BMEG646 and ECE60146: Homework 6
Manas V Shetty

Question 1: observations on 1 pixel kernel

Using a 1x1 kernel for convolution, as seen in Line (I) in slide 16, is a common practice in deep learning,
especially for changing the number of channels without affecting the spatial dimensions of the image. This is
useful for adjusting feature maps to match the expected input size for subsequent layers. However, in Lines (K)
and (L) in slide 16, the 1x1 convolution is used for downsampling by setting the stride to 2, effectively reducing
the spatial resolution by half. Unlike standard convolutions that extract spatial features, these 1x1 convolutions
with stride 2 act as simple sampling layers, selecting alternate pixels and reducing resolution while adjusting
channels.

Instead of using 1x1 convolutions with stride 2 for downsampling, an alternative approach is to use MaxPooling
(torch.nn.MaxPo0l12d(2,2)), which also reduces spatial size by half but selects the most prominent feature in
each 2x2 patch, potentially improving feature retention. Another option is using a standard convolution with a
kernel size of 3x3 and a stride of 2, which can provide additional feature extraction while reducing resolution. A
comparison between these approaches could involve evaluating accuracy and loss on a test dataset

Question 2: BMENet with maxpool

from sklearn.metrics import confusion_matrix
import seaborn as sns

import matplotlib.pyplot as plt

import numpy as np

import pandas as pd

main():
dls = DLStudio(
dataroot="./data/CIFAR-10/",
image_size=[32, 32],
path_saved _model="./saved_model_model.pt",
momentum=0.9,
learning_rate=1e-4,
epochs=6,
batch_size=4,
classes=('plane’,'car','bird','cat’,'deer','dog’,'frog’,'horse’,'ship’,'truck’),
use_gpu=

)

print("Experiment 1: Original BMEnet with skip connections (convolution-based downsampling)")
modell = dls.BMEnet(dls, skip_connections= , depth=8)

modell.load_cifar_10_dataset()

params1 = sum(p.numel

https://www.gradescope.com/courses/951867/assignments/5804619/submissions/311153131#Question_1-rubric

print("Learnable parameters (Original BMEnet):", params1)

modell.run_code for_training(modell, display_images=)
modell.run_code_for_testing(modell, display images=)

print("Experiment 2: BMEnet variant with maxpool downsampling")

model2 = BMEnetMaxPool(dls, skip_connections= , depth=8)
model2.load_cifar_10_dataset()

params2 = sum(p.numel() for p in model2.parameters() if p.requires_grad)
print("Learnable parameters (BMEnet with MaxPool downsampling):", params2)

model2.run_code_for_training(model2, display_images=)
model2.run_code_for_testing(model2, display_images=)

Labeling Loss vs. Iterations

—— Plot of loss versus iterations
2.7

2.6 1

loss

2.5

2.4

0 10 20 30 40 50 60 J0
iterations

https://www.gradescope.com/courses/951867/assignments/5804619/submissions/311153131#Question_2.1-rubric

2.2 Confusion Matrix

Displaying the confusion matrix:

a
']
1]
5

plane car bird

.ee
.ee
.ee
.ee
.ee
.ee
.ee
.ee
.ee
.ee

.ee
.60
.ee
.20
.ee
.ee
.60
.ee
.60
.ee

.ee
.eoe
.ee
.00
.eoe
.ee
.eoe
.ee
.eoe
.eoe

Q00000 DO @
0000 PO
0000000 0@®
coo0000000
cocooo0000
00 0 00 00000
2000000 00®

Question 3: BMENet with stride

3.1 Train loss curve

Labeling Loss vs. Iterations

2.0 1 —— Plot of loss versus iterations

1.5

loss

1.0

0.5

0.0 1

0 10 20 30 40 50 60 70
iterations

https://www.gradescope.com/courses/951867/assignments/5804619/submissions/311153131#Question_2.2-rubric
https://www.gradescope.com/courses/951867/assignments/5804619/submissions/311153131#Question_3.1-rubric

Displaying the confusion matrix:

plane car bird

[+ 2]
P

.10
.10
.30
.80
.70
.40
.70
.80
.70
.00

@

.60 3.40
.30 e.70
.1@ 75.40
.50 .9e
.10 .90
.30 .30
.30 .ee
.30 .70
.60 .1e
.70 .60

