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1 Comparison of Hand-crafted vs Torch Neural Net-

work

To compare the implementations of a hand-crafted neural network, vs one with a similar
architecture implemented using the pytorch library we analyze the loss produced by both
types of networks. Below the architecture for each network type can be seen.

Figure 1: Network Structure of One-NN and Multi-NN
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For the one neuron network, it can be seen that the hand crafted network ends with a
better final loss value of about 0.2 compared to the torch implementation value of 1. This
however does not mean it is a better implementation, as the torch implementation converges
faster as seen by the curve in the decline of the loss, as compared to the almost linear decrease
of the handcrafted loss.

Figure 2: Handcrafted vs Torch Implementation of One Neuron

For the multi-neuron network, the handcrafted version displays an interesting loss func-
tion that starts to decrease, plateaus then exponentially decreases again. This is very un-
stable behavior that is not seen in the torch implementation, which displays a more linear
decrease that has not plateau’d yet, meaning that further learning can take place. While the
handcrafted version has a better rate of convergence, the torch method has a more stable
approach as it reaches minimum loss.

Figure 3: Handcrafted vs Torch Implementation of Multi-Neuron
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2 Optimization Theory

2.1 SGD+ Optimizer

Gradient Descent suffers from oscillations when encountering valleys in the loss landscape,
and can often get lost in local minima. To counteract this, SGD with Momentum incorporates
a momentum term accelerates updates along consistent gradient directions while dampening
oscillations in changing directions, creating a smoother convergence.

The update equations are:

vt+1 = βvt + gt (1)

wt+1 = wt − η · vt+1 (2)

where:

• vt is the velocity at step t,

• gt is the gradient at t,

• wt represents model weights,

• η is the learning rate,

• β is the momentum factor (0 ≤ β ≤ 1).

A higher β gives more weight to past updates, leading to smoother and often faster
convergence as it takes into account the optimization past.

2.2 ADAM Optimizer

While SGD+ accounts for first-order momentum, Adam extends this by incorporating second-
order momentum as well. The first moment estimate (moving average of the gradient) is
computed as:

mt+1 = β1mt + (1− β1)gt (3)

where β1 controls the decay rate of past gradients.
The second moment estimate (moving average of squared gradients) is:

vt+1 = β2vt + (1− β2)g
2
t (4)

where β2 controls the decay of past squared gradients.
Since both mt and vt are biased towards zero in early training steps, we correct its bias

using:

ˆmt+1 =
mt+1

1− βt
1

(5)

ˆvt+1 =
vt+1

1− βt
2

(6)
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Finally, the model weights are updated using:

pt+1 = pt −
η · ˆmt+1√

ˆvt+1 + ϵ
(7)

By considering both the mean and variance of past gradients, Adam adapts learning rates
per parameter, leading to faster and more stable convergence compared to SGD+.
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3 SGD+ Implementation

Implementing SGD+ into the existing computational graph primer class involved editing
the ’Run training loop’ and ’Backprop and update parameters’ functions for both one single
neuron and the multi-layer neural net. The following subsections highlight the individual
implementations and results for each different architecture.

3.1 One-NN Architecture

To alter the One-NN architecture, I updated the backprop function of SGD to include the
momentum calculations as shown below:

...

self.weight_velocities[param] = beta * self.weight_velocities[param] +

partial_of_loss_wrt_param

self.vals_for_learnable_params[param] += self.weight_velocities[param] *

self.learning_rate

y_error_avg = sum(y_errors_in_batch) / float(self.batch_size)

deriv_sigmoid_avg = sum(deriv_sigmoids) / float(self.batch_size)

self.bias_velocity = (self.bias_velocity * beta) + (y_error_avg *

deriv_sigmoid_avg) ## Update the

bias including momentum now

self.bias += self.bias_velocity * self.learning_rate

Where the weight velocities and bias velocity are initialized in the training loop as:

# Create new variables to keep track of velocities: -----------------

self.weight_velocities = {param: 0 for param in self.learnable_params}

self.bias_velocity = 0

The results of this code for various Beta values can be seen in the plot below. The best
performing Beta was 0.9 as seen by the fastest convergence to the lowest loss.

Figure 4: SGD+ - Loss vs Beta values for One-NN
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3.2 Multi-NN Architecture

To alter the Multi-NN architecture, I first initialized variables to hold my velocities for each
neuron, with the bias being applied to each individual neuron as defined by the layer config
in the object initialization.

...

# Create new variables to keep track of velocities: -----------------

self.weight_velocities = {param: 0 for param in self.learnable_params}

self.bias_velocity = []

for layer_size in self.layers_config:

self.bias_velocity.append(np.zeros(layer_size)) # individual bias for

each neuron in each layer

I further altered the code to include the weight and bias updates for each layer as required.
The code for this can be seen below:

## Now update the learnable parameters. The loop shown below carries out

SGD mandated averaging

for param in partial_of_loss_wrt_params:

partial_of_loss_wrt_param = partial_of_loss_wrt_params[param] / float

(self.batch_size)

# Update parameters using SGD Plus

self.weight_velocities[param] = beta * self.weight_velocities[param] +

partial_of_loss_wrt_param

self.vals_for_learnable_params[param] += self.weight_velocities[param]

* self.learning_rate

## Finally we update the biases at all the nodes that aggregate data:

for layer_index in range(1,self.num_layers):

for k in range(self.layers_config[layer_index]):

self.bias_velocity[layer_index][k] = (self.bias_velocity[

layer_index][k] * beta) + (

bias_changes[layer_index][k]

/ float(self.batch_size))

## Update the bias including

momentum now

self.bias[layer_index][k] += self.learning_rate * self.

bias_velocity[layer_index][k]
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The results for SGD plus as applied to the multi-neuron network can be seen below, with
a beta value of 0.5 performing the best and converging the fasted, while the higher beta
value such as 0.9 converges more smoothly.

Figure 5: SGD+ - Loss vs Beta values for Multi-NN
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4 ADAM Implementation

Similar to the implementation of SGD+, I altered the existing computational graph primer
class by editing the ’Run training loop’ and ’Backprop and update parameters’ functions
for both one single neuron and the multi-layer neural net to now include the appropriate
formulae for ADAM optimizer with two moments. The following subsections highlight the
individual implementations and results for each different architecture.

4.1 One-NN Architecture

To update the training and backprop loops to include ADAM, I first initialize the momentums
as follows:

...

# To keep track of both types of moments:

self.m_moments , self.v_moments = {param: 0 for param in self.

learnable_params}, {param: 0 for

param in self.learnable_params}

self.k = 0 # Timestep initialization

And then further updated the weights and biases using the ADAM formulae as follows:

...

self.k += 1 # Update for each timestep

...

# Update learnable params using both moments

self.m_moments[param] = (self.m_moments[param] * beta1) + (1 - beta1)

* partial_of_loss_wrt_param # m(t

+1) Update formula

self.v_moments[param] = (self.v_moments[param] * beta2) + ((1 - beta2)

* (partial_of_loss_wrt_param **

2)) # v(t+1) Update formula

mhat = self.m_moments[param] / (1 - beta1 ** self.k) # Unbias the

moments from 0

vhat = self.v_moments[param] / (1 - beta2 ** self.k)

step = self.learning_rate * (mhat / math.sqrt(vhat + self.epsilon))

self.vals_for_learnable_params[param] -= step

y_error_avg = sum(y_errors_in_batch) / float(self.batch_size)

deriv_sigmoid_avg = sum(deriv_sigmoids) / float(self.batch_size)

self.bias += step + self.learning_rate * y_error_avg * deriv_sigmoid_avg

## Update the bias

I ran various experiments with many different values for Beta, the following graph shows
9 different combinations of the following beta values:

β1 = [0.8, 0.95, 0.99]β2 = [0.85, 0.9, 0.95]
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Figure 6: ADAM - Loss vs Beta values for One-NN, lr = 1e-2

The table shows the minimum loss, final loss, and time taken to run each training for
each Beta combination. The combination β1 = 0.95, β2 = 0.85 can be seen in the graph to
give the best optimization, as it converges faster than SGDplus to a lower loss.

