ECE 60146 - HW5

Bhavya Patel - patel539@Qpurdue.edu
02/18/25

1 Net1l

1.1 Code

#take in a parameter for which model to train and test

parser = argparse.ArgumentParser ()
parser.add_argument ("--model", type=int, required=True)
args = parser.parse_args ()

#create the DL Studio parameters
dls = DLStudio(

#dataroot = "/home/kak/ImageDatasets/CIFAR-10/",

dataroot = "./data/CIFAR-10/",

image_size = [32,32],

path_saved_model = "./saved_model",

momentum = 0.9,

learning _rate = le-3,

epochs = 5,

batch_size = 5,

classes = (’plane’,’car’,’bird’,’cat’,’deer’,’dog’,’frog’,’horse’

,’ship’,’truck’),
use_gpu = True,
)
#get nnew class object
custom_cifar = CustomExperimentsWithCIFAR(dl_studio = dls)
#get the CIFAR10 Dataset
custom_cifar.load_cifar_10_dataset ()

#train and run Net 1

if args.model == 1:
modell = custom_cifar.Net ()
custom_cifar.run_code_for_training(modell, display_images=False)
labels, predicted = custom_cifar.run_code_for_testing(modell,

display_images=False)

#create a confusion matrix

class_names = [’plane’, ’car’, ’bird’, ’cat’, ’deer’, ’dog’, ’frog’, ’horse’,
’ship’, ’truck’]
cm = confusion_matrix(labels, predicted)

plt.figure(figsize=(10, 7))

sns.heatmap (cm, annot=True, fmt=’d’, cmap=’Blues’, xticklabels=class_names,
yticklabels=class_names)

plt.xlabel (’Predicted Label’)

plt.ylabel (’True Label’)

plt.title(f’Confusion Matrix for Model {args.model}’)

plt.savefig(f’confusion_matrix_{args.modell}’)

Listing 1: Net 1 Code

Note: The run_code_for_testing() method was modified to return labels and pre-
dictions to create the Confusion Matrix. The method otherwise was unmodified

and gives the training loss graph.

1.2 Training Loss Graph and Confusion Matrix

Labeling Loss vs. Iterations

. —— Plot of loss versus iterations
2.0
1.8
"
7
2164
1.4
12
1.0
0 10 20 30 a0 50
iterations
Figure 1: Training Loss
Confusion Matrix for Model 1
o
g 41 120 17 61 4 11 16 68 80
B
700
§- 20 1 5 13 2 1 5 17 154
- 2 1 37 s 78 87 38] 14 600
.
§- 16 18 9% | 338 141 182 110 4 9 49 00
T E - 15 11 78 40
|0
5 400
E] o
2 g- 7 8 98 136
-300
g- 4 15 38 a7
£
JECE 1 56 38 -200
2
o
S- 127 94 2 13
& 100
g 25 106 6 8 13
B

!] , \ !
plane car bird cat deer dog frog horse ship truck
Predicted Label

Figure 2: Confusion Matrix

2 Net 2

2.1 Code

#take in a parameter for which model to train and test

parser = argparse.ArgumentParser ()
parser.add_argument ("--model", type=int, required=True)
args = parser.parse_args ()

#create the DL Studio parameters
dls = DLStudio(

#dataroot = "/home/kak/ImageDatasets/CIFAR-10/",

dataroot = "./data/CIFAR-10/",

image_size = [32,32],

path_saved_model = "./saved_model",

momentum = 0.9,

learning _rate = le-3,

epochs = 5,

batch_size = 5,

classes = (’plane’,’car’,’bird’,’cat’,’deer’,’dog’,’frog’,’horse’

,’ship’,’truck’),
use_gpu = True,
)
#get nnew class object
custom_cifar = CustomExperimentsWithCIFAR(dl_studio = dls)
#get the CIFAR10 Dataset
custom_cifar.load_cifar_10_dataset ()

elif args.model == 2:
model2 = custom_cifar.Net2()

custom_cifar.run_code_for_training(model2, display_images=False)
labels, predicted = custom_cifar.run_code_for_testing(mode12,

display_images=False)