[+1]
~

® 0 000 R OON

0
N R ORRERORER ONMNWON

WwwooRrRENWVPRE
w o oooooo

00
~

Question 4 Tablel: Overall accuracy of 2 models

Overall accuracy of the network on the 1800 test images: 10 %

Overall accuracy of the network on the 10000 test images: 79 %

Question S Table2: Per class accuracy of 2 models

Prediction accuracy
Prediction accuracy
Prediction accuracy
Prediction accuracy
Prediction accuracy

Prediction accuracy
Prediction accuracy
Prediction accuracy
Prediction accuracy
Prediction accuracy

o8 % 52 3% % R %

https://www.gradescope.com/courses/951867/assignments/5804619/submissions/311153131#Question_3.2-rubric
https://www.gradescope.com/courses/951867/assignments/5804619/submissions/311153131#Question_4-rubric
https://www.gradescope.com/courses/951867/assignments/5804619/submissions/311153131#Question_5-rubric

Prediction accuracy
Prediction accuracy
Prediction accuracy
Prediction accuracy
Prediction accuracy

Prediction accuracy
Prediction accuracy
Prediction accuracy
Prediction accuracy
Prediction accuracy

52 32 39 32 32 52 52 5% o2 32

Question 6: Observations of Maxpool vs Stride

The comparison between BMEnet with MaxPool and BMEnet with Stride-based downsampling reveals
significant differences in performance. The loss behavior in the MaxPool-based model shows a high initial loss
that quickly drops but then plateaus around 2.3, indicating that the model struggles to learn meaningful features.
In contrast, the Stride-based BMEnet exhibits a smooth and steady decline in loss, reaching values close to zero,
which suggests that it is effectively learning from the dataset.

In terms of overall accuracy, the MaxPool-based BMEnet achieves only 10% accuracy, which is equivalent to
random guessing on the 10-class CIFAR-10 dataset. On the other hand, the Stride-based BMEnet reaches 79%
accuracy, demonstrating that it successfully learns to differentiate between different classes. This vast difference
in performance indicates that the choice of downsampling method plays a crucial role in network effectiveness.

A closer look at the confusion matrices further supports this conclusion. In the MaxPool-based BMEnet, the
model misclassifies almost everything as "horse" (100% accuracy for horse, 0% for all other classes), indicating
a severe failure in generalization. In contrast, the Stride-based BMEnet produces a more balanced distribution
of predictions, with per-class accuracy ranging between 53% and 91%, signifying much better feature extraction
and class separation.

The key reason behind this difference lies in the effectiveness of downsampling methods. MaxPooling retains
dominant features but often loses fine-grained spatial details, which are essential for differentiating visually
similar objects. Stride-based convolutions, however, preserve spatial structure better while learning optimal
feature representations, leading to more meaningful activations in deeper layers.

Stride-based downsampling is clearly the superior approach for BMEnet in this case. The MaxPool-based model
fails to learn effectively, resulting in almost random predictions. In contrast, Stride-based downsampling
improves gradient flow, maintains spatial information, and significantly boosts accuracy. Based on these
findings, stride-based downsampling should be preferred over max pooling in BMEnet for CIFAR-10
classification.

https://www.gradescope.com/courses/951867/assignments/5804619/submissions/311153131#Question_6-rubric

Question 7: Skip Connections with MSCOCO

import random

import matplotlib.pyplot as plt

import torchvision.transforms as transforms
from PIL import Image

def plot_images_from_coco(root_dir, class_names, transform=None):
plt.figure(figsize=(12, 10))
image_count =0

for class_name in class_names:
class_folder = os.path.join(root_dir, class_name)
image_paths = glob.glob(f"{class_folder}/*.jpg")
sampled_images = random.sample(image_paths, 3)

for img_path in sampled_images:
image = Image.open(img_path).convert("RGB")
image_count +=1
plt.subplot(5, 3, image_count)
plt.imshow(image)
plt.title(class_name)
plt.axis('off")
plt.suptitle("5x3 Grid - 3 Images per Class", fontsize=16)
plt.tight_layout()
plt.savefig("'/content/drive/MyDrive/5x3_coco_images.png")
plt.show()
dataset_root_dir = "/content/drive/MyDrive/coco_subset/train2017"
plot_images_from_coco(root_dir=dataset_root_dir, class_names=SELECTED_CLASSES, transform=False)

https://www.gradescope.com/courses/951867/assignments/5804619/submissions/311153131#Question_7.1-rubric

