HW 6: ECE 60146 — Deep Learning

-Kaushik Karthikeyan

Task 1: Observation on 1-pixel kernel

A 1x1 kernel can be useful in many cases. A 1x1 kernel would essentially look at each pixel
one by one without mixing spatial information. Instead, it would apply the convolution
formula to each pixel by using values from different channels at that location. It is analogous
to a mini-neural network layer applied to each pixel. It can also be used for downsampling,
which is an important step while using skip connections.

The difference between the 1 x 1 kernel used in Line (I) and the ones used in Lines (J) and
(K) is that the kernel used in Line I is a standard 1-pixel kernel used in channel
transformation whereas the one in Lines (J) and (K) is a kernel with a stride of 2, meaning
that it would reduce the resolution by a factor of 2. The kernel used in Lines (J) and (K) does
not change the number of channels as in the one in Line (I).

Task 2: BMEnet with downsampling = /Stride=2, Maxpool} and
skip connections=False

For this task, we are required to use the BMEnet model given to us in the DLStudio.py file.
We understand the difference between using skip connections and not using skip connections,
and also the difference between down sampling using a stride=2 convolutional layer and
down sampling using a Maxpool layer. First, we implement the BMEnet model with
Maxpool for down sampling with skip connections on the CIFAR-10 dataset. Below is the
code for this implementation:



(nn.Module):

__init__(self, in_ch, out_ch, downsample=! , skip_connections=
super(BMEnet.SkipBlock, self).__init_ ()
self.downsample = downsample
self.skip_connections = skip_connections
self.in_ch = in_ch

self.out_ch = out_ch

self.convol = nn.Conv2d(in_ch, in_ch, 3, stride=
self.convo2 nn.Conv2d(in_ch, out_ch, 3, strid
self.bnl = nn.BatchNorm2d(in_ch)

self.bn2 = nn.BatchNorm2d(out_ch)

self.in2out = nn.Conv2d(in_ch, out_ch, 1)

if downsample:

self.pooll nn.MaxPool2d(2, 2)

self.pool2 = nn.MaxPool2d(2, 2)

forward(self, x):

identity = x

out = self.convol(x)

out = self.bnl(out)

out = nn.functional.relu(out)

out = self.convo2(out)

out = self.bn2(out)

out = nn.functional.relu(out)
f self.downsample:

TR T TR T

identity = self.pooll(identity)
out = self.pool2(out)

f self.skip_connections:
if (self.in_ch == self.out_ch) and (self.downsample is
out = out + identity
if (self.in_ch != self.out_ch) and (self.downsample is
identity = self.in2out( identity )
out = out + identity
if (self.in_ch != self.out_ch) and (self.downsample is
= out + torch.cat((identity, identity), dim=1)

dls
a/CIFAR-10/",

32,32],
path_saved_model="./saved_model",
momentum=0.9,
learning_rate=1e-4,
epochs=4,
batch_size=4,
classes=("'plane 'bird', 'cat', 'deer 'dog', 'frog', 'horse 'truck')
use_gpu=

if __name__ '_main__"':
bme_net = BMEnet(dls, skip_connections=True, depth=8).to(device)
dls.load_cifar_10_dataset()

number_of_learnable_params = sum(p.numel() for p in bme_net.parameters() if p.requires_grad)
print( The number of learnable parameters: {number_of_learnable_params}")

dls.run_code_for_training(bme_net, display_images=Fa )
dls.run_code_for_testing(bme_net, display_images=Fa

Image 2.1: Screenshot of code snippet for maxpool for downsampling

For this task, upon implementing the above code on a Colab GPU for the CIFAR-10 dataset,
we obtain the following results for the loss curve, confusion matrices, and per-class
accuracies:



Labeling Loss vs. Iterations
—— Plot of loss versus iterations
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Image 2.2: Loss curve for maxpool downsampling, skip connections=True
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Image 2.3: Terminal output for maxpool downsampling, skip connections=True



Confusion Matrix - Maxpool downsampling
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Image 2.4: Confusion Matrix for maxpool downsampling, skip connections=True

As we notice, the predictions made by this model are evidently terrible. The model guesses a
single class for all of the images. I will discuss the detailed observations in the next section
once I display the plots for each of the models tested.

