
ECE60146: Homework 3 - Optimization
Pranay Chimmani, PUID: 0037630649

1 Using ComputationalGraphPrimer
1.1 Comparing one-neuron with CGP vs torch.nn

All of the below code is borrowed from ComputationalGraphPrimer package:
https://engineering.purdue.edu/kak/distCGP/

Last ten lines of output: CPG one-neuron vs torch.nn one-neuron

2/4/25, 12:04 AM HW3_PranayChimmani

file:///C:/Users/pra19/OneDrive - purdue.edu/ECE DL/HW3 - NN/HW3_PranayChimmani.html 1/40

https://engineering.purdue.edu/kak/distCGP/

 CPG one-neuron; last 10 losses

 torch.nn one-neuron; last 10 losses

Display of the training loss versus the training iterations: CPG one-neuron vs torch.nn one-
neuron

Fig1. Loss vs Iteration plot for CPG One - Neuron one_neuron_classifier.py

2/4/25, 12:04 AM HW3_PranayChimmani

file:///C:/Users/pra19/OneDrive - purdue.edu/ECE DL/HW3 - NN/HW3_PranayChimmani.html 2/40

Fig2. Loss vs Iteration plot for torch.nn One - Neuron verify_with_torchnn.py

Fig 1 shows the CPG/ custom made one-neuron loss vs itteration graph and Fig 2. shows the
torch.nn one-neuron loss vs itteration grpah. Both fig1 and fig2 have decresing loss, which
shows that the error is decreasing over time/itterations and that the gradient optimizers are
working, i.e. model are "learning". In fig1 the loss reduces linearly, but where as in fig2 it
drops rapidly initially, then flattens and ossilates around the end behaving sort of like
exponentially. Fig 2 converges slower than the Fig1 probably cause of a better gradient
optimizer. Fig2 reaches to a loss of under ~1.0 which is less than half where as fig1 reached
only ~1.7 > half by the end of training.

1.2 Comparing multi-neuron with CGP vs torch.nn

2/4/25, 12:04 AM HW3_PranayChimmani

file:///C:/Users/pra19/OneDrive - purdue.edu/ECE DL/HW3 - NN/HW3_PranayChimmani.html 3/40

Last ten lines of output: CPG multi-neuron vs torch.nn multi-neuron

CPG multi-neuron last 10 losses

2/4/25, 12:04 AM HW3_PranayChimmani

file:///C:/Users/pra19/OneDrive - purdue.edu/ECE DL/HW3 - NN/HW3_PranayChimmani.html 4/40

torch.nn multi-neuron last 10 losses

Display of the training loss versus the training iterations: CPG multi-neuron vs torch.nn
multi-neuron

Fig3. Loss vs Iteration plot for CPG multi-neuron multi_neuron_classifier.py

2/4/25, 12:04 AM HW3_PranayChimmani

file:///C:/Users/pra19/OneDrive - purdue.edu/ECE DL/HW3 - NN/HW3_PranayChimmani.html 5/40

Fig4. Loss vs Iteration plot for torch multi-neuron multi_neuron_classifier.py

Fig 3 shows the plot for custom multi_neuron and fig 4 shows for the torch multi_neuron
loss vs itteration plots. Just like fig 1 and fig 2 we observe similar trend in case of multi-
neuron network also. Fig 2 converges faster than fig 1 and also reachs a lower loss value.

Below was my first trail for one_neuron SGD with momentum and Adam optimizers

SGD+ with momentum

2/4/25, 12:04 AM HW3_PranayChimmani

file:///C:/Users/pra19/OneDrive - purdue.edu/ECE DL/HW3 - NN/HW3_PranayChimmani.html 6/40

Adam

2/4/25, 12:04 AM HW3_PranayChimmani

file:///C:/Users/pra19/OneDrive - purdue.edu/ECE DL/HW3 - NN/HW3_PranayChimmani.html 7/40

2 ProgrammingTask

2.1 Implementing SGD+ and Adam

One-Neuron Classifiers Analysis and Visualization

Majority of the code has been borrowed from ComputationalGraphPrimer package by Prof.
Kak: https://engineering.purdue.edu/kak/distCGP/ any edits have been made in a new file
called UpdatedComputationalGraphPrimer.py file, where I have created a new class called
UpdatedComputationalGraphPrimer which inherits the properties from the original
ComputationalGraphPrimer class.

I have edited run_training_loop_one_neuron_model to redirect to the appropriate
optimizer function based on the Optimizer ENUM.

New fuction added are backprop_and_update_params_one_neuron_model_sgd_plus
which impliments the SGD+ Momentum and
backprop_and_update_params_one_neuron_model_adam which impliments the Adam
Optimizer both the functions are based on the original function
backprop_and_update_params_one_neuron_model.

import random
import numpy

seed = 0
random.seed(seed)
numpy.random.seed(seed)

from UpdatedComputationalGraphPrimer import *

def compute_one_neuron(learning_rate):
 plt.figure(figsize=(10, 6))
 for optimizer in Optimizer:
 cgp = UpdatedComputationalGraphPrimer(
 one_neuron_model = True,
 expressions = ['xw=ab*xa+bc*xb+cd*xc+ac*xd'],
 output_vars = ['xw'],
 dataset_size = 5000,
 learning_rate = learning_rate,
 training_iterations = 40000,
 batch_size = 8,
 display_loss_how_often = 100,
 debug = False,
 momentum = 0.9,
 beta1 = 0.9 ,
 beta2 = 0.999,
 epsilon = 1e-8, # Small constant to prevent division by ze
 optimizer = optimizer, #Enum to switch between optim
)

In []:

In []:

2/4/25, 12:04 AM HW3_PranayChimmani

file:///C:/Users/pra19/OneDrive - purdue.edu/ECE DL/HW3 - NN/HW3_PranayChimmani.html 8/40

https://engineering.purdue.edu/kak/distCGP/

 cgp.parse_expressions()
 training_data = cgp.gen_training_data()
 loss_running_record = cgp.run_training_loop_one_neuron_model(training_
 plt.plot(loss_running_record, label=optimizer.name)

 # Plot Labels
 plt.xlabel("Iterations")
 plt.ylabel("Loss")
 plt.title(f"Learning Rate {learning_rate}")
 plt.legend()
 plt.grid()
 plt.show()

if __name__ == '__main__':
 learning_rates = [1e-3,1e-4,3e-3]
 for x in learning_rates:
 compute_one_neuron(x)

0
0
0

0
0
0

In []:

2/4/25, 12:04 AM HW3_PranayChimmani

file:///C:/Users/pra19/OneDrive - purdue.edu/ECE DL/HW3 - NN/HW3_PranayChimmani.html 9/40

0
0
0

As you can see from the above figures, which have the plots for SGD, SGD+ and Adam
Optimizers for the learning rates 1e-3(0.001), 1e-4(0.0001), 3e-3(0.003) respectively. For
all the 3 learning rates Adam converges fastst followed by SGD+ and SGD in the last.

2/4/25, 12:04 AM HW3_PranayChimmani

file:///C:/Users/pra19/OneDrive - purdue.edu/ECE DL/HW3 - NN/HW3_PranayChimmani.html 10/40

In case one with a relatively "good" learning rate of 1e-3, once Global minimum is reached
Adam osillates around it the most right after SGD+ folowed by the SGD being the smoothest
of all.

In the second case where the learning rate was 1e-4 which was too low, since the SGD has
only one parameter the learning rate so it could not move from the initial position and was
just osilating there, since the SGD+ has the other parameter momentum and Adam has
betas. They were able to move closer to the global minimum as they didnt just depend on
the learning rate. Adam is the smoothest here.

In the thirs case where the learning rate was 3e-3 which was too high, SGD algorithm
probably changed the sign once it got closer to the local minimum and then went the
opposite direction, basically it overshot itself. Here we can see the advantage SGD+ has over
the SGD. Again SGD+ and Adam performed as expected. In this case the Adam classifier
actually beats the torch.nn convergence rate and the SGD+ is too close to call visually.