5x3 Grid - 3 Images per Class
airplane airplane airpl&xrle

from sklearn.metrics import confusion_matrix
import seaborn as sns

import numpy as np

import matplotlib.pyplot as plt

test_model(model, test_loader, class_names):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
model.eval()
all_preds, all_labels =[], []

with torch.no_grad():
for images, labels in test_loader:
images, labels = images.to(device), labels.to(device)

https://www.gradescope.com/courses/951867/assignments/5804619/submissions/311153131#Question_7.2-rubric

outputs = model(images)
_, preds = torch.max(outputs, 1)
all_preds.extend(preds.cpu().numpy())
all_labels.extend(labels.cpu().numpy())
conf_matrix = confusion_matrix(all_labels, all _preds)
plt.figure(figsize=(8,6))
sns.heatmap(conf_matrix, annot=True, fmt="d", cmap="Blues", xticklabels=class_names,
yticklabels=class_names)
plt.xlabel("Predicted")
plt.ylabel("Actual™)
plt.title("Confusion Matrix - MS-COCQ")
plt.savefig("'/content/drive/MyDrive/conf_matrix_coco.png™)
plt.show()

class_correct = [0] * len(class_names)
class_total = [0] * len(class_names)

for i in range(len(all_labels)):
label = all_labels]i]
class_correct[label] += (all_preds[i] == label)
class_total[label] += 1

print("\nPer-Class Accuracy:")

for i, class_name in enumerate(class_names):
accuracy = 100 * class_correct[i] / class_total[i] if class_total[i] > 0 else 0
print(f"{class_name}: {accuracy:.2f}%")

overall_accuracy = 100 * np.sum(class_correct) / np.sum(class_total)
print(f"\nOverall Accuracy: {overall accuracy:.2f

model = BMEnetCOCO(num_classes=5, depth=25, skip_connections=True)

loss_tally, accuracy_tally = train_model(model, train_loader, num_epochs=30, learning_rate=1e-3)

plt.figure(figsize=(10,5))

plt.plot(loss_tally, label="Lo0ss")

plt.xlabel("Epochs™)

plt.ylabel(*Loss")

plt.title("Training Loss Curve")

plt.legend()
plt.savefig("'/content/drive/MyDrive/loss_curve_coco.png")
plt.show()

test_model(model, test loader, SELECTED CLASSES)

Training Loss Curve

3.0 A

2.5

Loss

1.5~

1.0~

— Loss

Epochs

7.3 conf matrix 5x5

Confusion Matrix - MS-COCO

100
(¥}
=
]
=
‘™
80
60
2%
£
- 40
on
[=]
-
-20

pizza

i i I
airplane bus cat dog pizza
Predicted

7.4 overall accuracy

Overall Accuracy: 50.25%

https://www.gradescope.com/courses/951867/assignments/5804619/submissions/311153131#Question_7.3-rubric
https://www.gradescope.com/courses/951867/assignments/5804619/submissions/311153131#Question_7.4-rubric

Per-Class Accuracy:
airplane: 61.86%
bus: 45.50%

cat: 55.98%
dog: 28.81%
pizza: 66.67%

The results from Skip Connections on the MS-COCO dataset highlight the impact of skip connections on
training dynamics and classification performance. The training loss curve shows a sharp drop in the initial
epochs, indicating rapid learning at the beginning. However, after about 10 epochs, the loss reduction slows
down, and minor fluctuations appear, suggesting that while the model is converging, further optimization—such
as tuning the learning rate or applying regularization—could improve stability.

In terms of overall accuracy, the model achieves 50.25%, which is moderate given the complexity of the MS-
COCO dataset. This suggests that skip connections are helping preserve information across layers, allowing the
network to learn effectively. However, the accuracy indicates that the model still struggles with certain object
classes, possibly due to overlapping features or insufficient discriminative power in deeper layers.

The confusion matrix provides more insights into per-class performance. Certain classes, such as "Cat" (103
correct predictions) and "Pizza" (102 correct predictions), are well learned by the model, indicating that their
features are distinct and easily recognizable. However, classes like "Bus" and "Dog" suffer from significant
misclassification, likely due to visual similarities with other classes or feature extraction limitations.

