
BME646 and ECE60146: Homework 6 

Manas V Shetty 

 

Question 1: observations on 1 pixel kernel 

Using a 1×1 kernel for convolution, as seen in Line (I) in slide 16, is a common practice in deep learning, 

especially for changing the number of channels without affecting the spatial dimensions of the image. This is 

useful for adjusting feature maps to match the expected input size for subsequent layers. However, in Lines (K) 

and (L) in slide 16, the 1×1 convolution is used for downsampling by setting the stride to 2, effectively reducing 

the spatial resolution by half. Unlike standard convolutions that extract spatial features, these 1×1 convolutions 

with stride 2 act as simple sampling layers, selecting alternate pixels and reducing resolution while adjusting 

channels. 

Instead of using 1×1 convolutions with stride 2 for downsampling, an alternative approach is to use MaxPooling 

(torch.nn.MaxPool2d(2,2)), which also reduces spatial size by half but selects the most prominent feature in 

each 2×2 patch, potentially improving feature retention. Another option is using a standard convolution with a 

kernel size of 3×3 and a stride of 2, which can provide additional feature extraction while reducing resolution. A 

comparison between these approaches could involve evaluating accuracy and loss on a test dataset 

 

Question 2: BMENet with maxpool 

from sklearn.metrics import confusion_matrix 

import seaborn as sns 

import matplotlib.pyplot as plt 

import numpy as np 

import pandas as pd 

 

def main(): 

    dls = DLStudio( 

        dataroot="./data/CIFAR-10/", 

        image_size=[32, 32], 

        path_saved_model="./saved_model_model.pt", 

        momentum=0.9, 

        learning_rate=1e-4, 

        epochs=6, 

        batch_size=4, 

        classes=('plane','car','bird','cat','deer','dog','frog','horse','ship','truck'), 

        use_gpu=True 

    ) 

 

    print("Experiment 1: Original BMEnet with skip connections (convolution-based downsampling)") 

    model1 = dls.BMEnet(dls, skip_connections=True, depth=8) 

    model1.load_cifar_10_dataset() 

    params1 = sum(p.numel() for p in model1.parameters() if p.requires_grad) 
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    print("Learnable parameters (Original BMEnet):", params1) 

 

    model1.run_code_for_training(model1, display_images=False) 

    model1.run_code_for_testing(model1, display_images=False) 

 

    print("Experiment 2: BMEnet variant with maxpool downsampling") 

    model2 = BMEnetMaxPool(dls, skip_connections=True, depth=8) 

    model2.load_cifar_10_dataset() 

    params2 = sum(p.numel() for p in model2.parameters() if p.requires_grad) 

    print("Learnable parameters (BMEnet with MaxPool downsampling):", params2) 

 

    model2.run_code_for_training(model2, display_images=False) 

    model2.run_code_for_testing(model2, display_images=False) 

if __name__ == '__main__': 

    main() 

 

2.1 Train loss curve 
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2.2 Confusion Matrix 

 

 

Question 3: BMENet with stride 

3.1 Train loss curve 
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3.2 Confusion Matrix 

 

 

Question 4 Table1: Overall accuracy of 2 models  

a. BMENet with maxpool 

 

b. BMENet with stride 

 

 

Question 5 Table2: Per class accuracy of 2 models  

a. BMENet with maxpool 
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b. BMENet with stride 

 

 

Question 6: Observations of Maxpool vs Stride 

The comparison between BMEnet with MaxPool and BMEnet with Stride-based downsampling reveals 

significant differences in performance. The loss behavior in the MaxPool-based model shows a high initial loss 

that quickly drops but then plateaus around 2.3, indicating that the model struggles to learn meaningful features. 

In contrast, the Stride-based BMEnet exhibits a smooth and steady decline in loss, reaching values close to zero, 

which suggests that it is effectively learning from the dataset. 

In terms of overall accuracy, the MaxPool-based BMEnet achieves only 10% accuracy, which is equivalent to 

random guessing on the 10-class CIFAR-10 dataset. On the other hand, the Stride-based BMEnet reaches 79% 

accuracy, demonstrating that it successfully learns to differentiate between different classes. This vast difference 

in performance indicates that the choice of downsampling method plays a crucial role in network effectiveness. 