B1 B2 Min Loss Final Loss Time Taken (s)
0.8 0.85 0.1006 0.1290 3.7616
0.8 0.9 0.0972 0.1042 3.3658
0.8 0.95 0.1076 0.1119 3.8178
0.95 0.85 0.1032 0.1124 4.3197
0.95 0.9 0.1036 0.1112 3.7547
0.95 0.95 0.1065 0.1088 3.5935
0.99 0.85 0.1071 0.1244 3.7211
0.99 0.9 0.1043 0.1215 3.6014
0.99 0.95 0.1040 0.1219 3.5244

Table 1: Loss and time taken for different values of B1 and B2
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I also experimented with various learning rates as can be seen below, but our initial lr of
1-e2 shows the best convergence to the lowest learning rate.

Figure 7: ADAM - Loss vs Beta values for One-NN, lr = 1e-1

Figure 8: ADAM - Loss vs Beta values for One-NN, lr = 1e-3
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The final configurations for the One neuron architecture were conducted with an SGD+
beta value of 0.9, and ADAM values of 0.95 and 0.85. The below graph shows the loss
comparison. As expected, vanilla SGD performs the worst, with SGD having a smoother
convergence and then ADAM having a mixture of better smoothness as well as a faster
convergence.

Figure 9: Final One Neuron Comparison
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4.2 Multi-NN Architecture

To update the code for multi neuron, I updated the training loop and the backpropagation
functions to include the following:

# To keep track of both types of moments:

self.m_moments , self.v_moments = {param: 0 for param in self.

learnable_params}, {param: 0 for

param in self.learnable_params}

self.k = 0 # Timestep initialization

self.m_bias , self.v_bias = [], []

for layer_size in self.layers_config:

self.m_bias.append(np.zeros(layer_size)) # individual bias for each

neuron in each layer

self.v_bias.append(np.zeros(layer_size))

The code above initializes layer wise moments for each neuron. The code below actually
performs the gradient update:

## Now update the learnable parameters. The loop shown below carries out

SGD mandated averaging

for param in partial_of_loss_wrt_params:

partial_of_loss_wrt_param = partial_of_loss_wrt_params[param] / float

(self.batch_size)

# Update params using ADAM Formulas ======================

self.m_moments[param] = (self.m_moments[param] * beta1) + ((1 - beta1)

* partial_of_loss_wrt_param) # m

(t+1) Update formula

self.v_moments[param] = (self.v_moments[param] * beta2) + ((1 - beta2)

* (partial_of_loss_wrt_param **

2)) # v(t+1) Update formula

mhat = self.m_moments[param] / (1 - beta1 ** self.k) # Unbias the

moments from 0

vhat = self.v_moments[param] / (1 - beta2 ** self.k)

step = self.learning_rate * (mhat / math.sqrt(vhat + self.epsilon))

self.vals_for_learnable_params[param] += step

## Finally we update the biases at all the nodes that aggregate data:

for layer_index in range(1,self.num_layers):

for k in range(self.layers_config[layer_index]):

gradt = bias_changes[layer_index][k]# / float(self.batch_size)

self.m_bias[layer_index][k] = beta1 * self.m_bias[layer_index][k]

+ (1-beta1) * gradt

self.v_bias[layer_index][k] = beta2 * self.v_bias[layer_index][k]

+ (1-beta2) * (gradt ** 2)

mhat = self.m_bias[layer_index][k] / (1 - beta1 ** self.k) #

Unbias the moments from 0

vhat = self.v_bias[layer_index][k] / (1 - beta2 ** self.k)
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step = self.learning_rate * (mhat / math.sqrt(vhat + self.epsilon)

)

self.bias[layer_index][k] -= self.learning_rate * step

The graph below shows my comparison of the various combinations of betas as previously
seen in the One neuron case. According to this graph, we select the combination of 0.99 and
0.9 as our best ADAM optimized model.

Figure 10: ADAM - Loss vs Beta values for Multi-NN, lr = 1e-2
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The following table shows the various data gathered from the above experiment. One
thing of note when comparing this to the One neuron case is that I ran this on a different
machine, hence attributing to the longer run time.

B1 B2 Min Loss Final Loss Time Taken (s)
0.8 0.85 0.0814 0.1066 22.5600
0.8 0.9 0.1152 0.1205 22.3222
0.8 0.95 0.1110 0.1193 22.0714
0.95 0.85 0.1522 0.1673 22.2502
0.95 0.9 0.1208 0.1373 22.8845
0.95 0.95 0.1228 0.1330 22.1774
0.99 0.85 0.1111 0.1256 22.3001
0.99 0.9 0.0818 0.1049 22.1742
0.99 0.95 0.0795 0.0878 21.8879

Table 2: Loss and time taken for different values of B1 and B2

Finally, the configuration to compare the optimizers involved using a beta value of 0.5
for SGD+ and values 0.9, 0.99 for ADAM. The graph clearly shows how ADAM is superior
in how it converges quicker and to a lower loss, and is followed by SGD+, which while it
converges to a similar final loss, takes about 90 more iterations to do so.
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Figure 11: Final Multi Neuron Comparison

5 Extra Credit

5.1 Comparison of Normalization Effect

For the first part of the extra credit, we compare the effect of data normalization of the
batches on the loss values. I implemented a normalization flag that triggers the appropriate
line of code, and below can be seen the results for both one neuron and multi neuron networks.
As seen clearly, the loss is much lower for the network operating on normalized data instead
of it not being normalized, as well as having it converge faster.
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Figure 12: Comparison of Effects of Data Normalization

5.2 Manual Truncation

For manual truncation and remapping to [-1, 1] I first found out the mean and standard
deviation of the Gaussian for each class, then performed the truncation. I then applied the
remapping using min max normalization. The results of this can be seen below, the graphs
show that truncation does not have an effect on the data when normalization is already
taking place.

Figure 13: Comparison of Effects of Truncation

16



6 Source Code

hw3.py

1 from ComputationalGraphPrimer import ComputationalGraphPrimer

2 import numpy as np

3 import random , operator , math , time

4 import matplotlib.pyplot as plt

5 from tqdm import tqdm

6

7 random.seed (0)

8 np.random.seed (0)

9

10

11 class SGDplus(ComputationalGraphPrimer):

12 def __init__(self , *args , ** kwargs): # Now includes beta factor for

momentum , and run plus option so we can get back vanilla sgd

13 super ().__init__ (*args , ** kwargs)

14

15 def run_training_loop_one_neuron_model(self , training_data , beta):

16 # Initialize learnable params for network -----------------

17 self.vals_for_learnable_params = {param: random.uniform (0,1) for

param in self.learnable_params}

18 self.bias = random.uniform (0,1)

19

20 # Create new variables to keep track of velocities:

-----------------

21 self.weight_velocities = {param: 0 for param in self.

learnable_params}

22 self.bias_velocity = 0

23

24 # Dataloader business -----------------

25 class DataLoader:

26 def __init__(self , training_data , batch_size):

27 self.training_data = training_data

28 self.batch_size = batch_size

29 self.class_0_samples = [(item , 0) for item in self.

training_data [0]] ## Associate label 0 with each sample

30 self.class_1_samples = [(item , 1) for item in self.

training_data [1]] ## Associate label 1 with each sample

31

32 def __len__(self):

33 return len(self.training_data [0]) + len(self.training_data

[1])

34

35 def _getitem(self):

36 cointoss = random.choice ([0 ,1])

## When a batch is created by getbatch (), we want the

37

## samples to be chosen randomly from the two lists

38 if cointoss == 0:
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39 return random.choice(self.class_0_samples)

40 else:

41 return random.choice(self.class_1_samples)

42

43 def getbatch(self):

44 batch_data ,batch_labels = [],[]

