
BME646 and ECE60146: Homework 6

Manas V Shetty

Question 1: observations on 1 pixel kernel

Using a 1×1 kernel for convolution, as seen in Line (I) in slide 16, is a common practice in deep learning,

especially for changing the number of channels without affecting the spatial dimensions of the image. This is

useful for adjusting feature maps to match the expected input size for subsequent layers. However, in Lines (K)

and (L) in slide 16, the 1×1 convolution is used for downsampling by setting the stride to 2, effectively reducing

the spatial resolution by half. Unlike standard convolutions that extract spatial features, these 1×1 convolutions

with stride 2 act as simple sampling layers, selecting alternate pixels and reducing resolution while adjusting

channels.

Instead of using 1×1 convolutions with stride 2 for downsampling, an alternative approach is to use MaxPooling

(torch.nn.MaxPool2d(2,2)), which also reduces spatial size by half but selects the most prominent feature in

each 2×2 patch, potentially improving feature retention. Another option is using a standard convolution with a

kernel size of 3×3 and a stride of 2, which can provide additional feature extraction while reducing resolution. A

comparison between these approaches could involve evaluating accuracy and loss on a test dataset

Question 2: BMENet with maxpool

from sklearn.metrics import confusion_matrix

import seaborn as sns

import matplotlib.pyplot as plt

import numpy as np

import pandas as pd

def main():

 dls = DLStudio(

 dataroot="./data/CIFAR-10/",

 image_size=[32, 32],

 path_saved_model="./saved_model_model.pt",

 momentum=0.9,

 learning_rate=1e-4,

 epochs=6,

 batch_size=4,

 classes=('plane','car','bird','cat','deer','dog','frog','horse','ship','truck'),

 use_gpu=True

)

 print("Experiment 1: Original BMEnet with skip connections (convolution-based downsampling)")

 model1 = dls.BMEnet(dls, skip_connections=True, depth=8)

 model1.load_cifar_10_dataset()

 params1 = sum(p.numel() for p in model1.parameters() if p.requires_grad)

https://www.gradescope.com/courses/951867/assignments/5804619/submissions/311153131#Question_1-rubric

 print("Learnable parameters (Original BMEnet):", params1)

 model1.run_code_for_training(model1, display_images=False)

 model1.run_code_for_testing(model1, display_images=False)

 print("Experiment 2: BMEnet variant with maxpool downsampling")

 model2 = BMEnetMaxPool(dls, skip_connections=True, depth=8)

 model2.load_cifar_10_dataset()

 params2 = sum(p.numel() for p in model2.parameters() if p.requires_grad)

 print("Learnable parameters (BMEnet with MaxPool downsampling):", params2)

 model2.run_code_for_training(model2, display_images=False)

 model2.run_code_for_testing(model2, display_images=False)

if __name__ == '__main__':

 main()

2.1 Train loss curve

https://www.gradescope.com/courses/951867/assignments/5804619/submissions/311153131#Question_2.1-rubric

2.2 Confusion Matrix

Question 3: BMENet with stride

3.1 Train loss curve

https://www.gradescope.com/courses/951867/assignments/5804619/submissions/311153131#Question_2.2-rubric
https://www.gradescope.com/courses/951867/assignments/5804619/submissions/311153131#Question_3.1-rubric

3.2 Confusion Matrix

Question 4 Table1: Overall accuracy of 2 models

a. BMENet with maxpool

b. BMENet with stride

Question 5 Table2: Per class accuracy of 2 models

a. BMENet with maxpool

https://www.gradescope.com/courses/951867/assignments/5804619/submissions/311153131#Question_3.2-rubric
https://www.gradescope.com/courses/951867/assignments/5804619/submissions/311153131#Question_4-rubric
https://www.gradescope.com/courses/951867/assignments/5804619/submissions/311153131#Question_5-rubric

b. BMENet with stride

Question 6: Observations of Maxpool vs Stride

The comparison between BMEnet with MaxPool and BMEnet with Stride-based downsampling reveals

significant differences in performance. The loss behavior in the MaxPool-based model shows a high initial loss

that quickly drops but then plateaus around 2.3, indicating that the model struggles to learn meaningful features.

