
BME646 and ECE60146: Homework 3

Spring 2025
Due Date: Monday, Feb 3, 2025, 11:59pm

TA: Akshita Kamsali (akamsali@purdue.edu)

Turn in typed solutions via Gradescope. Post questions to Piazza. Ad-
ditional instructions can be found at the end. Late submissions will be
accepted with penalty: -10 points per-late-day, up to 5 days.

NOTE: Apart from the Extra Credit section, this assignment is exactly
the same as was given last year. This is a foundational assignment and it
would be difficult to come up with a new variant for each offering of this
class. Although you should feel free to look over the solutions submitted
during the previous years, the code you submit must be your own.

1 Introduction

In this homework you will develop an understanding of step-size optimization
in deep neural network training by implementing two popular optimizers,
SGD and the Adam. You will also perform hyperparameter tuning for the
Adam optimizer’s β1 and β2 parameters to identify the values that minimize
the loss after N iterations.

For more information on the concepts covered in this homework, please
refer to Prof. Kak’s slides on Autograd [1].

2 Using ComputationalGraphPrimer

1. Download the tar.gz archive and install version 1.1.4 of your instruc-
tor’s ComputationalGraphPrimer (CGP) module. You will be noti-
fied via Piazza if there are any version updates. Do NOT sudo pip

install the CGP module since that would not give you the Exam-
ples directory of the distribution that you are going to need for the
homework. The main documentation page for the CGP module can
be accessed though the following link:

https://engineering.purdue.edu/kak/distCGP/

1

https://engineering.purdue.edu/kak/distCGP/


2. Execute the following two scripts in the Examples directory that are
based on handcrafted neural networks (as explained on Slides 52 through
83 of your instructor’s Week 3 slides) :

python one_neuron_classifier.py

python multi_neuron_classifier.py

The final output of both these scripts is a display of the training loss
versus the training iterations.

3. Now, execute the following script (explained on Slides 83 through 90)
in the Examples directory

python verify_with_torchnn.py

If you did not make changes to the script in the Examples directory,
the loss vs. iterations graph that you will see is for a network that is
a torch.nn version of the handcrafted network you get through the
script multi neuron classifier.py

Compare visually the output you get with the above call with what
you saw for the second script in Step 2.

4. Now make appropriate changes to the file verify with torchnn.py

in order to see the torch.nn based output for the one-neuron model.
The changes you need to make are mentioned in the documentation
part of the file verify with torchnn.py.

Again compare visually the loss-vs-iterations for the one-neuron case
with the handcrafted network vis-a-vis the torch.nn based network.

5. Now comes the somewhat challenging part of this homework:

If you’d look at the code for the one-neuron and multi-neuron models
in the CGP module, you will notice that the step-size calculations do
no use any optimizations. [For the one-neuron case, you can also see
the backprop and update code on Slide 59 and, for the multi-neuron
case, on Slide 80 of the Week 3 slides.] The implemented parameter
update steps are based solely on the current value of the gradient of
the loss with respect to the parameter in question. That is,

pt+1 = pt − lr ∗ gradt (1)

where pt denotes the values for the learnable parameters at time t, and
gradt is the gradient of the loss function with respect to the learnable

2



parameters at t. For a more detailed explanation of the notation, see
Eq. (31) on Slide 110 of your instructor’s Week 3 slides.

Your homework consists of improving the estimation of pt+1 using the
ideas discussed on Slides 107 through 118 of the Week 3 slides. In
order to fully appreciate what that means, it is recommended that
you carefully review the material on those slides[1].

As you will see in the slides mentioned above, the two major com-
ponents of step-size optimization are: (1) using momentum; and (2)
adapting the step sizes to the gradient values of the different parame-
ters. (The latter is also referred to as dealing with sparse gradients.)
Adam (Adaptive Moment Estimation) currently incorporates both of
these components and stands as the world’s most popular step-size
optimizer. However, in some cases, practitioners choose SGD+ over
Adam. Feel free to consult your TA to understand the reasons behind
this choice. Also, feel free to inititate a conversation on Piazza over
the same topic.