We can clearly see that as the learning rate increased so did the convergence rate, it
converged the fastest when the learning rate was 3e-3 and the slowest when it was 1e-4.
(Ignoring the Vanilla SGD). (This might not always be the case, this is just speculation based
on the analysis I did with around 15 learning rate out of which 3 are presented here)

Multi-Neuron Analysis and Visualization

from UpdatedComputationalGraphPrimer import *

def compute_multi_neuron(learning_rate):
 plt.figure(figsize=(10, 6))
 for optimizer in Optimizer:
 cgp = UpdatedComputationalGraphPrimer(
 num_layers = 3,
 layers_config = [4,2,1], # num of n
 expressions = ['xw=ap*xp+aq*xq+ar*xr+as*xs',
 'xz=bp*xp+bq*xq+br*xr+bs*xs',
 'xo=cp*xw+cq*xz'],
 output_vars = ['xo'],
 dataset_size = 5000,
 learning_rate = learning_rate,
 training_iterations = 20000,
 batch_size = 8,
 display_loss_how_often = 100,
 debug = False,
 momentum = 0.9,
 beta1 = 0.9 ,
 beta2 = 0.999,
 epsilon = 1e-8, # Small constant to prevent division by ze
 optimizer = optimizer, #Enum to switch between optim
)
 cgp.parse_multi_layer_expressions()
 training_data = cgp.gen_training_data()
 loss_running_record= cgp.run_training_loop_multi_neuron_model(training_d

In []:

In []:

2/4/25, 12:04 AM HW3_PranayChimmani

file:///C:/Users/pra19/OneDrive - purdue.edu/ECE DL/HW3 - NN/HW3_PranayChimmani.html 11/40

 plt.plot(loss_running_record, label=optimizer.name)

 # Plot Labels
 plt.xlabel("Iterations")
 plt.ylabel("Loss")
 plt.title(f"Learning Rate {learning_rate}")
 plt.legend()
 plt.grid()
 plt.show()

learning_rates = [1e-2, 5e-3, 1e-3]
for x in learning_rates:
 compute_multi_neuron(x)

In []:

2/4/25, 12:04 AM HW3_PranayChimmani

file:///C:/Users/pra19/OneDrive - purdue.edu/ECE DL/HW3 - NN/HW3_PranayChimmani.html 12/40

self.layer_expressions: {1: ['xw=ap*xp+aq*xq+ar*xr+as*xs', 'xz=bp*xp+bq*xq+br*xr+bs
*xs'], 2: ['xo=cp*xw+cq*xz']}

[Final] independent vars: {'xr', 'xp', 'xs', 'xq'}

[Final] self.layer_vars: {0: ['xp', 'xq', 'xr', 'xs'], 1: ['xw', 'xz'], 2: ['xo']}

[Final] self.layer_params: {1: [['ap', 'aq', 'ar', 'as'], ['bp', 'bq', 'br', 'b
s']], 2: [['cp', 'cq']]}

[Final] self.layer_exp_objects: {1: [<ComputationalGraphPrimer.Exp object at 0x0000
02348A6F0C10>, <ComputationalGraphPrimer.Exp object at 0x000002348A6F2CB0>], 2: [<Co
mputationalGraphPrimer.Exp object at 0x000002348A6F2D10>]}

self.layer_expressions: {1: ['xw=ap*xp+aq*xq+ar*xr+as*xs', 'xz=bp*xp+bq*xq+br*xr+bs
*xs'], 2: ['xo=cp*xw+cq*xz']}

[Final] independent vars: {'xr', 'xp', 'xs', 'xq'}

[Final] self.layer_vars: {0: ['xp', 'xq', 'xr', 'xs'], 1: ['xw', 'xz'], 2: ['xo']}

[Final] self.layer_params: {1: [['ap', 'aq', 'ar', 'as'], ['bp', 'bq', 'br', 'b
s']], 2: [['cp', 'cq']]}

[Final] self.layer_exp_objects: {1: [<ComputationalGraphPrimer.Exp object at 0x0000
02348A6F2CE0>, <ComputationalGraphPrimer.Exp object at 0x000002348A6F2CB0>], 2: [<Co
mputationalGraphPrimer.Exp object at 0x000002348A77F100>]}

self.layer_expressions: {1: ['xw=ap*xp+aq*xq+ar*xr+as*xs', 'xz=bp*xp+bq*xq+br*xr+bs
*xs'], 2: ['xo=cp*xw+cq*xz']}

[Final] independent vars: {'xr', 'xp', 'xs', 'xq'}

[Final] self.layer_vars: {0: ['xp', 'xq', 'xr', 'xs'], 1: ['xw', 'xz'], 2: ['xo']}

[Final] self.layer_params: {1: [['ap', 'aq', 'ar', 'as'], ['bp', 'bq', 'br', 'b
s']], 2: [['cp', 'cq']]}

[Final] self.layer_exp_objects: {1: [<ComputationalGraphPrimer.Exp object at 0x0000
02348A6F2CB0>, <ComputationalGraphPrimer.Exp object at 0x000002348A6F2D70>], 2: [<Co
mputationalGraphPrimer.Exp object at 0x000002348A9AFA30>]}

2/4/25, 12:04 AM HW3_PranayChimmani

file:///C:/Users/pra19/OneDrive - purdue.edu/ECE DL/HW3 - NN/HW3_PranayChimmani.html 13/40

2/4/25, 12:04 AM HW3_PranayChimmani

file:///C:/Users/pra19/OneDrive - purdue.edu/ECE DL/HW3 - NN/HW3_PranayChimmani.html 14/40

self.layer_expressions: {1: ['xw=ap*xp+aq*xq+ar*xr+as*xs', 'xz=bp*xp+bq*xq+br*xr+bs
*xs'], 2: ['xo=cp*xw+cq*xz']}

[Final] independent vars: {'xr', 'xp', 'xs', 'xq'}

[Final] self.layer_vars: {0: ['xp', 'xq', 'xr', 'xs'], 1: ['xw', 'xz'], 2: ['xo']}

[Final] self.layer_params: {1: [['ap', 'aq', 'ar', 'as'], ['bp', 'bq', 'br', 'b
s']], 2: [['cp', 'cq']]}

[Final] self.layer_exp_objects: {1: [<ComputationalGraphPrimer.Exp object at 0x0000
02349104FA90>, <ComputationalGraphPrimer.Exp object at 0x000002349104FAC0>], 2: [<Co
mputationalGraphPrimer.Exp object at 0x000002349104FB20>]}

self.layer_expressions: {1: ['xw=ap*xp+aq*xq+ar*xr+as*xs', 'xz=bp*xp+bq*xq+br*xr+bs
*xs'], 2: ['xo=cp*xw+cq*xz']}

[Final] independent vars: {'xr', 'xp', 'xs', 'xq'}

[Final] self.layer_vars: {0: ['xp', 'xq', 'xr', 'xs'], 1: ['xw', 'xz'], 2: ['xo']}

[Final] self.layer_params: {1: [['ap', 'aq', 'ar', 'as'], ['bp', 'bq', 'br', 'b
s']], 2: [['cp', 'cq']]}

[Final] self.layer_exp_objects: {1: [<ComputationalGraphPrimer.Exp object at 0x0000
02349104FAF0>, <ComputationalGraphPrimer.Exp object at 0x000002349104FAC0>], 2: [<Co
mputationalGraphPrimer.Exp object at 0x00000234910BC1C0>]}

self.layer_expressions: {1: ['xw=ap*xp+aq*xq+ar*xr+as*xs', 'xz=bp*xp+bq*xq+br*xr+bs
*xs'], 2: ['xo=cp*xw+cq*xz']}

[Final] independent vars: {'xr', 'xp', 'xs', 'xq'}

[Final] self.layer_vars: {0: ['xp', 'xq', 'xr', 'xs'], 1: ['xw', 'xz'], 2: ['xo']}

[Final] self.layer_params: {1: [['ap', 'aq', 'ar', 'as'], ['bp', 'bq', 'br', 'b
s']], 2: [['cp', 'cq']]}

[Final] self.layer_exp_objects: {1: [<ComputationalGraphPrimer.Exp object at 0x0000
02349104FAC0>, <ComputationalGraphPrimer.Exp object at 0x000002349104FBB0>], 2: [<Co
mputationalGraphPrimer.Exp object at 0x00000234910C4C40>]}

2/4/25, 12:04 AM HW3_PranayChimmani

file:///C:/Users/pra19/OneDrive - purdue.edu/ECE DL/HW3 - NN/HW3_PranayChimmani.html 15/40