The per-class accuracy results show variation in performance across different categories. The best-performing
class is "Pizza" (66.67%), likely because its distinct shape and color make it easier to classify. On the other
hand, "Dog" has the lowest accuracy (28.81%), suggesting that the model struggles to distinguish it from
similar animals like cats. Other categories, such as "Airplane" (61.86%), "Bus" (45.50%), and "Cat" (55.98%),
show moderate accuracy, indicating that while the model extracts meaningful features, there is still room for
improvement in class differentiation.

Skip connections enhance gradient flow and improve feature retention, making training more stable. However,
the 50.25% accuracy and class-wise inconsistencies suggest that the model struggles with specific object
categories. To improve performance, further optimizations such as hyperparameter tuning, advanced data
augmentation, or the integration of attention mechanisms could be explored.

https://www.gradescope.com/courses/951867/assignments/5804619/submissions/311153131#Question_7.5-rubric
https://www.gradescope.com/courses/951867/assignments/5804619/submissions/311153131#Question_7.6-rubric

Source Code

from google.colab import drive
drive.mount('/content/drive")

import 0s
os.listdir("/content/drive/MyDrive/DLStudio")
Ipip install pymsgbox

import sys
sys.path.append(‘/content/drive/MyDrive/DLStudio/DLStudio’

import torch

import torch.nn as nn

import torch.nn.functional as F

import matplotlib.pyplot as plt

from DLStudio import DLStudio

class SkipBlockMaxPool(nn.Module):

def __init__(self, in_ch, out_ch, downsample=False, skip_connections=True):

super(SkipBlockMaxPool, self). __init_ ()
self.downsample = downsample
self.skip_connections = skip_connections
self.in_ch =in_ch
self.out_ch =out_ch

self.convol = nn.Conv2d(in_ch, in_ch, kernel_size=3, stride=1, padding=1)
self.convo2 = nn.Conv2d(in_ch, out_ch, kernel_size=3, stride=1, padding=1)
self.bnl = nn.BatchNorm2d(in_ch)

self.on2 = nn.BatchNorm2d(out_ch)

self.in2out = nn.Conv2d(in_ch, out_ch, kernel_size=1)

if self.downsample:

self.maxpool = nn.MaxPool2d(kernel_size=2, stride=2)
else:

self.maxpool = None

def forward(self, x):
identity = x

out = self.convol(x)
out = self.bn1(out)
out = F.relu(out)

out = self.convo2(out)
out = self.bn2(out)

out = F.relu(out)

If self.downsample and self.maxpool is not None:
identity = self.maxpool(identity)
out = self.maxpool(out)

if self.skip_connections:
if (self.in_ch == self.out_ch) and (not self.downsample):
out = out + identity
elif (self.in_ch !=self.out_ch) and (not self.downsample):
identity = self.in2out(identity)
out = out + identity
elif (self.in_ch !=self.out_ch) and self.downsample:
out = out + torch.cat((identity, identity), dim=1)
return out

class BMEnetMaxPool(DLStudio.BMEnet):
def __init__ (self, dl_studio, skip_connections=True, depth=8):
super(BMEnetMaxPool, self).__init__(dl_studio)
self.dl_studio = dl_studio
self.depth = depth
image_size = dl_studio.image_size
num_ds=0

self.conv = nn.Conv2d(3, 64, kernel_size=3, padding=1)

self.skip64_arr = nn.ModuleL.ist()
for i in range(self.depth):
self.skip64_arr.append(DLStudio.BMEnet.SkipBlock(64, 64, skip_connections=skip_connections))

self.skip64to128ds = SkipBlockMaxPool(64, 128, downsample=True,
skip_connections=skip_connections)
num_ds +=1

self.skip128 arr = nn.ModuleList()
for i in range(self.depth):
self.skip128 arr.append(DLStudio.BMEnet.SkipBlock(128, 128, skip_connections=skip_connections))

self.skip128t0256ds = SkipBlockMaxPool(128, 256, downsample=True,
skip_connections=skip_connections)
num_ds +=1

self.skip256_arr = nn.ModuleList()
for i in range(self.depth):
self.skip256_arr.append(DLStudio.BMEnet.SkipBlock(256, 256, skip_connections=skip_connections))

fc_in_features = (image_size[0] // (2 ** num_ds)) * (image_size[1] // (2 ** num_ds)) * 256
self.fcl = nn.Linear(fc_in_features, 1000)
self.fc2 = nn.Linear(1000, 10)

def forward(self, x):

x = F.relu(self.conv(x))

for block in self.skip64_arr:
X = block(x)

x = self.skip64t0128ds(x)

for block in self.skip128_arr:
X = block(x)