What follows is a brief description of the two choices for the optimizer
in order to help you do your homework.

• SGD with Momentum (SGD+): In its simplest form, in-
corporating momentum in stochastic gradient descent (SGD) in-
volves carrying forward a portion of the previous update to in-
fluence the current step. Instead of relying solely on the current
gradient, the update is computed as a combination of the past
step and the present gradient, smoothing out fluctuations and
often times accelerating convergence. By maintaining a veloc-
ity term for each parameter, momentum helps navigate ravines
in the loss landscape more effectively (essentially, help you come
out of a local minimum). This reduces oscillations and improving
optimization stability.

Let:

– wt be the model parameters at time step t,

– gt = ∇L(wt) be the gradient of the loss function L at step t,

– vt be the velocity (accumulated gradient),

– η be the learning rate,

– β be the momentum coefficient (typically between 0.9 and
0.99).

The updates are computed as:

3



vt+1 = βvt + gt (2)

wt+1 = wt − ηvt+1 (3)

• Adaptive Moment Estimation (Adam): Adam is one of the
most widely used step-size optimizers for SGD in deep learning
owing to its efficiency and robust performance especially on large
datasets. The key idea behind Adam is a joint estimation of the
momentum term and the gradient adaptation term in the calcu-
lation of the step sizes. To this end, it keeps running averages
of both the first and second moments of the gradients, and takes
both the moments into account for calculating the step size. The
equations below demonstrate the key logic:

mt+1 = β1 ∗mt + (1− β1) ∗ gradt,
vt+1 = β2 ∗ vt + (1− β2) ∗ (gradt)2,

pt+1 = pt − lr ∗ m̂t+1√
v̂t+1 + ϵ

,

(4)

where the definitions of the bias-corrected moments m̂ and v̂ can
be found on Slides 117-118 of [1]. In practice, β1 and β2, which
control the decay rates for the moments, are generally set to 0.9
and 0.99, respectively.

• Hyperparameter Tuning the the Adam Optimizer:

Hyperparameter tuning is crucial in deep learning as it involves
optimizing the settings that control the learning process, impact-
ing model performance. The right hyperparameter values can sig-
nificantly enhance a model’s accuracy, generalization, and ability
to extract meaningful patterns from data. Effective tuning en-
sures that a model adapts well to diverse datasets and problem
domains, ultimately leading to more robust and reliable models.
This exercise is aimed to provide insights into the sensitivity of
the Adam optimizer to changes in β1 and β2 values and enhance
your understanding of hyperparameter tuning in deep learning.

3 Programming Tasks (100 pts)

1. Implementing SGD+ and Adam: Modify the existing one-neuron
and multi-neuron classifiers to incorporate enhancements to the ba-
sic SGD implementation. Implement two updated versions of these

4



classifiers: One using SGD+, which incorporates momentum or other
improvements over the basic SGD. Another using the Adam optimizer,
known for its adaptive learning rate mechanism.

NOTE: Preserve Original Code Structure
Do not modify the primary module file ComputationalGraphPrimer.
py. Instead, create subclasses that inherit from ComputationalGraphPrimer

and implement or override methods as necessary.

2. Performance Analysis: Compare the results of SGD, SGD+, and
Adam in terms of convergence and final loss values. Provide your
observations on why the results with Adam outperform basic SGD in
most scenarios.

3. Effect of Hyperparameters: Explore how the Adam optimizer’s
performance is affected by its hyperparameters β1 and β2. Train the
network with three different values for β1 (e.g., [0.8, 0.95, 0.99]) and
β2 (e.g., [0.89, 0.9, 0.95]). Tabulate results showing the time taken,
final loss, and minimum loss for each configuration.

