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February 2nd 2025

1 Comparison of Hand-crafted vs Torch Neural Net-
work

To compare the implementations of a hand-crafted neural network, vs one with a similar
architecture implemented using the pytorch library we analyze the loss produced by both
types of networks. Below the architecture for each network type can be seen.

Figure 1: Network Structure of One-NN and Multi-NN



For the one neuron network, it can be seen that the hand crafted network ends with a
better final loss value of about 0.2 compared to the torch implementation value of 1. This
however does not mean it is a better implementation, as the torch implementation converges
faster as seen by the curve in the decline of the loss, as compared to the almost linear decrease
of the handcrafted loss.
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Figure 2: Handcrafted vs Torch Implementation of One Neuron

For the multi-neuron network, the handcrafted version displays an interesting loss func-
tion that starts to decrease, plateaus then exponentially decreases again. This is very un-
stable behavior that is not seen in the torch implementation, which displays a more linear
decrease that has not plateau’d yet, meaning that further learning can take place. While the
handcrafted version has a better rate of convergence, the torch method has a more stable
approach as it reaches minimum loss.
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Figure 3: Handcrafted vs Torch Implementation of Multi-Neuron



2 Optimization Theory

2.1 SGD+ Optimizer

Gradient Descent suffers from oscillations when encountering valleys in the loss landscape,
and can often get lost in local minima. To counteract this, SGD with Momentum incorporates
a momentum term accelerates updates along consistent gradient directions while dampening
oscillations in changing directions, creating a smoother convergence.

The update equations are:

Vg1 = Bup + g1 (1)
Wit1 = Wy — 1) Vg1 (2)
where:

e v, is the velocity at step t,

g; is the gradient at ¢,
e w,; represents model weights,
e 1) is the learning rate,

e (3 is the momentum factor (0 < 5 <1).

A higher S gives more weight to past updates, leading to smoother and often faster
convergence as it takes into account the optimization past.

2.2 ADAM Optimizer

While SGD+ accounts for first-order momentum, Adam extends this by incorporating second-
order momentum as well. The first moment estimate (moving average of the gradient) is
computed as:

Mey1 = Prme + (1 — B1)g: (3)

where (3 controls the decay rate of past gradients.
The second moment estimate (moving average of squared gradients) is:

Vi1 = Pove + (1 — B2)g; (4)

where 5 controls the decay of past squared gradients.
Since both m; and v; are biased towards zero in early training steps, we correct its bias
using:

N M1
Mmiy, = (5)

~ Vt+1
= 6



Finally, the model weights are updated using;:

7 Myt (7)

Pi+1 = Pt — =
Upy1 T €

By considering both the mean and variance of past gradients, Adam adapts learning rates
per parameter, leading to faster and more stable convergence compared to SGD+.



3 SGD+ Implementation

Implementing SGD+ into the existing computational graph primer class involved editing
the 'Run training loop’” and 'Backprop and update parameters’ functions for both one single
neuron and the multi-layer neural net. The following subsections highlight the individual
implementations and results for each different architecture.

3.1 One-NN Architecture

To alter the One-NN architecture, I updated the backprop function of SGD to include the
momentum calculations as shown below:

self .weight_velocities[param] = beta * self.weight_velocities[param] +
partial_of_loss_wrt_param

self.vals_for_learnable_params[param] += self.weight_velocities[param] x*
self.learning_rate

y_error_avg = sum(y_errors_in_batch) / float(self.batch_size)

deriv_sigmoid_avg = sum(deriv_sigmoids) / float(self.batch_size)

self .bias_velocity = (self.bias_velocity * beta) + (y_error_avg *
deriv_sigmoid_avg) ## Update the

bias including momentum now
self .bias += self.bias_velocity * self.learning_rate

Where the weight velocities and bias velocity are initialized in the training loop as:

# Create new variables to keep track of velocities: —--—-—-——--—-———---——--—--
self .weight_velocities = {param: O for param in self.learnable_params}
self .bias_velocity = 0

The results of this code for various Beta values can be seen in the plot below. The best
performing Beta was 0.9 as seen by the fastest convergence to the lowest loss.

SGD Plus for One NN with Various Betas

Figure 4: SGD+ - Loss vs Beta values for One-NN



3.2 Multi-NN Architecture

To alter the Multi-NN architecture, I first initialized variables to hold my velocities for each
neuron, with the bias being applied to each individual neuron as defined by the layer config
in the object initialization.

# Create new variables to keep track of velocities: —--——-—-——--———-——--—--
self .weight_velocities = {param: O for param in self.learnable_params}
self.bias_velocity = []
for layer_size in self.layers_config:
self .bias_velocity.append(np.zeros(layer_size)) # individual bias for
each neuron in each layer

I further altered the code to include the weight and bias updates for each layer as required.
The code for this can be seen below:

## Now update the learnable parameters. The loop shown below carries out
SGD mandated averaging
for param in partial_of_loss_wrt_params:
partial_of_loss_wrt_param = partial_of_loss_wrt_params[param] / float
(self.batch_size)

# Update parameters using SGD Plus

self .weight_velocities [param] = beta * self.weight_velocities[param] +
partial_of_loss_wrt_param

self .vals_for_learnable_params[param] += self.weight_velocities[param]
* self.learning_rate

## Finally we update the biases at all the nodes that aggregate data:
for layer_index in range(1l,self.num_layers):
for k in range(self.layers_config[layer_index]):
self .bias_velocity[layer_index] [k] = (self.bias_velocityl
layer_index] [k] * beta) + (
bias_changes[layer_index] [k]
/ float(self.batch_size))
## Update the bias including
momentum now
self.bias[layer_index] [k] += self.learning_rate * self.
bias_velocity[layer_index] [k]



The results for SGD plus as applied to the multi-neuron network can be seen below, with
a beta value of 0.5 performing the best and converging the fasted, while the higher beta
value such as 0.9 converges more smoothly.

SGD Plus for Multi NN with Various Betas

0.30 —— SGD beta =0
—— SGD beta = 0.9
—— 5GD beta = 0.1
—— SGD beta = 0.5
0.25 -
0.20 -
@
E]
£ 0.15 1
a
3
AP
0.10 - ,|,IH ' l .'ll-.’ i "!'l
0.05 -
0.00 -
0 25 50 75 100 125 150 175 200
lterations

Figure 5: SGD+ - Loss vs Beta values for Multi-NN



4 ADAM Implementation

Similar to the implementation of SGD+, I altered the existing computational graph primer
class by editing the 'Run training loop’ and 'Backprop and update parameters’ functions
for both one single neuron and the multi-layer neural net to now include the appropriate
formulae for ADAM optimizer with two moments. The following subsections highlight the
individual implementations and results for each different architecture.