X = self.skip128t0256ds(x)

for block in self.skip256_arr:
X = block(x)

X = Xx.view(x.size(0), -1)

x = F.relu(self.fc1(x))

x = self.fc2(x)

return X

def load_cifar_10_dataset(self):
self.dl studio.load cifar 10 dataset

from sklearn.metrics import confusion_matrix
import seaborn as sns

import matplotlib.pyplot as plt

Import numpy as np

import pandas as pd

def main():

dis = DLStudio(
dataroot="./data/CIFAR-10/",
image_size=[32, 32],
path_saved _model="./saved_model_model.pt",
momentum=0.9,
learning_rate=1e-4,
epochs=6,
batch_size=4,
classes=('plane','car','bird’,'cat','deer",'dog’,'frog’,'horse’,'ship’,'truck’),
use_gpu=True

)

print("Experiment 1: Original BMEnet with skip connections (convolution-based downsampling)")
modell = dIs.BMEnet(dls, skip_connections=True, depth=8)

modell.load_cifar_10_dataset()

paramsl = sum(p.numel() for p in modell.parameters() if p.requires_grad)

print("Learnable parameters (Original BMEnet):", paramsl)

modell.run_code_for_training(modell, display_images=False)
modell.run_code for_testing(modell, display_images=False)

print("Experiment 2: BMEnet variant with maxpool downsampling™)
model2 = BMEnetMaxPool(dls, skip connections=True, depth=8)

model2.load_cifar_10_dataset()
params2 = sum(p.numel() for p in model2.parameters() if p.requires_grad)
print("Learnable parameters (BMEnet with MaxPool downsampling):", params2)

model2.run_code_for_training(model2, display_images=False)
model2.run_code_for_testing(model2, display _images=False)

from google.colab import drive
drive.mount('/content/drive")

import 0s
os.listdir(*'/content/drive/MyDrive/DLStudio")
Ipip install pymsgbox

import sys
sys.path.append(‘/content/drive/MyDrive/DL Studio/DLStudio")

Ipip install pycocotools
Ipip install torchvision

import 0s
DATA DIR = "/content/drive/MyDrive/coco_subset"
TRAIN_DIR = os.path.join(DATA_DIR, "train2017")
VAL_DIR = o0s.path.join(DATA_DIR, "val2017")
ANN_DIR = os.path.join(DATA_DIR, "annotations")
os.makedirs(TRAIN_DIR, exist_ok=True)
os.makedirs(VAL_DIR, exist_ok=True)
os.makedirs(ANN_DIR, exist_ok=True)

int(f"Dataset will be stored in:

Iwget http://images.cocodataset.org/annotations/annotations_trainval2017.zip -P /content/
lunzip /content/annotations_trainval2017.zip -d /content/
Imv /content/annotations /content/drive/MyDrive/coco subset/

from pycocotools.coco import COCO
import requests

import 0s

import json

DATA_DIR = "/content/drive/MyDrive/coco_subset"
TRAIN_DIR = os.path.join(DATA_DIR, "train2017")
VAL_DIR = os.path.join(DATA_DIR, "val2017")

ANN_DIR = os.path.join(DATA_DIR, "annotations™)

SELECTED_CLASSES = [‘airplane’, 'bus’, 'cat, 'dog’,'pizza’]
NUM_TRAIN = 1500
NUM_TEST = 500

train_coco = COCO(os.path.join(ANN_DIR, "instances_train2017.json"))
val_coco = COCO(os.path.join(ANN_DIR, "instances_val2017.json"))

cat_to_id = {cat: train_coco.getCatlds(catNms=[cat])[0] for cat in SELECTED_CLASSES}

def download_coco_images(coco, save_dir, num_images_per_class):
os.makedirs(save_dir, exist_ok=True)

for class_name, class_id in cat_to_id.items():
class_folder = os.path.join(save_dir, class_name)
os.makedirs(class_folder, exist_ok=True)

img_ids = coco.getimglds(catlds=class_id)[:num_images_per_class]

for img_id in img_ids:
img_info = coco.loadlmgs(img_id)[0]
img_url = img_info['coco_url']
img_path = os.path.join(class_folder, img_info['file_name'])