#create a confusion matrix

class_names = [’plane’, ’car’, ’bird’, ’cat’, ’deer’, ’dog’,
’ship’, ’truck’]
cm = confusion_matrix(labels, predicted)

plt.figure(figsize=(10, 7))

sns.heatmap (cm, annot=True, fmt=’d’, cmap=’Blues’, xticklabels=class_names,

yticklabels=class_names)
plt.xlabel (’Predicted Label’)
plt.ylabel (’True Label’)
plt.title(f’Confusion Matrix for Model {args.model}’)

plt.savefig(f’confusion_matrix_{args.modell}’)

Listing 2: Net 2 Code

2.2

Training Loss Graph and Confusion Matrix

loss

Labeling Loss vs. lterations

2.251

2.00 4

1759

1.50 §

1.25 9

1.00 §

0.75 q

0.50 4

—— Plot of loss versus iterations

True Label

iterations

Figure 3: Training Loss

Confusion Matrix for Model 2

v
H 17 31 34 15 4 8 6 53 47
s 800
§- B

700
B- 66
5

600
§- 13
5 500
g - 14
- 10 - 400
<
g- s -300
o
2o 17
s -200
a
£-

-100
-~
S- 19 60 2 22 4 11 10 15 23
. ! -0

! !] \ \ ! !
plane car bird cat deer dog frog horse ship truck
Predicted Label

Figure 4: Confusion Matrix

1

11

3 Net 3

3.1 Code

class CustomExperimentsWithCIFAR (DLStudio.ExperimentsWithCIFAR):
pass dl_studio class to constructor

def __init__(self, dl_studi

0):

super () . __init__(dl_studio)

#create a new Network class
class Net3(nn.Module):
def __init__(self):
super () . __init__
#conv layers

self.conv_blockl

padding=1), nn.ReLU(), nn.BatchNorm2d (32))

self.conv_block2

padding=1), nn.ReLU(), nn.

self.conv_block3

=3, padding=1), nn.ReLU(), nn.BatchNorm2d (128),
=2, stride=2))

self.conv_block4 = nn.Sequential(nn.Conv2d (128,
=3, padding=1), nn.ReLU(), nn.BatchNorm2d (128))

self.conv_block5 = nn.Sequential(nn.Conv2d (128,
=3, padding=1), nn.ReLU(), nn.BatchNorm2d (256))

self.conv_block6 = nn.Sequential(nn.Conv2d (256,
=3, padding=1), nn.RelLU(), nn.BatchNorm2d (256),
=2, stride=2))

self.conv_block7 = nn.Sequential(nn.Conv2d(256,
=3, padding=1), nn.RelLU(), nn.BatchNorm2d(512))

self.conv_block8 = nn.Sequential(nn.Conv2d (512,
=3, padding=1), nn.ReLU(), nn.BatchNorm2d(512))

#fully connected

self.fcl = nn.Linear (512*8%8, 512)

self.fc2 = nn.Linear (512, 10)

def forward(self, x):

#conv layers

x1 = self.conv_blockl (x)

x2 = self.conv_block2(x1)

x3 = self.conv_block3(x2)

x4 = self.conv_block4(x3)

x5 = self.conv_block5(x4)

x6 = self.conv_block6 (x5)

x7 = self.conv_block7(x6)

x8 = self.conv_block8(x7)

#fully connected

x8 = x8.view(x8.size(0), -1)

x8 = F.relu(self.fc1(x8))

x8 = self.fc2(x8)

return x8

Listing 3: Net 3 Architecture

O

= nn.Sequential (nn.Conv2d (3, 32,

= nn.Sequential(nn.Conv2d (32, 64,
BatchNorm2d (64))

= nn.Sequential (nn.Conv2d (64, 128,

128,

256,

256,

512,

512,

kernel_size=3,

kernel_size=3,

kernel_size

nn.MaxPool2d (kernel_size

kernel_size

kernel_size

kernel_size

nn.MaxPool2d (kernel_size

kernel_size

kernel_size

#tak
pars
pars
args
#cre
dls

#get
cust
#get
cust

elif

#cre
clas

cm =
plt.
sns.

plt
plt
plt
plt.

e in a parameter for which model to train and test

er = argparse.ArgumentParser ()
er.add_argument ("--model", type=int, required=True)
= parser.parse_args ()

ate the DL Studio parameters

= DLStudio (
#dataroot = "/home/kak/ImageDatasets/CIFAR-10/",
dataroot = "./data/CIFAR-10/",
image_size = [32,32],
path_saved_model = "./saved_model",
momentum = 0.9,
learning_rate = le-3,
epochs = 5,
batch_size = 5,
classes = (’plane’,’car’,’bird’,’cat’,’deer’,’dog’,’frog’, ’horse’