4.1 One-NN Architecture

To update the training and backprop loops to include ADAM, I first initialize the momentums
as follows:

# To keep track of both types of moments:

self .m_moments, self.v_moments = {param: O for param in self.
learnable_params}, {param: 0 for
param in self.learnable_params}

self .k = 0 # Timestep initialization

And then further updated the weights and biases using the ADAM formulae as follows:

self .k += 1 # Update for each timestep

# Update learnable params using both moments
self .m_moments [param] = (self.m_moments[param] * betal) + (1 - betal)
* partial_of_loss_wrt_param # m(t
+1) Update formula
self .v_moments [param] = (self.v_moments[param] * beta2) + ((1 - beta2)
* (partial_of_loss_wrt_param **
2)) # v(t+1) Update formula

mhat = self.m_moments[param] / (1 - betal #*x self.k) # Unbias the
moments from O
vhat = self.v_moments[param] / (1 - beta2 #** self.k)

step self.learning_rate * (mhat / math.sqrt(vhat + self.epsilon))
self.vals_for_learnable_params[param] -= step

y_error_avg = sum(y_errors_in_batch) / float(self.batch_size)

deriv_sigmoid_avg = sum(deriv_sigmoids) / float(self.batch_size)

self .bias += step + self.learning_rate * y_error_avg * deriv_sigmoid_avg
## Update the bias

I ran various experiments with many different values for Beta, the following graph shows
9 different combinations of the following beta values:

By = [0.8,0.95,0.99]3, = [0.85,0.9,0.95]
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Figure 6: ADAM - Loss vs Beta values for One-NN, Ir = le-2

The table shows the minimum loss, final loss, and time taken to run each training for
each Beta combination. The combination #; = 0.95, S, = 0.85 can be seen in the graph to
give the best optimization, as it converges faster than SGDplus to a lower loss.

Bl | B2 | Min Loss | Final Loss | Time Taken (s)
0.8 10.85| 0.1006 0.1290 3.7616
0.8 | 0.9 0.0972 0.1042 3.3658
0.8 10.95| 0.1076 0.1119 3.8178
0.95]0.85| 0.1032 0.1124 4.3197
0.95| 0.9 0.1036 0.1112 3.7547
0.9510.95| 0.1065 0.1088 3.5935
0.99 |1 0.85| 0.1071 0.1244 3.7211
099 | 0.9 0.1043 0.1215 3.6014
0.99 1 0.95 | 0.1040 0.1219 3.5244

Table 1: Loss and time taken for different values of B1 and B2



I also experimented with various learning rates as can be seen below, but our initial Ir of
1-e2 shows the best convergence to the lowest learning rate.
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Figure 7: ADAM - Loss vs Beta values for One-NN, Ir = le-1
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Figure 8: ADAM - Loss vs Beta values for One-NN, Ir = 1e-3
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The final configurations for the One neuron architecture were conducted with an SGD+
beta value of 0.9, and ADAM values of 0.95 and 0.85. The below graph shows the loss
comparison. As expected, vanilla SGD performs the worst, with SGD having a smoother
convergence and then ADAM having a mixture of better smoothness as well as a faster
convergence.
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Figure 9: Final One Neuron Comparison
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4.2 Multi-NN Architecture

To update the code for multi neuron, I updated the training loop and the backpropagation
functions to include the following:

# To keep track of both types of moments:

self .m_moments, self.v_moments = {param: O for param in self.
learnable_params}, {param: O for
param in self.learnable_params}

self .k = 0 # Timestep initialization

self.m_bias, self.v_bias = [], []

for layer_size in self.layers_config:
self .m_bias.append(np.zeros(layer_size)) # individual bias for each
neuron in each layer
self.v_bias.append(np.zeros(layer_size))

The code above initializes layer wise moments for each neuron. The code below actually
performs the gradient update:

## Now update the learnable parameters. The loop shown below carries out
SGD mandated averaging
for param in partial_of_loss_wrt_params:
partial_of_loss_wrt_param = partial_of_loss_wrt_params[param] / float
(self.batch_size)
# Update params using ADAM Formulas ======================
self .m_moments [param] = (self.m_moments[param] * betal) + ((1 - betal)
* partial_of_loss_wrt_param) # m
(t+1) Update formula
(self.v_moments [param] * beta2) + ((1 - beta2)
* (partial_of_loss_wrt_param **
2)) # v(t+1) Update formula

self.v_moments [param]

mhat = self.m_moments[param] / (1 - betal #*x self.k) # Unbias the
moments from O

vhat = self.v_moments[param] / (1 - beta2 ** self.k)

step = self.learning_rate * (mhat / math.sqrt(vhat + self.epsilon))

self .vals_for_learnable_params [param] += step

## Finally we update the biases at all the nodes that aggregate data:
for layer_index in range(1l,self.num_layers):
for k in range(self.layers_config[layer_index]):
gradt = bias_changes[layer_index] [kl# / float(self.batch_size)
self .m_bias[layer_index] [k] = betal * self.m_bias[layer_index] [k]
+ (1-betal) * gradt
self .v_bias[layer_index] [k] = beta2 * self.v_bias[layer_index] [k]
+ (1-beta2) * (gradt #**x 2)

mhat = self.m_bias[layer_index][k] / (1 - betal #*x self.k) #
Unbias the moments from O
vhat = self.v_bias[layer_index][k] / (1 - beta2 x* self.k)

12




step = self.learning_rate * (mhat / math.sqrt(vhat + self.epsilon)
) |

self .bias[layer_index] [k] -= self.learning_rate * step

The graph below shows my comparison of the various combinations of betas as previously
seen in the One neuron case. According to this graph, we select the combination of 0.99 and
0.9 as our best ADAM optimized model.
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Figure 10: ADAM - Loss vs Beta values for Multi-NN, Ir = le-2
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The following table shows the various data gathered from the above experiment. One
thing of note when comparing this to the One neuron case is that I ran this on a different
machine, hence attributing to the longer run time.

B1 | B2 | Min Loss | Final Loss | Time Taken (s)
0.8 1 0.85| 0.0814 0.1066 22.5600
0.8 | 0.9 0.1152 0.1205 22.3222
0.8 10.95| 0.1110 0.1193 22.0714
0.95]0.85| 0.1522 0.1673 22.2502
095 | 09 | 0.1208 0.1373 22.8845
0.9510.95| 0.1228 0.1330 22.1774
0.99 1 0.85| 0.1111 0.1256 22.3001
0.99 | 0.9 0.0818 0.1049 22.1742
0.99 10.95| 0.0795 0.0878 21.8879

Table 2: Loss and time taken for different values of B1 and B2

Finally, the configuration to compare the optimizers involved using a beta value of 0.5
for SGD+ and values 0.9, 0.99 for ADAM. The graph clearly shows how ADAM is superior
in how it converges quicker and to a lower loss, and is followed by SGD+, which while it
converges to a similar final loss, takes about 90 more iterations to do so.
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Comparison of Different Optimizers for Multi-NN
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Figure 11: Final Multi Neuron Comparison

5 Extra Credit

5.1 Comparison of Normalization Effect

For the first part of the extra credit, we compare the effect of data normalization of the
batches on the loss values. I implemented a normalization flag that triggers the appropriate
line of code, and below can be seen the results for both one neuron and multi neuron networks.
As seen clearly, the loss is much lower for the network operating on normalized data instead
of it not being normalized, as well as having it converge faster.
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One NN Comparison of Normalization
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For manual truncation and remapping to [-1, 1] T first found out the mean and standard
deviation of the Gaussian for each class, then performed the truncation. I then applied the
remapping using min max normalization. The results of this can be seen below, the graphs
show that truncation does not have an effect on the data when normalization is already
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Figure 12: Comparison of Effects of Data Normalization

