs and cats share several common features (e.g.: eyes, nose, tail, etc.) This
means that the model would have perhaps performed better had we given it
classes that were not as similar to one another. The model’s loss curve also
shows that the loss was continually decreasing and had not stagnated yet. This

means that if we had more computational power and had run the model for more
number of epochs, this would have also resulted in a better accuracy. I believe
even data augmentation to increase size and robustness of dataset would have
helped in solving the {dog, cat} misclassification problem.

Finally, we conclude that stride=2 downsampling and skip connections aided
the BMENet model in preserving spatial information and avoiding the vanishing
gradient problem, resulting in a relatively high classification accuracy which
could have been further enhanced given a more robust dataset and more
computational power.

SOURCE CODE

(1) Task1.py:

import random
import numpy
import torch
import os, sys
from DLStudio import *
import torch.nn as nn
import torch.nn.functional as F
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix
import copy
import torch.optim as optim
import time
import logging

class BMEnet(nn.Module): # given by Prof. Kak's code, modified slightly

 def __init__(self, num_classes = 5, skip_connections = True, depth = 8):
 super(BMEnet, self).__init__()
 self.depth = depth
 self.conv = nn.Conv2d(3, 64, 3, padding=1)
 self.skip64_arr = nn.ModuleList()
 for i in range(self.depth):
 self.skip64_arr.append(BMEnet.SkipBlock(64, 64,
skip_connections=skip_connections))
 self.skip64to128ds = BMEnet.SkipBlock(64, 128, downsample=True,
skip_connections=skip_connections)

 self.skip128_arr = nn.ModuleList()
 for i in range(self.depth):
 self.skip128_arr.append(BMEnet.SkipBlock(128, 128,
skip_connections=skip_connections))
 self.skip128to256ds = BMEnet.SkipBlock(128, 256, downsample=True,
skip_connections=skip_connections)
 self.skip256_arr = nn.ModuleList()
 for i in range(self.depth):
 self.skip256_arr.append(BMEnet.SkipBlock(256, 256,
skip_connections=skip_connections))

 num_ds = 2 # we downsample two times ()

 self.fc1 = nn.Linear((32 // (2 ** num_ds)) * (32 //(2 ** num_ds)) *
256, 1000)
 self.fc2 = nn.Linear(1000, 10)

 def forward(self, x):
 x = nn.functional.relu(self.conv(x))
 for skip64 in self.skip64_arr:
 x = skip64(x)
 x = self.skip64to128ds(x)
 for skip128 in self.skip128_arr:
 x = skip128(x)
 x = self.skip128to256ds(x)
 for skip256 in self.skip256_arr:
 x = skip256(x)
 x = x.view(x.shape[0], - 1)
 x = nn.functional.relu(self.fc1(x))
 x = self.fc2(x)
 return x

 class SkipBlock(nn.Module): # given by Prof. Kak's code

 def __init__(self, in_ch, out_ch, downsample=False, skip_connections=True):
 super(BMEnet.SkipBlock, self).__init__()
 self.downsample = downsample
 self.skip_connections = skip_connections
 self.in_ch = in_ch
 self.out_ch = out_ch
 self.convo1 = nn.Conv2d(in_ch, in_ch, 3, stride=1, padding=1)
 self.convo2 = nn.Conv2d(in_ch, out_ch, 3, stride=1, padding=1)
 self.bn1 = nn.BatchNorm2d(in_ch)
 self.bn2 = nn.BatchNorm2d(out_ch)
 self.in2out = nn.Conv2d(in_ch, out_ch, 1)
 if downsample:
 #################### MY CODE ##########################
 self.downsampler1 = nn.Conv2d(in_ch, in_ch, 1, stride=2)
 self.downsampler2 = nn.Conv2d(out_ch, out_ch, 1, stride=2) # CHANGE
TO MAXPOOL FOR MODEL 1
 #################### MY CODE ##########################

 def forward(self, x):
 identity = x
 out = self.convo1(x)
 out = self.bn1(out)
 out = nn.functional.relu(out)
 out = self.convo2(out)
 out = self.bn2(out)
 out = nn.functional.relu(out)
 if self.downsample:
 identity = self.downsampler1(identity)
 out = self.downsampler2(out)
 if self.skip_connections:

 if self.in_ch != self.out_ch:
 identity = self.in2out(identity)

 out = out + identity

 return out

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

dls = DLStudio(
 dataroot = "./data/CIFAR-10/",
 image_size = [32,32],
 path_saved_model = "./saved_model",
 momentum = 0.9,
 learning_rate = 1e-4,
 epochs = 4,
 batch_size = 16,
 classes =
('plane','car','bird','cat','deer','dog','frog','horse','ship','truck'),
 use_gpu = True,
)

if __name__ == '__main__':
 bme_net = BMEnet(dls, skip_connections=True, depth=8).to(device) # for model 3,
make skip_connections=False
 dls.load_cifar_10_dataset()

 number_of_learnable_params = sum(p.numel() for p in bme_net.parameters() if
p.requires_grad)
 print("\n\nThe number of learnable parameters in the model: %d" %
number_of_learnable_params)

 dls.run_code_for_training(bme_net, display_images=False)

 dls.run_code_for_testing(bme_net, display_images=False)

(2) Create_dataset.py (for task2)’

from pycocotools.coco import COCO
import os
from PIL import Image
import torchvision
import random
import matplotlib.pyplot as plt

def save_image(img_info, category_name, sub_directory): # template code almost
 img_path = os.path.join(image_dir, img_info['file_name'])
 save_dir = os.path.join(sub_directory, category_name)

 os.makedirs(save_dir, exist_ok=True)
 img = Image.open(img_path).resize((64, 64))
 img.save(os.path.join(save_dir, img_info['file_name']))

def extract_images(cat_names, train_dir, test_dir, min_instances=1,
max_instances=10): # from template code almost

 for category in cat_names:
 cat_ids = coco.getCatIds(catNms=[category])[0]
 img_ids = coco.getImgIds(catIds=[cat_ids])

 extracted = 0 # counter to track # of images
 images = set() # to store non-recurring image ID's

 for img_id in img_ids:
 img_info = coco.loadImgs(img_id)[0]
 ann_ids = coco.getAnnIds(imgIds=img_id)
 anns = coco.loadAnns(ann_ids)

 obj_counts = {} # counts occurence of each category
 for ann in anns:
 obj_category = coco.loadCats(ann['category_id'])[0]['name']
 obj_counts[obj_category] = obj_counts.get(obj_category, 0) + 1

 if obj_counts.get(category, 0) >= min_instances:
 images.add(img_id)

 if (len(images) >= 2000): # need only 2000 images of any given class
 break

 train_dir_class = os.path.join(train_dir, category)
 test_dir_class = os.path.join(test_dir, category)

 os.makedirs(train_dir_class, exist_ok=True)
 os.makedirs(test_dir_class, exist_ok=True)

 image_list = list(images)[:2000] # 2000 out of all images selected
 training_images = image_list[:1500] # first 1500 chosen for training
 test_images = image_list[1500:] # last 500 chosen for testing

 for img_id in training_images:
 img_info = coco.loadImgs(img_id)[0]
 save_image(img_info, category, train_dir) # save in train dir for
training

 for img_id in test_images:
 img_info = coco.loadImgs(img_id)[0]
 save_image(img_info, category, test_dir) # save in test dir for eval

 return

if __name__ == '__main__':

 ann_file = 'instances_train2014.json' # has annotations of coco dataset
 image_dir = 'train2014' # contains the actual images
 output_dir = 'final_dataset/' # my dataset stored here

 coco = COCO(ann_file) # load dataset

 os.makedirs(output_dir, exist_ok=True)
 train_dir = os.path.join(output_dir, 'train')
 test_dir = os.path.join(output_dir, 'test')
 os.makedirs(train_dir, exist_ok=True)
 os.makedirs(test_dir, exist_ok=True)

 classes_chosen = ['airplane', 'bus', 'cat', 'dog', 'pizza'] # classes chosen

 fig, ax = plt.subplots(5, 3, figsize = (10, 8))
 fig.suptitle('Example images from COCO dataset subset')

 extract_images(classes_chosen, train_dir, test_dir)

 for i in range(len(classes_chosen)): # plots 5 x 3 table

 class_folder = os.path.join(train_dir, classes_chosen[i])
 example_images = random.sample(os.listdir(class_folder), 3)

 for j in range(3):
 ax[i][j].imshow(Image.open(os.path.join(class_folder,
example_images[j])))
 ax[i][j].set_title(classes_chosen[i])
 ax[i][j].axis('off')

 plt.tight_layout(rect = [0, 0, 1, 0.95])
 plt.show()

