2/4/25, 12:04 AM HW3_PranayChimmani

ECE60146: Homework 3 - Optimization

Pranay Chimmani, PUID: 0037630649

1 Using ComputationalGraphPrimer

1.1 Comparing one-neuron with CGP vs torch.nn

All of the below code is borrowed from ComputationalGraphPrimer package:
https.//engineering.purdue.edu/kak/distCGP/
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Last ten lines of output: CPG one-neuron vs torch.nn one-neuron

file:///C:/Users/pra19/0OneDrive - purdue.edu/ECE DL/HW3 - NN/HW3_PranayChimmani.html

1/40


https://engineering.purdue.edu/kak/distCGP/

2/4/25, 12:04 AM HW3_PranayChimmani

.1796
.1812

12732
. DL

.1855

= L0

1763

oD DD DD DS 33

CPG one-neuron; last 10 losses

SRR 28R E®
el =R = !

torch.nn one-neuron; last 10 losses

Display of the training loss versus the training iterations: CPG one-neuron vs torch.nn one-
neuron
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Fig1. Loss vs Iteration plot for CPG One - Neuron one_neuron_classifier.py
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Fig2. Loss vs Iteration plot for torch.nn One - Neuron verify_with_torchnn.py

Fig 1 shows the CPG/ custom made one-neuron loss vs itteration graph and Fig 2. shows the
torch.nn one-neuron loss vs itteration grpah. Both fig1 and fig2 have decresing loss, which
shows that the error is decreasing over time/itterations and that the gradient optimizers are
working, i.e. model are "learning". In fig1 the loss reduces linearly, but where as in fig2 it
drops rapidly initially, then flattens and ossilates around the end behaving sort of like
exponentially. Fig 2 converges slower than the Fig1 probably cause of a better gradient
optimizer. Fig2 reaches to a loss of under ~1.0 which is less than half where as fig1 reached
only ~1.7 > half by the end of training.

1.2 Comparing multi-neuron with CGP vs torch.nn
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Last ten lines of output: CPG multi-neuron vs torch.nn multi-neuron

CPG multi-neuron last 10 losses
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torch.nn multi-neuron last 10 losses

Display of the training loss versus the training iterations: CPG multi-neuron vs torch.nn
multi-neuron
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Fig3. Loss vs Iteration plot for CPG multi-neuron multi_neuron_classifier.py
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Fig4. Loss vs Iteration plot for torch multi-neuron multi_neuron_classifier.py

Fig 3 shows the plot for custom multi_neuron and fig 4 shows for the torch multi_neuron
loss vs itteration plots. Just like fig 1 and fig 2 we observe similar trend in case of multi-

neuron network also. Fig 2 converges faster than fig 1 and also reachs a lower loss value.
Below was my first trail for one_neuron SGD with momentum and Adam optimizers

SGD+ with momentum
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2 ProgrammingTask

2.1 Implementing SGD+ and Adam

One-Neuron Classifiers Analysis and Visualization

Majority of the code has been borrowed from ComputationalGraphPrimer package by Prof.
Kak: https://engineering.purdue.edu/kak/distCGP/ any edits have been made in a new file
called UpdatedComputationalGraphPrimer.py file, where | have created a new class called
UpdatedComputationalGraphPrimer which inherits the properties from the original
ComputationalGraphPrimer class.

| have edited run_training_loop_one_neuron_model to redirect to the appropriate
optimizer function based on the Optimizer ENUM.

New fuction added are backprop_and_update_params_one_neuron_model_sgd_plus
which impliments the SGD+ Momentum and
backprop_and_update_params_one_neuron_model_adam which impliments the Adam
Optimizer both the functions are based on the original function
backprop_and_update_params_one_neuron_model.

import random
import numpy

seed = 0
random.seed(seed)
numpy .random.seed(seed)

from UpdatedComputationalGraphPrimer import *

def compute_one_neuron(learning_rate):
plt.figure(figsize=(10, 6))
for optimizer in Optimizer:
cgp = UpdatedComputationalGraphPrimer(

one_neuron_model = True,
expressions = ['xw=ab*xa+bc*xb+cd*xc+ac*xd'],
output_vars = ['xw'],
dataset_size = 5000,
learning_rate = learning_rate,
training_iterations = 40000,
batch_size = 8,
display_loss_how_often = 100,
debug = False,
momentum = 0.9,

betal = 0.9 ,
beta2 = 0.999,
epsilon = 1e-8, # Small constant to prevent division by ze
optimizer = optimizer, #Enum to switch between optim
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cgp.parse_expressions()

training_data = cgp.gen_training data()

loss_running_record = cgp.run_training loop_one_neuron_model( training_
plt.plot(loss_running record, label=optimizer.name)

# Plot Labels

plt.xlabel("Iterations")

plt.ylabel("Loss")

plt.title(f"Learning Rate {learning_rate}")
plt.legend()

plt.grid()

plt.show()

if __name__ == '__main__':
learning rates = [le-3,1le-4,3e-3]
for x in learning_rates:
compute_one_neuron(x)
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As you can see from the above figures, which have the plots for SGD, SGD+ and Adam
Optimizers for the learning rates 1e-3(0.001), 1e-4(0.0001), 3e-3(0.003) respectively. For
all the 3 learning rates Adam converges fastst followed by SGD+ and SGD in the last.
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In case one with a relatively "good" learning rate of 1e-3, once Global minimum is reached
Adam osillates around it the most right after SGD+ folowed by the SGD being the smoothest

of all.