The next model I test is the original method used for downsampling, which is using a
convolutional layer with stride = 2. The code for this model looks like this:

ock(nn.Module) :

__init__(self, in_ch, out_ch, downsample= ,» skip_connections= ):
super(BMEnet.SkipBlock, self).__init__ ()

self.downsample = downsample

self.skip_connections = skip_connections

self.in_ch = in_ch

self.out_ch = out_ch

self.convo n.Conv2d(in_ch, in_ch, 3, stride=1, padding=1)
self.convo2 = nn.Conv2d(in_ch, out_ch, 3, stride=1, padding=1)
self.bnl = nn.BatchNorm2d(in_ch)

self.bn2 = nn.BatchNorm2d(out_ch)

self.in2out = nn.Conv2d(in_ch, out_ch, 1)

if downsample:

self.downsamplerl = nn.Conv2d(in_ch, in_ch, 1, stride=2)
self.downsampler2 = nn.Conv2d(out_ch, out_ch, 1, stride=2)

forward(self, x):

identity = x

out = self.convol(x)

out = self.bnl(out)

out = nn.functional.relu(out)
out = self.convo2(out)

out = self.bn2(out)

out = nn.functional.relu(out)
if self.downsample:

identity = self.downsamplerl(identity)
out = self.downsampler2(out)

if self.skip_connections:
if (self.in_ch == self.out_ch) and (self.downsample is

out = out + identity
f (self.in_ch != self.out_ch) and (self.downsample is
identity = self.in2out{| identity [)]
out = out + identity
f (self.in_ch != self.out_ch) and (self.downsample is )z
out = out + torch.cat((identity, identity), dim=1)

rn out

Image 2.5: Code block for downsampling using stride=2 layer
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Image 2.6: Loss curve for stride=2 downsampling, skip connections=True
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Image 2.7: Terminal output for stride=2 downsampling, skip connections=True



Confusion Matrix - Stride=2 downsampling
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Image 2.8: Confusion Matrix for stride=2 downsampling, skip connections=True
As we notice, this model performs great, with a testing accuracy of 77%. In

order to highlight the importance of skip connections, below is the same model
run once again, with the only difference being in the line:

bme_net = dls.BMEnet(dls, skip_connections= , depth=8)

which we now change to:

bme_net = dls.BMEnet(dls, skip_connections= , depth=8)

Upon running this code, we obtain the following results:



Labeling Loss vs. Iterations
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Image 2.9: Loss curve for stride=2 downsampling, skip connections=False
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Image 2.10: Terminal output for stride=2 downsampling, skip connections=False



Confusion Matrix - Stride=2 downsampling without skip connections
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Image 2.11: Confusion Matrix for stride=2 downsampling, skip connections=False

The accuracy of this model being a lot lower than the one with skip connections highlights
the importance of the skip block. Skip connections help in solving the vanishing gradient
problem. When gradients diminish during the backpropagation step, the first few layers learn
extremely slowly. The presence of skip connections allows gradients to flow more freely.
However, as this model (model 3) had the parameter skip_connections set to ‘False’, the
gradients must have diminished faster, causing the poor accuracy.

Below are two summary tables that help us compare the three models in terms of their overall
accuracies and per-class accuracies:



Model

Accuracy

BMEnet() with maxpool downsampling,

0
skip connections=True (MODEL 1) 10%
BMEnet() with stride=2 downsampling, 770,
skip connections=True (MODEL 2) °
BMEnet() with stride=2 downsampling, 439
0

skip connections=False (MODEL 3)

Table 1: Table showing accuracies of all 3 models

Class Model 1 Model 2 Model 3
Plane 0% 74% 56%
Car 0% 90% 54%
Bird 0% 78% 31%
Cat 100% 54% 23%
Deer 0% 68% 29%
Dog 0% 69% 44%
Frog 0% 79% 61%
Horse 0% 80% 46%
Ship 0% 90% 34%
Truck 0% 85% 50%

Table 2: Table showing per-class accuracies of all 3 models

In this table, Model 1 refers to the model with Maxpool downsampling with
skip connections. Model 2 refers to the model with Stride=2 downsampling with
skip connections. Model 3 refers to the model with Stride = 2 downsampling
without skip connections.



Observation on Task 2

We observe from Tables 1 and 2, and all the other intermediate results in this
section, that the model that works best for the given dataset is the Model 2,
which performs skip connections and downsampling using Stride = 2. The
reason for superior performance of this model is that when we use stride = 2, the
feature maps from the identity path and convolutional path have matching
dimensions and channels. It downsamples while transforming whereas the
axpool layer used in Model 2 blindly chooses the highest pixel values and
removes important parts of the image while downsampling. Hence, this reduces
the spatial resolution and ends up guessing the same class for all of the images.