If not os.path.exists(img_path):
img_data = requests.get(img_url).content
with open(img_path, 'wb') as f:
f.write(img_data)

print(f"Downloaded {num_images_per_class} images for {class_name} into {class_folder}")

download_coco_images(train_coco, TRAIN_DIR, NUM_TRAIN)
download coco images(val coco, VAL DIR, NUM TEST)

import random

import matplotlib.pyplot as plt

import torchvision.transforms as transforms

from PIL import Image

import glob

def plot_images_from_coco(root_dir, class_names, transform=None):
plt.figure(figsize=(12, 10))
image_count =0

for class name in class names:

class_folder = os.path.join(root_dir, class_name)
image_paths = glob.glob(f"{class_folder}/*.jpg")
sampled_images = random.sample(image_paths, 3)

for img_path in sampled_images:
image = Image.open(img_path).convert("RGB")
image_count += 1
plt.subplot(5, 3, image_count)
plt.imshow(image)
plt.title(class_name)
plt.axis('off")
plt.suptitle("5x3 Grid - 3 Images per Class"”, fontsize=16)
plt.tight_layout()
plt.savefig("'/content/drive/MyDrive/5x3_coco_images.png")
plt.show()
dataset_root_dir = "/content/drive/MyDrive/coco_subset/train2017"
plot_images_from_coco(root_dir=dataset_root_dir, class_names=SELECTED_CLASSES, transform=False)

import torchvision.transforms as transforms

import torchvision.datasets as datasets

from torch.utils.data import Dataset, DatalL.oader

import PIL.Image as Image

import glob

from DLStudio import DLStudio

SELECTED_CLASSES = ['airplane’, 'bus', ‘cat', 'dog’, 'pizza’

transform = transforms.Compose([
transforms.Resize((32, 32)),
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))

)

class CocoSubset(Dataset):
def __init__(self, root_dir, class_names, transform=None):
self.root_dir = root_dir
self.transform = transform
self.class_names = class_names
self.image_paths =[]
self.labels =[]

for label, class_name in enumerate(class_names):
class_images = glob.glob(f"{root_dir}/{class_name}/*.jpg")
self.image_paths.extend(class_images)
self.labels.extend([label] * len(class_images))

def __len__(self):
return len(self.image_paths)

img_path = self.image_paths[idx]
image = Image.open(img_path).convert("RGB")
label = self.labels[idx]

if self.transform:
image = self.transform(image)

return image, label

train_dataset = CocoSubset(root_dir=TRAIN_DIR, class_names=SELECTED_ CLASSES,
transform=transform)
test_dataset = CocoSubset(root_dir=VAL_DIR, class_names=SELECTED_CLASSES, transform=transform)

train_loader = Dataloader(train_dataset, batch_size=32, shuffle=True, num_workers=2)
test_loader = Dataloader(test_dataset, batch_size=32, shuffle=False, num_workers=2)

print("COCO Dataset Loaded Successfully!"

import torch

import torch.nn as nn

import torch.nn.functional as F

from DLStudio import DLStudio

#1 have used Dr. Kaks Code as the base for this part of the assignment
class BMEnetCOCO(nn.Module):

def __init__(self, num_classes=5, depth=30, skip_connections=True):
super(BMEnNetCOCO, self).__init_ ()
self.depth = depth

self.convl = nn.Conv2d(3, 64, kernel_size=3, padding=1)
self.onl1 = nn.BatchNorm2d(64)

self.skip64_blocks = nn.ModuleList()
for _in range(15):
self.skip64_blocks.append(DLStudio.BMEnet.SkipBlock(64, 64, skip_connections=skip_connections))
self.skip64t0128 = DL Studio.BMEnet.SkipBlock(64, 128, downsample=True,
skip_connections=skip_connections)
self.skip128 blocks = nn.ModuleL.ist()
for _in range(8):
self.skip128_blocks.append(DLStudio.BMEnet.SkipBlock(128, 128,
skip_connections=skip_connections))