Manual Truncation

taking place.
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Figure 13: Comparison of Effects of Truncation
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6 Source Code

hw3.py

from ComputationalGraphPrimer import ComputationalGraphPrimer
import numpy as np

import random, operator, math, time

import matplotlib.pyplot as plt

from tqdm import tqdm

random.seed (0)
np.random. seed (0)

class SGDplus (ComputationalGraphPrimer):

def __init__(self, *args, **xkwargs): # Now includes beta factor for
momentum, and run plus option so we can get back vanilla sgd
super () . __init__ (*args, **xkwargs)

def run_training_loop_one_neuron_model (self, training_data, beta):
# Initialize learmable params for network ---------—-—-——-—-—---

self .vals_for_learnable_params = {param: random.uniform(0,1) for
param in self.learnable_params}
self .bias = random.uniform(0,1)

# Create new variables to keep track of velocities:

self .weight_velocities = {param: O for param in self.
learnable_params}

self .bias_velocity = 0

# Dataloader business - - - ——————————-—-——-—
class Dataloader:

def __init__(self, training_data, batch_size):
self .training_data = training_data
self .batch_size = batch_size
self.class_O_samples = [(item, O0) for item in self.
training_data[0]] ## Associate label O with each sample
self.class_1_samples = [(item, 1) for item in self.
training_datal[1]] ## Associate label 1 with each sample

def len__(self):

return len(self.training_data[0]) + len(self.training_data

(11D

def _getitem(self):
cointoss = random.choice ([0,1])
## When a batch is created by getbatch(), we want the

H# samples to be chosen randomly from the two lists
if cointoss == 0

17
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return random.choice(self.class_O_samples)
else:
return random.choice(self.class_1_samples)

def getbatch(self):
batch_data,batch_labels = [], []
## First list for samples, the second for labels

maxval = 0.0
## For approximate batch data normalization
for _ in range(self.batch_size):

item = self._getitem()
if np.max(item[0]) > maxval:
maxval = np.max(item[0])
batch_data.append(item[0])
batch_labels.append(item[1])
batch_data = [item/maxval for item in batch_datal]
## Normalize batch data
batch = [batch_data, batch_labels]
return batch

data_loader = Dataloader (training_data, batch_size=self.batch_size
)

loss_running_record = []

i=20

avg_loss_over_iterations = 0.0

## Average the loss over iterations for printing out

# Actually running training ----------—-------

for i in range(self.training_iterations):
data = data_loader.getbatch ()
data_tuples_in_batch = data[0]
class_labels_in_batch = datal[1]

y_preds, deriv_sigmoids = self.forward_prop_one_neuron_model(
data_tuples_in_batch) ## FORWARD PROP of data

loss = sum([(abs(class_labels_in_batch[i] - y_preds[i]))**2
for i in range(len(class_labels_in_batch))]) ## Find loss

avg_loss_over_iterations += loss / float(len(
class_labels_in_batch))

if i%(self.display_loss_how_often) == O0:
avg_loss_over_iterations /= self.display_loss_how_often
loss_running_record.append(avg_loss_over_iterations)

# print ("[iter=%d] loss = %.4f" % (i+1,
avg_loss_over_iterations)) ## Display average loss
avg_loss_over_iterations = 0.0
## Re-initialize avg loss

y_errors_in_batch = list(map(operator.sub,
class_labels_in_batch, y_preds))

18
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self .backprop_and_update_params_one_neuron_model (
data_tuples_in_batch, y_preds, y_errors_in_batch, deriv_sigmoids, beta)
## BACKPROP loss
return loss_running_record # Return loss for own plotting function

def backprop_and_update_params_one_neuron_model (self,
data_tuples_in_batch, predictions, y_errors_in_batch, deriv_sigmoids,
beta) :

input_vars = self.independent_vars

input_vars_to_param_map = self.var_to_var_param[self.output_vars
[0]] ## These two statements align the input vars

param_to_vars_map = {param : var for var, param in

input_vars_to_param_map.items ()}

for i,param in enumerate(self.vals_for_learnable_params):
## For each param, sum the partials from every training data
sample in batch

partial_of_loss_wrt_param = 0.0
for j in range(self.batch_size):
vals_for_input_vars_dict = dict(zip(input_vars, list(
data_tuples_in_batch[j])))
partial_of_loss_wrt_param += y_errors_in_batch[j] =*
vals_for_input_vars_dict[param_to_vars_map[param]] * deriv_sigmoids[j]
partial_of_loss_wrt_param /= float(self.batch_size)
##====Update Parameters using SGD Plus===========
self .weight_velocities [param] = beta * self.weight_velocities]|[

param] + partial_of_loss_wrt_param
self.vals_for_learnable_params [param] += self.
weight_velocities[param] * self.learning_rate

y_error_avg = sum(y_errors_in_batch) / float(self.batch_size)
deriv_sigmoid_avg = sum(deriv_sigmoids) / float(self.batch_size)

#self .bias_velocity = (self.bias_velocity * beta) + (y_error_avg *
deriv_sigmoid_avg) ## Update the bias including momentum now
self .bias += (self.bias_velocity * beta) + (self.learning _rate *
y_error_avg * deriv_sigmoid_avg)

def run_training_loop_multi_neuron_model (self, training_data, beta):

class Dataloader:

def __init__(self, training_data, batch_size):
self .training_data = training_data
self .batch_size = batch_size
self.class_O_samples = [(item, 0) for item in self.
training_data [0]]
self.class_1_samples = [(item, 1) for item in self.

training_data[1]]
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def __len__(self):
return len(self.training_data[0]) + len(self.training_data

(11D

def _getitem(self):
cointoss = random.choice ([0,1])
## When a batch is created by getbatch(), we want the

## samples to be chosen randomly from the two lists
if cointoss == O0:
return random.choice(self.class_O_samples)
else:

return random.choice(self.class_1_samples)

def getbatch(self):
batch_data,batch_labels = [],[]
## First list for samples, the second for labels

maxval = 0.0
## For approximate batch data normalization
for _ in range(self.batch_size):

item = self._getitem()
if np.max(item[0]) > maxval:
maxval = np.max(item[0])
batch_data.append(item[0])
batch_labels.append(item[1])
batch_data = [item/maxval for item in batch_datal
## Normalize batch data
batch = [batch_data, batch_labels]
return batch

# Initialize Learnable params

self .vals_for_learnable_params = {param: random.uniform(0,1) for
param in self.learnable_params}

self .bias = {i : [random.uniform(0,1) for j in range( self.
layers_config[i] ) ] for i in range(l, self.num_layers)}

data_loader = DataLoader(training_data, batch_size=self.batch_size
)

loss_running_record = []

i=20

avg_loss_over_iterations = 0.0

# Create new variables to keep track of velocities:
self .weight_velocities = {param: O for param in self.
learnable_params}
self .bias_velocity = []
for layer_size in self.layers_config:
self .bias_velocity.append(np.zeros(layer_size)) # individual
bias for each neuron in each layer

for i in range(self.training_iterations):
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data = data_loader.getbatch ()
data_tuples = data[0]
class_labels = datal[1]
self .forward_prop_multi_neuron_model (data_tuples)
## FORW PROP works by side-effect
predicted_labels_for_batch = self.forw_prop_vals_at_layers/|

self .num_layers -1] ## Predictions from FORW PROP
y_preds = [item for sublist in predicted_labels_for_batch
for item in sublist] ## Get numeric vals for predictions

loss = sum([(abs(class_labels[i] - y_preds[i]))**2 for i in
range (len(class_labels))]) ## Calculate loss for batch
loss_avg = loss / float(len(class_labels))
## Average the loss over batch
avg_loss_over_iterations += loss_avg
## Add to Average loss over iterations
if i%(self.display_loss_how_often) == O0:
avg_loss_over_iterations /= self.display_loss_how_often
loss_running_record.append(avg_loss_over_iterations)
# print ("[iter=%d] loss = %.4f" % (i+1,
avg_loss_over_iterations))
avg_loss_over_iterations = 0.0
y_errors_in_batch = list(map(operator.sub, class_labels,
y_preds))
self .backprop_and_update_params_multi_neuron_model (y_preds,
y_errors_in_batch, beta)
return loss_running_record

def backprop_and_update_params_multi_neuron_model (self, predictions,
y_errors, beta):