A closer look at the confusion matrices further supports this conclusion. In the MaxPool-based BMEnet, the 

model misclassifies almost everything as "horse" (100% accuracy for horse, 0% for all other classes), indicating 

a severe failure in generalization. In contrast, the Stride-based BMEnet produces a more balanced distribution 

of predictions, with per-class accuracy ranging between 53% and 91%, signifying much better feature extraction 

and class separation. 

The key reason behind this difference lies in the effectiveness of downsampling methods. MaxPooling retains 

dominant features but often loses fine-grained spatial details, which are essential for differentiating visually 

similar objects. Stride-based convolutions, however, preserve spatial structure better while learning optimal 

feature representations, leading to more meaningful activations in deeper layers. 

Stride-based downsampling is clearly the superior approach for BMEnet in this case. The MaxPool-based model 

fails to learn effectively, resulting in almost random predictions. In contrast, Stride-based downsampling 

improves gradient flow, maintains spatial information, and significantly boosts accuracy. Based on these 

findings, stride-based downsampling should be preferred over max pooling in BMEnet for CIFAR-10 

classification. 
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Question 7: Skip Connections with MSCOCO 

7.1 5x3 images 

import random 

import matplotlib.pyplot as plt 

import torchvision.transforms as transforms 

from PIL import Image 

 

def plot_images_from_coco(root_dir, class_names, transform=None): 

    plt.figure(figsize=(12, 10)) 

    image_count = 0 

 

    for class_name in class_names: 

        class_folder = os.path.join(root_dir, class_name) 

        image_paths = glob.glob(f"{class_folder}/*.jpg") 

        sampled_images = random.sample(image_paths, 3)   

 

        for img_path in sampled_images: 

            image = Image.open(img_path).convert("RGB") 

            image_count += 1 

            plt.subplot(5, 3, image_count) 

            plt.imshow(image) 

            plt.title(class_name) 

            plt.axis('off') 

    plt.suptitle("5x3 Grid - 3 Images per Class", fontsize=16) 

    plt.tight_layout() 

    plt.savefig("/content/drive/MyDrive/5x3_coco_images.png") 

    plt.show() 

dataset_root_dir = "/content/drive/MyDrive/coco_subset/train2017" 

plot_images_from_coco(root_dir=dataset_root_dir, class_names=SELECTED_CLASSES, transform=False) 
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7.2 train loss curve 

from sklearn.metrics import confusion_matrix 

import seaborn as sns 

import numpy as np 

import matplotlib.pyplot as plt 

 

def test_model(model, test_loader, class_names): 

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu") 

    model.to(device) 

    model.eval() 

    all_preds, all_labels = [], [] 

 

    with torch.no_grad(): 

        for images, labels in test_loader: 

            images, labels = images.to(device), labels.to(device) 
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            outputs = model(images) 

            _, preds = torch.max(outputs, 1) 

            all_preds.extend(preds.cpu().numpy()) 

            all_labels.extend(labels.cpu().numpy()) 

    conf_matrix = confusion_matrix(all_labels, all_preds) 

    plt.figure(figsize=(8,6)) 

    sns.heatmap(conf_matrix, annot=True, fmt="d", cmap="Blues", xticklabels=class_names, 

yticklabels=class_names) 

    plt.xlabel("Predicted") 

    plt.ylabel("Actual") 

    plt.title("Confusion Matrix - MS-COCO") 

    plt.savefig("/content/drive/MyDrive/conf_matrix_coco.png") 

    plt.show() 

 

    class_correct = [0] * len(class_names) 

    class_total = [0] * len(class_names) 

 

    for i in range(len(all_labels)): 

        label = all_labels[i] 

        class_correct[label] += (all_preds[i] == label) 

        class_total[label] += 1 

 

    print("\nPer-Class Accuracy:") 

    for i, class_name in enumerate(class_names): 

        accuracy = 100 * class_correct[i] / class_total[i] if class_total[i] > 0 else 0 

        print(f"{class_name}: {accuracy:.2f}%") 

 

    overall_accuracy = 100 * np.sum(class_correct) / np.sum(class_total) 

    print(f"\nOverall Accuracy: {overall_accuracy:.2f}%") 

 

model = BMEnetCOCO(num_classes=5, depth=25, skip_connections=True) 