We can conclude that the Stride =2 convolution allows network to optimally
downsample whereas using Maxpool, which is not a learnable layer, results in
disruption of skip connections, causing poor performance and terrible accuracy.
We also note that as mentioned earlier, the third model (skip connections =
False) is able to learn better than the Maxpool layer as it still learns the good
representations because of the convolutions and activations as in a normal
convolutional network. However, due to the absence of skip connections, and
thereby the presence of the vanishing gradient problem, the model 3 fails to
perform as well as Model 1.



Task 3: Skip Connections with 0CO dataset

The first step of this task requires us to create the subset of the dataset with
2000 images per class split into 1500 training and 500 testing images. We
extract 2000 such images for each of the five classes :

[‘airpane’, ‘bus’, ‘cat’, ‘dog’, ‘pizza’].

We do so using the code given below:

save_image(img_info, category_name, sub_directory):
img_path = os.path.join(image_dir, img_info['file_name'])
save_dir = os.path.join(sub_directory, category_name)

os.makedirs(save_dir, exist_ok= )
img = Image.open(img_path).resize((64, 64))
img.save(os.path.join(save_dir, img_info['file_name']))

extract_images(cat_names, train_dir, test_dir, min_instances=1, max_instances=10):

for category in cat_names:
cat_ids = coco.getCatIds(catNms=[category]) [0]
img_ids = coco.getImgIds(catIds=[cat_ids])

extracted = 0
images = set()

for img_id in img_ids:
img_info = coco.loadImgs(img_id) [@]
ann_ids = coco.getAnnIds(imgIds=img_id)
anns = coco. loadAnns(ann_ids)

obj_counts = {}

for ann in anns:
obj_category = coco.loadCats(ann['category_id']) [@] ['name"']
obj_counts[obj_category] = obj_counts.get(obj_category, 0) + 1

if obj_counts.get(category, @) >= min_instances:
images.add(img_id)

if (len(images) >= 2000):
break

train_dir_class = os.path.join(train_dir, category)
test_dir_class = os.path.join(test_dir, category)

os.makedirs(train_dir_class, exist_ok= )
os.makedirs(test_dir_class, exist_ok=True)

image_list = list(images) [:2000]
training_images = image_list[:1500]
test_images = image_list[1500:]

for img_id in training_images:
img_info = coco.loadImgs(img_id) [@]
save_image(img_info, category, train_dir)

~ img_id in test_images:
img_info = coco.loadImgs(img_id) [@]

save_image(img_info, category, test_dir)

return




if __name__ ==

ann_file = 'instances_train2014.json'
image_dir = 'train2014'
output_dir = 'final_dataset/'

coco = 0(ann_file)

os.makedirs(output_dir, exist_ok=True)
train_dir = os.path.join(output_dir, ‘'train')
test_dir = os.path.join(output_dir, 'test')
os.makedirs(train_dir, exist_o rue)
os.makedirs(test_dir, exist ue)

classes_chosen = ['airplane', 'bus', 'cat', 'dog', 'pizza'l

fig, ax = plt.subplots(5, 3, figsize = (10, 8))
fig.suptitle('Example images from COCO dataset subset')

extract_images(classes_chosen, train_dir, test_dir)
for i in range(len(classes_chosen)):

class_folder = os.path.join(train_dir, classes_chosen[il)
example_images = random.sample(os.listdir(class_folder), 3)

for j in range(3):
ax[i] [j].imshow(Image.open(os.path.join(class_folder, example_images[jl)))
ax[i] [j].set_title(classes_chosen[i])
ax[il [j].axis('off")

plt.tight_layout(rect = [0, @, 1, 0.95])
plt.show()

Image 3.1: Code block for creation of dataset

This code also gives us the 5 x 3 table of example images from the subset, showing 3 images
for each of the five classes as shown below:



Example images from COCO dataset subset

airplane airplane airplane

bus

Image 3.2: 5 x 3 table showing example images from dataset

Once we have the dataset is created, we modify the code we had for BMENet
from earlier with the SkipBlock and add a training and evaluation function as in
HW4. Below is the code for this section:



CustomDataset(torch.utils.data.Dataset):