In contrast, the Stride-based BMEnet exhibits a smooth and steady decline in loss, reaching values close to zero,

which suggests that it is effectively learning from the dataset.

In terms of overall accuracy, the MaxPool-based BMEnet achieves only 10% accuracy, which is equivalent to

random guessing on the 10-class CIFAR-10 dataset. On the other hand, the Stride-based BMEnet reaches 79%

accuracy, demonstrating that it successfully learns to differentiate between different classes. This vast difference

in performance indicates that the choice of downsampling method plays a crucial role in network effectiveness.

A closer look at the confusion matrices further supports this conclusion. In the MaxPool-based BMEnet, the

model misclassifies almost everything as "horse" (100% accuracy for horse, 0% for all other classes), indicating

a severe failure in generalization. In contrast, the Stride-based BMEnet produces a more balanced distribution

of predictions, with per-class accuracy ranging between 53% and 91%, signifying much better feature extraction

and class separation.

The key reason behind this difference lies in the effectiveness of downsampling methods. MaxPooling retains

dominant features but often loses fine-grained spatial details, which are essential for differentiating visually

similar objects. Stride-based convolutions, however, preserve spatial structure better while learning optimal

feature representations, leading to more meaningful activations in deeper layers.

Stride-based downsampling is clearly the superior approach for BMEnet in this case. The MaxPool-based model

fails to learn effectively, resulting in almost random predictions. In contrast, Stride-based downsampling

improves gradient flow, maintains spatial information, and significantly boosts accuracy. Based on these

findings, stride-based downsampling should be preferred over max pooling in BMEnet for CIFAR-10

classification.

https://www.gradescope.com/courses/951867/assignments/5804619/submissions/311153131#Question_6-rubric

Question 7: Skip Connections with MSCOCO

7.1 5x3 images

import random

import matplotlib.pyplot as plt

import torchvision.transforms as transforms

from PIL import Image

def plot_images_from_coco(root_dir, class_names, transform=None):

 plt.figure(figsize=(12, 10))

 image_count = 0

 for class_name in class_names:

 class_folder = os.path.join(root_dir, class_name)

 image_paths = glob.glob(f"{class_folder}/*.jpg")

 sampled_images = random.sample(image_paths, 3)

 for img_path in sampled_images:

 image = Image.open(img_path).convert("RGB")

 image_count += 1

 plt.subplot(5, 3, image_count)

 plt.imshow(image)

 plt.title(class_name)

 plt.axis('off')

 plt.suptitle("5x3 Grid - 3 Images per Class", fontsize=16)

 plt.tight_layout()

 plt.savefig("/content/drive/MyDrive/5x3_coco_images.png")

 plt.show()

dataset_root_dir = "/content/drive/MyDrive/coco_subset/train2017"

plot_images_from_coco(root_dir=dataset_root_dir, class_names=SELECTED_CLASSES, transform=False)

https://www.gradescope.com/courses/951867/assignments/5804619/submissions/311153131#Question_7.1-rubric

7.2 train loss curve

from sklearn.metrics import confusion_matrix

import seaborn as sns

import numpy as np

import matplotlib.pyplot as plt

def test_model(model, test_loader, class_names):

 device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

 model.to(device)

 model.eval()

 all_preds, all_labels = [], []

 with torch.no_grad():

 for images, labels in test_loader:

 images, labels = images.to(device), labels.to(device)

https://www.gradescope.com/courses/951867/assignments/5804619/submissions/311153131#Question_7.2-rubric

 outputs = model(images)