2/4/25, 12:04 AM HW3_PranayChimmani

file:///C:/Users/pra19/OneDrive - purdue.edu/ECE DL/HW3 - NN/HW3_PranayChimmani.html 16/40

self.layer_expressions: {1: ['xw=ap*xp+aq*xq+ar*xr+as*xs', 'xz=bp*xp+bq*xq+br*xr+bs
*xs'], 2: ['xo=cp*xw+cq*xz']}

[Final] independent vars: {'xr', 'xp', 'xs', 'xq'}

[Final] self.layer_vars: {0: ['xp', 'xq', 'xr', 'xs'], 1: ['xw', 'xz'], 2: ['xo']}

[Final] self.layer_params: {1: [['ap', 'aq', 'ar', 'as'], ['bp', 'bq', 'br', 'b
s']], 2: [['cp', 'cq']]}

[Final] self.layer_exp_objects: {1: [<ComputationalGraphPrimer.Exp object at 0x0000
02349111FEB0>, <ComputationalGraphPrimer.Exp object at 0x000002349111FFD0>], 2: [<Co
mputationalGraphPrimer.Exp object at 0x00000234910C8070>]}

self.layer_expressions: {1: ['xw=ap*xp+aq*xq+ar*xr+as*xs', 'xz=bp*xp+bq*xq+br*xr+bs
*xs'], 2: ['xo=cp*xw+cq*xz']}

[Final] independent vars: {'xr', 'xp', 'xs', 'xq'}

[Final] self.layer_vars: {0: ['xp', 'xq', 'xr', 'xs'], 1: ['xw', 'xz'], 2: ['xo']}

[Final] self.layer_params: {1: [['ap', 'aq', 'ar', 'as'], ['bp', 'bq', 'br', 'b
s']], 2: [['cp', 'cq']]}

[Final] self.layer_exp_objects: {1: [<ComputationalGraphPrimer.Exp object at 0x0000
0234910C8100>, <ComputationalGraphPrimer.Exp object at 0x00000234910C8040>], 2: [<Co
mputationalGraphPrimer.Exp object at 0x000002348A7E57B0>]}

self.layer_expressions: {1: ['xw=ap*xp+aq*xq+ar*xr+as*xs', 'xz=bp*xp+bq*xq+br*xr+bs
*xs'], 2: ['xo=cp*xw+cq*xz']}

[Final] independent vars: {'xr', 'xp', 'xs', 'xq'}

[Final] self.layer_vars: {0: ['xp', 'xq', 'xr', 'xs'], 1: ['xw', 'xz'], 2: ['xo']}

[Final] self.layer_params: {1: [['ap', 'aq', 'ar', 'as'], ['bp', 'bq', 'br', 'b
s']], 2: [['cp', 'cq']]}

[Final] self.layer_exp_objects: {1: [<ComputationalGraphPrimer.Exp object at 0x0000
0234910C8040>, <ComputationalGraphPrimer.Exp object at 0x000002349111FFD0>], 2: [<Co
mputationalGraphPrimer.Exp object at 0x0000023491178700>]}

2/4/25, 12:04 AM HW3_PranayChimmani

file:///C:/Users/pra19/OneDrive - purdue.edu/ECE DL/HW3 - NN/HW3_PranayChimmani.html 17/40

2/4/25, 12:04 AM HW3_PranayChimmani

file:///C:/Users/pra19/OneDrive - purdue.edu/ECE DL/HW3 - NN/HW3_PranayChimmani.html 18/40

self.layer_expressions: {1: ['xw=ap*xp+aq*xq+ar*xr+as*xs', 'xz=bp*xp+bq*xq+br*xr+bs
*xs'], 2: ['xo=cp*xw+cq*xz']}

[Final] independent vars: {'xr', 'xp', 'xs', 'xq'}

[Final] self.layer_vars: {0: ['xp', 'xq', 'xr', 'xs'], 1: ['xw', 'xz'], 2: ['xo']}

[Final] self.layer_params: {1: [['ap', 'aq', 'ar', 'as'], ['bp', 'bq', 'br', 'b
s']], 2: [['cp', 'cq']]}

[Final] self.layer_exp_objects: {1: [<ComputationalGraphPrimer.Exp object at 0x0000
0234911F4610>, <ComputationalGraphPrimer.Exp object at 0x00000234911F44C0>], 2: [<Co
mputationalGraphPrimer.Exp object at 0x00000234911F4670>]}

self.layer_expressions: {1: ['xw=ap*xp+aq*xq+ar*xr+as*xs', 'xz=bp*xp+bq*xq+br*xr+bs
*xs'], 2: ['xo=cp*xw+cq*xz']}

[Final] independent vars: {'xr', 'xp', 'xs', 'xq'}

[Final] self.layer_vars: {0: ['xp', 'xq', 'xr', 'xs'], 1: ['xw', 'xz'], 2: ['xo']}

[Final] self.layer_params: {1: [['ap', 'aq', 'ar', 'as'], ['bp', 'bq', 'br', 'b
s']], 2: [['cp', 'cq']]}

[Final] self.layer_exp_objects: {1: [<ComputationalGraphPrimer.Exp object at 0x0000
0234911F4640>, <ComputationalGraphPrimer.Exp object at 0x00000234911F44C0>], 2: [<Co
mputationalGraphPrimer.Exp object at 0x00000234911F4BE0>]}

self.layer_expressions: {1: ['xw=ap*xp+aq*xq+ar*xr+as*xs', 'xz=bp*xp+bq*xq+br*xr+bs
*xs'], 2: ['xo=cp*xw+cq*xz']}

[Final] independent vars: {'xr', 'xp', 'xs', 'xq'}

[Final] self.layer_vars: {0: ['xp', 'xq', 'xr', 'xs'], 1: ['xw', 'xz'], 2: ['xo']}

[Final] self.layer_params: {1: [['ap', 'aq', 'ar', 'as'], ['bp', 'bq', 'br', 'b
s']], 2: [['cp', 'cq']]}

[Final] self.layer_exp_objects: {1: [<ComputationalGraphPrimer.Exp object at 0x0000
0234911F46A0>, <ComputationalGraphPrimer.Exp object at 0x00000234911F44C0>], 2: [<Co
mputationalGraphPrimer.Exp object at 0x00000234910E5540>]}

2/4/25, 12:04 AM HW3_PranayChimmani

file:///C:/Users/pra19/OneDrive - purdue.edu/ECE DL/HW3 - NN/HW3_PranayChimmani.html 19/40

2/4/25, 12:04 AM HW3_PranayChimmani

file:///C:/Users/pra19/OneDrive - purdue.edu/ECE DL/HW3 - NN/HW3_PranayChimmani.html 20/40

self.layer_expressions: {1: ['xw=ap*xp+aq*xq+ar*xr+as*xs', 'xz=bp*xp+bq*xq+br*xr+bs
*xs'], 2: ['xo=cp*xw+cq*xz']}

[Final] independent vars: {'xr', 'xp', 'xs', 'xq'}

[Final] self.layer_vars: {0: ['xp', 'xq', 'xr', 'xs'], 1: ['xw', 'xz'], 2: ['xo']}

[Final] self.layer_params: {1: [['ap', 'aq', 'ar', 'as'], ['bp', 'bq', 'br', 'b
s']], 2: [['cp', 'cq']]}

[Final] self.layer_exp_objects: {1: [<ComputationalGraphPrimer.Exp object at 0x0000
02348A7FA4D0>, <ComputationalGraphPrimer.Exp object at 0x000002348A7FBA30>], 2: [<Co
mputationalGraphPrimer.Exp object at 0x000002348A7FAD70>]}

self.layer_expressions: {1: ['xw=ap*xp+aq*xq+ar*xr+as*xs', 'xz=bp*xp+bq*xq+br*xr+bs
*xs'], 2: ['xo=cp*xw+cq*xz']}

[Final] independent vars: {'xr', 'xp', 'xs', 'xq'}

[Final] self.layer_vars: {0: ['xp', 'xq', 'xr', 'xs'], 1: ['xw', 'xz'], 2: ['xo']}

[Final] self.layer_params: {1: [['ap', 'aq', 'ar', 'as'], ['bp', 'bq', 'br', 'b
s']], 2: [['cp', 'cq']]}