## Eq. (24) on Slide 73 of my Week 3 lecture says we need to store
backproped errors in each layer leading up to the last:

pred_err_backproped_at_layers = [ {i : [None for j in range(
self.layers_config[i] ) ]

for i in

range (self .num_layers)} for _ in range(self.batch_size) ]

## This will store "\delta L / \delta w" you see at the LHS of the

equations on Slide 73:

partial_of_loss_wrt_params = {param : 0.0 for param in self.
all_params}

## For estimating the changes to the bias to be made on the basis
of the derivatives of the Sigmoids:

bias_changes = {i : [0.0 for j in range( self.layers_configl[i] )
] for i in range(1l, self.num_layers)}

for b in range(self.batch_size):
pred_err_backproped_at_layers[b][self.num_layers - 1] = [
y_errors [b] 1]
for back_layer_index in reversed(range(1l,self.num_layers)):
## For the 3-layer network, the first val for
back_layer_index is 2 for the 3rd layer

21




183

184

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

input_vals = self.forw_prop_vals_at_layers]|[

back_layer_index -1] ## This is a list of 8 two-element lists ---
since we have two nodes in the 2nd layer

deriv_sigmoids = self.gradient_vals_for_layers]|[
back_layer_index] ## This is a list eight one-element lists, one for
each batch element

vars_in_layer = self.layer_vars[back_layer_index]

## A list like [’xo0’]

vars_in_next_layer_back = self.layer_vars]|
back_layer_index - 1] ## A list 1like [’xw’, ’xz’]

vals_for_input_vars_dict = dict(zip(

vars_in_next_layer_back, self.forw_prop_vals_at_layers[back_layer_index
- 11[p1))

## For the next statement, note that layer_params are
stored in a dict like

#4 {1: [[’ap’, ’aq’, ’ar’, ’as’], [’bp’, ’bq’, ’br’,

’bs’1]1, 2: [[’cp’, ’cq’ll}

## "layer_params[idx]" is a list of lists for the link
weights in layer whose output nodes are in layer "idx"

layer_params = self.layer_params[back_layer_index]

transposed_layer_params = list(zip(*layer_params))

## Creating a transpose of the link matrix, See Eq. 30 on

Slide 77

for k,varl in enumerate(vars_in_next_layer_back):

for j,var2 in enumerate(vars_in_layer):
pred_err_backproped_at_layers[b] [back_layer_index

- 1] [k] = sum([self.vals_for_learnable_params[transposed_layer_params [k

1[0i]]
x pred_err_backproped_at_layers[b][back_layer_index][i]
for i in range(len(

vars_in_layer))])
for j,var in enumerate(vars_in_layer):

layer_params = self.layer_params[back_layer_index][j]
## [’cp’, ’cq’l for the end layer
input_vars_to_param_map = self.var_to_var_param[var]
## These two statements align the {’xw’: ’cp’, ’xz’: ’cq’}
param_to_vars_map = {param : var for var, param in
input_vars_to_param_map.items ()} ## and the input vars {’cp’: ’xw

J’ ch): )XZ)}

## Update the partials of Loss wrt to the learmable
parameters between the current layer

## and the previous layer. You are accumulating these
partials over the different training

## data samples in the batch being processed. For
each training data sample, the formula

## Dbeing used is shown in Eq. (29) on Slide 77 of my
Week 3 slides:

for i,param in enumerate(layer_params):
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partial_of_loss_wrt_params [param] +=
pred_err_backproped_at_layers[b]l[back_layer_index][j]l * \

vals_for_input_vars_dict[param_to_vars_map[param]] * deriv_sigmoids[b][
jl
## We will now estimate the change in the bias that needs
to be made at each node in the previous layer
## from the derivatives the sigmoid at the nodes in the
current layer and the prediction error as
## Dbackproped to the previous layer nodes:
for k,varl in enumerate(vars_in_next_layer_back):
for j,var2 in enumerate(vars_in_layer):
if back_layer_index-1 > O:
bias_changes[back_layer_index-1][k] +=
pred_err_backproped_at_layers[b] [back_layer_index - 1][k] =*
deriv_sigmoids [b] [j]

## Now update the learnable parameters. The loop shown below
carries out SGD mandated averaging
for param in partial_of_loss_wrt_params:
partial_of_loss_wrt_param = partial_of_loss_wrt_params [param]
/ float(self.batch_size)

# Update parameters using SGD Plus

self .weight_velocities[param] = beta * self.weight_velocities]|[
param] + partial_of_loss_wrt_param

self .vals_for_learnable_params [param] += self.
weight_velocities [param] * self.learning_rate

## Finally we update the biases at all the nodes that aggregate
data:
for layer_index in range(l,self.num_layers):
for k in range(self.layers_config[layer_index]):

self .bias_velocity[layer_index][k] = (self.bias_velocityl
layer_index] [k] * beta) + (bias_changes[layer_index][k] / float(self.
batch_size)) ## Update the bias including momentum now

self .bias[layer_index] [k] += self.learning_rate * self.

bias_velocity[layer_index] [k]

class ADAMOptimizer (ComputationalGraphPrimer):

def __init__(self, *xargs, **xkwargs):
super () . __init__(xargs, *x*kwargs)
self .epsilon = 1e-8 # for division by =zero

def run_training_loop_one_neuron_model(self, training_data, betal,

beta2):

self .vals_for_learnable_params = {param: random.uniform(0,1) for
param in self.learnable_params}

self .bias = random.uniform(0,1)
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class Dataloader:

def __init__(self, training_data, batch_size):
self .training_data = training_data
self .batch_size = batch_size
self.class_O_samples = [(item, O0) for item in self.
training_data[0]] ## Associate label O with each sample
self.class_1_samples = [(item, 1) for item in self.
training_datal[1]] ## Associate label 1 with each sample

def __len__(self):

return len(self.training_data[0]) + len(self.training_data

(11D

def _getitem(self):
cointoss = random.choice([0,1])
## When a batch is created by getbatch(), we want the