 _, preds = torch.max(outputs, 1)

 all_preds.extend(preds.cpu().numpy())

 all_labels.extend(labels.cpu().numpy())

 conf_matrix = confusion_matrix(all_labels, all_preds)

 plt.figure(figsize=(8,6))

 sns.heatmap(conf_matrix, annot=True, fmt="d", cmap="Blues", xticklabels=class_names,

yticklabels=class_names)

 plt.xlabel("Predicted")

 plt.ylabel("Actual")

 plt.title("Confusion Matrix - MS-COCO")

 plt.savefig("/content/drive/MyDrive/conf_matrix_coco.png")

 plt.show()

 class_correct = [0] * len(class_names)

 class_total = [0] * len(class_names)

 for i in range(len(all_labels)):

 label = all_labels[i]

 class_correct[label] += (all_preds[i] == label)

 class_total[label] += 1

 print("\nPer-Class Accuracy:")

 for i, class_name in enumerate(class_names):

 accuracy = 100 * class_correct[i] / class_total[i] if class_total[i] > 0 else 0

 print(f"{class_name}: {accuracy:.2f}%")

 overall_accuracy = 100 * np.sum(class_correct) / np.sum(class_total)

 print(f"\nOverall Accuracy: {overall_accuracy:.2f}%")

model = BMEnetCOCO(num_classes=5, depth=25, skip_connections=True)

loss_tally, accuracy_tally = train_model(model, train_loader, num_epochs=30, learning_rate=1e-3)

plt.figure(figsize=(10,5))

plt.plot(loss_tally, label="Loss")

plt.xlabel("Epochs")

plt.ylabel("Loss")

plt.title("Training Loss Curve")

plt.legend()

plt.savefig("/content/drive/MyDrive/loss_curve_coco.png")

plt.show()

test_model(model, test_loader, SELECTED_CLASSES)

7.3 conf matrix 5x5

7.4 overall accuracy

https://www.gradescope.com/courses/951867/assignments/5804619/submissions/311153131#Question_7.3-rubric
https://www.gradescope.com/courses/951867/assignments/5804619/submissions/311153131#Question_7.4-rubric

7.5 per class accuracy 5x1 table

7.6 observations

The results from Skip Connections on the MS-COCO dataset highlight the impact of skip connections on

training dynamics and classification performance. The training loss curve shows a sharp drop in the initial

epochs, indicating rapid learning at the beginning. However, after about 10 epochs, the loss reduction slows

down, and minor fluctuations appear, suggesting that while the model is converging, further optimization—such

as tuning the learning rate or applying regularization—could improve stability.

In terms of overall accuracy, the model achieves 50.25%, which is moderate given the complexity of the MS-

COCO dataset. This suggests that skip connections are helping preserve information across layers, allowing the

network to learn effectively. However, the accuracy indicates that the model still struggles with certain object

classes, possibly due to overlapping features or insufficient discriminative power in deeper layers.

The confusion matrix provides more insights into per-class performance. Certain classes, such as "Cat" (103

correct predictions) and "Pizza" (102 correct predictions), are well learned by the model, indicating that their

features are distinct and easily recognizable. However, classes like "Bus" and "Dog" suffer from significant

misclassification, likely due to visual similarities with other classes or feature extraction limitations.

The per-class accuracy results show variation in performance across different categories. The best-performing

class is "Pizza" (66.67%), likely because its distinct shape and color make it easier to classify. On the other

hand, "Dog" has the lowest accuracy (28.81%), suggesting that the model struggles to distinguish it from

similar animals like cats. Other categories, such as "Airplane" (61.86%), "Bus" (45.50%), and "Cat" (55.98%),

show moderate accuracy, indicating that while the model extracts meaningful features, there is still room for

improvement in class differentiation.

Skip connections enhance gradient flow and improve feature retention, making training more stable. However,

the 50.25% accuracy and class-wise inconsistencies suggest that the model struggles with specific object

categories. To improve performance, further optimizations such as hyperparameter tuning, advanced data

augmentation, or the integration of attention mechanisms could be explored.

https://www.gradescope.com/courses/951867/assignments/5804619/submissions/311153131#Question_7.5-rubric
https://www.gradescope.com/courses/951867/assignments/5804619/submissions/311153131#Question_7.6-rubric

Source Code

a. hw6_1.py

from google.colab import drive

drive.mount('/content/drive')

import os

os.listdir("/content/drive/MyDrive/DLStudio")