[Final] self.layer_exp_objects: {1: [<ComputationalGraphPrimer.Exp object at 0x0000
02348A7FA350>, <ComputationalGraphPrimer.Exp object at 0x000002348A7FBA30>], 2: [<Co
mputationalGraphPrimer.Exp object at 0x000002348A7FBE80>]}

self.layer_expressions: {1: ['xw=ap*xp+aq*xq+ar*xr+as*xs', 'xz=bp*xp+bq*xq+br*xr+bs
*xs'], 2: ['xo=cp*xw+cq*xz']}

[Final] independent vars: {'xr', 'xp', 'xs', 'xq'}

[Final] self.layer_vars: {0: ['xp', 'xq', 'xr', 'xs'], 1: ['xw', 'xz'], 2: ['xo']}

[Final] self.layer_params: {1: [['ap', 'aq', 'ar', 'as'], ['bp', 'bq', 'br', 'b
s']], 2: [['cp', 'cq']]}

[Final] self.layer_exp_objects: {1: [<ComputationalGraphPrimer.Exp object at 0x0000
02348A7FBA30>, <ComputationalGraphPrimer.Exp object at 0x000002348A7FB880>], 2: [<Co
mputationalGraphPrimer.Exp object at 0x000002349111E380>]}

2/4/25, 12:04 AM HW3_PranayChimmani

file:///C:/Users/pra19/OneDrive - purdue.edu/ECE DL/HW3 - NN/HW3_PranayChimmani.html 21/40

In case of multi-neuron unlike one-neuron, Adam optimizer did not always perform the best.

As we observe from the above plots as the learning rate increased, the performance of the
Adam optimizer reduced which is opposite of what we observed in the one-neuron, it isn't
the expected behaviour. But our implementation of the optimizers and the multi-neural
network is very basic. Another factor could be the Bais, incase of one-neuron we used only
bais for the whole network/layer where as here in case of multi-neuron we used different
Bais for every node in every layer. This could have made the optimizer more volatile
compared to the single-neuron.

When the learning rate was low, Adam outperformed the SGD+ and SGD, converged faster
as it used both RMS and momentum for faster convergence. It is followed by SGD+ then
SGD, very similar to one-neuron.

Comparing Effects of Hyperparameters:

import time
from prettytable import PrettyTable

def compute_one_neuron_betas(b1,b2):
 # results = []
 cgp = UpdatedComputationalGraphPrimer(
 one_neuron_model = True,
 expressions = ['xw=ab*xa+bc*xb+cd*xc+ac*xd'],
 output_vars = ['xw'],
 dataset_size = 5000,
 learning_rate = 1e-3,
 training_iterations = 40000,

In []:

In []:

2/4/25, 12:04 AM HW3_PranayChimmani

file:///C:/Users/pra19/OneDrive - purdue.edu/ECE DL/HW3 - NN/HW3_PranayChimmani.html 22/40

 batch_size = 8,
 display_loss_how_often = 100,
 debug = False,
 momentum = 0.9,
 beta1 = b1,
 beta2 = b2,
 epsilon = 1e-8, # Small constant to prevent division by zero
 optimizer = Optimizer.ADAM, #Enum to switch between optimi
)

 cgp.parse_expressions()
 training_data = cgp.gen_training_data()

 start_time = time.time() # Start timing
 loss_running_record = cgp.run_training_loop_one_neuron_model(training_data)
 end_time = time.time() # End timing
 # results.append()
 # print("resultss
 plt.plot(loss_running_record, label=f"Beta1 {b1}, Beta2 {b2}")

 return ([b1, b2, np.round(end_time-start_time,2), np.round(loss_running_recor

b1 = [0.8, 0.95, 0.99, 0.5]
b2 = [0.89, 0.9, 0.95, 0.5]
b1 = [0.99, 0.5]
b2 = [0.95, 0.5]
plt.figure(figsize=(10, 6))
results = []
for x in b1:
 for y in b2:
 results.append(compute_one_neuron_betas(x,y))
print("rrrrrrrrrrrrrrrrrresults")
print(results)
plt.xlabel("Iterations")
plt.ylabel("Loss")
plt.title(f"Effect of Hyperparameters: Beta1 & Beta2")
plt.legend()
plt.grid()
plt.show()

Display the table from the data
table = PrettyTable()
table.title = "Effect of Hyperparameters: Beta1 & Beta2"
table.field_names = ["Beta1", "Beta2", "Time Taken (s)", "Final Loss", "Min Loss"]
table.add_rows(results)
table.sortby = "Final Loss"
print(table)

In []:

2/4/25, 12:04 AM HW3_PranayChimmani

file:///C:/Users/pra19/OneDrive - purdue.edu/ECE DL/HW3 - NN/HW3_PranayChimmani.html 23/40

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

2/4/25, 12:04 AM HW3_PranayChimmani

file:///C:/Users/pra19/OneDrive - purdue.edu/ECE DL/HW3 - NN/HW3_PranayChimmani.html 24/40

+--+
| Effect of Hyperparameters: Beta1 & Beta2 |
+-------+-------+----------------+------------+----------+
| Beta1 | Beta2 | Time Taken (s) | Final Loss | Min Loss |
+-------+-------+----------------+------------+----------+
0.5	0.5	11.24	0.0881	0.0021
0.99	0.5	11.4	0.0886	0.0021
0.95	0.95	11.15	0.0891	0.0023
0.5	0.95	11.49	0.095	0.0032
0.99	0.95	11.37	0.097	0.0032
0.95	0.9	11.31	0.0984	0.0048
0.8	0.95	11.18	0.0993	0.002
0.95	0.5	11.19	0.1001	0.0041
0.5	0.89	11.3	0.1008	0.0059
0.8	0.9	10.97	0.101	0.0035
0.8	0.89	11.57	0.1032	0.0027
0.99	0.89	11.21	0.1046	0.0039
0.5	0.9	11.35	0.1059	0.0035
0.95	0.89	11.03	0.1064	0.0032
0.8	0.5	11.13	0.1077	0.0022
0.99	0.9	11.61	0.1125	0.0017
+-------+-------+----------------+------------+----------+

b1 = [0.8, 0.95, 0.99, 0.5]
b2 = [0.89, 0.9, 0.95, 0.5]
b1 = [0.99, 0.5]
b2 = [0.95, 0.5]
plt.figure(figsize=(10, 6))
results = []
for x in b1:
 for y in b2:
 results.append(compute_one_neuron_betas(x,y))
print("rrrrrrrrrrrrrrrrrresults")
print(results)
plt.xlabel("Iterations")
plt.ylabel("Loss")
plt.title(f"Effect of Hyperparameters: Beta1 & Beta2")
plt.legend()
plt.grid()
plt.show()

Display the table from the data
table = PrettyTable()
table.title = "Effect of Hyperparameters: Beta1 & Beta2"
table.field_names = ["Beta1", "Beta2", "Time Taken (s)", "Final Loss", "Min Loss"]
table.add_rows(results)
print(table)

In []:

2/4/25, 12:04 AM HW3_PranayChimmani

file:///C:/Users/pra19/OneDrive - purdue.edu/ECE DL/HW3 - NN/HW3_PranayChimmani.html 25/40

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

2/4/25, 12:04 AM HW3_PranayChimmani

file:///C:/Users/pra19/OneDrive - purdue.edu/ECE DL/HW3 - NN/HW3_PranayChimmani.html 26/40

+--+
| Effect of Hyperparameters: Beta1 & Beta2 |
+-------+-------+----------------+------------+----------+
| Beta1 | Beta2 | Time Taken (s) | Final Loss | Min Loss |
+-------+-------+----------------+------------+----------+
0.8	0.89	11.58	0.0887	0.0019
0.8	0.9	11.27	0.097	0.0024
0.8	0.95	11.47	0.1077	0.0031
0.8	0.5	11.08	0.0983	0.0023
0.95	0.89	11.33	0.1007	0.0003
0.95	0.9	11.34	0.111	0.0024
0.95	0.95	11.22	0.105	0.002
0.95	0.5	11.24	0.0849	0.0078
0.99	0.89	11.3	0.1053	0.0039
0.99	0.9	11.49	0.0957	0.004
0.99	0.95	11.13	0.0983	0.0025
0.99	0.5	11.56	0.0955	0.0041
0.5	0.89	11.31	0.098	0.0042
0.5	0.9	11.74	0.1077	0.0018
0.5	0.95	12.12	0.1057	0.0045
0.5	0.5	11.63	0.1029	0.004
+-------+-------+----------------+------------+----------+

Incase of Adam, beta 1 is used for the momentum. It helps to keep moving more and more if
the direction of the gradient is same,it helps to converge faster and get out of loccal
minimum. Beta 2 is used for squared gradient depending on the previous.