 

loss_tally, accuracy_tally = train_model(model, train_loader, num_epochs=30, learning_rate=1e-3) 

 

plt.figure(figsize=(10,5)) 

plt.plot(loss_tally, label="Loss") 

plt.xlabel("Epochs") 

plt.ylabel("Loss") 

plt.title("Training Loss Curve") 

plt.legend() 

plt.savefig("/content/drive/MyDrive/loss_curve_coco.png") 

plt.show() 

test_model(model, test_loader, SELECTED_CLASSES) 



 

7.3 conf matrix 5x5 

 

7.4 overall accuracy 

 

 

 

https://www.gradescope.com/courses/951867/assignments/5804619/submissions/311153131#Question_7.3-rubric
https://www.gradescope.com/courses/951867/assignments/5804619/submissions/311153131#Question_7.4-rubric


7.5 per class accuracy 5x1 table 

 

7.6 observations 

The results from Skip Connections on the MS-COCO dataset highlight the impact of skip connections on 

training dynamics and classification performance. The training loss curve shows a sharp drop in the initial 

epochs, indicating rapid learning at the beginning. However, after about 10 epochs, the loss reduction slows 

down, and minor fluctuations appear, suggesting that while the model is converging, further optimization—such 

as tuning the learning rate or applying regularization—could improve stability. 

In terms of overall accuracy, the model achieves 50.25%, which is moderate given the complexity of the MS-

COCO dataset. This suggests that skip connections are helping preserve information across layers, allowing the 

network to learn effectively. However, the accuracy indicates that the model still struggles with certain object 

classes, possibly due to overlapping features or insufficient discriminative power in deeper layers. 

The confusion matrix provides more insights into per-class performance. Certain classes, such as "Cat" (103 

correct predictions) and "Pizza" (102 correct predictions), are well learned by the model, indicating that their 

features are distinct and easily recognizable. However, classes like "Bus" and "Dog" suffer from significant 

misclassification, likely due to visual similarities with other classes or feature extraction limitations. 

The per-class accuracy results show variation in performance across different categories. The best-performing 

class is "Pizza" (66.67%), likely because its distinct shape and color make it easier to classify. On the other 

hand, "Dog" has the lowest accuracy (28.81%), suggesting that the model struggles to distinguish it from 

similar animals like cats. Other categories, such as "Airplane" (61.86%), "Bus" (45.50%), and "Cat" (55.98%), 

show moderate accuracy, indicating that while the model extracts meaningful features, there is still room for 

improvement in class differentiation. 

Skip connections enhance gradient flow and improve feature retention, making training more stable. However, 

the 50.25% accuracy and class-wise inconsistencies suggest that the model struggles with specific object 

categories. To improve performance, further optimizations such as hyperparameter tuning, advanced data 

augmentation, or the integration of attention mechanisms could be explored. 
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Source Code 

a. hw6_1.py 

from google.colab import drive 

drive.mount('/content/drive') 

 

import os 

os.listdir("/content/drive/MyDrive/DLStudio") 

!pip install pymsgbox 

 

import sys 

sys.path.append('/content/drive/MyDrive/DLStudio/DLStudio') 

 

import torch 

import torch.nn as nn 

import torch.nn.functional as F 

import matplotlib.pyplot as plt 

from DLStudio import DLStudio 

class SkipBlockMaxPool(nn.Module): 

    def __init__(self, in_ch, out_ch, downsample=False, skip_connections=True): 

        super(SkipBlockMaxPool, self).__init__() 

        self.downsample = downsample 

        self.skip_connections = skip_connections 

        self.in_ch = in_ch 

        self.out_ch = out_ch 

 

        self.convo1 = nn.Conv2d(in_ch, in_ch, kernel_size=3, stride=1, padding=1) 

        self.convo2 = nn.Conv2d(in_ch, out_ch, kernel_size=3, stride=1, padding=1) 

        self.bn1 = nn.BatchNorm2d(in_ch) 

        self.bn2 = nn.BatchNorm2d(out_ch) 

 

        self.in2out = nn.Conv2d(in_ch, out_ch, kernel_size=1) 

