
ECE 601: Homework 5 
Hazem Hanafy 

Email: hhanafy@purdue.edu 

Due date: 11:59 PM, Feb. 17, 2025 

(Spring 2025) 

2. Experimental Tasks and Analysis 
 Task 1: Compare between Net, Net2, and Net3 
 Using Net and Net2 from ExperimentsWithCIFAR and comparing the results with the 
custom network Net3 which contains 8 convolution layers in terms of training vs loss curve, 
confusion matrix, and overall accuracy. 

 

Net() network form ExperimentsWithCIFAR results: 

 
 

 
 

(a) (b) 
Figure 1. (a) represent training vs loss curve for the Net() network, (b) Confusion matrix 
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(a) (b) 
Figure 2. (a) represent training vs loss curve for the Net2() network, (b) Confusion matrix 

 

  

 

 
 

 
 

(a) (b) 
Figure 3. (a) represent training vs loss curve for the Net3() network, (b) Confusion matrix 

 

 

Based on the results from figures 1-3 increasing the number of layers does not always give better 
results. As noticed when the number of layers increased from Net() to Net2() the loss value at the 
end is lower also the classification results are better based on the confusion matrix. But for Net3() 
which contain 8 layers, I got really good results till the 7th layer, but when I added the 8th layer the 
network always overfitted and gives only one dominant class as the result. 

Overall accuracy for each network 
Network Overall accuracy 

Net() 64% 
Net2() 76% 
Net3() 10% 

 



Per class accuracy 
 

Class Net accuracy (%) Net2 accuracy (%) Net3 accuracy (%) 
Plane 79 83 100 

Car 72 87 0 
Bird 48 66 0 
Cat 44 58 0 

Deer 53 77 0 
Dog 50 66 0 
Frog 87 86 0 

Horse 64 78 0 
Ship 71 81 0 

Truck 76 81 0 
 

Discussion 
 

The accuracy differences among the three networks stem from their architectural choices. Net() 
achieves 64% accuracy with a simple design of two convolutional layers, effective max pooling, and 
fully connected layers, providing a balance between depth and feature extraction. Net2(), at 76% 
accuracy, improves upon this by increasing the number of filters, using smaller kernel sizes for better 
feature extraction. In contrast, Net3() drastically underperforms at 10% due to excessive 
convolutional layers without sufficient pooling, leading to large feature maps that are difficult to 
process, vanishing gradients, and poor weight updates. Additionally, aggressive dropout may 
contribute to information loss, preventing the network from learning effectively. To improve Net3(), 
adding more pooling layers, reducing dropout, and incorporating batch normalization could help 
stabilize training and enhance accuracy. 

 

 

 

 

 

 

 

 

 

 



Code used: 

1. # %% 

2. class CustomExperimentwithCIFAR(DLStudio.ExperimentsWithCIFAR): 

3.     def __init__(self, dl_studio): 

4.         super().__init__(dl_studio) 

5.      

6.     def Net3(self): 

7.         class Net3(nn.Module): 

8.             def __init__(self): 

9.                 super().__init__() 

10.  

11.                 # Convolutional Layers 

12.                 self.conv1 = nn.Conv2d(3, 32, kernel_size=3, stride=1, 

padding=1) 

13.                 self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=1, 

padding=1) 

14.                  

15.                 self.conv3 = nn.Conv2d(64, 64, kernel_size=3, stride=1, 

padding=1) 

16.                 self.conv4 = nn.Conv2d(64, 128, kernel_size=3, stride=1, 

padding=1) 

17.  

18.                 self.conv5 = nn.Conv2d(128, 256, kernel_size=3, stride=1, 

padding=1) 

19.                 self.conv6 = nn.Conv2d(256, 256, kernel_size=3, stride=1, 

padding=1) 

20.  

21.                 self.conv7 = nn.Conv2d(256, 256, kernel_size=3, stride=1, 

padding=1) 

22.                 self.conv8 = nn.Conv2d(256, 512, kernel_size=3, stride=1, 

padding=1) 

23.  

24.                 # Pooling and Dropout Layers 

25.                 self.pool = nn.MaxPool2d(2, 2)  # Reduce size after key 

layers 

26.                 self.dropout = nn.Dropout(0.2)  # Regularization 

27.  

28.                 # Fully Connected Layers 

29.                 self.fc1 = nn.Linear(512*2*2, 256) 

30.                 self.fc2 = nn.Linear(256, 10) 

31.              

32.  

33.             def forward(self, x): 

34.                 x = self.pool(F.relu(self.conv1(x)))  # 1st conv + pool 



35.                 x = F.relu(self.conv2(x)) 

36.  

37.                 x = self.pool(F.relu(self.conv3(x))) 

38.                 x = F.relu(self.conv4(x)) 

39.  

40.                 x = self.pool(F.relu(self.conv5(x)))  

41.                 x = F.relu(self.conv6(x)) 

42.  

43.                 x = self.pool(F.relu(self.conv7(x))) 

44.                 x = F.relu(self.conv8(x)) 

45.                 # print(x.shape)  # Add this before x.view() 

46.                 x = x.view(-1, 512*2*2) 

47.  

48.                 x = F.relu(self.fc1(x)) 

49.                 x = self.dropout(x)  # Dropout applied after first FC 

layer 

50.                 x = F.relu(self.fc2(x)) 

51.  

52.                 return x 

53.  

54.              

55.  

56.         return Net3() 

57. # exp_cifar = DLStudio.ExperimentsWithCIFAR( dl_studio = dls ) 

58. exp_cifar = CustomExperimentwithCIFAR( dl_studio = dls ) 

59.  

60. #exp_cifar.load_cifar_10_dataset_with_augmentation() 

61. exp_cifar.load_cifar_10_dataset() 

62.  

63. # model = exp_cifar.Net() 

64. # model = exp_cifar.Net2()            ## <<< Try this also but first 

comment out  

65.                                      ##     the above line. 

66. model = exp_cifar.Net3()         

67.  

68. ## display network properties 

69. number_of_learnable_params = sum(p.numel() for p in model.parameters() if 

p.requires_grad) 

70. print("\n\nThe number of learnable parameters in the model: %d" % 

number_of_learnable_params) 

71.  

72. exp_cifar.run_code_for_training(model, display_images=False) 

73.  

74. exp_cifar.run_code_for_testing(model, display_images=False) 

75.  



 

 