## First list for samples , the second for labels

45 maxval = 0.0

## For approximate batch data normalization

46 for _ in range(self.batch_size):

47 item = self._getitem ()

48 if np.max(item [0]) > maxval:

49 maxval = np.max(item [0])

50 batch_data.append(item [0])

51 batch_labels.append(item [1])

52 batch_data = [item/maxval for item in batch_data]

## Normalize batch data

53 batch = [batch_data , batch_labels]

54 return batch

55

56 data_loader = DataLoader(training_data , batch_size=self.batch_size

)

57 loss_running_record = []

58 i = 0

59 avg_loss_over_iterations = 0.0

## Average the loss over iterations for printing out

60

61 # Actually running training -----------------

62 for i in range(self.training_iterations):

63 data = data_loader.getbatch ()

64 data_tuples_in_batch = data [0]

65 class_labels_in_batch = data [1]

66

67 y_preds , deriv_sigmoids = self.forward_prop_one_neuron_model(

data_tuples_in_batch) ## FORWARD PROP of data

68 loss = sum ([( abs(class_labels_in_batch[i] - y_preds[i]))**2

for i in range(len(class_labels_in_batch))]) ## Find loss

69 avg_loss_over_iterations += loss / float(len(

class_labels_in_batch))

70

71 if i%(self.display_loss_how_often) == 0:

72 avg_loss_over_iterations /= self.display_loss_how_often

73 loss_running_record.append(avg_loss_over_iterations)

74 # print ("[ iter=%d] loss = %.4f" % (i+1,

avg_loss_over_iterations)) ## Display average loss

75 avg_loss_over_iterations = 0.0

## Re -initialize avg loss

76

77 y_errors_in_batch = list(map(operator.sub ,

class_labels_in_batch , y_preds))
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78 self.backprop_and_update_params_one_neuron_model(

data_tuples_in_batch , y_preds , y_errors_in_batch , deriv_sigmoids , beta)

## BACKPROP loss

79 return loss_running_record # Return loss for own plotting function

80

81 def backprop_and_update_params_one_neuron_model(self ,

data_tuples_in_batch , predictions , y_errors_in_batch , deriv_sigmoids ,

beta):

82

83 input_vars = self.independent_vars

84 input_vars_to_param_map = self.var_to_var_param[self.output_vars

[0]] ## These two statements align the input vars

85 param_to_vars_map = {param : var for var , param in

input_vars_to_param_map.items()}

86

87 for i,param in enumerate(self.vals_for_learnable_params):

88 ## For each param , sum the partials from every training data

sample in batch

89 partial_of_loss_wrt_param = 0.0

90 for j in range(self.batch_size):

91 vals_for_input_vars_dict = dict(zip(input_vars , list(

data_tuples_in_batch[j])))

92 partial_of_loss_wrt_param += y_errors_in_batch[j] *

vals_for_input_vars_dict[param_to_vars_map[param]] * deriv_sigmoids[j]

93 partial_of_loss_wrt_param /= float(self.batch_size)

94

95 ##==== Update Parameters using SGD Plus ===========

96 self.weight_velocities[param] = beta * self.weight_velocities[

param] + partial_of_loss_wrt_param

97 self.vals_for_learnable_params[param] += self.

weight_velocities[param] * self.learning_rate

98

99 y_error_avg = sum(y_errors_in_batch) / float(self.batch_size)

100 deriv_sigmoid_avg = sum(deriv_sigmoids) / float(self.batch_size)

101

102 #self.bias_velocity = (self.bias_velocity * beta) + (y_error_avg *

deriv_sigmoid_avg) ## Update the bias including momentum now

103 self.bias += (self.bias_velocity * beta) + (self.learning_rate *

y_error_avg * deriv_sigmoid_avg)

104

105 def run_training_loop_multi_neuron_model(self , training_data , beta):

106

107 class DataLoader:

108 def __init__(self , training_data , batch_size):

109 self.training_data = training_data

110 self.batch_size = batch_size

111 self.class_0_samples = [(item , 0) for item in self.

training_data [0]]

112 self.class_1_samples = [(item , 1) for item in self.

training_data [1]]

113
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114 def __len__(self):

115 return len(self.training_data [0]) + len(self.training_data

[1])

116

117 def _getitem(self):

118 cointoss = random.choice ([0 ,1])

## When a batch is created by getbatch (), we want the

119

## samples to be chosen randomly from the two lists

120 if cointoss == 0:

121 return random.choice(self.class_0_samples)

122 else:

123 return random.choice(self.class_1_samples)

124

125 def getbatch(self):

126 batch_data ,batch_labels = [],[]

## First list for samples , the second for labels

127 maxval = 0.0

## For approximate batch data normalization

128 for _ in range(self.batch_size):

129 item = self._getitem ()

130 if np.max(item [0]) > maxval:

131 maxval = np.max(item [0])

132 batch_data.append(item [0])

133 batch_labels.append(item [1])

134 batch_data = [item/maxval for item in batch_data]

## Normalize batch data

135 batch = [batch_data , batch_labels]

136 return batch

137

138 # Initialize Learnable params

139 self.vals_for_learnable_params = {param: random.uniform (0,1) for

param in self.learnable_params}

140 self.bias = {i : [random.uniform (0,1) for j in range( self.

layers_config[i] ) ] for i in range(1, self.num_layers)}

141 data_loader = DataLoader(training_data , batch_size=self.batch_size

)

142 loss_running_record = []

143 i = 0

144 avg_loss_over_iterations = 0.0

145

146 # Create new variables to keep track of velocities:

-----------------

147 self.weight_velocities = {param: 0 for param in self.

learnable_params}

148 self.bias_velocity = []

149 for layer_size in self.layers_config:

150 self.bias_velocity.append(np.zeros(layer_size)) # individual

bias for each neuron in each layer

151

152 for i in range(self.training_iterations):
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153 data = data_loader.getbatch ()

154 data_tuples = data [0]

155 class_labels = data [1]

156 self.forward_prop_multi_neuron_model(data_tuples)

## FORW PROP works by side -effect

157 predicted_labels_for_batch = self.forw_prop_vals_at_layers[

self.num_layers -1] ## Predictions from FORW PROP

158 y_preds = [item for sublist in predicted_labels_for_batch

for item in sublist] ## Get numeric vals for predictions

159 loss = sum ([( abs(class_labels[i] - y_preds[i]))**2 for i in

range(len(class_labels))]) ## Calculate loss for batch

160 loss_avg = loss / float(len(class_labels))

## Average the loss over batch

161 avg_loss_over_iterations += loss_avg

## Add to Average loss over iterations

162 if i%(self.display_loss_how_often) == 0:

163 avg_loss_over_iterations /= self.display_loss_how_often

164 loss_running_record.append(avg_loss_over_iterations)

165 # print ("[ iter=%d] loss = %.4f" % (i+1,

avg_loss_over_iterations))

166 avg_loss_over_iterations = 0.0

167 y_errors_in_batch = list(map(operator.sub , class_labels ,

y_preds))

168 self.backprop_and_update_params_multi_neuron_model(y_preds ,

y_errors_in_batch , beta)

169 return loss_running_record

170

171 def backprop_and_update_params_multi_neuron_model(self , predictions ,

y_errors , beta):

172 ## Eq. (24) on Slide 73 of my Week 3 lecture says we need to store

backproped errors in each layer leading up to the last:

173 pred_err_backproped_at_layers = [ {i : [None for j in range(

self.layers_config[i] ) ]

174 for i in

range(self.num_layers)} for _ in range(self.batch_size) ]

175 ## This will store "\ delta L / \delta w" you see at the LHS of the

equations on Slide 73:

176 partial_of_loss_wrt_params = {param : 0.0 for param in self.

all_params}

177 ## For estimating the changes to the bias to be made on the basis

of the derivatives of the Sigmoids:

178 bias_changes = {i : [0.0 for j in range( self.layers_config[i] )