The running times, the convergence are very close to each other as we can see from the plot
and the table. The final lose is very very slightly different, which again can just be margin or
error. Its too close to say.

I have sorted it according to the final loss, to maybe get any insights as we observe we got
least Final loss when both B1 and b2 were the least 0.5 and 0.5 which is not expected. and
the seconf highest when b2 was 0.5 and b1 was 0.95, maybe b2 being less has more effect
than b1? as the third least is when b1 n b2 are 0.95.

When sorted according to B1, I dont really observe any trends that are on your face visible.

3. Extra credit

def compute_one_neuron(normalization: Normalization):
 plt.figure(figsize=(10, 6))
 for optimizer in Optimizer:
 cgp = UpdatedComputationalGraphPrimer(
 one_neuron_model = True,
 expressions = ['xw=ab*xa+bc*xb+cd*xc+ac*xd'],
 output_vars = ['xw'],
 dataset_size = 5000,
 learning_rate = 1e-3,
 training_iterations = 40000,
 batch_size = 8,
 display_loss_how_often = 100,

In []:

2/4/25, 12:04 AM HW3_PranayChimmani

file:///C:/Users/pra19/OneDrive - purdue.edu/ECE DL/HW3 - NN/HW3_PranayChimmani.html 27/40

 debug = False,
 momentum = 0.9,
 beta1 = 0.9 ,
 beta2 = 0.999,
 epsilon = 1e-8, # Small constant to prevent division by ze
 optimizer = optimizer, #Enum to switch between optim
)

 cgp.parse_expressions()
 training_data = cgp.gen_training_data()
 loss_running_record = cgp.run_training_loop_one_neuron_model(training_
 plt.plot(loss_running_record, label=optimizer.name)

 # Plot Labels
 plt.xlabel("Iterations")
 plt.ylabel("Loss")
 plt.title(f"Normalization {normalization.name}")
 plt.legend()
 plt.grid()
 plt.show()

if __name__ == '__main__':
learning_rates = [1e-3,1e-4,3e-3]
learning_rates = [1e-3]
 for x in Normalization:
 compute_one_neuron(x)

0
0
0

0
0
0

In []:

2/4/25, 12:04 AM HW3_PranayChimmani

file:///C:/Users/pra19/OneDrive - purdue.edu/ECE DL/HW3 - NN/HW3_PranayChimmani.html 28/40

0
0
0

No Normalization vs Normalization vs Truncated Standard Deviation
Remap Normalization

Case 1 No Normalization: Since the training data was already Gaussian input it was already
around the mean with the infinite interval range (−∞,∞). Since the data is already clean but

2/4/25, 12:04 AM HW3_PranayChimmani

file:///C:/Users/pra19/OneDrive - purdue.edu/ECE DL/HW3 - NN/HW3_PranayChimmani.html 29/40

with extreme values, it should work pretty good. From the plot we can see that It performed
very well in case of SGD+ and Adam as the data does not have any irregularities, it
converged to the min loss faster than max normalization and was also very smooth.

Case 2 Max Value Normalization: Here we are just diving the batch by its max value, each
batch will have different batch values, also the extreme values are very extreme might also
be infinite. So, the it will cause alot of irregularities cause of varying batch max values and
the scaling done by just diving by max value. We can observe that the plot becomes more
volatile cause the irregularies and also its the slowest convergence.

Case 2 Trncated SD Normalization: Here we are truncating to the interval (μ−5σ,μ+5σ)
remove all the extreme outliers which once you cross 5 SD are irrelavant anyways. Then we
are Rescaling it to (-1,1). Since this also changes the distribution slightly it became more
volatile. But it is smoother than the Max Value and also converges the fastest among the
three, The scaling is very rudimetry but effective.

Source Code for the new class

Majority again borrowed from Prof. Kak's work.

from ComputationalGraphPrimer import *
from enum import Enum

class Optimizer(Enum):
 VANILLASGD = 1
 SGDMOMENTUM = 2
 ADAM = 3

class Normalization(Enum):
 NONE = 1
 MAXVALUE = 2
 SD = 3

class UpdatedComputationalGraphPrimer(ComputationalGraphPrimer):

 def __init__(self, *args, **kwargs):
 if 'momentum' in kwargs : momentum = kwargs.pop('momentum')
 if 'beta1' in kwargs:
 beta1 = kwargs.pop('beta1')
 if 'beta2' in kwargs:
 beta2 = kwargs.pop('beta2')
 if 'epsilon' in kwargs:
 epsilon = kwargs.pop('epsilon')
 if 'optimizer' in kwargs : optimizer = kwargs.pop('optimizer')

 if momentum:
 self.momentum = momentum
 else:
 self.momentum = 0.9
 if beta1:
 self.beta1 = beta1

In []:

2/4/25, 12:04 AM HW3_PranayChimmani

file:///C:/Users/pra19/OneDrive - purdue.edu/ECE DL/HW3 - NN/HW3_PranayChimmani.html 30/40

 else:
 self.beta1 = 0.9

 if beta2:
 self.beta2 = beta2
 else:
 self.beta2 = 0.999

 if epsilon:
 self.epsilon = epsilon
 else:
 self.epsilon = 1e-8
 if optimizer:
 self.optimizer = optimizer
 else:
 self.optimizer = Optimizer.VANILLASGD
 super().__init__(*args, **kwargs)

 # Initialize first and second moment estimates for Adam Optimizer
 self.t = 1 # Time step counter

 ###
 ### one neuron model ####################
 def run_training_loop_one_neuron_model(self, training_data,normalization = Norm
 """
 The training loop must first initialize the learnable parameters. Remember
 symbolic names in your input expressions for the neural layer that do not b
 letter 'x'. In this case, we are initializing with random numbers from a u
 over the interval (0,1).
 """
 self.vals_for_learnable_params = {param: random.uniform(0,1) for param in s
 self.velocity_bias = 0.0
 self.velocity = {param: 0.0 for param in self.vals_for_learnable_params}

 self.bias = random.uniform(0,1) ## Adding the bias improv
 ## We initialize it to
 self.m_t = {param: 0.0 for param in self.vals_for_learnable_params}
 self.v_t = {param: 0.0 for param in self.vals_for_learnable_params}
 self.m_t_bias = 0.0 # For bias
 self.v_t_bias = 0.0 # For bias

 class DataLoader:
 """
 To understand the logic of the dataloader, it would help if you first u
 the training dataset is created. Search for the following function in

 gen_training_data(self)

 As you will see in the implementation code for this method, the trainin
 consists of a Python dict with two keys, 0 and 1, the former points to
 all Class 0 samples and the latter to a list of all Class 1 samples. I
 the data samples are drawn from a multi-dimensional Gaussian distributi
 classes have different means and variances. The dimensionality of each
 is set by the number of nodes in the input layer of the neural network.

2/4/25, 12:04 AM HW3_PranayChimmani

file:///C:/Users/pra19/OneDrive - purdue.edu/ECE DL/HW3 - NN/HW3_PranayChimmani.html 31/40

 The data loader's job is to construct a batch of samples drawn randomly
 lists mentioned above. And it mush also associate the class label with
 separately.
 """
 def __init__(self, training_data, batch_size):
 self.training_data = training_data
 self.batch_size = batch_size
 self.class_0_samples = [(item, 0) for item in self.training_data[0]
 self.class_1_samples = [(item, 1) for item in self.training_data[1]

 def __len__(self):
 return len(self.training_data[0]) + len(self.training_data[1])

 def _getitem(self):
 cointoss = random.choice([0,1]) ## When
 ## sam
 if cointoss == 0:
 return random.choice(self.class_0_samples)
 else:
 return random.choice(self.class_1_samples)

 def getbatch(self):
 batch_data,batch_labels = [],[] ## First
 maxval = 0.0 ## For a
 for _ in range(self.batch_size):
 item = self._getitem()
 if np.max(item[0]) > maxval:
 maxval = np.max(item[0])
 batch_data.append(item[0])
 batch_labels.append(item[1])
 if(normalization == Normalization.MAXVALUE):
 batch_data = [item/maxval for item in batch_data] ## N
 # Truncates data to (µ - 5σ, µ + 5σ) and rescales to (-1,1).
 elif normalization == Normalization.SD:
 mean = np.mean(batch_data)
 sigma = np.std(batch_data)
 # Define truncation range
 lower_bound = mean - (5 * sigma)
 upper_bound = mean + (5 * sigma)
 # Truncating the values to remove outliers
 batch_data = np.clip(batch_data, lower_bound, upper_bound)
 # Rescale to (-1,1)
 batch_data = 2 * (batch_data - lower_bound) / (upper_bound - lo
 batch = [batch_data, batch_labels]
 return batch

 data_loader = DataLoader(training_data, batch_size=self.batch_size)
 data = data_loader.getbatch()
 loss_running_record = []
 i = 0
 avg_loss_over_iterations = 0.0 ## AvSer
 ## eve
 for i in range(self.training_iterations):
 data = data_loader.getbatch()
 data_tuples_in_batch = data[0]
 class_labels_in_batch = data[1]