self.skip128t0256 = DL Studio.BMEnet.SkipBlock(128, 256, downsample=True,
skip_connections=skip_connections)

self.skip256_blocks = nn.ModuleL.ist()
for _in range(7):
self.skip256_blocks.append(DLStudio.BMEnet.SkipBlock(256, 256,
skip connections=skip connections

self.fcl = nn.Linear(256 * 8 * 8, 1024)
self.dropout = nn.Dropout(0.5)
self.fc2 = nn.Linear(1024, num_classes)

def forward(self, x):
x = F.relu(self.bn1(self.convl(x)))

for skip in self.skip64 _blocks:
X = skip(x)

x = self.skip64t0128(x)

for skip in self.skip128_blocks:
X = skip(x)

x = self.skip128t0256(x)

for skip in self.skip256_blocks:
X = skip(x)

x = torch.flatten(x, 1)
x = F.relu(self.fc1(x))
x = self.dropout(x)

x = self.fc2(x)

return x

import torch

import torch.optim as optim
import torch.nn as nn

import torch.nn.functional as F

def train_model(model, train_loader, num_epochs=10, learning_rate=1e-2):

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)

criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), Ir=learning_rate)

loss_tally =]
accuracy_tally =[]

for epoch in range(num_epochs):
model.train()
running_loss = 0.0
correct_predictions = 0
total_predictions =0

for images, labels in train_loader:
images, labels = images.to(device), labels.to(device)

optimizer.zero_grad()

outputs = model(images)

loss = criterion(outputs, labels)
loss.backward()
optimizer.step()

running_loss += loss.item()
_, preds = torch.max(outputs, 1)
correct_predictions += (preds == labels).sum().item()

total_predictions += labels.size(0)

epoch_loss = running_loss / len(train_loader)
epoch_accuracy = 100 * correct_predictions / total_predictions

loss_tally.append(epoch_loss)
accuracy_tally.append(epoch_accuracy)
print(f"Epoch {epoch+1}/{num_epochs} | Loss: {epoch_loss:.4f} | Accuracy: {epoch_accuracy:.2f}%")

print(" Training complete!")
return loss tally, accuracy tall

from sklearn.metrics import confusion_matrix
import seaborn as sns

import numpy as np

import matplotlib.pyplot as plt

def test_model(model, test_loader, class_names):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
model.eval()
all_preds, all_labels =], []

with torch.no_grad():
for images, labels in test_loader:
images, labels = images.to(device), labels.to(device)
outputs = model(images)
_, preds = torch.max(outputs, 1)
all_preds.extend(preds.cpu().numpy())
all_labels.extend(labels.cpu().numpy())
conf_matrix = confusion_matrix(all_labels, all _preds)
plt.figure(figsize=(8,6))
sns.heatmap(conf_matrix, annot=True, fmt="d", cmap="Blues", xticklabels=class_names,
yticklabels=class_names)
plt.xlabel("Predicted™)

plt.title("Confusion Matrix - MS-COCQ")
plt.savefig("/content/drive/MyDrive/conf_matrix_coco.png™)
plt.show()

class_correct = [0] * len(class_names)
class_total = [0] * len(class_names)

for i in range(len(all_labels)):
label = all_labels]i]
class_correct[label] += (all_preds[i] == label)
class_total[label] += 1

print("\nPer-Class Accuracy:")

for i, class_name in enumerate(class_names):
accuracy = 100 * class_correct[i] / class_total[i] if class_total[i] > 0 else 0
print(f"{class_name}: {accuracy:.2f}%")

overall_accuracy = 100 * np.sum(class_correct) / np.sum(class_total)
print(f"\nOverall Accuracy: {overall accuracy:.2f}%"

model = BMEnetCOCO(num_classes=5, depth=25, skip_connections=True)

loss_tally, accuracy_tally = train_model(model, train_loader, num_epochs=30, learning_rate=1e-3)

plt.figure(figsize=(10,5))

plt.plot(loss_tally, label="Lo0ss")

plt.xlabel("Epochs™)

plt.ylabel(*"Loss")

plt.title("Training Loss Curve")

plt.legend()
plt.savefig("'/content/drive/MyDrive/loss_curve_coco.png")
plt.show()

test_model(model, test loader, SELECTED CLASSES)