BMEnet (nn.Module):

training_function(train_data_loader, net):
testing_function(test_loader, net):

plot_training_loss(training_loss_list):

if __name__ == '__main__":

classes = ['airplane', 'bus', 'cat', ‘'dog', ‘'pizza'l
transform = transforms.Compose( [
transforms.Resize((32, 32)),
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,)
1)

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

training_data = CustomDataset(os.path.join('coco_dataset/', 'train'), classes, transform=transform)
train_loader = DatalLoader(training_data, batch_size = 16, shuffle = )

testing_data = CustomDataset(os.path.join('coco_da /', 'test'), classes, transform=transform)
test_loader = DatalLoader(testing_data, batch_size = 16, shuffle = e)

net = BMEnet()
print('\n"')

training_loss_list, param_count = training_function(train_loader, net)

print('Number of parameters: ', param_count)

plot_training_loss(training_loss_list)
print('\n')
accuracy = testing_function(test_loader, net)

Image 3.3: Code block for training and evaluation of skipBlock on COCO

Upon implementing this code, we obtain the following plots:

Training Loss Curve
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Image 3.3: Loss curve of training on MS-COCO subset



Test Accuracy: 63.00%

Per-class accuracy:
Prediction accuracy for airplane : 69.40%

Prediction accuracy for bus : 78.40%
Prediction accuracy for cat : 59.80%
Prediction accuracy for dog : 32.00%
Prediction accuracy for pizza : 75.40%
Image 3.4: Terminal output of evaluation on MS-COCO subset
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Overall Accuracy: 63%



Class Accuracy
Airplane 69.40%
Bus 78.40%
Cat 59.80%
Dog 32.00%
Pizza 75.40%

Table 3: 5x1 table showing per-class accuracies

Observations

As we observe from the table of accuracies, overall accuracy, loss curve, and
confusion matrix, the BMENet model performs fairly well on the COCO
dataset. Although I end up running this model only for 6 epochs due to
computational bottlenecks, it still has an overall testing accuracy of 63% on
2500 unseen images.

This relatively high accuracy could be attributed to the presence of a deep
neural network with skip connections. As mentioned multiple times so far in
this document, the presence of skip connections allow gradients to flow through
the layers a lot more easily. The vanishing gradient problem is solved, which
results in deeper layers suffering from unstable learning and low accuracy. Skip
connections also help in retaining spatial and textural information from earlier
layers. This is also why it has a classification accuracy of over ~70% for three
out of the five classes.

Upon looking deeply at the confusion matrix, we also notice that a common
misclassification occurs between dog and cat. This is easy to understand as both
dogs and cats share several common features (e.g.: eyes, nose, tail, etc.) This
means that the model would have perhaps performed better had we given it
classes that were not as similar to one another. The model’s loss curve also
shows that the loss was continually decreasing and had not stagnated yet. This



means that if we had more computational power and had run the model for more
number of epochs, this would have also resulted in a better accuracy. I believe
even data augmentation to increase size and robustness of dataset would have
helped in solving the {dog, cat} misclassification problem.

Finally, we conclude that stride=2 downsampling and skip connections aided
the BMENet model in preserving spatial information and avoiding the vanishing
gradient problem, resulting in a relatively high classification accuracy which
could have been further enhanced given a more robust dataset and more
computational power.



SOURCE CODE

(1) Task1.py:

import random

import numpy

import torch

import os, sys

from DLStudio import *

import torch.nn as nn

import torch.nn.functional as F
import seaborn as sns

import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix
import copy

import torch.optim as optim
import time

import logging

class BMEnet(nn.Module):

def __init_ (self, num_classes = 5, skip_connections = True, depth = 8):

super(BMEnet, self).__init_ ()

self.depth = depth

self.conv = nn.Conv2d(3, 64, 3, padding=1)

self.skip64_arr = nn.ModuleList()

for i in range(self.depth):

self.skip64_arr.append(BMEnet.SkipBlock(64, 64,

skip_connections=skip_connections))

self.skip64to128ds = BMEnet.SkipBlock(64, 128, downsample=True,
skip_connections=skip_connections )

self.skip128_arr = nn.ModuleList()
for i in range(self.depth):
self.skip128_arr.append(BMEnet.SkipBlock(128, 128,
skip_connections=skip_connections))
self.skip128t0256ds = BMEnet.SkipBlock(128, 256, downsample=True,
skip_connections=skip_connections )
self.skip256_arr = nn.ModuleList()
for i in range(self.depth):
self.skip256_arr.append(BMEnet.SkipBlock(256, 256,
skip_connections=skip_connections))