] for i in range(1, self.num_layers)}

179

180 for b in range(self.batch_size):

181 pred_err_backproped_at_layers[b][self.num_layers - 1] = [

y_errors[b] ]

182 for back_layer_index in reversed(range(1,self.num_layers)):

## For the 3-layer network , the first val for

back_layer_index is 2 for the 3rd layer
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183 input_vals = self.forw_prop_vals_at_layers[

back_layer_index -1] ## This is a list of 8 two -element lists ---

since we have two nodes in the 2nd layer

184 deriv_sigmoids = self.gradient_vals_for_layers[

back_layer_index] ## This is a list eight one -element lists , one for

each batch element

185 vars_in_layer = self.layer_vars[back_layer_index]

## A list like [’xo ’]

186 vars_in_next_layer_back = self.layer_vars[

back_layer_index - 1] ## A list like [’xw’, ’xz ’]

187 vals_for_input_vars_dict = dict(zip(

vars_in_next_layer_back , self.forw_prop_vals_at_layers[back_layer_index

- 1][b]))

188 ## For the next statement , note that layer_params are

stored in a dict like

189 ## {1: [[’ap’, ’aq’, ’ar’, ’as ’], [’bp’, ’bq’, ’br’,

’bs ’]], 2: [[’cp’, ’cq ’]]}

190 ## "layer_params[idx]" is a list of lists for the link

weights in layer whose output nodes are in layer "idx"

191 layer_params = self.layer_params[back_layer_index]

192 transposed_layer_params = list(zip(* layer_params))

## Creating a transpose of the link matrix , See Eq. 30 on

Slide 77

193 for k,var1 in enumerate(vars_in_next_layer_back):

194 for j,var2 in enumerate(vars_in_layer):

195 pred_err_backproped_at_layers[b][ back_layer_index

- 1][k] = sum([self.vals_for_learnable_params[transposed_layer_params[k

][i]]

196

* pred_err_backproped_at_layers[b][ back_layer_index ][i]

197

for i in range(len(

vars_in_layer))])

198 for j,var in enumerate(vars_in_layer):

199 layer_params = self.layer_params[back_layer_index ][j]

## [’cp’, ’cq ’] for the end layer

200 input_vars_to_param_map = self.var_to_var_param[var]

## These two statements align the {’xw ’: ’cp’, ’xz ’: ’cq ’}

201 param_to_vars_map = {param : var for var , param in

input_vars_to_param_map.items()} ## and the input vars {’cp ’: ’xw

’, ’cq ’: ’xz ’}

202

203 ## Update the partials of Loss wrt to the learnable

parameters between the current layer

204 ## and the previous layer. You are accumulating these

partials over the different training

205 ## data samples in the batch being processed. For

each training data sample , the formula

206 ## being used is shown in Eq. (29) on Slide 77 of my

Week 3 slides:

207 for i,param in enumerate(layer_params):
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208 partial_of_loss_wrt_params[param] +=

pred_err_backproped_at_layers[b][ back_layer_index ][j] * \

209

vals_for_input_vars_dict[param_to_vars_map[param]] * deriv_sigmoids[b][

j]

210 ## We will now estimate the change in the bias that needs

to be made at each node in the previous layer

211 ## from the derivatives the sigmoid at the nodes in the

current layer and the prediction error as

212 ## backproped to the previous layer nodes:

213 for k,var1 in enumerate(vars_in_next_layer_back):

214 for j,var2 in enumerate(vars_in_layer):

215 if back_layer_index -1 > 0:

216 bias_changes[back_layer_index -1][k] +=

pred_err_backproped_at_layers[b][ back_layer_index - 1][k] *

deriv_sigmoids[b][j]

217

218 ## Now update the learnable parameters. The loop shown below

carries out SGD mandated averaging

219 for param in partial_of_loss_wrt_params:

220 partial_of_loss_wrt_param = partial_of_loss_wrt_params[param]

/ float(self.batch_size)

221

222 # Update parameters using SGD Plus

223 self.weight_velocities[param] = beta * self.weight_velocities[

param] + partial_of_loss_wrt_param

224 self.vals_for_learnable_params[param] += self.

weight_velocities[param] * self.learning_rate

225

226 ## Finally we update the biases at all the nodes that aggregate

data:

227 for layer_index in range(1,self.num_layers):

228 for k in range(self.layers_config[layer_index ]):

229 self.bias_velocity[layer_index ][k] = (self.bias_velocity[

layer_index ][k] * beta) + (bias_changes[layer_index ][k] / float(self.

batch_size)) ## Update the bias including momentum now

230 self.bias[layer_index ][k] += self.learning_rate * self.

bias_velocity[layer_index ][k]

231

232

233 class ADAMOptimizer(ComputationalGraphPrimer):

234 def __init__(self , *args , ** kwargs):

235 super ().__init__ (*args , ** kwargs)

236 self.epsilon = 1e-8 # for division by zero

237

238 def run_training_loop_one_neuron_model(self , training_data , beta1 ,

beta2):

239 self.vals_for_learnable_params = {param: random.uniform (0,1) for

param in self.learnable_params}

240 self.bias = random.uniform (0,1)

241
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242 class DataLoader:

243 def __init__(self , training_data , batch_size):

244 self.training_data = training_data

245 self.batch_size = batch_size

246 self.class_0_samples = [(item , 0) for item in self.

training_data [0]] ## Associate label 0 with each sample

247 self.class_1_samples = [(item , 1) for item in self.

training_data [1]] ## Associate label 1 with each sample

248

249 def __len__(self):

250 return len(self.training_data [0]) + len(self.training_data

[1])

251

252 def _getitem(self):

253 cointoss = random.choice ([0 ,1])

## When a batch is created by getbatch (), we want the

254

## samples to be chosen randomly from the two lists

255 if cointoss == 0:

256 return random.choice(self.class_0_samples)

257 else:

258 return random.choice(self.class_1_samples)

259

260 def getbatch(self):

261 batch_data ,batch_labels = [],[]

## First list for samples , the second for labels

262 maxval = 0.0

## For approximate batch data normalization

263 for _ in range(self.batch_size):

264 item = self._getitem ()

265 if np.max(item [0]) > maxval:

266 maxval = np.max(item [0])

267 batch_data.append(item [0])

268 batch_labels.append(item [1])

269 batch_data = [item/maxval for item in batch_data]

## Normalize batch data

270 batch = [batch_data , batch_labels]

271 return batch

272

273 data_loader = DataLoader(training_data , batch_size=self.batch_size

)

274 loss_running_record = []

275 i = 0

276 avg_loss_over_iterations = 0.0

## Average the loss over iterations for printing out

277

278 # To keep track of both types of moments:

279 self.m_moments , self.v_moments = {param: 0 for param in self.

learnable_params}, {param: 0 for param in self.learnable_params}

280 self.k = 0 # Timestep initialization

281
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282 for i in range(self.training_iterations):

283 data = data_loader.getbatch ()

284 data_tuples_in_batch = data [0]

285 class_labels_in_batch = data [1]

286 y_preds , deriv_sigmoids = self.forward_prop_one_neuron_model(

data_tuples_in_batch) ## FORWARD PROP of data

287 loss = sum ([( abs(class_labels_in_batch[i] - y_preds[i]))**2

for i in range(len(class_labels_in_batch))]) ## Find loss

288 avg_loss_over_iterations += loss / float(len(

class_labels_in_batch))

289 if i%(self.display_loss_how_often) == 0:

290 avg_loss_over_iterations /= self.display_loss_how_often

291 loss_running_record.append(avg_loss_over_iterations)

292 #print ("[ iter=%d] loss = %.4f" % (i+1,

avg_loss_over_iterations)) ## Display average loss

293 avg_loss_over_iterations = 0.0

294 y_errors_in_batch = list(map(operator.sub ,

class_labels_in_batch , y_preds))

