
ECE 60146 - HW5
Bhavya Patel - pate1539@purdue.edu

02/18/25

1



1 Net 1

1.1 Code

1 #take in a parameter for which model to train and test

2 parser = argparse.ArgumentParser ()

3 parser.add_argument("--model", type=int , required=True)

4 args = parser.parse_args ()

5 #create the DL Studio parameters

6 dls = DLStudio(

7 #dataroot = "/home/kak/ImageDatasets/CIFAR -10/",

8 dataroot = "./data/CIFAR -10/",

9 image_size = [32,32],

10 path_saved_model = "./ saved_model",

11 momentum = 0.9,

12 learning_rate = 1e-3,

13 epochs = 5,

14 batch_size = 5,

15 classes = (’plane’,’car’,’bird’,’cat’,’deer’,’dog’,’frog’,’horse’

,’ship’,’truck’),

16 use_gpu = True ,

17 )

18 #get nnew class object

19 custom_cifar = CustomExperimentsWithCIFAR(dl_studio = dls)

20 #get the CIFAR10 Dataset

21 custom_cifar.load_cifar_10_dataset ()

22

23 #train and run Net 1

24 if args.model == 1:

25 model1 = custom_cifar.Net()

26 custom_cifar.run_code_for_training(model1 , display_images=False)

27 labels , predicted = custom_cifar.run_code_for_testing(model1 ,

display_images=False)

28 ...

29 ...

30 ...

31 #create a confusion matrix

32 class_names = [’plane ’, ’car’, ’bird’, ’cat’, ’deer’, ’dog’, ’frog’, ’horse ’,

’ship’, ’truck’]

33 cm = confusion_matrix(labels , predicted)

34 plt.figure(figsize =(10, 7))

35 sns.heatmap(cm , annot=True , fmt=’d’, cmap=’Blues ’, xticklabels=class_names ,

yticklabels=class_names)

36 plt.xlabel(’Predicted Label’)

37 plt.ylabel(’True Label’)

38 plt.title(f’Confusion Matrix for Model {args.model}’)

39 plt.savefig(f’confusion_matrix_{args.model}’)

Listing 1: Net 1 Code

Note: The run code for testing() method was modified to return labels and pre-

dictions to create the Confusion Matrix. The method otherwise was unmodified

and gives the training loss graph.

2



1.2 Training Loss Graph and Confusion Matrix

Figure 1: Training Loss

Figure 2: Confusion Matrix

3



2 Net 2

2.1 Code

1 #take in a parameter for which model to train and test

2 parser = argparse.ArgumentParser ()

3 parser.add_argument("--model", type=int , required=True)

4 args = parser.parse_args ()

5 #create the DL Studio parameters

6 dls = DLStudio(

7 #dataroot = "/home/kak/ImageDatasets/CIFAR -10/",

8 dataroot = "./data/CIFAR -10/",

9 image_size = [32,32],

10 path_saved_model = "./ saved_model",

11 momentum = 0.9,

12 learning_rate = 1e-3,

13 epochs = 5,

14 batch_size = 5,

15 classes = (’plane’,’car’,’bird’,’cat’,’deer’,’dog’,’frog’,’horse’

,’ship’,’truck’),

16 use_gpu = True ,

17 )

18 #get nnew class object

19 custom_cifar = CustomExperimentsWithCIFAR(dl_studio = dls)

20 #get the CIFAR10 Dataset

21 custom_cifar.load_cifar_10_dataset ()

22

23 ...

24 elif args.model == 2:

25 model2 = custom_cifar.Net2()

26 custom_cifar.run_code_for_training(model2 , display_images=False)

27 labels , predicted = custom_cifar.run_code_for_testing(model2 ,

display_images=False)

28 ...