!pip install pymsgbox

import sys

sys.path.append('/content/drive/MyDrive/DLStudio/DLStudio')

import torch

import torch.nn as nn

import torch.nn.functional as F

import matplotlib.pyplot as plt

from DLStudio import DLStudio

class SkipBlockMaxPool(nn.Module):

 def __init__(self, in_ch, out_ch, downsample=False, skip_connections=True):

 super(SkipBlockMaxPool, self).__init__()

 self.downsample = downsample

 self.skip_connections = skip_connections

 self.in_ch = in_ch

 self.out_ch = out_ch

 self.convo1 = nn.Conv2d(in_ch, in_ch, kernel_size=3, stride=1, padding=1)

 self.convo2 = nn.Conv2d(in_ch, out_ch, kernel_size=3, stride=1, padding=1)

 self.bn1 = nn.BatchNorm2d(in_ch)

 self.bn2 = nn.BatchNorm2d(out_ch)

 self.in2out = nn.Conv2d(in_ch, out_ch, kernel_size=1)

 if self.downsample:

 self.maxpool = nn.MaxPool2d(kernel_size=2, stride=2)

 else:

 self.maxpool = None

 def forward(self, x):

 identity = x

 out = self.convo1(x)

 out = self.bn1(out)

 out = F.relu(out)

 out = self.convo2(out)

 out = self.bn2(out)

 out = F.relu(out)

 if self.downsample and self.maxpool is not None:

 identity = self.maxpool(identity)

 out = self.maxpool(out)

 if self.skip_connections:

 if (self.in_ch == self.out_ch) and (not self.downsample):

 out = out + identity

 elif (self.in_ch != self.out_ch) and (not self.downsample):

 identity = self.in2out(identity)

 out = out + identity

 elif (self.in_ch != self.out_ch) and self.downsample:

 out = out + torch.cat((identity, identity), dim=1)

 return out

class BMEnetMaxPool(DLStudio.BMEnet):

 def __init__(self, dl_studio, skip_connections=True, depth=8):

 super(BMEnetMaxPool, self).__init__(dl_studio)

 self.dl_studio = dl_studio

 self.depth = depth

 image_size = dl_studio.image_size

 num_ds = 0

 self.conv = nn.Conv2d(3, 64, kernel_size=3, padding=1)

 self.skip64_arr = nn.ModuleList()

 for i in range(self.depth):

 self.skip64_arr.append(DLStudio.BMEnet.SkipBlock(64, 64, skip_connections=skip_connections))

 self.skip64to128ds = SkipBlockMaxPool(64, 128, downsample=True,

skip_connections=skip_connections)

 num_ds += 1

 self.skip128_arr = nn.ModuleList()

 for i in range(self.depth):

 self.skip128_arr.append(DLStudio.BMEnet.SkipBlock(128, 128, skip_connections=skip_connections))

 self.skip128to256ds = SkipBlockMaxPool(128, 256, downsample=True,

skip_connections=skip_connections)

 num_ds += 1

 self.skip256_arr = nn.ModuleList()

 for i in range(self.depth):

 self.skip256_arr.append(DLStudio.BMEnet.SkipBlock(256, 256, skip_connections=skip_connections))

 fc_in_features = (image_size[0] // (2 ** num_ds)) * (image_size[1] // (2 ** num_ds)) * 256

 self.fc1 = nn.Linear(fc_in_features, 1000)

 self.fc2 = nn.Linear(1000, 10)

 def forward(self, x):

 x = F.relu(self.conv(x))

 for block in self.skip64_arr:

 x = block(x)

 x = self.skip64to128ds(x)

 for block in self.skip128_arr:

 x = block(x)

 x = self.skip128to256ds(x)

 for block in self.skip256_arr:

 x = block(x)

 x = x.view(x.size(0), -1)

 x = F.relu(self.fc1(x))

 x = self.fc2(x)

 return x

 def load_cifar_10_dataset(self):

 self.dl_studio.load_cifar_10_dataset()

from sklearn.metrics import confusion_matrix

import seaborn as sns

import matplotlib.pyplot as plt

import numpy as np

import pandas as pd

def main():

 dls = DLStudio(

 dataroot="./data/CIFAR-10/",

 image_size=[32, 32],

 path_saved_model="./saved_model_model.pt",

 momentum=0.9,

 learning_rate=1e-4,

 epochs=6,

 batch_size=4,

 classes=('plane','car','bird','cat','deer','dog','frog','horse','ship','truck'),

 use_gpu=True

)