num_ds = 2




self.fcl nn.Linear( (32 // (2 sk num_ds)) * (32 //(2 %k num_ds))
256, 1000)
self.fc2 nn.Linear(1000, 10)

def forward(self, x):
x = nn.functional.relu(self.conv(x))
for skip64 in self.skip64_arr:
x = skip64(x)
x = self.skip64to128ds(x)
for skipl28 in self.skipl28_arr:
x = skip128(x)
x = self.skip128t0256ds(x)
for skip256 in self.skip256_arr:
x = skip256(x)
X = x.view( x.shape[0], - 1)
x = nn.functional.relu(self.fcl(x))
x = self.fc2(x)
return x

class SkipBlock(nn.Module):

def __init_ (self, in_ch, out_ch, downsample=False, skip_connections=True):
super(BMEnet.SkipBlock, self).__init_ ()
self.downsample = downsample
self.skip_connections = skip_connections
self.in_ch = in_ch
self.out_ch = out_ch
self.convol = nn.Conv2d(in_ch, in_ch, 3, stride=1, padding=1)
self.convo2 = nn.Conv2d(in_ch, out_ch, 3, stride=1, padding=1)
self.bnl = nn.BatchNorm2d(in_ch)
self.bn2 = nn.BatchNorm2d(out_ch)
self.in2out = nn.Conv2d(in_ch, out_ch, 1)
if downsample:

self.downsamplerl = nn.Conv2d(in_ch, in_ch, 1, stride=2)
self.downsampler2 = nn.Conv2d(out_ch, out_ch, 1, stride=2)

forward(self, x):
identity = x
out = self.convol(x)
out = self.bnl(out)
out = nn.functional.relu(out)
out = self.convo2(out)
out = self.bn2(out)
out = nn.functional.relu(out)
if self.downsample:
identity = self.downsamplerl(identity)
out = self.downsampler2(out)
if self.skip_connections:




if self.in_ch !'= self.out_ch:
identity = self.in2out(identity)

out = out + identity

return out

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

dls = DLStudio(
dataroot = "./data/CIFAR-10/",
image_size = [32,32],
path_saved_model = "./saved_model",
momentum = 0.9,
learning_rate = le-4,
epochs = 4,
batch_size = 16,
classes =

('‘plane','car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', "truck'),
use_gpu = True,

if _name__ == '_main__
bme_net = BMEnet(dls, skip_connections=True, depth=8).to(device)

dls.load_cifar_10_dataset()

number_of_learnable_params = sum(p.numel() for p in bme_net.parameters() if
p.requires_grad)

print("\n\nThe number of learnable parameters in the model: %d" %
number_of_learnable_params)

dls.run_code_for_training(bme_net, display_images=False)

dls.run_code_for_testing(bme_net, display_images=False)

(2) Create_dataset.py (for task2)’

from pycocotools.coco import COCO
import os

from PIL import Image

import torchvision

import random

import matplotlib.pyplot as plt




def save_image(img_info, category_name, sub_directory):
img_path = os.path.join(image_dir, img_info['file_name'])
save_dir = os.path.join(sub_directory, category_name)

os.makedirs(save_dir, exist_ok=True)
img = Image.open(img_path).resize((64, 64))
img.save(os.path.join(save_dir, img_info['file_name']))

def extract_images(cat_names, train_dir, test_dir, min_instances=1,
max_instances=10):

for category in cat_names:
cat_ids = coco.getCatIds(catNms=[category]l)[0]
img_ids = coco.getImgIds(catIds=[cat_ids])

extracted = 0

images = set()

for img_id in img_ids:
img_info = coco.loadImgs(img_id) [0]
ann_ids = coco.getAnnIds(imgIds=img_id)
anns = coco. loadAnns(ann_ids)

obj_counts = {}

for ann in anns:
obj_category = coco.loadCats(ann['category_id']) [@]['name']
obj_counts[obj_category]l = obj_counts.get(obj_category, 0) + 1

if obj_counts.get(category, @) >= min_instances:
images.add(img_id)

if (len(images) >= 2000):
break

train_dir_class = os.path.join(train_dir, category)
test_dir_class = os.path.join(test_dir, category)