295 self.backprop_and_update_params_one_neuron_model(

data_tuples_in_batch , y_preds , y_errors_in_batch , deriv_sigmoids , beta1

, beta2) # Backprop now includes betas

296

297 return loss_running_record

298

299 def backprop_and_update_params_one_neuron_model(self ,

data_tuples_in_batch , predictions , y_errors_in_batch , deriv_sigmoids ,

beta1 , beta2):

300 input_vars = self.independent_vars

301 input_vars_to_param_map = self.var_to_var_param[self.output_vars

[0]] ## These two statements align the

302 param_to_vars_map = {param : var for var , param in

input_vars_to_param_map.items()} ## the input vars

303 self.k += 1 # Update for each timestep

304

305 for i,param in enumerate(self.vals_for_learnable_params):

306 ## For each param , sum the partials from every training data

sample in batch

307 partial_of_loss_wrt_param = 0.0

308 for j in range(self.batch_size):

309 vals_for_input_vars_dict = dict(zip(input_vars , list(

data_tuples_in_batch[j])))

310 partial_of_loss_wrt_param += - y_errors_in_batch[j] *

vals_for_input_vars_dict[param_to_vars_map[param]] * deriv_sigmoids[j]

311 partial_of_loss_wrt_param /= float(self.batch_size)

312

313 # Update learnable params using both moments

314 self.m_moments[param] = (self.m_moments[param] * beta1) + (1 -

beta1) * partial_of_loss_wrt_param # m(t+1) Update formula

315 self.v_moments[param] = (self.v_moments[param] * beta2) + ((1

- beta2) * (partial_of_loss_wrt_param ** 2)) # v(t+1) Update formula

316
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317 mhat = self.m_moments[param] / (1 - beta1 ** self.k) # Unbias

the moments from 0

318 vhat = self.v_moments[param] / (1 - beta2 ** self.k)

319

320 step = self.learning_rate * (mhat / math.sqrt(vhat + self.

epsilon))

321 self.vals_for_learnable_params[param] -= step

322

323 y_error_avg = sum(y_errors_in_batch) / float(self.batch_size)

324 deriv_sigmoid_avg = sum(deriv_sigmoids) / float(self.batch_size)

325

326 self.bias += step + self.learning_rate * y_error_avg *

deriv_sigmoid_avg ## Update the bias

327

328 def run_training_loop_multi_neuron_model(self , training_data , beta1 ,

beta2):

329

330 class DataLoader:

331

332 def __init__(self , training_data , batch_size):

333 self.training_data = training_data

334 self.batch_size = batch_size

335 self.class_0_samples = [(item , 0) for item in self.

training_data [0]] ## Associate label 0 with each sample

336 self.class_1_samples = [(item , 1) for item in self.

training_data [1]] ## Associate label 1 with each sample

337

338 def __len__(self):

339 return len(self.training_data [0]) + len(self.training_data

[1])

340

341 def _getitem(self):

342 cointoss = random.choice ([0 ,1])

## When a batch is created by getbatch (), we want the

343

## samples to be chosen randomly from the two lists

344 if cointoss == 0:

345 return random.choice(self.class_0_samples)

346 else:

347 return random.choice(self.class_1_samples)

348

349 def getbatch(self):

350 batch_data ,batch_labels = [],[]

## First list for samples , the second for labels

351 maxval = 0.0

## For approximate batch data normalization

352 for _ in range(self.batch_size):

353 item = self._getitem ()

354 if np.max(item [0]) > maxval:

355 maxval = np.max(item [0])

356 batch_data.append(item [0])
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357 batch_labels.append(item [1])

358 batch_data = [item/maxval for item in batch_data]

## Normalize batch data

359 batch = [batch_data , batch_labels]

360 return batch

361

362 self.vals_for_learnable_params = {param: random.uniform (0,1) for

param in self.learnable_params}

363 self.bias = {i : [random.uniform (0,1) for j in range( self.

layers_config[i] ) ] for i in range(1, self.num_layers)}

364 data_loader = DataLoader(training_data , batch_size=self.batch_size

)

365 loss_running_record = []

366 i = 0

367 avg_loss_over_iterations = 0.0

368

369 # To keep track of both types of moments:

370 self.m_moments , self.v_moments = {param: 0 for param in self.

learnable_params}, {param: 0 for param in self.learnable_params}

371 self.k = 0 # Timestep initialization

372 self.m_bias , self.v_bias = [], []

373

374 for layer_size in self.layers_config:

375 self.m_bias.append(np.zeros(layer_size)) # individual bias for

each neuron in each layer

376 self.v_bias.append(np.zeros(layer_size))

377

378 for i in range(self.training_iterations):

379 data = data_loader.getbatch ()

380 data_tuples = data [0]

381 class_labels = data [1]

382 self.forward_prop_multi_neuron_model(data_tuples)

383 predicted_labels_for_batch = self.forw_prop_vals_at_layers[

self.num_layers -1]

384 y_preds = [item for sublist in predicted_labels_for_batch

for item in sublist]

385 loss = sum ([( abs(class_labels[i] - y_preds[i]))**2 for i in

range(len(class_labels))])

386 loss_avg = loss / float(len(class_labels))

387 avg_loss_over_iterations += loss_avg

388 if i%(self.display_loss_how_often) == 0:

389 avg_loss_over_iterations /= self.display_loss_how_often

390 loss_running_record.append(avg_loss_over_iterations)

391 #print ("[ iter=%d] loss = %.4f" % (i+1,

avg_loss_over_iterations))

392 avg_loss_over_iterations = 0.0

393 y_errors_in_batch = list(map(operator.sub , class_labels ,

y_preds))

394 self.backprop_and_update_params_multi_neuron_model(y_preds ,

y_errors_in_batch , beta1 , beta2)

395 return loss_running_record
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396

397 def backprop_and_update_params_multi_neuron_model(self , predictions ,

y_errors , beta1 , beta2):

398 pred_err_backproped_at_layers = [ {i : [None for j in range(

self.layers_config[i] ) ]

399 for i in

range(self.num_layers)} for _ in range(self.batch_size) ]

400 self.k += 1 # Update time step

401

402 partial_of_loss_wrt_params = {param : 0.0 for param in self.

all_params}

403 bias_changes = {i : [0.0 for j in range( self.layers_config[i] )

] for i in range(1, self.num_layers)}

404 for b in range(self.batch_size):

405 pred_err_backproped_at_layers[b][self.num_layers - 1] = [

y_errors[b] ]

406 for back_layer_index in reversed(range(1,self.num_layers)):

## For the 3-layer network , the first val for

back_layer_index is 2 for the 3rd layer

407 input_vals = self.forw_prop_vals_at_layers[

back_layer_index -1] ## This is a list of 8 two -element lists ---

since we have two nodes in the 2nd layer

408 deriv_sigmoids = self.gradient_vals_for_layers[

back_layer_index] ## This is a list eight one -element lists , one for

each batch element

409 vars_in_layer = self.layer_vars[back_layer_index]

## A list like [’xo ’]

410 vars_in_next_layer_back = self.layer_vars[

back_layer_index - 1] ## A list like [’xw’, ’xz ’]

411 vals_for_input_vars_dict = dict(zip(

vars_in_next_layer_back , self.forw_prop_vals_at_layers[back_layer_index

- 1][b]))

412 ## For the next statement , note that layer_params are

stored in a dict like

413 ## {1: [[’ap’, ’aq’, ’ar’, ’as ’], [’bp’, ’bq’, ’br’,

’bs ’]], 2: [[’cp’, ’cq ’]]}

414 ## "layer_params[idx]" is a list of lists for the link

weights in layer whose output nodes are in layer "idx"

415 layer_params = self.layer_params[back_layer_index]

416 transposed_layer_params = list(zip(* layer_params))

## Creating a transpose of the link matrix , See Eq. 30 on

Slide 77

417 for k,var1 in enumerate(vars_in_next_layer_back):

418 for j,var2 in enumerate(vars_in_layer):