H# samples to be chosen randomly from the two lists
if cointoss == O0:
return random.choice(self.class_O_samples)
else:

return random.choice(self.class_1_samples)

def getbatch(self):
batch_data,batch_labels = [],[]
## First list for samples, the second for labels

maxval = 0.0
## For approximate batch data normalization
for _ in range(self.batch_size):

item = self._getitem()
if np.max(item[0]) > maxval:
maxval = np.max(item[0])
batch_data.append(item[0])
batch_labels.append(item[1])
batch_data = [item/maxval for item in batch_datal
## Normalize batch data
batch = [batch_data, batch_labels]
return batch

data_loader = Dataloader (training_data, batch_size=self.batch_size
)

loss_running_record = []

i=20

avg_loss_over_iterations = 0.0

## Average the loss over iterations for printing out

# To keep track of both types of moments:

self .m_moments, self.v_moments = {param: O for param in self.
learnable_params}, {param: O for param in self.learnable_params}
self .k = 0 # Timestep initialization
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for i in range(self.training_iterations):
data = data_loader.getbatch ()
data_tuples_in_batch = data[0]
class_labels_in_batch = datal[1]
y_preds, deriv_sigmoids = self.forward_prop_one_neuron_model (
data_tuples_in_batch) ## TFORWARD PROP of data
loss = sum([(abs(class_labels_in_batch[i] - y_preds[i]))**2
for i in range(len(class_labels_in_batch))]) ## Find loss
avg_loss_over_iterations += loss / float(len(
class_labels_in_batch))
if i%(self.display_loss_how_often) == 0:
avg_loss_over_iterations /= self.display_loss_how_often
loss_running_record.append(avg_loss_over_iterations)
#print ("[iter=7d] loss = %.4f" % (i+1,

avg_loss_over_iterations)) ## Display average loss
avg_loss_over_iterations = 0.0
y_errors_in_batch = list(map(operator.sub,

class_labels_in_batch, y_preds))

self .backprop_and_update_params_one_neuron_model (
data_tuples_in_batch, y_preds, y_errors_in_batch, deriv_sigmoids, betal
, beta2) # Backprop now includes betas

return loss_running_record
def backprop_and_update_params_one_neuron_model (self,

data_tuples_in_batch, predictions, y_errors_in_batch, deriv_sigmoids,
betal, beta2):

input_vars = self.independent_vars

input_vars_to_param_map = self.var_to_var_param[self.output_vars
(011 ## These two statements align the

param_to_vars_map = {param : var for var, param in
input_vars_to_param_map.items ()} ## the input vars

self .k += 1 # Update for each timestep

for i,param in enumerate(self.vals_for_learnable_params):
## For each param, sum the partials from every training data
sample in batch

partial_of_loss_wrt_param = 0.0
for j in range(self.batch_size):
vals_for_input_vars_dict = dict(zip(input_vars, list(
data_tuples_in_batch([j])))
partial_of_loss_wrt_param += - y_errors_in_batch[j] =*
vals_for_input_vars_dict [param_to_vars_map[param]] * deriv_sigmoids[j]
partial_of_loss_wrt_param /= float(self.batch_size)

# Update learnable params using both moments

self .m_moments [param] = (self.m_moments[param] * betal) + (1 -
betal) * partial_of_loss_wrt_param # m(t+1) Update formula
self.v_moments [param] = (self.v_moments[param] * beta2) + ((1

- beta2) * (partial_of_loss_wrt_param *x 2)) # v(t+1l) Update formula
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mhat = self.m_moments[param] / (1 - betal #** self.k) # Unbias
the moments from O
vhat self.v_moments [param] / (1 - beta2 *x*x self.k)

step
epsilon))
self .vals_for_learnable_params [param] -= step

self.learning_rate * (mhat / math.sqrt(vhat + self.

y_error_avg = sum(y_errors_in_batch) / float(self.batch_size)
deriv_sigmoid_avg = sum(deriv_sigmoids) / float(self.batch_size)

self .bias += step + self.learning_rate * y_error_avg *
deriv_sigmoid_avg ## Update the bias

def run_training_loop_multi_neuron_model(self, training_data, betal,
beta2):

class Dataloader:

def __init__(self, training_data, batch_size):
self .training_data = training_data
self .batch_size = batch_size
self.class_O_samples = [(item, O0) for item in self.
training_data[0]] ## Associate label O with each sample
self.class_1_samples = [(item, 1) for item in self.
training_data[1]] ## Associate label 1 with each sample

def __len__(self):

return len(self.training_data[0]) + len(self.training_data

(11D

def _getitem(self):
cointoss = random.choice ([0,1])
## When a batch is created by getbatch(), we want the

## samples to be chosen randomly from the two lists
if cointoss == O0:
return random.choice(self.class_O_samples)
else:

return random.choice(self.class_1_samples)

def getbatch(self):
batch_data,batch_labels = [], []
## First list for samples, the second for labels

maxval = 0.0
## For approximate batch data normalization
for _ in range(self.batch_size):

item = self._getitem()

if np.max(item[0]) > maxval:
maxval = np.max(item[0])

batch_data.append(item[0])
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batch_labels.append(item[1])
batch_data = [item/maxval for item in batch_data]
## Normalize batch data
batch = [batch_data, batch_labels]
return batch

self .vals_for_learnable_params = {param: random.uniform(0,1) for
param in self.learnable_params}

self .bias = {i : [random.uniform(0,1) for j in range( self.
layers_config[i] ) ] for i in range(l, self.num_layers)}

data_loader = Dataloader (training_data, batch_size=self.batch_size
)

loss_running_record = []

i=20

avg_loss_over_iterations = 0.0

# To keep track of both types of moments:

self .m_moments, self.v_moments = {param: O for param in self.
learnable_params}, {param: O for param in self.learnable_params}

self .k = 0 # Timestep initialization

self .m_bias, self.v_bias = [], []

for layer_size in self.layers_config:
self .m_bias.append(np.zeros(layer_size)) # individual bias for
each neuron in each layer
self.v_bias.append(np.zeros(layer_size))

for i in range(self.training_iterations):
data = data_loader.getbatch ()
data_tuples = data[0]
class_labels = datal[1]
self.forward_prop_multi_neuron_model (data_tuples)
predicted_labels_for_batch = self.forw_prop_vals_at_layers/|[
self .num_layers -1]
y_preds = [item for sublist in predicted_labels_for_batch
for item in sublist]
loss = sum([(abs(class_labels[i] - y_preds[i]))**2 for i in
range (len(class_labels))])
loss_avg = loss / float(len(class_labels))
avg_loss_over_iterations += loss_avg
if i%(self.display_loss_how_often) == O0:
avg_loss_over_iterations /= self.display_loss_how_often
loss_running_record.append(avg_loss_over_iterations)
#print ("[iter=%d] loss = %.4f" 7 (i+1,
avg_loss_over_iterations))
avg_loss_over_iterations = 0.0
y_errors_in_batch = list (map(operator.sub, class_labels,
y_preds))
self .backprop_and_update_params_multi_neuron_model (y_preds,
y_errors_in_batch, betal, beta2)
return loss_running_record
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def backprop_and_update_params_multi_neuron_model (self, predictions,
y_errors, betal, beta2):
pred_err_backproped_at_layers = [ {i : [None for j in range(
self.layers_config[i] ) ]
for i in
range (self .num_layers)} for _ in range(self.batch_size) ]
self .k += 1 # Update time step

partial_of_loss_wrt_params = {param : 0.0 for param in self.
all_params}
bias_changes = {i : [0.0 for j in range( self.layers_configl[i] )

] for i in range(l, self.num_layers)}’
for b in range(self.batch_size):
pred_err_backproped_at_layers[b][self.num_layers - 1] = [
y_errors [b] ]
for back_layer_index in reversed(range(l,self.num_layers)):
## For the 3-layer network, the first val for
back_layer_index is 2 for the 3rd layer

input_vals = self.forw_prop_vals_at_layers]|[
back_layer_index -1] ## This is a list of 8 two-element lists ---
since we have two nodes in the 2nd layer

deriv_sigmoids = self.gradient_vals_for_layers][
back_layer_index] ## This is a list eight one-element lists, one for
each batch element

vars_in_layer = self.layer_vars[back_layer_index]