os.makedirs(train_dir_class, exist_ok=True)
os.makedirs(test_dir_class, exist_ok=True)

image_list = list(images) [:2000]
training_images = image_list[:1500]
test_images = image_list[1500: ]

for img_id in training_images:
img_info = coco.loadImgs(img_id) [0]
save_image(img_info, category, train_dir)




for img_id in test_images:
img_info = coco.loadImgs(img_id) [0]
save_image(img_info, category, test_dir)

return

if _name__ == '_main__':

ann_file = 'instances_train2014.json'
image_dir = 'train2014'

output_dir = 'final_dataset/'

coco = COCO(ann_file)

os.makedirs(output_dir, exist_ok= )
train_dir = os.path.join(output_dir, 'train')
test_dir = os.path.join(output_dir, 'test')
os.makedirs(train_dir, exist_ok= )
os.makedirs(test_dir, exist_ok= )

classes_chosen = ['airplane', 'bus', 'cat', 'dog', 'pizza'l
fig, ax = plt.subplots(5, 3, figsize = (10, 8))
fig.suptitle('Example images from COCO dataset subset')
extract_images(classes_chosen, train_dir, test_dir)

for i in range(len(classes_chosen)):

class_folder = os.path.join(train_dir, classes_chosen[il)
example_images = random.sample(os.listdir(class_folder), 3)

for j in range(3):
ax[i] [j].imshow(Image.open(os.path.join(class_folder,
example_images[j1)))
ax[il [j].set_title(classes_chosen[i])
ax[i]l[j].axis('off")

plt.tight_layout(rect = [0, 0, 1, 0.95])
plt.show()

(3) Task2.py (fortraining and eval on COCO)

from pycocotools.coco import COCO
import os
import numpy




from PIL import Image

import random

import torch

from torchvision import datasets, transforms
from torch.utils.data import Dataloader, Subset
import matplotlib.pyplot as plt

import time

from sklearn.metrics import confusion_matrix, accuracy_score
import torch.nn as nn

import torch.nn.functional as F

import seaborn as sns

import pandas as pd

from DLStudio import *

class CustomDataset(torch.utils.data.Dataset):

def __init__ (self, root, class_names, transform=None):
self.root = root
self.class_names = class_names
self.transform = transform
self.class_to_index = {}
self.image_paths = []
self.labels = []

index = 0
for class_ in class_names:
self.class_to_index[class_] = index

class_dir = os.path.join(root, class_)
if (os.path.exists(class_dir)):
for image in os.listdir(class_dir):
self.image_paths.append(os.path.join(class_dir, image))
self.labels.append(index)
index += 1

_ len__(self):

return len(self.image_paths)

__getitem__ (self, index):
img_path = self.image_paths[index]
label = self.labels[index]
image = Image.open(img_path).convert("RGB")
if self.transform:
image = self.transform(image)
return image, label

class BMEnet(nn.Module):




def __init_ (self, num_classes = 5, skip_connections = True, depth = 8):

super(BMEnet, self).__init_ ()

self.depth = depth

self.conv = nn.Conv2d(3, 64, 3, padding=1)

self.skip64_arr = nn.ModuleList()

for i in range(self.depth):

self.skip64_arr.append(BMEnet.SkipBlock(64, 64,

skip_connections=skip_connections))

self.skip64to128ds = BMEnet.SkipBlock(64, 128, downsample=True,
skip_connections=skip_connections )

self.skip128_arr = nn.ModuleList()
for i in range(self.depth):
self.skip128_arr.append(BMEnet.SkipBlock(128, 128,
skip_connections=skip_connections))
self.skip128t0256ds = BMEnet.SkipBlock(128, 256, downsample=True,
skip_connections=skip_connections )
self.skip256_arr = nn.ModuleList()
for i in range(self.depth):
self.skip256_arr.append(BMEnet.SkipBlock(256, 256,
skip_connections=skip_connections))

num_ds = 2

self.fcl = nn.Linear( (32 // (2 sk num_ds)) * (32 //(2 %k num_ds))
256, 1000)

self.fc2 = nn.Linear(1000, 10)

def forward(self, x):
x = nn.functional.relu(self.conv(x))
for skip64 in self.skip64_arr:
x = skip64(x)
x = self.skip64to0128ds(x)
for skipl28 in self.skipl128_arr:
x = skip128(x)
x = self.skip128t0256ds(x)
for skip256 in self.skip256_arr:
X = skip256(x)
X = x.view( x.shape[0], - 1)
x = nn.functional.relu(self.fcl(x))
x = self.fc2(x)
return x

class SkipBlock(nn.Module):

def __init_ (self, in_ch, out_ch, downsample=False, skip_connections=True):
super(BMEnet.SkipBlock, self).__init_ ()
self.downsample = downsample
self.skip_connections = skip_connections
self.in_ch = in_ch
self.out_ch = out_ch