419 pred_err_backproped_at_layers[b][ back_layer_index

- 1][k] = sum([self.vals_for_learnable_params[transposed_layer_params[k

][i]]

420

* pred_err_backproped_at_layers[b][ back_layer_index ][i]

421

for i in range(len(
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vars_in_layer))])

422 for j,var in enumerate(vars_in_layer):

423 layer_params = self.layer_params[back_layer_index ][j]

## [’cp’, ’cq ’] for the end layer

424 input_vars_to_param_map = self.var_to_var_param[var]

## These two statements align the {’xw ’: ’cp’, ’xz ’: ’cq ’}

425 param_to_vars_map = {param : var for var , param in

input_vars_to_param_map.items()} ## and the input vars {’cp ’: ’xw

’, ’cq ’: ’xz ’}

426

427 for i,param in enumerate(layer_params):

428 partial_of_loss_wrt_params[param] +=

pred_err_backproped_at_layers[b][ back_layer_index ][j] * \

429

vals_for_input_vars_dict[param_to_vars_map[param]] * deriv_sigmoids[b][

j]

430 for k,var1 in enumerate(vars_in_next_layer_back):

431 for j,var2 in enumerate(vars_in_layer):

432 if back_layer_index -1 > 0:

433 bias_changes[back_layer_index -1][k] +=

pred_err_backproped_at_layers[b][ back_layer_index - 1][k] *

deriv_sigmoids[b][j]

434

435 ## Now update the learnable parameters. The loop shown below

carries out SGD mandated averaging

436 for param in partial_of_loss_wrt_params:

437 partial_of_loss_wrt_param = partial_of_loss_wrt_params[param]

/ float(self.batch_size)

438

439 # Update params using ADAM Formulas ======================

440

441 self.m_moments[param] = (self.m_moments[param] * beta1) + ((1

- beta1) * partial_of_loss_wrt_param) # m(t+1) Update formula

442 self.v_moments[param] = (self.v_moments[param] * beta2) + ((1

- beta2) * (partial_of_loss_wrt_param ** 2)) # v(t+1) Update formula

443

444 mhat = self.m_moments[param] / (1 - beta1 ** self.k) # Unbias

the moments from 0

445 vhat = self.v_moments[param] / (1 - beta2 ** self.k)

446

447 step = self.learning_rate * (mhat / math.sqrt(vhat + self.

epsilon))

448 self.vals_for_learnable_params[param] += step

449

450 ## Finally we update the biases at all the nodes that aggregate

data:

451 for layer_index in range(1,self.num_layers):

452 for k in range(self.layers_config[layer_index ]):

453 gradt = bias_changes[layer_index ][k]# / float(self.

batch_size)
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454 self.m_bias[layer_index ][k] = beta1 * self.m_bias[

layer_index ][k] + (1-beta1) * gradt

455 self.v_bias[layer_index ][k] = beta2 * self.v_bias[

layer_index ][k] + (1-beta2) * (gradt ** 2)

456

457 mhat = self.m_bias[layer_index ][k] / (1 - beta1 ** self.k)

# Unbias the moments from 0

458 vhat = self.v_bias[layer_index ][k] / (1 - beta2 ** self.k)

459

460 step = self.learning_rate * (mhat / math.sqrt(vhat + self.

epsilon))

461 self.bias[layer_index ][k] -= self.learning_rate * step

462

463 if __name__ == ’__main__ ’:

464 # ================= Config Parameters ===========

465 lr = 1e-2

466

467 # ================= Initialization of One NN with SGD plus

optimization: ==================

468 #Run with only SGD then SGD plus

469 # cgp = SGDplus(

470 # one_neuron_model = True ,

471 # expressions = [’xw=ab*xa+bc*xb+cd*xc+ac*xd ’],

472 # output_vars = [’xw ’],

473 # dataset_size = 5000,

474 # learning_rate = lr,

475 # training_iterations = 20000 ,

476 # batch_size = 8,

477 # display_loss_how_often = 100,

478 # debug = True ,

479 # )

480 # cgp.parse_expressions ()

481 # training_data = cgp.gen_training_data ()

482 # sgd_losses = cgp.run_training_loop_one_neuron_model(training_data ,

beta = 0)

483 # sgdplus_losses = cgp.run_training_loop_one_neuron_model(

training_data , beta = 0.9)

484

485 # betas = [0, 0.9, 0.1, 0.5]

486

487 # for beta in betas:

488 # sgd_losses = cgp.run_training_loop_one_neuron_model(

training_data , beta = beta)

489 # plt.plot(sgd_losses , label= "SGD beta = "+str(beta))

490

491 # plt.legend ()

492 # plt.xlabel(’Iterations ’)

493 # plt.ylabel(’Loss Value ’)

494 # plt.title(’SGD Plus for One NN with Various Betas ’)

495 # plt.show()
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496 # ================= Initialization of Multi NN with SGD plus

optimization: ==================

497 cgp = SGDplus(

498 num_layers = 3,

499 layers_config = [4,2,1], # num of

nodes in each layer

500 expressions = [’xw=ap*xp+aq*xq+ar*xr+as*xs’,

501 ’xz=bp*xp+bq*xq+br*xr+bs*xs’,

502 ’xo=cp*xw+cq*xz’],

503 output_vars = [’xo’],

504 dataset_size = 5000,

505 learning_rate = lr,

506 training_iterations = 20000 ,

507 batch_size = 8,

508 display_loss_how_often = 100,

509 debug = True ,

510 )

511

512 cgp.parse_multi_layer_expressions ()

513 training_data = cgp.gen_training_data ()

514 # betas = [0, 0.9, 0.1, 0.5]

515

516 # for beta in betas:

517 # sgd_losses = cgp.run_training_loop_multi_neuron_model(

training_data , beta = beta)

518 # plt.plot(sgd_losses , label= "SGD beta = "+str(beta))

519 sgd_losses = cgp.run_training_loop_multi_neuron_model(training_data ,

beta = 0)

520 sgdplus_losses = cgp.run_training_loop_multi_neuron_model(

training_data , beta = 0.5)

521

522 # plt.legend ()

523 # plt.xlabel(’Iterations ’)

524 # plt.ylabel(’Loss Value ’)

525 # plt.title(’SGD Plus for Multi NN with Various Betas ’)

526 # plt.show()

527

528 # ================= Initialization of One NN with ADAM optimization:

==================

529 # cgp = ADAMOptimizer(

530 # one_neuron_model = True ,

531 # expressions = [’xw=ab*xa+bc*xb+cd*xc+ac*xd ’],

532 # output_vars = [’xw ’],

533 # dataset_size = 5000,

534 # learning_rate = lr,

535 # training_iterations = 20000 ,

536 # batch_size = 8,

537 # display_loss_how_often = 100,

538 # debug = True ,

539 # )

540 # cgp.parse_expressions ()
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541 # training_data = cgp.gen_training_data ()

542

543 # beta1s , beta2s = [0.8, 0.95, 0.99] , [0.85 , 0.9, 0.95]

544 # for beta1 in beta1s:

545 # for beta2 in beta2s:

546 # start_time = time.time()

547 # adamlosses = cgp.run_training_loop_one_neuron_model(

training_data , beta1 = beta1 , beta2= beta2)

548 # plt.plot(adamlosses , label= "ADAM B1="+str(beta1)+" B2="+str

(beta2))

549 # time_taken = time.time() - start_time

550

551 # final_loss = adamlosses [-1]

552 # minloss = np.min(adamlosses [10:])

553 # print(f’B1: {beta1}, B2: {beta2 }[Min loss: {minloss}, final

loss: {final_loss} Time taken: {time_taken}s’)

554

555 # plt.plot(sgd_losses , label = "SGD")

556

557 # plt.plot(sgdplus_losses , label = "SGD Plus")

558 # plt.legend ()

559 # plt.xlabel(’Iterations ’)

560 # plt.ylabel(’Loss Value ’)