2/4/25, 12:04 AM HW3_PranayChimmani

file:///C:/Users/pra19/OneDrive - purdue.edu/ECE DL/HW3 - NN/HW3_PranayChimmani.html 32/40

 y_preds, deriv_sigmoids = self.forward_prop_one_neuron_model(data_tupl
 loss = sum([(abs(class_labels_in_batch[i] - y_preds[i]))**2 for i in ra
 avg_loss_over_iterations += loss / float(len(class_labels_in_batch))
 if i%(self.display_loss_how_often) == 0:
 avg_loss_over_iterations /= self.display_loss_how_often
 loss_running_record.append(avg_loss_over_iterations)
 # print("[iter=%d] loss = %.4f" % (i+1, avg_loss_over_iterations)
 avg_loss_over_iterations = 0.0
 y_errors_in_batch = list(map(operator.sub, class_labels_in_batch, y_pre
 # Adam Optimizer
 if self.optimizer == Optimizer.ADAM:
 self.backprop_and_update_params_one_neuron_model_adam(data_tuples_i
 # SGD+ momentum
 elif self.optimizer == Optimizer.SGDMOMENTUM:
 self.backprop_and_update_params_one_neuron_model_sgd_plus(data_tupl
 # Vanilla SGD
 else:
 self.backprop_and_update_params_one_neuron_model(data_tuples_in_bat
 return loss_running_record

 def backprop_and_update_params_one_neuron_model_sgd_plus(self, data_tuples_in_b
 """
 This function implements the equations shown on Slide 61 of my Week 3 prese
 class at Purdue. All four parameters defined above are lists of what was e
 forward prop function or calculated by it for each training data sample in
 """
 input_vars = self.independent_vars
 input_vars_to_param_map = self.var_to_var_param[self.output_vars[0]]
 param_to_vars_map = {param : var for var, param in input_vars_to_param_map.
 vals_for_learnable_params = self.vals_for_learnable_params
 # Compute gradients and apply momentum updates for weights
 for param in self.vals_for_learnable_params:
 partial_of_loss_wrt_param = 0.0

 for j in range(self.batch_size):
 vals_for_input_vars_dict = dict(zip(input_vars, list(data_tuples_in
 partial_of_loss_wrt_param += - y_errors_in_batch[j] * vals_for_inpu

 partial_of_loss_wrt_param /= float(self.batch_size)

 # Apply momentum update rule

 # formula from youtube video: https://www.youtube.com/watch?v=k8fTYJPd3
 # self.velocity[param] = self.momentum * self.velocity[param] + (1 - se

 # Formula form the Class Lecture pdf: pk+1 = pk − 2·α·JF(pk)·ϵk
 # self.velocity[param] = self.momentum * self.velocity[param] + 2 * se

 # formula from the HW pdf: vt+1 = βvt +gt
 self.velocity[param] = self.momentum * self.velocity[param] + partial_

 # Update weight using velocity: wt+1 = wt −ηvt+1
 self.vals_for_learnable_params[param] -= self.learning_rate * self.velo

 # Compute gradients and apply momentum updates for bias

2/4/25, 12:04 AM HW3_PranayChimmani

file:///C:/Users/pra19/OneDrive - purdue.edu/ECE DL/HW3 - NN/HW3_PranayChimmani.html 33/40

 y_error_avg = sum(y_errors_in_batch) / float(self.batch_size)
 deriv_sigmoid_avg = sum(deriv_sigmoids) / float(self.batch_size)

 gradient_bias = y_error_avg * deriv_sigmoid_avg

 # Apply momentum update rule for bias
 # self.velocity_bias = self.momentum * self.velocity_bias + (1 - self.momen
 self.velocity_bias = self.momentum * self.velocity_bias + gradient_bias

 # Update bias using velocity
 self.bias += self.learning_rate * self.velocity_bias
 # self.bias += self.velocity_bias

 def backprop_and_update_params_one_neuron_model_adam(self, data_tuples_in_batch
 """
 Implements backpropagation using the Adam Optimizer.
 """
 input_vars = self.independent_vars
 input_vars_to_param_map = self.var_to_var_param[self.output_vars[0]]
 param_to_vars_map = {v: k for k, v in input_vars_to_param_map.items()} # C

 # Compute gradients and apply Adam updates for weights
 for param in self.vals_for_learnable_params:
 partial_of_loss_wrt_param = 0.0

 for j in range(self.batch_size):
 vals_for_input_vars_dict = dict(zip(input_vars, list(data_tuples_in
 partial_of_loss_wrt_param += - y_errors_in_batch[j] * vals_for_inpu

 partial_of_loss_wrt_param /= float(self.batch_size)

 # Update biased first moment estimate
 # mt+1 = β1 ∗ mt +(1−β1)∗gradt,
 self.m_t[param] = self.beta1 * self.m_t[param] + (1 - self.beta1) * par

 # Update biased second raw moment estimate:
 # vt+1 = β2 ∗ vt +(1−β2)∗(gradt)2
 self.v_t[param] = self.beta2 * self.v_t[param] + (1 - self.beta2) * (pa

 # Compute bias-corrected moment estimates
 # ˆmt+1= mt / 1 − β1^t
 m_t_hat = self.m_t[param] / (1 - self.beta1 ** self.t)
 # ˆvt+1 = vt / 1 - β2^t
 v_t_hat = self.v_t[param] / (1 - self.beta2 ** self.t)

 # Apply Adam update rule
 # pt+1 = pt − (lr ∗ (ˆmt+1 / (ˆvt+1 +ϵ) ^ -1/2))
 self.vals_for_learnable_params[param] -= self.learning_rate * (m_t_hat

 # Compute bias gradient
 y_error_avg = sum(y_errors_in_batch) / float(self.batch_size)
 deriv_sigmoid_avg = sum(deriv_sigmoids) / float(self.batch_size)
 gradient_bias = y_error_avg * deriv_sigmoid_avg

 # Using the same formulas as above but for bias
 # Update biased first moment estimate for bias

2/4/25, 12:04 AM HW3_PranayChimmani

file:///C:/Users/pra19/OneDrive - purdue.edu/ECE DL/HW3 - NN/HW3_PranayChimmani.html 34/40

 # mt_b = β1 ∗ mt_b +(1−β1)∗gradt
 self.m_t_bias = self.beta1 * self.m_t_bias + (1 - self.beta1) * gradient_bi

 # Update biased second moment estimate for bias
 # vt_b = β2 ∗ vt_b +(1−β2)∗(gradt)2
 self.v_t_bias = self.beta2 * self.v_t_bias + (1 - self.beta2) * (gradient_b

 # Compute bias-corrected estimates for bias
 # ˆmt_b= mt_b / 1 − β1^t
 m_t_bias_hat = self.m_t_bias / (1 - self.beta1 ** self.t)
 # ˆvt_B = vt_b / 1 - β2^t
 v_t_bias_hat = self.v_t_bias / (1 - self.beta2 ** self.t)

 # Apply Adam update rule for bias
 # bt+1 = bt + (lr ∗ (ˆmt_b / (ˆvt_b + ϵ) ^ -1/2))
 self.bias += self.learning_rate * (m_t_bias_hat / (v_t_bias_hat + self.epsi
 # Increment time step
 self.t += 1

 ###

 ###
 ## multi neuron model ###################

 def run_training_loop_multi_neuron_model(self, training_data):

 class DataLoader:
 """
 To understand the logic of the dataloader, it would help if you first u
 the training dataset is created. Search for the following function in

 gen_training_data(self)

 As you will see in the implementation code for this method, the trainin
 consists of a Python dict with two keys, 0 and 1, the former points to
 all Class 0 samples and the latter to a list of all Class 1 samples. I
 the data samples are drawn from a multi-dimensional Gaussian distributi
 classes have different means and variances. The dimensionality of each
 is set by the number of nodes in the input layer of the neural network.