 

        if self.downsample: 

            self.maxpool = nn.MaxPool2d(kernel_size=2, stride=2) 

        else: 

            self.maxpool = None 

 

    def forward(self, x): 

        identity = x 

 

        out = self.convo1(x) 

        out = self.bn1(out) 

        out = F.relu(out) 

 

        out = self.convo2(out) 

        out = self.bn2(out) 



        out = F.relu(out) 

 

        if self.downsample and self.maxpool is not None: 

            identity = self.maxpool(identity) 

            out = self.maxpool(out) 

 

        if self.skip_connections: 

            if (self.in_ch == self.out_ch) and (not self.downsample): 

                out = out + identity 

            elif (self.in_ch != self.out_ch) and (not self.downsample): 

                identity = self.in2out(identity) 

                out = out + identity 

            elif (self.in_ch != self.out_ch) and self.downsample: 

                out = out + torch.cat((identity, identity), dim=1) 

        return out 

 

class BMEnetMaxPool(DLStudio.BMEnet): 

    def __init__(self, dl_studio, skip_connections=True, depth=8): 

        super(BMEnetMaxPool, self).__init__(dl_studio) 

        self.dl_studio = dl_studio 

        self.depth = depth 

        image_size = dl_studio.image_size 

        num_ds = 0 

 

        self.conv = nn.Conv2d(3, 64, kernel_size=3, padding=1) 

 

        self.skip64_arr = nn.ModuleList() 

        for i in range(self.depth): 

            self.skip64_arr.append(DLStudio.BMEnet.SkipBlock(64, 64, skip_connections=skip_connections)) 

 

        self.skip64to128ds = SkipBlockMaxPool(64, 128, downsample=True, 

skip_connections=skip_connections) 

        num_ds += 1 

 

        self.skip128_arr = nn.ModuleList() 

        for i in range(self.depth): 

            self.skip128_arr.append(DLStudio.BMEnet.SkipBlock(128, 128, skip_connections=skip_connections)) 

 

        self.skip128to256ds = SkipBlockMaxPool(128, 256, downsample=True, 

skip_connections=skip_connections) 

        num_ds += 1 

 

        self.skip256_arr = nn.ModuleList() 

        for i in range(self.depth): 

            self.skip256_arr.append(DLStudio.BMEnet.SkipBlock(256, 256, skip_connections=skip_connections)) 

 

        fc_in_features = (image_size[0] // (2 ** num_ds)) * (image_size[1] // (2 ** num_ds)) * 256 

        self.fc1 = nn.Linear(fc_in_features, 1000) 

        self.fc2 = nn.Linear(1000, 10) 

 



    def forward(self, x): 

        x = F.relu(self.conv(x)) 

        for block in self.skip64_arr: 

            x = block(x) 

        x = self.skip64to128ds(x) 

        for block in self.skip128_arr: 

            x = block(x) 

        x = self.skip128to256ds(x) 

        for block in self.skip256_arr: 

            x = block(x) 

        x = x.view(x.size(0), -1) 

        x = F.relu(self.fc1(x)) 

        x = self.fc2(x) 

        return x 

 

    def load_cifar_10_dataset(self): 

        self.dl_studio.load_cifar_10_dataset() 

 

from sklearn.metrics import confusion_matrix 

import seaborn as sns 

import matplotlib.pyplot as plt 

import numpy as np 

import pandas as pd 

 

def main(): 

    dls = DLStudio( 

        dataroot="./data/CIFAR-10/", 

        image_size=[32, 32], 

        path_saved_model="./saved_model_model.pt", 

        momentum=0.9, 

        learning_rate=1e-4, 

        epochs=6, 

        batch_size=4, 

        classes=('plane','car','bird','cat','deer','dog','frog','horse','ship','truck'), 

        use_gpu=True 

    ) 

 

    print("Experiment 1: Original BMEnet with skip connections (convolution-based downsampling)") 

    model1 = dls.BMEnet(dls, skip_connections=True, depth=8) 

    model1.load_cifar_10_dataset() 

    params1 = sum(p.numel() for p in model1.parameters() if p.requires_grad) 

    print("Learnable parameters (Original BMEnet):", params1) 

 

    model1.run_code_for_training(model1, display_images=False) 

    model1.run_code_for_testing(model1, display_images=False) 