29 #create a confusion matrix

30 class_names = [’plane ’, ’car’, ’bird’, ’cat’, ’deer’, ’dog’, ’frog’, ’horse ’,

’ship’, ’truck’]

31 cm = confusion_matrix(labels , predicted)

32 plt.figure(figsize =(10, 7))

33 sns.heatmap(cm , annot=True , fmt=’d’, cmap=’Blues ’, xticklabels=class_names ,

yticklabels=class_names)

34 plt.xlabel(’Predicted Label’)

35 plt.ylabel(’True Label’)

36 plt.title(f’Confusion Matrix for Model {args.model}’)

37 plt.savefig(f’confusion_matrix_{args.model}’)

Listing 2: Net 2 Code

4



2.2 Training Loss Graph and Confusion Matrix

Figure 3: Training Loss

Figure 4: Confusion Matrix

5



3 Net 3

3.1 Code

1 class CustomExperimentsWithCIFAR(DLStudio.ExperimentsWithCIFAR):

2 # pass dl_studio class to constructor

3 def __init__(self , dl_studio):

4 super().__init__(dl_studio)

5 #create a new Network class

6 class Net3(nn.Module):

7 def __init__(self):

8 super().__init__ ()

9 #conv layers

10 self.conv_block1 = nn.Sequential(nn.Conv2d(3, 32, kernel_size =3,

padding =1), nn.ReLU(), nn.BatchNorm2d (32))

11 self.conv_block2 = nn.Sequential(nn.Conv2d (32, 64, kernel_size =3,

padding =1), nn.ReLU(), nn.BatchNorm2d (64))

12 self.conv_block3 = nn.Sequential(nn.Conv2d (64, 128, kernel_size

=3, padding =1), nn.ReLU(), nn.BatchNorm2d (128), nn.MaxPool2d(kernel_size

=2, stride =2))

13 self.conv_block4 = nn.Sequential(nn.Conv2d (128, 128, kernel_size

=3, padding =1), nn.ReLU(), nn.BatchNorm2d (128))

14 self.conv_block5 = nn.Sequential(nn.Conv2d (128, 256, kernel_size

=3, padding =1), nn.ReLU(), nn.BatchNorm2d (256))

15 self.conv_block6 = nn.Sequential(nn.Conv2d (256, 256, kernel_size

=3, padding =1), nn.ReLU(), nn.BatchNorm2d (256), nn.MaxPool2d(kernel_size

=2, stride =2))

16 self.conv_block7 = nn.Sequential(nn.Conv2d (256, 512, kernel_size

=3, padding =1), nn.ReLU(), nn.BatchNorm2d (512))

17 self.conv_block8 = nn.Sequential(nn.Conv2d (512, 512, kernel_size

=3, padding =1), nn.ReLU(), nn.BatchNorm2d (512))

18 #fully connected

19 self.fc1 = nn.Linear (512*8*8 , 512)

20 self.fc2 = nn.Linear (512, 10)

21

22 def forward(self , x):

23 #conv layers

24 x1 = self.conv_block1(x)

25 x2 = self.conv_block2(x1)

26 x3 = self.conv_block3(x2)

27 x4 = self.conv_block4(x3)

28 x5 = self.conv_block5(x4)

29 x6 = self.conv_block6(x5)

30 x7 = self.conv_block7(x6)

31 x8 = self.conv_block8(x7)

32

33 #fully connected

34 x8 = x8.view(x8.size (0), -1)

35 x8 = F.relu(self.fc1(x8))

36 x8 = self.fc2(x8)

37 return x8

Listing 3: Net 3 Architecture

6



1 #take in a parameter for which model to train and test

2 parser = argparse.ArgumentParser ()

3 parser.add_argument("--model", type=int , required=True)

4 args = parser.parse_args ()

5 #create the DL Studio parameters

6 dls = DLStudio(

7 #dataroot = "/home/kak/ImageDatasets/CIFAR -10/",

8 dataroot = "./data/CIFAR -10/",

9 image_size = [32,32],

10 path_saved_model = "./ saved_model",

11 momentum = 0.9,

12 learning_rate = 1e-3,

13 epochs = 5,

14 batch_size = 5,

15 classes = (’plane’,’car’,’bird’,’cat’,’deer’,’dog’,’frog’,’horse’

,’ship’,’truck’),

16 use_gpu = True ,

17 )

18 #get nnew class object

19 custom_cifar = CustomExperimentsWithCIFAR(dl_studio = dls)

20 #get the CIFAR10 Dataset

21 custom_cifar.load_cifar_10_dataset ()

22

23 ...