561 # plt.title(’ADAM for One NN with Various Betas , lr = ’+ str(lr))

562 # plt.show()

563

564 # beta1 , beta2 = 0.95, 0.85

565 # adamlosses = cgp.run_training_loop_one_neuron_model(training_data ,

beta1 = beta1 , beta2= beta2)

566

567 # ================= ADAM Optimizer for Multi NN ====================

568

569 cgp = ADAMOptimizer(

570 num_layers = 3,

571 layers_config = [4,2,1], # num of

nodes in each layer

572 expressions = [’xw=ap*xp+aq*xq+ar*xr+as*xs’,

573 ’xz=bp*xp+bq*xq+br*xr+bs*xs’,

574 ’xo=cp*xw+cq*xz’],

575 output_vars = [’xo’],

576 dataset_size = 5000,

577 learning_rate = lr,

578 training_iterations = 20000 ,

579 batch_size = 8,

580 display_loss_how_often = 100,

581 debug = True ,

582 )

583

584 cgp.parse_multi_layer_expressions ()

585 training_data = cgp.gen_training_data ()

586
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587 # beta1s , beta2s = [0.8, 0.95, 0.99] , [0.85 , 0.9, 0.95]

588

589 # for beta1 in beta1s:

590 # for beta2 in beta2s:

591 # start_time = time.time()

592 # adamlosses = cgp.run_training_loop_multi_neuron_model(

training_data , beta1 = beta1 , beta2= beta2)

593 # plt.plot(adamlosses , label= "ADAM B1="+str(beta1)+" B2="+str

(beta2))

594 # time_taken = time.time() - start_time

595

596 # final_loss = adamlosses [-1]

597 # minloss = np.min(adamlosses [10:])

598

599 # print(f’B1: {beta1}, B2: {beta2 }[Min loss: {minloss}, final

loss: {final_loss} Time taken: {time_taken}s’)

600

601 # plt.plot(sgd_losses , label = "SGD Plus")

602 # plt.legend ()

603 # plt.xlabel(’Iterations ’)

604 # plt.ylabel(’Loss Value ’)

605 # plt.title(’ADAM for Multi NN with Various Betas , lr = ’+ str(lr))

606 # plt.show()

607

608 beta1 , beta2 = 0.99, 0.9

609 adamlosses = cgp.run_training_loop_multi_neuron_model(training_data ,

beta1 = beta1 , beta2= beta2)

610

611 plt.plot(sgd_losses , label = "SGD")

612 plt.plot(sgdplus_losses , label = ’SGD Plus’)

613 plt.plot(adamlosses , label = ’ADAM’)

614 plt.xlabel(’Iterations ’)

615 plt.ylabel(’Loss Value’)

616 plt.title(’Comparison of Different Optimizers for Multi -NN’)

617 plt.legend ()

618 plt.show()

Code Listing 1: hw3.py

extracred.py

1 from ComputationalGraphPrimer import ComputationalGraphPrimer

2 import numpy as np

3 import random , operator , math , time

4 import matplotlib.pyplot as plt

5 from tqdm import tqdm

6 from collections import defaultdict

7

8 random.seed (0)

9 np.random.seed (0)
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10

11 class CustomDataloader(ComputationalGraphPrimer):

12 def __init__(self , *args , ** kwargs):

13 super ().__init__ (*args , ** kwargs)

14

15 def truncate(self , data):

16 mu , std = np.mean(data), np.std(data)

17 lower_bound , upper_bound = mu - 5 * std , mu + 5 * std

18

19 truncated_data = np.clip(data , lower_bound , upper_bound)

20 min_val , max_val = truncated_data.min(), truncated_data.max()

21 scaled_data = 2 * (truncated_data - min_val) / (max_val - min_val)

- 1

22 return scaled_data

23

24 def run_training_loop_one_neuron_model(self , training_data , normalize

= True , truncate = False):

25 # Initialize learnable params for network -----------------

26 self.vals_for_learnable_params = {param: random.uniform (0,1) for

param in self.learnable_params}

27 self.bias = random.uniform (0,1)

28

29 # Truncate data values

30

31 if truncate:

32 class0 , class1 = self.truncate(training_data [0]), self.

truncate(training_data [1])

33 training_data [0], training_data [1] = class0 , class1

34 # Dataloader business -----------------

35 class DataLoader:

36 def __init__(self , training_data , batch_size):

37 self.training_data = training_data

38 self.batch_size = batch_size

39 self.class_0_samples = [(item , 0) for item in self.

training_data [0]] ## Associate label 0 with each sample

40 self.class_1_samples = [(item , 1) for item in self.

training_data [1]] ## Associate label 1 with each sample

41

42 def __len__(self):

43 return len(self.training_data [0]) + len(self.training_data

[1])

44

45 def _getitem(self):

46 cointoss = random.choice ([0 ,1])

## When a batch is created by getbatch (), we want the

47

## samples to be chosen randomly from the two lists

48 if cointoss == 0:

49 return random.choice(self.class_0_samples)

50 else:

51 return random.choice(self.class_1_samples)
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52

53 def getbatch(self):

54 batch_data ,batch_labels = [],[]

## First list for samples , the second for labels

55 maxval = 0.0

## For approximate batch data normalization

56 for _ in range(self.batch_size):

57 item = self._getitem ()

58 if np.max(item [0]) > maxval:

59 maxval = np.max(item [0])

60 batch_data.append(item [0])

61 batch_labels.append(item [1])

62 if normalize: batch_data = [item/maxval for item in

batch_data] ## Normalize batch data

63 batch = [batch_data , batch_labels]

64 return batch

65

66 data_loader = DataLoader(training_data , batch_size=self.batch_size

)

67 loss_running_record = []

68 i = 0

69 avg_loss_over_iterations = 0.0

## Average the loss over iterations for printing out

70

71 # Actually running training -----------------

72 for i in range(self.training_iterations):

73 data = data_loader.getbatch ()

74 data_tuples_in_batch = data [0]

75 class_labels_in_batch = data [1]

76

77 y_preds , deriv_sigmoids = self.forward_prop_one_neuron_model(

data_tuples_in_batch) ## FORWARD PROP of data

78 loss = sum ([( abs(class_labels_in_batch[i] - y_preds[i]))**2

for i in range(len(class_labels_in_batch))]) ## Find loss

79 avg_loss_over_iterations += loss / float(len(

class_labels_in_batch))

80

81 if i%(self.display_loss_how_often) == 0:

82 avg_loss_over_iterations /= self.display_loss_how_often

83 loss_running_record.append(avg_loss_over_iterations)

84 # print ("[ iter=%d] loss = %.4f" % (i+1,

avg_loss_over_iterations)) ## Display average loss

85 avg_loss_over_iterations = 0.0

## Re -initialize avg loss

86

87 y_errors_in_batch = list(map(operator.sub ,

class_labels_in_batch , y_preds))

88 self.backprop_and_update_params_one_neuron_model(

data_tuples_in_batch , y_preds , y_errors_in_batch , deriv_sigmoids) ##

BACKPROP loss

89 return loss_running_record # Return loss for own plotting function
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90

91 def run_training_loop_multi_neuron_model(self , training_data ,

normalize = True , truncate = False):

92

93 class DataLoader:

94 def __init__(self , training_data , batch_size):

95 self.training_data = training_data

96 self.batch_size = batch_size

97 self.class_0_samples = [(item , 0) for item in self.

training_data [0]]

98 self.class_1_samples = [(item , 1) for item in self.

training_data [1]]

99

100 def __len__(self):

101 return len(self.training_data [0]) + len(self.training_data

[1])

102

103 def _getitem(self):

104 cointoss = random.choice ([0 ,1])

## When a batch is created by getbatch (), we want the

105

## samples to be chosen randomly from the two lists

106 if cointoss == 0:

107 return random.choice(self.class_0_samples)

108 else:

109 return random.choice(self.class_1_samples)

110

111 def getbatch(self):