(3) Task2.py (for training and eval on COCO)

from pycocotools.coco import COCO
import os
import numpy

from PIL import Image
import random
import torch
from torchvision import datasets, transforms
from torch.utils.data import DataLoader, Subset
import matplotlib.pyplot as plt
import time
from sklearn.metrics import confusion_matrix, accuracy_score
import torch.nn as nn
import torch.nn.functional as F
import seaborn as sns
import pandas as pd
from DLStudio import *

class taken and modified from HW2
class CustomDataset(torch.utils.data.Dataset): # class for creation of custom
dataset, same as HW4
 def __init__(self, root, class_names, transform=None):
 self.root = root
 self.class_names = class_names
 self.transform = transform
 self.class_to_index = {} # dict stores mapping from class to index
 self.image_paths = []
 self.labels = []

 index = 0
 for class_ in class_names:
 self.class_to_index[class_] = index

 class_dir = os.path.join(root, class_)
 if (os.path.exists(class_dir)):
 for image in os.listdir(class_dir):
 self.image_paths.append(os.path.join(class_dir, image))
 self.labels.append(index) # stores corresponding label
 index += 1

 def __len__(self):
 return len(self.image_paths)

 def __getitem__(self, index):
 img_path = self.image_paths[index]
 label = self.labels[index]
 image = Image.open(img_path).convert("RGB")
 if self.transform:
 image = self.transform(image)
 return image, label

class BMEnet(nn.Module): # given by Prof. Kak's code, modified slightly, same as
task1

 def __init__(self, num_classes = 5, skip_connections = True, depth = 8):
 super(BMEnet, self).__init__()
 self.depth = depth
 self.conv = nn.Conv2d(3, 64, 3, padding=1)
 self.skip64_arr = nn.ModuleList()
 for i in range(self.depth):
 self.skip64_arr.append(BMEnet.SkipBlock(64, 64,
skip_connections=skip_connections))
 self.skip64to128ds = BMEnet.SkipBlock(64, 128, downsample=True,
skip_connections=skip_connections)

 self.skip128_arr = nn.ModuleList()
 for i in range(self.depth):
 self.skip128_arr.append(BMEnet.SkipBlock(128, 128,
skip_connections=skip_connections))
 self.skip128to256ds = BMEnet.SkipBlock(128, 256, downsample=True,
skip_connections=skip_connections)
 self.skip256_arr = nn.ModuleList()
 for i in range(self.depth):
 self.skip256_arr.append(BMEnet.SkipBlock(256, 256,
skip_connections=skip_connections))

 num_ds = 2 # we downsample two times ()
 self.fc1 = nn.Linear((32 // (2 ** num_ds)) * (32 //(2 ** num_ds)) *
256, 1000)
 self.fc2 = nn.Linear(1000, 10)

 def forward(self, x):
 x = nn.functional.relu(self.conv(x))
 for skip64 in self.skip64_arr:
 x = skip64(x)
 x = self.skip64to128ds(x)
 for skip128 in self.skip128_arr:
 x = skip128(x)
 x = self.skip128to256ds(x)
 for skip256 in self.skip256_arr:
 x = skip256(x)
 x = x.view(x.shape[0], - 1)
 x = nn.functional.relu(self.fc1(x))
 x = self.fc2(x)
 return x

 class SkipBlock(nn.Module): # given by Prof. Kak's code

 def __init__(self, in_ch, out_ch, downsample=False, skip_connections=True):
 super(BMEnet.SkipBlock, self).__init__()
 self.downsample = downsample
 self.skip_connections = skip_connections
 self.in_ch = in_ch
 self.out_ch = out_ch