## A list like [’xo0’]

vars_in_next_layer_back = self.layer_vars/|[
back_layer_index - 1] ## A list like [’xw’, ’xz’]

vals_for_input_vars_dict = dict(zip(

vars_in_next_layer_back, self.forw_prop_vals_at_layers[back_layer_index
- 11[v1))

## For the next statement, note that layer_params are
stored in a dict like

## {1: [[’ap’, ’aq’, ’ar’, ’as’], [’bp’, ’bq’, ’br’,

’bs?’]], 2: [[’cp’, ’cq’ll}

## "layer_params[idx]" is a list of lists for the 1link
weights in layer whose output nodes are in layer "idx"

layer_params = self.layer_params[back_layer_index]

transposed_layer_params = list(zip(*layer_params))

## Creating a transpose of the link matrix, See Eq. 30 on

Slide 77

for k,varl in enumerate(vars_in_next_layer_back):

for j,var2 in enumerate(vars_in_layer):
pred_err_backproped_at_layers [b] [back_layer_index

- 1][k] = sum([self.vals_for_learnable_params[transposed_layer_params [k

10111
* pred_err_backproped_at_layers[b][back_layer_index] [i]

for i in range(len(
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vars_in_layer))])
for j,var in enumerate(vars_in_layer):

layer_params = self.layer_params[back_layer_index][j]
## [’cp’, ’cq’l for the end layer
input_vars_to_param_map = self.var_to_var_param[var]
## These two statements align the {’xw’: ’cp’, ’xz’: ’cq’}
param_to_vars_map = {param : var for var, param in
input_vars_to_param_map.items ()} ## and the input vars {’cp’: xw

J )Cq): )XZJ}
for i,param in enumerate(layer_params):
partial_of_loss_wrt_params [param] +=
pred_err_backproped_at_layers[b]l[back_layer_index][j]l * \

vals_for_input_vars_dict [param_to_vars_map[param]] * deriv_sigmoids[b][
il
for k,varl in enumerate(vars_in_next_layer_back):
for j,var2 in enumerate(vars_in_layer):
if back_layer_index-1 > O:
bias_changes [back_layer_index-1] [k] +=
pred_err_backproped_at_layers[b] [back_layer_index - 1][k] =*
deriv_sigmoids [b][j]

## Now update the learnable parameters. The loop shown below
carries out SGD mandated averaging
for param in partial_of_loss_wrt_params:
partial_of_loss_wrt_param = partial_of_loss_wrt_params [param]
/ float(self.batch_size)

# Update params using ADAM Formulas ======================

self .m_moments [param] = (self.m_moments[param] * betal) + ((1
- betal) * partial_of_loss_wrt_param) # m(t+1) Update formula
self.v_moments [param] = (self.v_moments[param] * beta2) + ((1

- beta2) * (partial_of_loss_wrt_param *x 2)) # v(t+1l) Update formula

mhat = self.m_moments[param] / (1 - betal #** self.k) # Unbias
the moments from O
vhat = self.v_moments[param] / (1 - beta2 ** self.k)

step = self.learning_rate * (mhat / math.sqrt(vhat + self.
epsilon))
self .vals_for_learnable_params [param] += step

## Finally we update the biases at all the nodes that aggregate
data:
for layer_index in range(1l,self.num_layers):
for k in range(self.layers_config[layer_index]):
gradt = bias_changes[layer_index][k]# / float(self.
batch_size)
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if

self .m_bias[layer_index] [k] betal * self.m_biasl([
layer_index] [k] + (1-betal) * gradt
self.v_bias[layer_index][k] = beta2 * self.v_biasl|[

layer_index] [k] + (1-beta2) * (gradt ** 2)
mhat = self.m_bias[layer_index][k] / (1 - betal ** self.k)
# Unbias the moments from O

vhat = self.v_bias[layer_index][k] / (1 - beta2 ** self.k)

step = self.learning_rate * (mhat / math.sqrt(vhat + self.

epsilon))
self .bias[layer_index] [k] -= self.learning_rate * step
__name__ == ’__main__":
R T Conflg PRTRAMETETE S ==
Ir = 1le-2
# ================= Initialization of One NN with SGD plus

optimization; e L L CE e
#Run with only SGD then SGD plus

# cgp = SGDplus(

# one_neuron_model = True,

# expressions = [’xw=ab*xa+bc*xb+cd*xc+ac*xd’],
# output_vars = [’xw’],

# dataset_size = 5000,

# learning_rate = 1r,

# training_iterations = 20000,
# batch_size = 8,

# display_loss_how_often = 100,
# debug = True,

# )

# cgp.parse_expressions ()
# training_data = cgp.gen_training_data()

# sgd_losses = cgp.run_training_loop_one_neuron_model (training_data,
beta = 0)
# sgdplus_losses = cgp.run_training_loop_one_neuron_model (

training_data, beta = 0.9)
# betas = [0, 0.9, 0.1, 0.5]

# for beta in betas:

# sgd_losses = cgp.run_training_loop_one_neuron_model (
training_data, beta = beta)
# plt.plot(sgd_losses, label= "SGD beta = "+str(beta))

plt.legend ()

plt.xlabel (’Iterations’)

plt.ylabel (’Loss Value’)

plt.title(’SGD Plus for One NN with Various Betas’)
plt.show ()

H O H O H
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optimization: ==================
cgp = SGDplus(
num_layers = 3
layers_config
nodes in each layer
expressions = [’xw=ap*xptag*xqtar*xxr+as*xs’,
’xz=bp*xp+tbq*xq+br*xr+bs*xs’,
’xo=cp*xwtcq*xz’],

-

[4,2,1], # num of

output_vars = [’x0’],
dataset_size = 5000,
learning_rate = 1r,
training_iterations = 20000,

batch_size = 8,
display_loss_how_often = 100,
debug = True,

cgp.parse_multi_layer_expressions ()
training_data = cgp.gen_training_data ()
# betas = [0, 0.9, 0.1, 0.5]

# for beta in betas:

# sgd_losses = cgp.run_training_loop_multi_neuron_model (
training_data, beta = beta)

# plt.plot(sgd_losses, label= "SGD beta = "+str(beta))
sgd_losses = cgp.run_training loop_multi_neuron_model (training_data,
beta = 0)

sgdplus_losses = cgp.run_training_loop_multi_neuron_model (

training_data, beta = 0.5)

# plt.legend ()

# plt.xlabel(’Iterations’)

# plt.ylabel(’Loss Value’)

# plt.title(’SGD Plus for Multi NN with Various Betas’)

# plt.show()

# ================= Initialization of One NN with ADAM optimization:
# cgp = ADAMOptimizer(

# one_neuron_model = True,

# expressions = [’xw=abx*xa+bc*xxb+cd*xc+ac*xxd’],
# output_vars = [’xw’],

# dataset_size = 5000,

# learning_rate = 1r,

# training_iterations = 20000,

# batch_size = 8,

# display_loss_how_often = 100,

# debug = True,

# )

# cgp.parse_expressions ()
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# training_data = cgp.gen_training_data()