 

    print("Experiment 2: BMEnet variant with maxpool downsampling") 

    model2 = BMEnetMaxPool(dls, skip_connections=True, depth=8) 



    model2.load_cifar_10_dataset() 

    params2 = sum(p.numel() for p in model2.parameters() if p.requires_grad) 

    print("Learnable parameters (BMEnet with MaxPool downsampling):", params2) 

 

    model2.run_code_for_training(model2, display_images=False) 

    model2.run_code_for_testing(model2, display_images=False) 

 

 

 

if __name__ == '__main__': 

    main() 

 

b. hw6_2.py 

from google.colab import drive 

drive.mount('/content/drive') 

 

import os 

os.listdir("/content/drive/MyDrive/DLStudio") 

!pip install pymsgbox 

 

import sys 

sys.path.append('/content/drive/MyDrive/DLStudio/DLStudio') 

 

!pip install pycocotools 

!pip install torchvision 

 

import os 

DATA_DIR = "/content/drive/MyDrive/coco_subset" 

TRAIN_DIR = os.path.join(DATA_DIR, "train2017") 

VAL_DIR = os.path.join(DATA_DIR, "val2017") 

ANN_DIR = os.path.join(DATA_DIR, "annotations") 

os.makedirs(TRAIN_DIR, exist_ok=True) 

os.makedirs(VAL_DIR, exist_ok=True) 

os.makedirs(ANN_DIR, exist_ok=True) 

print(f"Dataset will be stored in: {DATA_DIR}") 

 

!wget http://images.cocodataset.org/annotations/annotations_trainval2017.zip -P /content/ 

!unzip /content/annotations_trainval2017.zip -d /content/ 

!mv /content/annotations /content/drive/MyDrive/coco_subset/ 

 

from pycocotools.coco import COCO 

import requests 

import os 

import json 



 

DATA_DIR = "/content/drive/MyDrive/coco_subset" 

TRAIN_DIR = os.path.join(DATA_DIR, "train2017") 

VAL_DIR = os.path.join(DATA_DIR, "val2017") 

ANN_DIR = os.path.join(DATA_DIR, "annotations") 

 

SELECTED_CLASSES = [ 'airplane', 'bus', 'cat', 'dog','pizza'] 

NUM_TRAIN = 1500 

NUM_TEST = 500 

 

train_coco = COCO(os.path.join(ANN_DIR, "instances_train2017.json")) 

val_coco = COCO(os.path.join(ANN_DIR, "instances_val2017.json")) 

 

cat_to_id = {cat: train_coco.getCatIds(catNms=[cat])[0] for cat in SELECTED_CLASSES} 

 

def download_coco_images(coco, save_dir, num_images_per_class): 

    os.makedirs(save_dir, exist_ok=True) 

 

    for class_name, class_id in cat_to_id.items(): 

        class_folder = os.path.join(save_dir, class_name) 

        os.makedirs(class_folder, exist_ok=True) 

 

        img_ids = coco.getImgIds(catIds=class_id)[:num_images_per_class] 

 

        for img_id in img_ids: 

            img_info = coco.loadImgs(img_id)[0] 

            img_url = img_info['coco_url'] 

            img_path = os.path.join(class_folder, img_info['file_name']) 

 

            if not os.path.exists(img_path): 

                img_data = requests.get(img_url).content 

                with open(img_path, 'wb') as f: 

                    f.write(img_data) 

 

        print(f"Downloaded {num_images_per_class} images for {class_name} into {class_folder}") 

 

download_coco_images(train_coco, TRAIN_DIR, NUM_TRAIN) 

download_coco_images(val_coco, VAL_DIR, NUM_TEST) 

 

import random 

import matplotlib.pyplot as plt 

import torchvision.transforms as transforms 

from PIL import Image 

import glob 

def plot_images_from_coco(root_dir, class_names, transform=None): 

    plt.figure(figsize=(12, 10)) 

    image_count = 0 

 

    for class_name in class_names: 



        class_folder = os.path.join(root_dir, class_name) 

        image_paths = glob.glob(f"{class_folder}/*.jpg") 

        sampled_images = random.sample(image_paths, 3) 