 print("Experiment 1: Original BMEnet with skip connections (convolution-based downsampling)")

 model1 = dls.BMEnet(dls, skip_connections=True, depth=8)

 model1.load_cifar_10_dataset()

 params1 = sum(p.numel() for p in model1.parameters() if p.requires_grad)

 print("Learnable parameters (Original BMEnet):", params1)

 model1.run_code_for_training(model1, display_images=False)

 model1.run_code_for_testing(model1, display_images=False)

 print("Experiment 2: BMEnet variant with maxpool downsampling")

 model2 = BMEnetMaxPool(dls, skip_connections=True, depth=8)

 model2.load_cifar_10_dataset()

 params2 = sum(p.numel() for p in model2.parameters() if p.requires_grad)

 print("Learnable parameters (BMEnet with MaxPool downsampling):", params2)

 model2.run_code_for_training(model2, display_images=False)

 model2.run_code_for_testing(model2, display_images=False)

if __name__ == '__main__':

 main()

b. hw6_2.py

from google.colab import drive

drive.mount('/content/drive')

import os

os.listdir("/content/drive/MyDrive/DLStudio")

!pip install pymsgbox

import sys

sys.path.append('/content/drive/MyDrive/DLStudio/DLStudio')

!pip install pycocotools

!pip install torchvision

import os

DATA_DIR = "/content/drive/MyDrive/coco_subset"

TRAIN_DIR = os.path.join(DATA_DIR, "train2017")

VAL_DIR = os.path.join(DATA_DIR, "val2017")

ANN_DIR = os.path.join(DATA_DIR, "annotations")

os.makedirs(TRAIN_DIR, exist_ok=True)

os.makedirs(VAL_DIR, exist_ok=True)

os.makedirs(ANN_DIR, exist_ok=True)

print(f"Dataset will be stored in: {DATA_DIR}")

!wget http://images.cocodataset.org/annotations/annotations_trainval2017.zip -P /content/

!unzip /content/annotations_trainval2017.zip -d /content/

!mv /content/annotations /content/drive/MyDrive/coco_subset/

from pycocotools.coco import COCO

import requests

import os

import json

DATA_DIR = "/content/drive/MyDrive/coco_subset"

TRAIN_DIR = os.path.join(DATA_DIR, "train2017")

VAL_DIR = os.path.join(DATA_DIR, "val2017")

ANN_DIR = os.path.join(DATA_DIR, "annotations")

SELECTED_CLASSES = ['airplane', 'bus', 'cat', 'dog','pizza']

NUM_TRAIN = 1500

NUM_TEST = 500

train_coco = COCO(os.path.join(ANN_DIR, "instances_train2017.json"))

val_coco = COCO(os.path.join(ANN_DIR, "instances_val2017.json"))

cat_to_id = {cat: train_coco.getCatIds(catNms=[cat])[0] for cat in SELECTED_CLASSES}

def download_coco_images(coco, save_dir, num_images_per_class):

 os.makedirs(save_dir, exist_ok=True)

 for class_name, class_id in cat_to_id.items():

 class_folder = os.path.join(save_dir, class_name)

 os.makedirs(class_folder, exist_ok=True)

 img_ids = coco.getImgIds(catIds=class_id)[:num_images_per_class]

 for img_id in img_ids:

 img_info = coco.loadImgs(img_id)[0]

 img_url = img_info['coco_url']

 img_path = os.path.join(class_folder, img_info['file_name'])

 if not os.path.exists(img_path):

 img_data = requests.get(img_url).content

 with open(img_path, 'wb') as f:

 f.write(img_data)

 print(f"Downloaded {num_images_per_class} images for {class_name} into {class_folder}")

download_coco_images(train_coco, TRAIN_DIR, NUM_TRAIN)

download_coco_images(val_coco, VAL_DIR, NUM_TEST)

import random

import matplotlib.pyplot as plt

import torchvision.transforms as transforms

from PIL import Image

import glob

def plot_images_from_coco(root_dir, class_names, transform=None):