# betals, beta2s = [0.8, 0.95, 0.99], [0.85, 0.9, 0.95]

# for betal in betals:

# for beta2 in betals:

# start_time = time.time ()

# adamlosses = cgp.run_training_loop_one_neuron_model (
training_data, betal = betal, beta2= beta2)

# plt.plot (adamlosses, label= "ADAM Bl="+str(betal)+" B2="+str
(beta2))

# time_taken = time.time() - start_time

# final_loss = adamlosses[-1]

# minloss = np.min(adamlosses [10:])

# print (£’B1: {betal}, B2: {beta2}[Min loss: {minloss}, final
loss: {final_loss} Time taken: {time_takenl}s’)

# plt.plot(sgd_losses, label = "SGD")

# plt.plot(sgdplus_losses, label = "SGD Plus")

# plt.legend ()

# plt.xlabel(’Iterations’)

# plt.ylabel(’Loss Value’)

# plt.title(’ADAM for One NN with Various Betas, lr = ’+ str(lr))

# plt.show()

# betal, beta2 = 0.95, 0.85

# adamlosses = cgp.run_training_loop_one_neuron_model (training_data,
betal = betal, beta2= beta2)

n memmmmmme=e=ms=s== AD)A Optimizer e WNulEgil N Soeeaeeeoemmamemmem=mm===
cgp = ADAMOptimizer (

num_layers = 3

[

[4’2’1] b

# num of

layers_config

nodes in each layer
expressions

= [’xw=ap*xptaq*xqtar*xr+as*xs’,
’xz=bp*xp+bq*xq+br*xr+bs*xs’,
’xo=cp*xw+cq*xz’],

output_vars = [’xo0’],
dataset_size = 5000,
learning_rate = 1r,
training_iterations = 20000,

batch_size =
display_loss
debug = True

8,
_how_often = 100,

>

cgp.parse_multi_layer_expressions ()
training_data = cgp.gen_training_data()
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# betals, beta2s = [0.8, 0.95, 0.99], [0.85, 0.9, 0.95]

# for betal in betals:

# for beta2 in betals:

# start_time = time.time ()

# adamlosses = cgp.run_training_loop_multi_neuron_model (
training_data, betal = betal, beta2= beta2)

# plt.plot (adamlosses, label= "ADAM Bl="+str(betal)+" B2="+str
(beta2))

# time_taken = time.time() - start_time

# final_loss = adamlosses[-1]

# minloss = np.min(adamlosses [10:])

# print (£°B1l: {betal}, B2: {beta2}[Min loss: {minloss}, final

loss: {final_loss} Time taken: {time_taken}s’)

plt.plot(sgd_losses, label = "SGD Plus")

plt.legend ()

plt.xlabel (’Iterations’)

plt.ylabel(’Loss Value’)

plt.title(’ADAM for Multi NN with Various Betas, lr = ’+ str(lr))
plt.show ()

H OH OF H HH

betal, beta2 = 0.99, 0.9
adamlosses = cgp.run_training_loop_multi_neuron_model (training_data,
betal = betal, beta2= beta2)

plt.plot(sgd_losses, label = "SGD")

plt.plot(sgdplus_losses, label = ’SGD Plus’)

plt.plot (adamlosses, label = ’ADAM’)
plt.xlabel(’Iterations’)

plt.ylabel(’Loss Value’)

plt.title(’Comparison of Different Optimizers for Multi-NN’)
plt.legend ()

plt.show ()

Code Listing 1: hw3.py

extra.red.py

from ComputationalGraphPrimer import ComputationalGraphPrimer
import numpy as np

import random, operator, math, time

import matplotlib.pyplot as plt

from tqdm import tqdm

from collections import defaultdict

random. seed (0)
np.random.seed (0)
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class CustomDataloader (ComputationalGraphPrimer):
def __init__(self, *args, *xkwargs):

super () . __init__(xargs, x*kwargs)

def truncate(self, data):
mu, std = np.mean(data), np.std(data)

lower_bound, upper_bound = mu - 5 * std, mu + 5 * std
truncated_data = np.clip(data, lower_bound, upper_bound)

min_val, max_val = truncated_data.min(), truncated_data.max()
scaled_data = 2 * (truncated_data - min_val) / (max_val - min_val)

return scaled_data

def run_training_loop_one_neuron_model (self, training_data, normalize

= True, truncate = False):

# Initialize learmnable params for network -----------------

self .vals_for_learnable_params = {param: random.uniform(0,1) for
param in self.learnable_params}

self .bias = random.uniform(0,1)

# Truncate data values

if truncate:

classO, classl = self.truncate(training_data[0]), self.
truncate (training_data[1])
training_data[0], training_datal[l] = classO, classl

# Dataloader business --- - - - —-——-—--—-—-—--——-
class Dataloader:

def __init__(self, training_data, batch_size):
self .training_data = training_data
self .batch_size = batch_size
self.class_O_samples = [(item, 0) for item in self.
training_data[0]] ## Associate label O with each sample
self.class_1_samples = [(item, 1) for item in self.
training_data[1]] ## Associate label 1 with each sample

def __len__(self):
return len(self.training_data[0]) + len(self.training_data

(11D

def _getitem(self):
cointoss = random.choice([0,1])
## When a batch is created by getbatch(), we want the

## samples to be chosen randomly from the two lists
if cointoss == O0:
return random.choice(self.class_O_samples)
else:

return random.choice(self.class_1_samples)
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def getbatch(self):
batch_data,batch_labels = [],[]
## First 1list for samples, the second for labels

maxval = 0.0
## For approximate batch data normalization
for _ in range(self.batch_size):

item = self._getitem()
if np.max(item[0]) > maxval:
maxval = np.max(item[0])
batch_data.append(item[0])
batch_labels.append(item[1])
if normalize: batch_data = [item/maxval for item in
batch_data] ## Normalize batch data
batch = [batch_data, batch_labels]
return batch

data_loader = Dataloader (training_data, batch_size=self.batch_size
)

loss_running_record = []

i=20

avg_loss_over_iterations = 0.0

## Average the loss over iterations for printing out

# Actually running training ---------——-—-—-—----

for i in range(self.training_iterations):
data = data_loader.getbatch()
data_tuples_in_batch = data[0]
class_labels_in_batch = datal[1]

y_preds, deriv_sigmoids = self.forward_prop_one_neuron_model (
data_tuples_in_batch) ## FORWARD PROP of data

loss = sum([(abs(class_labels_in_batch[i] - y_preds[i]))**2
for i in range(len(class_labels_in_batch))]) ## Find loss

avg_loss_over_iterations += loss / float(len(
class_labels_in_batch))

if i%(self.display_loss_how_often) == 0:
avg_loss_over_iterations /= self.display_loss_how_often
loss_running_record.append(avg_loss_over_iterations)

# print ("[iter=%d] 1loss = %.4f" % (i+1,
avg_loss_over_iterations)) ## Display average loss
avg_loss_over_iterations = 0.0
## Re-initialize avg loss

y_errors_in_batch = list(map(operator.sub,
class_labels_in_batch, y_preds))
self .backprop_and_update_params_one_neuron_model (
data_tuples_in_batch, y_preds, y_errors_in_batch, deriv_sigmoids) ##
BACKPROP 1loss
return loss_running _record # Return loss for own plotting function
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def run_training_loop_multi_neuron_model (self, training_data,
normalize = True, truncate = False):

class DatalLoader:

def __init__(self, training_data, batch_size):
self .training_data = training_data
self .batch_size = batch_size
self.class_O_samples = [(item, O0) for item in self.
training_data [0]]
self.class_1_samples = [(item, 1) for item in self.