 

        for img_path in sampled_images: 

            image = Image.open(img_path).convert("RGB") 

            image_count += 1 

            plt.subplot(5, 3, image_count) 

            plt.imshow(image) 

            plt.title(class_name) 

            plt.axis('off') 

    plt.suptitle("5x3 Grid - 3 Images per Class", fontsize=16) 

    plt.tight_layout() 

    plt.savefig("/content/drive/MyDrive/5x3_coco_images.png") 

    plt.show() 

dataset_root_dir = "/content/drive/MyDrive/coco_subset/train2017" 

plot_images_from_coco(root_dir=dataset_root_dir, class_names=SELECTED_CLASSES, transform=False) 

 

 

import torchvision.transforms as transforms 

import torchvision.datasets as datasets 

from torch.utils.data import Dataset, DataLoader 

import PIL.Image as Image 

import glob 

from DLStudio import DLStudio 

SELECTED_CLASSES = [ 'airplane', 'bus', 'cat', 'dog', 'pizza'] 

transform = transforms.Compose([ 

    transforms.Resize((32, 32)), 

    transforms.ToTensor(), 

    transforms.Normalize((0.5,), (0.5,)) 

]) 

 

class CocoSubset(Dataset): 

    def __init__(self, root_dir, class_names, transform=None): 

        self.root_dir = root_dir 

        self.transform = transform 

        self.class_names = class_names 

        self.image_paths = [] 

        self.labels = [] 

 

        for label, class_name in enumerate(class_names): 

            class_images = glob.glob(f"{root_dir}/{class_name}/*.jpg") 

            self.image_paths.extend(class_images) 

            self.labels.extend([label] * len(class_images)) 

 

    def __len__(self): 

        return len(self.image_paths) 

 

    def __getitem__(self, idx): 



        img_path = self.image_paths[idx] 

        image = Image.open(img_path).convert("RGB") 

        label = self.labels[idx] 

 

        if self.transform: 

            image = self.transform(image) 

 

        return image, label 

 

train_dataset = CocoSubset(root_dir=TRAIN_DIR, class_names=SELECTED_CLASSES, 

transform=transform) 

test_dataset = CocoSubset(root_dir=VAL_DIR, class_names=SELECTED_CLASSES, transform=transform) 

 

train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True, num_workers=2) 

test_loader = DataLoader(test_dataset, batch_size=32, shuffle=False, num_workers=2) 

 

print("COCO Dataset Loaded Successfully!") 

 

import torch 

import torch.nn as nn 

import torch.nn.functional as F 

from DLStudio import DLStudio 

#I have used Dr. Kaks Code as the base for this part of the assignment 

class BMEnetCOCO(nn.Module): 

 

    def __init__(self, num_classes=5, depth=30, skip_connections=True): 

        super(BMEnetCOCO, self).__init__() 

        self.depth = depth 

 

        self.conv1 = nn.Conv2d(3, 64, kernel_size=3, padding=1) 

        self.bn1 = nn.BatchNorm2d(64) 

 

        self.skip64_blocks = nn.ModuleList() 

        for _ in range(15): 

            self.skip64_blocks.append(DLStudio.BMEnet.SkipBlock(64, 64, skip_connections=skip_connections)) 

        self.skip64to128 = DLStudio.BMEnet.SkipBlock(64, 128, downsample=True, 

skip_connections=skip_connections) 

        self.skip128_blocks = nn.ModuleList() 

        for _ in range(8): 

            self.skip128_blocks.append(DLStudio.BMEnet.SkipBlock(128, 128, 

skip_connections=skip_connections)) 

 

        self.skip128to256 = DLStudio.BMEnet.SkipBlock(128, 256, downsample=True, 

skip_connections=skip_connections) 

 

        self.skip256_blocks = nn.ModuleList() 

        for _ in range(7): 

            self.skip256_blocks.append(DLStudio.BMEnet.SkipBlock(256, 256, 

skip_connections=skip_connections)) 



        self.fc1 = nn.Linear(256 * 8 * 8, 1024) 

        self.dropout = nn.Dropout(0.5) 

        self.fc2 = nn.Linear(1024, num_classes) 

 

    def forward(self, x): 

        x = F.relu(self.bn1(self.conv1(x))) 

 

        for skip in self.skip64_blocks: 

            x = skip(x) 

 

        x = self.skip64to128(x) 

 

        for skip in self.skip128_blocks: 

            x = skip(x) 