 self.convo1 = nn.Conv2d(in_ch, in_ch, 3, stride=1, padding=1)
 self.convo2 = nn.Conv2d(in_ch, out_ch, 3, stride=1, padding=1)
 self.bn1 = nn.BatchNorm2d(in_ch)
 self.bn2 = nn.BatchNorm2d(out_ch)
 self.in2out = nn.Conv2d(in_ch, out_ch, 1)
 if downsample:
 #################### MY CODE ##########################
 self.downsampler1 = nn.Conv2d(in_ch, in_ch, 1, stride=2)
 self.downsampler2 = nn.Conv2d(out_ch, out_ch, 1, stride=2) # CHANGE
TO MAXPOOL FOR MODEL 1
 #################### MY CODE ##########################

 def forward(self, x):
 identity = x
 out = self.convo1(x)
 out = self.bn1(out)
 out = nn.functional.relu(out)
 out = self.convo2(out)
 out = self.bn2(out)
 out = nn.functional.relu(out)
 if self.downsample:
 identity = self.downsampler1(identity)
 out = self.downsampler2(out)
 if self.skip_connections:
 if self.in_ch != self.out_ch:
 identity = self.in2out(identity)

 out = out + identity

 return out

def training_function(train_data_loader, net): # same as HW4
 net = net.to(device)
 param_count = 0
 for param in net.parameters():
 if (param.requires_grad):
 param_count += param.numel() # for num-param table

 criterion = torch.nn.CrossEntropyLoss()
 optimizer = torch.optim.Adam(net.parameters(), lr = 1e-4)

 epochs = 1
 training_loss_list = []
 for epoch in range(epochs):
 running_loss = 0.0
 for i, data in enumerate(train_data_loader): # training as per template
 inputs, labels = data
 inputs = inputs.to(device)
 labels = labels.to(device)

 optimizer.zero_grad()
 outputs = net(inputs)
 loss = criterion(outputs, labels)
 loss.backward()
 optimizer.step()
 running_loss += loss.item()

 epoch_loss = running_loss / len(train_data_loader)
 training_loss_list.append(epoch_loss)
 print(f'epoch: {epoch + 1}, loss: {epoch_loss:.4f}')
 print('\n')

 print('Training complete')

 return training_loss_list, param_count

def testing_function(test_loader, net): # same as HW4
 net.eval()
 predictions_list = []
 labels_list = []
 misclass_list = []
 with torch.no_grad():
 for inputs, labels in test_loader:
 inputs = inputs.to(device)
 labels = labels.to(device)
 outputs = net(inputs)
 prediction = outputs.argmax(dim = 1)
 fin_pred = prediction.cpu().tolist()
 fin_label = labels.cpu().tolist()
 predictions_list += fin_pred
 labels_list += fin_label

 accuracy = accuracy_score(labels_list, predictions_list) * 100

 print('\n')
 print(f'Validation accuracy: {accuracy:.2f}%')
 print('\n')

 conf_mat = confusion_matrix(labels_list, predictions_list)

 plt.figure(figsize = (8, 6))
 sns.heatmap(conf_mat, annot = True, fmt = 'd', cmap = 'Blues', xticklabels =
classes, yticklabels = classes)
 plt.xlabel('Predicted class')
 plt.ylabel('Actual')
 plt.title('Confusion Matrix')
 plt.show()

 return accuracy

def plot_training_loss(training_loss_list): # same as HW4

 plt.figure(figsize = (8, 6))
 x = range(0, 6)
 y = training_loss_list
 plt.plot(x, y)
 plt.xlabel('Epochs')
 plt.ylabel('Loss')
 plt.title('Training loss curve')
 plt.show()
 return

if __name__ == '__main__':

 classes = ['airplane', 'bus', 'cat', 'dog', 'pizza']

 transform = transforms.Compose([
 transforms.Resize((32, 32)),
 transforms.ToTensor(),
 transforms.Normalize((0.5,), (0.5,))
]) # normalize images

 device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

 training_data = CustomDataset(os.path.join('coco_dataset/', 'train'), classes,
transform=transform)
 train_loader = DataLoader(training_data, batch_size = 16, shuffle = True)

 testing_data = CustomDataset(os.path.join('coco_dataset/', 'test'), classes,
transform=transform)
 test_loader = DataLoader(testing_data, batch_size = 16, shuffle = True)

 net = BMEnet()
 print('\n')
 training_loss_list, param_count = training_function(train_loader, net)

 print('Number of parameters: ', param_count)

 plot_training_loss(training_loss_list)
 print('\n')
 accuracy = testing_function(test_loader, net)

END