 plt.figure(figsize=(12, 10))

 image_count = 0

 for class_name in class_names:

 class_folder = os.path.join(root_dir, class_name)

 image_paths = glob.glob(f"{class_folder}/*.jpg")

 sampled_images = random.sample(image_paths, 3)

 for img_path in sampled_images:

 image = Image.open(img_path).convert("RGB")

 image_count += 1

 plt.subplot(5, 3, image_count)

 plt.imshow(image)

 plt.title(class_name)

 plt.axis('off')

 plt.suptitle("5x3 Grid - 3 Images per Class", fontsize=16)

 plt.tight_layout()

 plt.savefig("/content/drive/MyDrive/5x3_coco_images.png")

 plt.show()

dataset_root_dir = "/content/drive/MyDrive/coco_subset/train2017"

plot_images_from_coco(root_dir=dataset_root_dir, class_names=SELECTED_CLASSES, transform=False)

import torchvision.transforms as transforms

import torchvision.datasets as datasets

from torch.utils.data import Dataset, DataLoader

import PIL.Image as Image

import glob

from DLStudio import DLStudio

SELECTED_CLASSES = ['airplane', 'bus', 'cat', 'dog', 'pizza']

transform = transforms.Compose([

 transforms.Resize((32, 32)),

 transforms.ToTensor(),

 transforms.Normalize((0.5,), (0.5,))

])

class CocoSubset(Dataset):

 def __init__(self, root_dir, class_names, transform=None):

 self.root_dir = root_dir

 self.transform = transform

 self.class_names = class_names

 self.image_paths = []

 self.labels = []

 for label, class_name in enumerate(class_names):

 class_images = glob.glob(f"{root_dir}/{class_name}/*.jpg")

 self.image_paths.extend(class_images)

 self.labels.extend([label] * len(class_images))

 def __len__(self):

 return len(self.image_paths)

 def __getitem__(self, idx):

 img_path = self.image_paths[idx]

 image = Image.open(img_path).convert("RGB")

 label = self.labels[idx]

 if self.transform:

 image = self.transform(image)

 return image, label

train_dataset = CocoSubset(root_dir=TRAIN_DIR, class_names=SELECTED_CLASSES,

transform=transform)

test_dataset = CocoSubset(root_dir=VAL_DIR, class_names=SELECTED_CLASSES, transform=transform)

train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True, num_workers=2)

test_loader = DataLoader(test_dataset, batch_size=32, shuffle=False, num_workers=2)

print("COCO Dataset Loaded Successfully!")

import torch

import torch.nn as nn

import torch.nn.functional as F

from DLStudio import DLStudio

#I have used Dr. Kaks Code as the base for this part of the assignment

class BMEnetCOCO(nn.Module):

 def __init__(self, num_classes=5, depth=30, skip_connections=True):

 super(BMEnetCOCO, self).__init__()

 self.depth = depth

 self.conv1 = nn.Conv2d(3, 64, kernel_size=3, padding=1)

 self.bn1 = nn.BatchNorm2d(64)

 self.skip64_blocks = nn.ModuleList()

 for _ in range(15):

 self.skip64_blocks.append(DLStudio.BMEnet.SkipBlock(64, 64, skip_connections=skip_connections))

 self.skip64to128 = DLStudio.BMEnet.SkipBlock(64, 128, downsample=True,

skip_connections=skip_connections)

 self.skip128_blocks = nn.ModuleList()

 for _ in range(8):

 self.skip128_blocks.append(DLStudio.BMEnet.SkipBlock(128, 128,

skip_connections=skip_connections))

 self.skip128to256 = DLStudio.BMEnet.SkipBlock(128, 256, downsample=True,

skip_connections=skip_connections)

 self.skip256_blocks = nn.ModuleList()

 for _ in range(7):

 self.skip256_blocks.append(DLStudio.BMEnet.SkipBlock(256, 256,

skip_connections=skip_connections))

 self.fc1 = nn.Linear(256 * 8 * 8, 1024)

 self.dropout = nn.Dropout(0.5)

 self.fc2 = nn.Linear(1024, num_classes)