.convol nn.Conv2d(in_ch, in_ch, 3, stride=1, padding=1)
. convo2 nn.Conv2d(in_ch, out_ch, 3, stride=1, padding=1)
.bnl = nn.BatchNorm2d(in_ch)
.bn2 = nn.BatchNorm2d(out_ch)
.in2out = nn.Conv2d(in_ch, out_ch, 1)

if downsample:

.downsamplerl = nn.Conv2d(in_ch, in_ch, 1, stride=2)
.downsampler2 = nn.Conv2d(out_ch, out_ch, 1, stride=2)

forward(self, x):
identity = x
out = .convol(x)
out = .bnl(out)
out = nn.functional.relu(out)
out .convo2(out)
out .bn2(out)
out = nn.functional.relu(out)
if .downsample:
identity = .downsamplerl(identity)
out = .downsampler2(out)
.skip_connections:
if .in_ch != .out_ch:
identity = .in2out(identity)

out = out + identity

return out

training_function(train_data_loader, net):
net = net.to(device)
param_count = 0
for param in net.parameters():
if (param.requires_grad):
param_count += param.numel()

criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(net.parameters(), 1lr =

epochs = 1
training_loss_list = []
for epoch in range(epochs):
running_Tloss = 0.0
for i, data in enumerate(train_data_loader):
inputs, labels = data
inputs = inputs.to(device)
labels = labels.to(device)




optimizer.zero_grad()

outputs = net(inputs)

loss = criterion(outputs, labels)
loss.backward()

optimizer.step()

running_loss += loss.item()

epoch_loss = running_loss / len(train_data_loader)

training_loss_list.append(epoch_1loss)

print(f'epoch: {epoch + 1}, loss: {epoch_loss:.4f}")
print('\n")

print('Training complete')
return training_loss_1list, param_count

testing_function(test_loader, net):

net.eval()

predictions_list = []

labels_list = []

misclass_list = []

with torch.no_grad():

for inputs, labels in test_loader:

inputs = inputs.to(device)
labels = labels.to(device)
outputs = net(inputs)

prediction = outputs.argmax(dim = 1)
fin_pred = prediction.cpu().tolist()
fin_label = labels.cpu().tolist()
predictions_list += fin_pred
labels_list += fin_label

accuracy = accuracy_score(labels_list, predictions_list) * 100

print('\n")
print(f'Validation accuracy: {accuracy:.2f}%")
print('\n")

conf_mat = confusion_matrix(labels_1list, predictions_list)

plt.figure(figsize = (8, 6))

sns.heatmap(conf_mat, annot = True, fmt = 'd', cmap = 'Blues', xticklabels =
classes, yticklabels = classes)

plt.xlabel('Predicted class"')

plt.ylabel('Actual')

plt.title('Confusion Matrix')

plt.show()

return accuracy

def plot_training_loss(training_loss_list):




.figure(figsize = (8, 6))

= range(0, 6)
training_Tloss_list
.plot(x, y)
.xlabel('Epochs")
.ylabel('Loss")
.title('Training loss curve')
.show()

return

if _name__ == '_main__

classes = ['airplane', 'bus', 'cat', 'dog', 'pizza'l

transform = transforms.Compose( [
transforms.Resize((32, 32)),
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))

1)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
training_data = CustomDataset(os.path.join('coco_dataset/', 'train'), classes,

transform=transform)
train_loader = Dataloader(training_data, batch_size = 16, shuffle = True)

testing_data = CustomDataset(os.path.join('coco_dataset/', 'test'), classes,
transform=transform)
test_loader = Dataloader(testing_data, batch_size = 16, shuffle = True)

net = BMEnet()
print('\n")
training_loss_list, param_count = training_function(train_loader, net)

print('Number of parameters: ', param_count)
plot_training_loss(training_loss_list)
print('\n")

accuracy = testing_function(test_loader, net)