112 batch_data ,batch_labels = [],[]

## First list for samples , the second for labels

113 maxval = 0.0

## For approximate batch data normalization

114 for _ in range(self.batch_size):

115 item = self._getitem ()

116 if np.max(item [0]) > maxval:

117 maxval = np.max(item [0])

118 batch_data.append(item [0])

119 batch_labels.append(item [1])

120 if normalize: batch_data = [item/maxval for item in

batch_data] ## Normalize batch data

121 batch = [batch_data , batch_labels]

122 return batch

123

124 # Truncate data values

125 if truncate:

126 class0 , class1 = self.truncate(training_data [0]), self.

truncate(training_data [1])

127 training_data [0], training_data [1] = class0 , class1

128 # Initialize Learnable params

129 self.vals_for_learnable_params = {param: random.uniform (0,1) for

param in self.learnable_params}
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130 self.bias = {i : [random.uniform (0,1) for j in range( self.

layers_config[i] ) ] for i in range(1, self.num_layers)}

131 data_loader = DataLoader(training_data , batch_size=self.batch_size

)

132 loss_running_record = []

133 i = 0

134 avg_loss_over_iterations = 0.0

135

136 for i in range(self.training_iterations):

137 data = data_loader.getbatch ()

138 data_tuples = data [0]

139 class_labels = data [1]

140 self.forward_prop_multi_neuron_model(data_tuples)

## FORW PROP works by side -effect

141 predicted_labels_for_batch = self.forw_prop_vals_at_layers[

self.num_layers -1] ## Predictions from FORW PROP

142 y_preds = [item for sublist in predicted_labels_for_batch

for item in sublist] ## Get numeric vals for predictions

143 loss = sum ([( abs(class_labels[i] - y_preds[i]))**2 for i in

range(len(class_labels))]) ## Calculate loss for batch

144 loss_avg = loss / float(len(class_labels))

## Average the loss over batch

145 avg_loss_over_iterations += loss_avg

## Add to Average loss over iterations

146 if i%(self.display_loss_how_often) == 0:

147 avg_loss_over_iterations /= self.display_loss_how_often

148 loss_running_record.append(avg_loss_over_iterations)

149 # print ("[ iter=%d] loss = %.4f" % (i+1,

avg_loss_over_iterations))

150 avg_loss_over_iterations = 0.0

151 y_errors_in_batch = list(map(operator.sub , class_labels ,

y_preds))

152 self.backprop_and_update_params_multi_neuron_model(y_preds ,

y_errors_in_batch)

153 return loss_running_record

154

155 if __name__ == ’__main__ ’:

156 # ================= Compare One NN with and without normalizaiton:

==================

157 #Run with only SGD then SGD plus

158 # cgp = CustomDataloader(

159 # one_neuron_model = True ,

160 # expressions = [’xw=ab*xa+bc*xb+cd*xc+ac*xd ’],

161 # output_vars = [’xw ’],

162 # dataset_size = 5000,

163 # learning_rate = 1e-3,

164 # training_iterations = 40000 ,

165 # batch_size = 8,

166 # display_loss_how_often = 100,

167 # debug = True ,

168 # )
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169 # cgp.parse_expressions ()

170 # training_data = cgp.gen_training_data ()

171 # custom_losses_onenn = cgp.run_training_loop_one_neuron_model(

training_data , normalize= False)

172 # regular_losses_onenn = cgp.run_training_loop_one_neuron_model(

training_data , normalize= True )

173

174 # plt.plot(custom_losses_onenn , label = "No Normalization ")

175 # plt.plot(regular_losses_onenn , label = ’With Normalization ’)

176 # plt.legend ()

177 # plt.xlabel(’Iterations ’)

178 # plt.ylabel(’Loss Value ’)

179 # plt.title(’One NN Comparison of Normalization ’)

180 # plt.show()

181

182 # ================= Compare One NN with and without normalizaiton:

==================

183 # #Run with only SGD then SGD plus

184 # cgp = CustomDataloader(

185 # num_layers = 3,

186 # layers_config = [4,2,1], # num of

nodes in each layer

187 # expressions = [’xw=ap*xp+aq*xq+ar*xr+as*xs’,

188 # ’xz=bp*xp+bq*xq+br*xr+bs*xs’,

189 # ’xo=cp*xw+cq*xz ’],

190 # output_vars = [’xo ’],

191 # dataset_size = 5000,

192 # learning_rate = 9e-2,

193 # training_iterations = 20000 ,

194 # batch_size = 8,

195 # display_loss_how_often = 100,

196 # debug = True ,

197 # )

198

199 # cgp.parse_multi_layer_expressions ()

200 # training_data = cgp.gen_training_data ()

201 # custom_losses_onenn = cgp.run_training_loop_multi_neuron_model(

training_data , normalize= False)

202 # regular_losses_onenn = cgp.run_training_loop_multi_neuron_model(

training_data , normalize= True )

203

204 # plt.plot(custom_losses_onenn , label = "No Normalization ")

205 # plt.plot(regular_losses_onenn , label = ’With Normalization ’)

206 # plt.legend ()

207 # plt.xlabel(’Iterations ’)

208 # plt.ylabel(’Loss Value ’)

209 # plt.title(’Multi NN Comparison of Normalization ’)

210 # plt.show()

211

212 # # ================= Compare One NN with and without truncation:

==================
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213 # #Run with only SGD then SGD plus

214 # cgp = CustomDataloader(

215 # one_neuron_model = True ,

216 # expressions = [’xw=ab*xa+bc*xb+cd*xc+ac*xd ’],

217 # output_vars = [’xw ’],

218 # dataset_size = 5000,

219 # learning_rate = 1e-3,

220 # training_iterations = 40000 ,

221 # batch_size = 8,

222 # display_loss_how_often = 100,

223 # debug = True ,

224 # )

225 # cgp.parse_expressions ()

226 # training_data = cgp.gen_training_data ()

227 # print(training_data)

228 # custom_losses_onenn = cgp.run_training_loop_one_neuron_model(

training_data , truncate= True)

229 # regular_losses_onenn = cgp.run_training_loop_one_neuron_model(

training_data , truncate= False )

230

231 # plt.plot(custom_losses_onenn , label = "With Truncation ")

232 # plt.plot(regular_losses_onenn , label = ’Without Truncation ’)

233 # plt.legend ()

234 # plt.xlabel(’Iterations ’)

235 # plt.ylabel(’Loss Value ’)

236 # plt.title(’One NN Comparison of Truncation ’)

237 # plt.show()

238

239

240 # ================= Compare One NN with and without truncation:

==================

241 #Run with only SGD then SGD plus

242 cgp = CustomDataloader(

243 num_layers = 3,

244 layers_config = [4,2,1], # num of

nodes in each layer

245 expressions = [’xw=ap*xp+aq*xq+ar*xr+as*xs’,

246 ’xz=bp*xp+bq*xq+br*xr+bs*xs’,

247 ’xo=cp*xw+cq*xz’],

248 output_vars = [’xo’],

249 dataset_size = 5000,

250 learning_rate = 9e-2,

251 training_iterations = 20000 ,

252 batch_size = 8,

253 display_loss_how_often = 100,

254 debug = True ,

255 )

256

257 cgp.parse_multi_layer_expressions ()

258 training_data = cgp.gen_training_data ()

259
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260 custom_losses_onenn = cgp.run_training_loop_multi_neuron_model(

training_data , truncate= True)

261 regular_losses_onenn = cgp.run_training_loop_multi_neuron_model(

training_data , truncate= False )

262

263 plt.plot(custom_losses_onenn , label = "With Truncation")

264 plt.plot(regular_losses_onenn , label = ’Without Truncation ’)

265 plt.legend ()

266 plt.xlabel(’Iterations ’)

267 plt.ylabel(’Loss Value’)

268 plt.title(’Multi NN Comparison of Truncation ’)

269 plt.show()

Code Listing 2: extracred.py
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