training_data[1]]

def __len__(self):

return len(self.training_data[0]) + len(self.training_data

(11D

def _getitem(self):
cointoss = random.choice([0,1])
## When a batch is created by getbatch(), we want the

## samples to be chosen randomly from the two lists
if cointoss == O0:
return random.choice(self.class_O_samples)
else:

return random.choice(self.class_1_samples)

def getbatch(self):
batch_data,batch_labels = [],[]
## First list for samples, the second for labels

maxval = 0.0
## For approximate batch data normalization
for _ in range(self.batch_size):

item = self._getitem()
if np.max(item[0]) > maxval:
maxval = np.max(item[0])
batch_data.append(item [0])
batch_labels.append(item[1])
if normalize: batch_data = [item/maxval for item in
batch_datal] ## Normalize batch data
batch = [batch_data, batch_labels]
return batch

# Truncate data values
if truncate:

classO, classl = self.truncate(training_datal[0]), self.
truncate (training_data[1])
training_data[0], training_data[1] = class0O, classl
# Initialize Learnable params
self .vals_for_learnable_params = {param: random.uniform(0,1) for

param in self.learnable_params}
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if

self .bias = {i : [random.uniform(0,1) for j in range( self.
layers_config[i] ) ] for i in range(l, self.num_layers)}

data_loader = Dataloader (training_data, batch_size=self.batch_size
)
loss_running_record = []
i=20
avg_loss_over_iterations = 0.0
for i in range(self.training_iterations):
data = data_loader.getbatch ()
data_tuples = data[0]
class_labels = datal[1]
self . forward_prop_multi_neuron_model (data_tuples)
## FORW PROP works by side-effect
predicted_labels_for_batch = self.forw_prop_vals_at_layers][
self .num_layers -1] ## Predictions from FORW PROP
y_preds = [item for sublist in predicted_labels_for_batch
for item in sublist] ## Get numeric vals for predictions

loss = sum([(abs(class_labels[i] - y_preds[i]))**2 for i in
range (len(class_labels))]) ## Calculate loss for batch
loss_avg = loss / float(len(class_labels))
## Average the loss over batch
avg_loss_over_iterations += loss_avg
## Add to Average loss over iterations
if i%(self.display_loss_how_often) == O0:
avg_loss_over_iterations /= self.display_loss_how_often
loss_running_record.append(avg_loss_over_iterations)
# print ("[iter=%d] loss = %.4f" % (i+1,
avg_loss_over_iterations))
avg_loss_over_iterations = 0.0
y_errors_in_batch = list (map(operator.sub, class_labels,
y_preds))
self .backprop_and_update_params_multi_neuron_model (y_preds,
y_errors_in_batch)
return loss_running_record

name == ’__main__":
# ================= (Compare 0One NN with and without normalizaiton:

#Run with only SGD then SGD plus

# cgp = CustomDataloader (

# one_neuron_model = True,

# expressions = [’xw=abx*xa+bc*xb+cd*xc+ac*xd’],
# output_vars = [’xw’],

# dataset_size = 5000,

# learning_rate = le-3,

# training_iterations = 40000,
# batch_size = 8,

# display_loss_how_often = 100,
# debug = True,

# )
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# cgp.parse_expressions ()
# training_data = cgp.gen_training_data()

# custom_losses_onenn = cgp.run_training_loop_one_neuron_model (
training_data, normalize= False)
# regular_losses_onenn = cgp.run_training_loop_one_neuron_model (

training_data, normalize= True )

# plt.plot(custom_losses_onenn, label = "No Normalization")

# plt.plot(regular_losses_onenn, label = ’With Normalization?’)
# plt.legend ()

# plt.xlabel(’Iterations’)

# plt.ylabel(’Loss Value’)

# plt.title(’0One NN Comparison of Normalization’)

# plt.show()

# ================= (Compare 0One NN with and without normalizaiton:
# #Run with only SGD then SGD plus

# cgp = CustomDataloader(

# num_layers = 3,

# layers_config = [4,2,1], # num of
nodes in each layer

# expressions = [’xw=ap*xptag*xq+ar*xxr+as*xs’,

# ’xz=bp*xp+bq*xq+br*xr+bs*xs’,

# ’xo=cp*xw+cqxxz’],

# output_vars = [’x0’],

# dataset_size = 5000,

# learning_rate = 9e-2,

# training_iterations = 20000,

# batch_size = 8,

# display_loss_how_often = 100,

# debug = True,

# )

# cgp.parse_multi_layer_expressions ()
# training_data = cgp.gen_training_data()

# custom_losses_onenn = cgp.run_training_loop_multi_neuron_model (
training_data, normalize= False)
# regular_losses_onenn = cgp.run_training_ loop_multi_neuron_model (

training_data, normalize= True )

# plt.plot(custom_losses_onenn, label = "No Normalization")

# plt.plot(regular_losses_onenn, label = ’With Normalization’)

# plt.legend ()

# plt.xlabel(’Iterations’)

# plt.ylabel(’Loss Value’)

# plt.title(’Multi NN Comparison of Normalization?’)

# plt.show()

# # ================= (Compare 0One NN with and without truncation:
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# #Run with only SGD then SGD plus

# cgp = CustomDataloader (

# one_neuron_model = True,

# expressions = [’xw=ab*xat+bcxxb+cd*xc+ac*xd’],

# output_vars = [’xw’],

# dataset_size = 5000,

# learning_rate = 1le-3,

# training_iterations = 40000,

# batch_size = 8,

# display_loss_how_often = 100,

# debug = True,

# )

# cgp.parse_expressions ()

# training_data = cgp.gen_training_data()

# print(training_data)

# custom_losses_onenn = cgp.run_training loop_one_neuron_model (
training_data, truncate= True)

# regular_losses_onenn = cgp.run_training_loop_one_neuron_model (

training_data, truncate= False )

# plt.plot(custom_losses_onenn, label = "With Truncation")

# plt.plot(regular_losses_onenn, label = ’Without Truncation?’)
# plt.legend ()

# plt.xlabel(’Iterations’)

# plt.ylabel(’Loss Value’)

# plt.title(’0One NN Comparison of Truncation’)

# plt.show()

# ================= (Compare 0One NN with and without truncation:

#Run with only SGD then SGD plus
cgp = CustomDataloader (
num_layers = 3
layers_config
nodes in each layer
expressions = [’xw=ap*xpt+tag*xq+ar*xr+as*xs’,
’xz=bp*xp+bq*xq+br*xr+bs*xs’,
’xo=cp*xw+cq*xz’],
output_vars [’x0°],
dataset_size = 5000,
learning_rate = 9e-2,
training_iterations = 20000,
batch_size = 8,
display_loss_how_often = 100,
debug = True,

[

[4:2)1], # num of

cgp.parse_multi_layer_expressions ()
training_data = cgp.gen_training_data()
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custom_losses_onenn = cgp.run_training_loop_multi_neuron_model (
training_data, truncate= True)

regular_losses_onenn = cgp.run_training loop_multi_neuron_model (
training_data, truncate= False )

plt

plt.
plt.
plt.
plt.
.title(’Multi NN Comparison of Truncation’)

plt

plt.

.plot(custom_losses_onenn, label = "With Truncation")
plot(regular_losses_onenn, label = ’Without Truncation’)
legend ()

xlabel (’Iterations’)

ylabel (’Loss Value’)

show ()

Code Listing 2: extra.red.py
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