 The data loader's job is to construct a batch of samples drawn randomly
 lists mentioned above. And it mush also associate the class label with
 separately.
 """
 def __init__(self, training_data, batch_size):
 self.training_data = training_data
 self.batch_size = batch_size
 self.class_0_samples = [(item, 0) for item in self.training_data[0]
 self.class_1_samples = [(item, 1) for item in self.training_data[1]

 def __len__(self):
 return len(self.training_data[0]) + len(self.training_data[1])

 def _getitem(self):

2/4/25, 12:04 AM HW3_PranayChimmani

file:///C:/Users/pra19/OneDrive - purdue.edu/ECE DL/HW3 - NN/HW3_PranayChimmani.html 35/40

 cointoss = random.choice([0,1]) ## When
 ## sam
 if cointoss == 0:
 return random.choice(self.class_0_samples)
 else:
 return random.choice(self.class_1_samples)

 def getbatch(self):
 batch_data,batch_labels = [],[] ## First
 maxval = 0.0 ## For a
 for _ in range(self.batch_size):
 item = self._getitem()
 if np.max(item[0]) > maxval:
 maxval = np.max(item[0])
 batch_data.append(item[0])
 batch_labels.append(item[1])
 batch_data = [item/maxval for item in batch_data] ## Norma
 batch = [batch_data, batch_labels]
 return batch

 ## The training loop must first initialize the learnable parameters. Reme
 ## symbolic names in your input expressions for the neural layer that do n
 ## letter 'x'. In this case, we are initializing with random numbers from
 ## over the interval (0,1):
 self.vals_for_learnable_params = {param: random.uniform(0,1) for param in s
 ## In the same manner, we must also initialize the biases at each node th
 ## propagating data:
 self.bias = {i : [random.uniform(0,1) for j in range(self.layers_config[
 data_loader = DataLoader(training_data, batch_size=self.batch_size)
 loss_running_record = []
 i = 0
 avg_loss_over_iterations = 0.0 ##
 ##
 # momentum parameters
 self.velocity = {param: 0.0 for param in self.all_params}
 self.velocity_bias = {i: [0.0 for _ in range(self.layers_config[i])]
 for i in range(1, self.num_layers)}
 ## For estimating the changes to the bias to be made on the basis of the de
 self.m_t = {param: 0.0 for param in self.vals_for_learnable_params}
 self.v_t = {param: 0.0 for param in self.vals_for_learnable_params}
 self.m_t_bias = {i: [0.0 for _ in range(self.layers_config[i])]
 for i in range(1, self.num_layers)}
 self.v_t_bias = {i: [0.0 for _ in range(self.layers_config[i])]
 for i in range(1, self.num_layers)}
 for i in range(self.training_iterations):
 data = data_loader.getbatch()
 data_tuples = data[0]
 class_labels = data[1]
 self.forward_prop_multi_neuron_model(data_tuples)
 predicted_labels_for_batch = self.forw_prop_vals_at_layers[self.num_lay
 y_preds = [item for sublist in predicted_labels_for_batch for item i
 loss = sum([(abs(class_labels[i] - y_preds[i]))**2 for i in range(len(c
 loss_avg = loss / float(len(class_labels))
 avg_loss_over_iterations += loss_avg
 if i%(self.display_loss_how_often) == 0:
 avg_loss_over_iterations /= self.display_loss_how_often

2/4/25, 12:04 AM HW3_PranayChimmani

file:///C:/Users/pra19/OneDrive - purdue.edu/ECE DL/HW3 - NN/HW3_PranayChimmani.html 36/40

 loss_running_record.append(avg_loss_over_iterations)
 # print("[iter=%d] loss = %.4f" % (i+1, avg_loss_over_iterations)
 avg_loss_over_iterations = 0.0
 y_errors_in_batch = list(map(operator.sub, class_labels, y_preds))
 self.backprop_and_update_params_multi_neuron_model(y_preds, y_errors_in
 # Adam Optimizer
 if self.optimizer == Optimizer.ADAM:
 self.backprop_and_update_params_multi_neuron_model_adam(y_preds, y_
 # SGD+ momentum
 elif self.optimizer == Optimizer.SGDMOMENTUM:
 self.backprop_and_update_params_multi_neuron_model_sgd_plus(y_preds
 # Vanilla SGD
 else:
 self.backprop_and_update_params_multi_neuron_model(y_preds, y_error
 return loss_running_record

 def backprop_and_update_params_multi_neuron_model_sgd_plus(self, predictions, y
 """
 First note that loop index variable 'back_layer_index' starts with the inde
 the last layer. For the 3-layer example shown for 'forward', back_layer_in
 starts with a value of 2, its next value is 1, and that's it.

 In the code below, the outermost loop is over the data samples in a batch.
 on Slide 73 of my Week 3 lecture, in order to calculate the partials of Los
 respect to the learnable params, we need to backprop the prediction errors
 the gradients of the Sigmoid. For the purpose of satisfying the requiremen
 SGD, the backprop of the prediction errors and the gradients needs to be ca
 out separately for each training data sample in a batch. That's what the o
 loop is for.

 After we exit the outermost loop, we average over the results obtained from
 training data sample in a batch.

 Pay attention to the variable 'vars_in_layer'. These store the node variab
 the current layer during backpropagation.
 """
 ## Eq. (24) on Slide 73 of my Week 3 lecture says we need to store backprop
 pred_err_backproped_at_layers = [{i : [None for j in range(self.layers_
 for i in range(se
 ## This will store "\delta L / \delta w" you see at the LHS of the equation
 partial_of_loss_wrt_params = {param : 0.0 for param in self.all_params}
 ## For estimating the changes to the bias to be made on the basis of the de
 bias_changes = {i : [0.0 for j in range(self.layers_config[i])] for i
 for b in range(self.batch_size):
 pred_err_backproped_at_layers[b][self.num_layers - 1] = [y_errors[b]]
 for back_layer_index in reversed(range(1,self.num_layers)):
 input_vals = self.forw_prop_vals_at_layers[back_layer_index -1]
 deriv_sigmoids = self.gradient_vals_for_layers[back_layer_index]
 vars_in_layer = self.layer_vars[back_layer_index]
 vars_in_next_layer_back = self.layer_vars[back_layer_index - 1]
 vals_for_input_vars_dict = dict(zip(vars_in_next_layer_back, self.
 ## For the next statement, note that layer_params are stored in a d
 ## {1: [['ap', 'aq', 'ar', 'as'], ['bp', 'bq', 'br', 'bs']],
 ## "layer_params[idx]" is a list of lists for the link weights in l
 layer_params = self.layer_params[back_layer_index]

2/4/25, 12:04 AM HW3_PranayChimmani

file:///C:/Users/pra19/OneDrive - purdue.edu/ECE DL/HW3 - NN/HW3_PranayChimmani.html 37/40

 transposed_layer_params = list(zip(*layer_params))
 for k,var1 in enumerate(vars_in_next_layer_back):
 for j,var2 in enumerate(vars_in_layer):
 pred_err_backproped_at_layers[b][back_layer_index - 1][k] =

 for j,var in enumerate(vars_in_layer):
 layer_params = self.layer_params[back_layer_index][j]
 input_vars_to_param_map = self.var_to_var_param[var]
 param_to_vars_map = {param : var for var, param in input_vars_t

 ## Update the partials of Loss wrt to the learnable parameters
 ## and the previous layer. You are accumulating these partials
 ## data samples in the batch being processed. For each traini
 ## being used is shown in Eq. (29) on Slide 77 of my Week 3 sl
 for i,param in enumerate(layer_params):
 partial_of_loss_wrt_params[param] += pred_err_backprope
 vals_for_in
 ## We will now estimate the change in the bias that needs to be ma
 ## from the derivatives the sigmoid at the nodes in the current la
 ## backproped to the previous layer nodes:
 for k,var1 in enumerate(vars_in_next_layer_back):
 for j,var2 in enumerate(vars_in_layer):
 if back_layer_index-1 > 0:
 bias_changes[back_layer_index-1][k] += pred_err_backpro