 def forward(self, x):

 x = F.relu(self.bn1(self.conv1(x)))

 for skip in self.skip64_blocks:

 x = skip(x)

 x = self.skip64to128(x)

 for skip in self.skip128_blocks:

 x = skip(x)

 x = self.skip128to256(x)

 for skip in self.skip256_blocks:

 x = skip(x)

 x = torch.flatten(x, 1)

 x = F.relu(self.fc1(x))

 x = self.dropout(x)

 x = self.fc2(x)

 return x

import torch

import torch.optim as optim

import torch.nn as nn

import torch.nn.functional as F

def train_model(model, train_loader, num_epochs=10, learning_rate=1e-2):

 device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

 model.to(device)

 criterion = nn.CrossEntropyLoss()

 optimizer = optim.Adam(model.parameters(), lr=learning_rate)

 loss_tally = []

 accuracy_tally = []

 for epoch in range(num_epochs):

 model.train()

 running_loss = 0.0

 correct_predictions = 0

 total_predictions = 0

 for images, labels in train_loader:

 images, labels = images.to(device), labels.to(device)

 optimizer.zero_grad()

 outputs = model(images)

 loss = criterion(outputs, labels)

 loss.backward()

 optimizer.step()

 running_loss += loss.item()

 _, preds = torch.max(outputs, 1)

 correct_predictions += (preds == labels).sum().item()

 total_predictions += labels.size(0)

 epoch_loss = running_loss / len(train_loader)

 epoch_accuracy = 100 * correct_predictions / total_predictions

 loss_tally.append(epoch_loss)

 accuracy_tally.append(epoch_accuracy)

 print(f"Epoch {epoch+1}/{num_epochs} | Loss: {epoch_loss:.4f} | Accuracy: {epoch_accuracy:.2f}%")

 print(" Training complete!")

 return loss_tally, accuracy_tally

from sklearn.metrics import confusion_matrix

import seaborn as sns

import numpy as np

import matplotlib.pyplot as plt

def test_model(model, test_loader, class_names):

 device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

 model.to(device)

 model.eval()

 all_preds, all_labels = [], []

 with torch.no_grad():

 for images, labels in test_loader:

 images, labels = images.to(device), labels.to(device)

 outputs = model(images)

 _, preds = torch.max(outputs, 1)

 all_preds.extend(preds.cpu().numpy())

 all_labels.extend(labels.cpu().numpy())

 conf_matrix = confusion_matrix(all_labels, all_preds)

 plt.figure(figsize=(8,6))

 sns.heatmap(conf_matrix, annot=True, fmt="d", cmap="Blues", xticklabels=class_names,

yticklabels=class_names)

 plt.xlabel("Predicted")

 plt.ylabel("Actual")

 plt.title("Confusion Matrix - MS-COCO")

 plt.savefig("/content/drive/MyDrive/conf_matrix_coco.png")

 plt.show()

 class_correct = [0] * len(class_names)

 class_total = [0] * len(class_names)

 for i in range(len(all_labels)):

 label = all_labels[i]

 class_correct[label] += (all_preds[i] == label)

 class_total[label] += 1

 print("\nPer-Class Accuracy:")

 for i, class_name in enumerate(class_names):

 accuracy = 100 * class_correct[i] / class_total[i] if class_total[i] > 0 else 0

 print(f"{class_name}: {accuracy:.2f}%")

 overall_accuracy = 100 * np.sum(class_correct) / np.sum(class_total)

 print(f"\nOverall Accuracy: {overall_accuracy:.2f}%")

model = BMEnetCOCO(num_classes=5, depth=25, skip_connections=True)

loss_tally, accuracy_tally = train_model(model, train_loader, num_epochs=30, learning_rate=1e-3)

plt.figure(figsize=(10,5))

plt.plot(loss_tally, label="Loss")

plt.xlabel("Epochs")

plt.ylabel("Loss")

plt.title("Training Loss Curve")

plt.legend()

plt.savefig("/content/drive/MyDrive/loss_curve_coco.png")

plt.show()

test_model(model, test_loader, SELECTED_CLASSES)