 

        x = self.skip128to256(x) 

 

        for skip in self.skip256_blocks: 

            x = skip(x) 

 

        x = torch.flatten(x, 1) 

        x = F.relu(self.fc1(x)) 

        x = self.dropout(x) 

        x = self.fc2(x) 

        return x 

 

 

import torch 

import torch.optim as optim 

import torch.nn as nn 

import torch.nn.functional as F 

 

def train_model(model, train_loader, num_epochs=10, learning_rate=1e-2): 

 

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu") 

    model.to(device) 

 

    criterion = nn.CrossEntropyLoss() 

    optimizer = optim.Adam(model.parameters(), lr=learning_rate) 

 

    loss_tally = [] 

    accuracy_tally = [] 

 

    for epoch in range(num_epochs): 

        model.train() 

        running_loss = 0.0 

        correct_predictions = 0 

        total_predictions = 0 

 



        for images, labels in train_loader: 

            images, labels = images.to(device), labels.to(device) 

 

            optimizer.zero_grad() 

            outputs = model(images) 

            loss = criterion(outputs, labels) 

            loss.backward() 

            optimizer.step() 

 

            running_loss += loss.item() 

 

            _, preds = torch.max(outputs, 1) 

            correct_predictions += (preds == labels).sum().item() 

            total_predictions += labels.size(0) 

 

        epoch_loss = running_loss / len(train_loader) 

        epoch_accuracy = 100 * correct_predictions / total_predictions 

 

        loss_tally.append(epoch_loss) 

        accuracy_tally.append(epoch_accuracy) 

        print(f"Epoch {epoch+1}/{num_epochs} | Loss: {epoch_loss:.4f} | Accuracy: {epoch_accuracy:.2f}%") 

 

    print(" Training complete!") 

    return loss_tally, accuracy_tally 

 

from sklearn.metrics import confusion_matrix 

import seaborn as sns 

import numpy as np 

import matplotlib.pyplot as plt 

 

def test_model(model, test_loader, class_names): 

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu") 

    model.to(device) 

    model.eval() 

    all_preds, all_labels = [], [] 

 

    with torch.no_grad(): 

        for images, labels in test_loader: 

            images, labels = images.to(device), labels.to(device) 

            outputs = model(images) 

            _, preds = torch.max(outputs, 1) 

            all_preds.extend(preds.cpu().numpy()) 

            all_labels.extend(labels.cpu().numpy()) 

    conf_matrix = confusion_matrix(all_labels, all_preds) 

    plt.figure(figsize=(8,6)) 

    sns.heatmap(conf_matrix, annot=True, fmt="d", cmap="Blues", xticklabels=class_names, 

yticklabels=class_names) 

    plt.xlabel("Predicted") 

    plt.ylabel("Actual") 



    plt.title("Confusion Matrix - MS-COCO") 

    plt.savefig("/content/drive/MyDrive/conf_matrix_coco.png") 

    plt.show() 

 

    class_correct = [0] * len(class_names) 

    class_total = [0] * len(class_names) 

 

    for i in range(len(all_labels)): 

        label = all_labels[i] 

        class_correct[label] += (all_preds[i] == label) 

        class_total[label] += 1 

 

    print("\nPer-Class Accuracy:") 

    for i, class_name in enumerate(class_names): 

        accuracy = 100 * class_correct[i] / class_total[i] if class_total[i] > 0 else 0 

        print(f"{class_name}: {accuracy:.2f}%") 

 

    overall_accuracy = 100 * np.sum(class_correct) / np.sum(class_total) 

    print(f"\nOverall Accuracy: {overall_accuracy:.2f}%") 

 

model = BMEnetCOCO(num_classes=5, depth=25, skip_connections=True) 

 

loss_tally, accuracy_tally = train_model(model, train_loader, num_epochs=30, learning_rate=1e-3) 

 

plt.figure(figsize=(10,5)) 

plt.plot(loss_tally, label="Loss") 

plt.xlabel("Epochs") 

plt.ylabel("Loss") 

plt.title("Training Loss Curve") 

plt.legend() 

plt.savefig("/content/drive/MyDrive/loss_curve_coco.png") 

plt.show() 

 

test_model(model, test_loader, SELECTED_CLASSES) 

 