,’ship’,’truck’),
use_gpu = True,
)
nnew class object
om_cifar = CustomExperimentsWithCIFAR(dl_studio = dls)
the CIFAR10 Dataset
om_cifar.load_cifar_10_dataset ()

args.model == 3:
model3 = custom_cifar.Net3()
custom_cifar.run_code_for_training(models, display_images=False)
labels, predicted = custom_cifar.run_code_for_testing(model3,
display_images=False)

ate a confusion matrix

sS_names = [’plane’, ’car’, ’bird’, ’cat’, ’deer’, ’dog’, ’frog’, ’horse’,

’ship’, ’truck’]

confusion_matrix(labels, predicted)
figure (figsize=(10, 7))
heatmap (cm, annot=True, fmt=’d’, cmap=’Blues’, xticklabels=class_names,
yticklabels=class_names)

.xlabel (’Predicted Label’)
.ylabel (’True Label’)
.title(f’Confusion Matrix for Model {args.modell}’)

savefig (f’confusion_matrix_{args.model}’)

Listing 4: Net 3 Main Function Code

3.2 Training Loss Graph and Confusion Matrix

loss

Labeling Loss vs. Iterations

—— Plot of loss versus iterations
1751
1.50 4
1.25 4
1.00 4
0.75
0.50
0.25
o 10 20 30 40 50
iterations
Figure 5: Training Loss
Confusion Matrix for Model 3
E 7 39 17 9 5 6 5 68 37
B
- 800
g
®
a8
B 600
78
E k-
»
S
(=] - 400
g
=
2
2 -200
2
]
] 9 48 4 4 4 4 2 4 21
= 0 ' -0

! !] \ \ ! !
plane car bird cat deer dog frog horse ship truck
Predicted Label

Figure 6: Confusion Matrix

4 Results

4.1 Overall Accuracy Table

Network Overall Accuracy (%)

Netl 1 61
Net2 76
Net3 80

Table 1: Overall classification accuracy of each network.

4.2 Per-Class Accuracy Table

Class Network 1 (%) Network 2 (%) Network 3 (%)

Plane 58 78 80
Car 77 83 88
Bird 53 56 71
Cat 33 64 61
Deer 67 77 75
Dog 50 69 73
Frog 73 83 83
Horse 62 80 82
Ship 59 87 92
Truck 78 83 90

Table 2: Per-class classification accuracy for each network.

4.3 Discussion

The classification accuracy of the three neural networks show the trend that as
the architecture becomes deeper the performance improves. Network 1, the sim-
plest model, achieves an accuracy of 61%. It consists of only two convolutional
layers followed by three fully connected layers. Then Network 2 introduces
an additional convolutional layer and increases the number of channels in each
layer, which leads to a accuracy jump to 76%, which is a 15% improvement
over Network 1. This shows the benefits of added depth and increased channel

capacity, which is it enhances feature extraction.

Network 3, the most complex architecture, achieves the highest accuracy of
80%. It has eight convolutional layers, each followed by batch normalization
and then there is a max-pooling twice in the entire architecture. The deeper
architecture allows more feature learning which is crucial for object recognition.
A key factor in its success is batch normalization, which stabilizes training,
limits the vanishing gradient problem, and accelerates convergence. Without
batch normalization Netowrk 3 struggled to learn and its performance was worse
than Network 1 and Network 2.

Some things to note about each networks graphs and confusion matrix is
they all tend to struggle with the same object classifications. For example when
looking at the confusion matrices for all the networks we can see that it always
struggles with differentiating dog and cat. We can also see that with a deeper
network that its learns much quicker than the shallower network by using the
training loss graphs.

The overall trend indicates that increasing network depth enhances accuracy.
However, deeper networks require greater computational resources and are more
prone to overfitting. The 15% accuracy boost from Network 1 to Network 2
shows gains from increasing model capacity, while the smaller 4% gain from
Network 2 to Network 3 suggests diminishing returns beyond a certain depth.
Adding layers can only provide only so many benefits. In conclusion, while
deeper networks generally improve classification performance, techniques like

batch normalization are essential for ensuring stable and efficient learning.

10