24 elif args.model == 3:

25 model3 = custom_cifar.Net3()

26 custom_cifar.run_code_for_training(model3 , display_images=False)

27 labels , predicted = custom_cifar.run_code_for_testing(model3 ,

display_images=False)

28 ...

29 #create a confusion matrix

30 class_names = [’plane ’, ’car’, ’bird’, ’cat’, ’deer’, ’dog’, ’frog’, ’horse ’,

’ship’, ’truck’]

31 cm = confusion_matrix(labels , predicted)

32 plt.figure(figsize =(10, 7))

33 sns.heatmap(cm , annot=True , fmt=’d’, cmap=’Blues ’, xticklabels=class_names ,

yticklabels=class_names)

34 plt.xlabel(’Predicted Label’)

35 plt.ylabel(’True Label’)

36 plt.title(f’Confusion Matrix for Model {args.model}’)

37 plt.savefig(f’confusion_matrix_{args.model}’)

Listing 4: Net 3 Main Function Code

7



3.2 Training Loss Graph and Confusion Matrix

Figure 5: Training Loss

Figure 6: Confusion Matrix

8



4 Results

4.1 Overall Accuracy Table

Network Overall Accuracy (%)

Net1 1 61
Net2 76
Net3 80

Table 1: Overall classification accuracy of each network.

4.2 Per-Class Accuracy Table

Class Network 1 (%) Network 2 (%) Network 3 (%)

Plane 58 78 80
Car 77 83 88
Bird 53 56 71
Cat 33 64 61
Deer 67 77 75
Dog 50 69 73
Frog 73 83 83
Horse 62 80 82
Ship 59 87 92
Truck 78 83 90

Table 2: Per-class classification accuracy for each network.

4.3 Discussion

The classification accuracy of the three neural networks show the trend that as

the architecture becomes deeper the performance improves. Network 1, the sim-

plest model, achieves an accuracy of 61%. It consists of only two convolutional

layers followed by three fully connected layers. Then Network 2 introduces

an additional convolutional layer and increases the number of channels in each

layer, which leads to a accuracy jump to 76%, which is a 15% improvement

over Network 1. This shows the benefits of added depth and increased channel

capacity, which is it enhances feature extraction.

9



Network 3, the most complex architecture, achieves the highest accuracy of

80%. It has eight convolutional layers, each followed by batch normalization

and then there is a max-pooling twice in the entire architecture. The deeper

architecture allows more feature learning which is crucial for object recognition.

A key factor in its success is batch normalization, which stabilizes training,

limits the vanishing gradient problem, and accelerates convergence. Without

batch normalization Netowrk 3 struggled to learn and its performance was worse

than Network 1 and Network 2.

Some things to note about each networks graphs and confusion matrix is

they all tend to struggle with the same object classifications. For example when

looking at the confusion matrices for all the networks we can see that it always

struggles with differentiating dog and cat. We can also see that with a deeper

network that its learns much quicker than the shallower network by using the

training loss graphs.

The overall trend indicates that increasing network depth enhances accuracy.

However, deeper networks require greater computational resources and are more

prone to overfitting. The 15% accuracy boost from Network 1 to Network 2

shows gains from increasing model capacity, while the smaller 4% gain from

Network 2 to Network 3 suggests diminishing returns beyond a certain depth.

Adding layers can only provide only so many benefits. In conclusion, while

deeper networks generally improve classification performance, techniques like

batch normalization are essential for ensuring stable and efficient learning.

10