 ## Now update the learnable parameters. The loop shown below carries out S
 for param in partial_of_loss_wrt_params:
 partial_of_loss_wrt_param = partial_of_loss_wrt_params[param] / float(
 self.velocity[param] = self.momentum * self.velocity[param] + partial_o
 # self.velocity[param] = self.momentum * self.velocity[param] + (1 - se
 self.vals_for_learnable_params[param] += self.learning_rate * self.velo
 # self.vals_for_learnable_params[param] -= self.velocity[param]

 # step = self.learning_rate * partial_of_loss_wrt_param
 # self.vals_for_learnable_params[param] += step

 ## Finally we update the biases at all the nodes that aggregate data:
 for layer_index in range(1,self.num_layers):
 for k in range(self.layers_config[layer_index]):
 # self.bias[layer_index][k] += self.learning_rate * (bias_change
 bias_gradient = bias_changes[layer_index][k] / float(self.batch_siz
 self.velocity_bias[layer_index][k] = self.momentum * self.velocity_
 self.bias[layer_index][k] += self.learning_rate * self.velocity_bia
 # self.velocity_bias[layer_index][k] = self.momentum * self.velocit
 # self.bias[layer_index][k] -= self.velocity_bias[layer_index][k]

 def backprop_and_update_params_multi_neuron_model_adam(self, predictions, y_err
 """
 First note that loop index variable 'back_layer_index' starts with the inde
 the last layer. For the 3-layer example shown for 'forward', back_layer_in
 starts with a value of 2, its next value is 1, and that's it.

 In the code below, the outermost loop is over the data samples in a batch.
 on Slide 73 of my Week 3 lecture, in order to calculate the partials of Los
 respect to the learnable params, we need to backprop the prediction errors

2/4/25, 12:04 AM HW3_PranayChimmani

file:///C:/Users/pra19/OneDrive - purdue.edu/ECE DL/HW3 - NN/HW3_PranayChimmani.html 38/40

 the gradients of the Sigmoid. For the purpose of satisfying the requiremen
 SGD, the backprop of the prediction errors and the gradients needs to be ca
 out separately for each training data sample in a batch. That's what the o
 loop is for.

 After we exit the outermost loop, we average over the results obtained from
 training data sample in a batch.

 Pay attention to the variable 'vars_in_layer'. These store the node variab
 the current layer during backpropagation.
 """
 ## Eq. (24) on Slide 73 of my Week 3 lecture says we need to store backprop
 pred_err_backproped_at_layers = [{i : [None for j in range(self.layers_
 for i in range(se
 ## This will store "\delta L / \delta w" you see at the LHS of the equation
 partial_of_loss_wrt_params = {param : 0.0 for param in self.all_params}
 bias_changes = {i : [0.0 for j in range(self.layers_config[i])] for i

 for b in range(self.batch_size):
 pred_err_backproped_at_layers[b][self.num_layers - 1] = [y_errors[b]]
 for back_layer_index in reversed(range(1,self.num_layers)):
 input_vals = self.forw_prop_vals_at_layers[back_layer_index -1]
 deriv_sigmoids = self.gradient_vals_for_layers[back_layer_index]
 vars_in_layer = self.layer_vars[back_layer_index]
 vars_in_next_layer_back = self.layer_vars[back_layer_index - 1]
 vals_for_input_vars_dict = dict(zip(vars_in_next_layer_back, self.
 ## For the next statement, note that layer_params are stored in a d
 ## {1: [['ap', 'aq', 'ar', 'as'], ['bp', 'bq', 'br', 'bs']],
 ## "layer_params[idx]" is a list of lists for the link weights in l
 layer_params = self.layer_params[back_layer_index]
 transposed_layer_params = list(zip(*layer_params))
 for k,var1 in enumerate(vars_in_next_layer_back):
 for j,var2 in enumerate(vars_in_layer):
 pred_err_backproped_at_layers[b][back_layer_index - 1][k] =

 for j,var in enumerate(vars_in_layer):
 layer_params = self.layer_params[back_layer_index][j]
 input_vars_to_param_map = self.var_to_var_param[var]
 param_to_vars_map = {param : var for var, param in input_vars_t

 ## Update the partials of Loss wrt to the learnable parameters
 ## and the previous layer. You are accumulating these partials
 ## data samples in the batch being processed. For each traini
 ## being used is shown in Eq. (29) on Slide 77 of my Week 3 sl
 for i,param in enumerate(layer_params):
 partial_of_loss_wrt_params[param] += pred_err_backprope
 vals_for_in
 ## We will now estimate the change in the bias that needs to be ma
 ## from the derivatives the sigmoid at the nodes in the current la
 ## backproped to the previous layer nodes:
 for k,var1 in enumerate(vars_in_next_layer_back):
 for j,var2 in enumerate(vars_in_layer):
 if back_layer_index-1 > 0:
 bias_changes[back_layer_index-1][k] += pred_err_backpro

2/4/25, 12:04 AM HW3_PranayChimmani

file:///C:/Users/pra19/OneDrive - purdue.edu/ECE DL/HW3 - NN/HW3_PranayChimmani.html 39/40

 ## Now update the learnable parameters. The loop shown below carries out S
 for param in partial_of_loss_wrt_params:
 partial_of_loss_wrt_param = partial_of_loss_wrt_params[param] / float(
 # Update biased first moment estimate
 # mt+1 = β1 ∗ mt +(1−β1)∗gradt,
 self.m_t[param] = self.beta1 * self.m_t[param] + (1 - self.beta1) * par

 # Update biased second raw moment estimate:
 # vt+1 = β2 ∗ vt +(1−β2)∗(gradt)2
 self.v_t[param] = self.beta2 * self.v_t[param] + (1 - self.beta2) * (pa

 # Compute bias-corrected moment estimates
 # ˆmt+1= mt / 1 − β1^t
 m_t_hat = self.m_t[param] / (1 - self.beta1 ** self.t)
 # ˆvt+1 = vt / 1 - β2^t
 v_t_hat = self.v_t[param] / (1 - self.beta2 ** self.t)

 # Apply Adam update rule
 # pt+1 = pt + (lr ∗ (ˆmt+1 / (ˆvt+1 +ϵ) ^ -1/2))
 self.vals_for_learnable_params[param] -= self.learning_rate * (m_t_hat
 # step = self.learning_rate * partial_of_loss_wrt_param
 # self.vals_for_learnable_params[param] += step

 ## Finally we update the biases at all the nodes that aggregate data:
 for layer_index in range(1,self.num_layers):
 for k in range(self.layers_config[layer_index]):

 # self.bias[layer_index][k] += self.learning_rate * (bias_change
 # self.bias[layer_index][k] -= self.velocity_bias[layer_index][k]
 gradient_bias = bias_changes[layer_index][k] / float(self.batch_siz
 # Using the same formulas as above but for bias
 # Update biased first moment estimate for bias
 # mt_b = β1 ∗ mt_b +(1−β1)∗gradt
 self.m_t_bias[layer_index][k] = self.beta1 * self.m_t_bias[layer_in

 # Update biased second moment estimate for bias
 # vt_b = β2 ∗ vt_b +(1−β2)∗(gradt)2
 self.v_t_bias[layer_index][k] = self.beta2 * self.v_t_bias[layer_in

 # Compute bias-corrected estimates for bias
 # ˆmt_b= mt_b / 1 − β1^t
 m_t_bias_hat = self.m_t_bias[layer_index][k] / (1 - self.beta1 ** s
 # ˆvt_B = vt_b / 1 - β2^t
 v_t_bias_hat = self.v_t_bias[layer_index][k] / (1 - self.beta2 ** s
 # Apply Adam update rule for bias
 # bt+1 = bt + (lr ∗ (ˆmt_b / (ˆvt_b + ϵ) ^ -1/2))
 self.bias[layer_index][k] += self.learning_rate * (m_t_bias_hat / (
 self.t += 1

 ###

2/4/25, 12:04 AM HW3_PranayChimmani

file:///C:/Users/pra19/OneDrive - purdue.edu/ECE DL/HW3 - NN/HW3_PranayChimmani.html 40/40