4. Visualizing Results: Generate comparative plots (e.g., loss vs. it-
erations) to illustrate the improvement achieved by SGD+ and Adam
over the basic SGD. There is no wrong answer. Your results may vary
depending on training parameters such as learning rate, momentum,
batch size, and the number of iterations.

4 For Extra Credit (25 pts)

For extra credit, you’d need to have a good understanding of the topics
of “pixel value scaling” and “pixel value normalization” covered in your
instructor’s Week 2 lecture. The main point of those steps is to convert the
(0, 255)-range integer data extracted from the images into the floating-point
interval (−1.0, 1.0) that is needed by the neural networks.

With that introduction the to “Extra Credit” challenge, go to Slide 54 of
your instructor’s Week 3 lecture. That slide defines the DataLoader class for
demo scripts one neuron classifier.py and multi neuron classifier.py.
Focus on the following two statement in the definition of the DataLoader:

1 maxval = 0.0 ## For approx normalization of shifted -mean std

Gaussian

2 ...

3 ...

5



4 batch_data = [item/maxval for item in batch_data] ## Normalize

batch data

Your instructor has obviously attempted to “normalize” the training
data. The important question here is: Does this data normalization make
any sense at all for the two demo scripts mentioned above?

The training data for the scripts is drawn initially from a zero-mean
unit-variance Gaussian as shown on Slide 53 of the same slide deck. That
means, the floating-point values for training data are in the infinite interval
(−∞,∞) and that range is not altered by simply shifting the means for the
two classes involved.

So it would seem that the data normalization of the sort attempted by
the code lines shown above would be of limited utility, if any at all.

Your extra-credit assignment consists of the following two parts:

• Compare the performance of the two demo scripts (as measured by
just the training loss vs. iterations plots) for the two cases of with
and without the data normalization as currently used. This part of
the Extra Credit is worth 10 points.

• Truncate the input data to the interval (µ − 5σ, µ + 5σ), where µ
is the mean and σ the standard-deviation of the Gaussian and then
remap the data to the (−1.0, 1.0) interval. The truncation to the
(µ − 5σ, µ + 5σ) interval is justified by the fact that the nonlinearity
of the activation function will make any input values outside of this
interval irrelevant. This part of the Extra Credit is worth 15 points.

5 Submission Instructions

Include a typed report explaining how you solved the given programming
tasks. You may refer to the homework solutions posted at the class website
for the previous years for examples of how to structure your report

1. Turn in a PDF file and mark all pages on gradescope.

2. Submit your code files(s) as zip file.

3. Code and Output Placement: Include the output directly next to
the corresponding code block in your submission. Avoid placing the
code and output in separate sections as this can make it difficult to
follow.

6



4. Output Requirement: Ensure that all your code produces outputs
and that these outputs are included in the submitted PDF. Submis-
sions without outputs may not receive full credit, even if the code
appears correct.

5. For this homework, you are encouraged to use .ipynb for development
and the report. If you use .ipynb, please convert code to .py and
submit that as source code. Do NOT submit .ipynb notebooks.

6. You can resubmit a homework assignment as many times as you want
up to the deadline. Each submission will overwrite any previous sub-
mission. If you are submitting late, do it only once. Otherwise,
we cannot guarantee that your latest submission will be pulled for
grading and will not accept related regrade requests.

7. The sample solutions from previous years are for reference only. Your
code and final report must be your own work.

References

[1] Autograd Lecture. URL https://engineering.purdue.edu/

DeepLearn/pdf-kak/AutogradAndCGP.pdf.

7

https://engineering.purdue.edu/DeepLearn/pdf-kak/AutogradAndCGP.pdf
https://engineering.purdue.edu/DeepLearn/pdf-kak/AutogradAndCGP.pdf

	Introduction
	Using ComputationalGraphPrimer
	Programming Tasks (100 pts)
	For Extra Credit (25 pts)
	Submission Instructions