In the second case where the learning rate was 1e-4 which was too low, since the SGD has
only one parameter the learning rate so it could not move from the initial position and was
just osilating there, since the SGD+ has the other parameter momentum and Adam has
betas. They were able to move closer to the global minimum as they didnt just depend on

the learning rate. Adam is the smoothest here.

In the thirs case where the learning rate was 3e-3 which was too high, SGD algorithm
probably changed the sign once it got closer to the local minimum and then went the
opposite direction, basically it overshot itself. Here we can see the advantage SGD+ has over
the SGD. Again SGD+ and Adam performed as expected. In this case the Adam classifier

actually beats the torch.nn convergence rate and the SGD+ is too close to call visually.

We can clearly see that as the learning rate increased so did the convergence rate, it
converged the fastest when the learning rate was 3e-3 and the slowest when it was 1e-4.
(Ignoring the Vanilla SGD). (This might not always be the case, this is just speculation based
on the analysis | did with around 15 learning rate out of which 3 are presented here)

Multi-Neuron Analysis and Visualization
from UpdatedComputationalGraphPrimer import *

def compute_multi_neuron(learning_rate):
plt.figure(figsize=(10, 6))
for optimizer in Optimizer:
cgp = UpdatedComputationalGraphPrimer(
num_layers = 3,
layers_config = [4,2,1], # num of n
expressions = ['xw=ap*xp+aq*xg+ar*xr+as*xs’,
'xz=bp*xp+bg*xq+br*xr+bs*xs’,
'xo=cp*xw+cq*xz'],
output_vars ['x0'],
dataset_size = 5000,
learning_rate = learning_rate,
training_iterations = 20000,
batch_size = 8,
display_ loss_how_often = 100,
debug = False,
momentum = 0.9,

betal = 0.9
beta2 = ©.999,
epsilon = 1e-8, # Small constant to prevent division by ze
optimizer = optimizer, #Enum to switch between optim

)
cgp.parse_multi_layer_expressions()
training_data = cgp.gen_training data()
loss_running_record= cgp.run_training loop_multi_neuron_model( training d
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plt.plot(loss_running_record, label=optimizer.name)

# Plot Labels

plt.xlabel("Iterations™)

plt.ylabel("Loss")

plt.title(f"Learning Rate {learning_rate}")
plt.legend()

plt.grid()

plt.show()

learning_rates = [le-2, 5e-3, le-3]
for x in learning_rates:
compute_multi_neuron(x)
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self.layer_expressions: {1: ['xw=ap*xp+ag*xg+ar*xr+as*xs’', 'xz=bp*xp+bq*xqg+br*xr+bs
*xs'], 2: ['xo=cp*xw+cq*xz']}

[Final] independent vars: {'xr', 'xp', 'xs', 'xq'}

[Final] self.layer_vars: {0: ['xp', 'xq', 'xr', 'xs'], 1: ['xw', 'xz'], 2: ['x0o']}

[Final] self.layer_params: {1: [['ap', 'aq', 'ar', 'as'], ['bp', 'bq', 'br', 'b
s'11, 2: [['cp’, 'cq']1}

[Final] self.layer_exp_objects: {1: [<ComputationalGraphPrimer.Exp object at 0x0000
02348A6F0C10>, <ComputationalGraphPrimer.Exp object at ©0x000002348A6F2CBO>], 2: [<Co
mputationalGraphPrimer.Exp object at 0x000002348A6F2D10>]}

self.layer_expressions: {1: ['xw=ap*xp+ag*xqg+ar*xr+as*xs', 'xz=bp*xp+bg*xq+br*xr+bs
*xs'], 2: ['xo=cp*xw+cq*xz']}

[Final] independent vars: {'xr', 'xp',

xs', 'xq'}

[Final] self.layer _vars: {0: ['xp', 'xq', 'xr', 'xs'], 1: ['xw', 'xz'], 2: ['x0o']}

[Final] self.layer_params: {1: [['ap', 'aq', ‘'ar', ‘'as'], ['bp', 'bq', 'br', 'b
s']11, 2: [['cp’, "cq’]1}

[Final] self.layer_exp_objects: {1: [<ComputationalGraphPrimer.Exp object at ©x0000
02348A6F2CEQ>, <ComputationalGraphPrimer.Exp object at 0x000002348A6F2CBO>], 2: [<Co
mputationalGraphPrimer.Exp object at 0x000002348A77F100>]}

self.layer_expressions: {1: ['xw=ap*xp+ag*xqg+ar*xr+as*xs’', 'xz=bp*xp+bqg*xqg+br*xr+bs
*xs'], 2: ['xo=cp*xw+cq*xz']}

[Final] independent vars: {'xr', 'xp', 'xs', 'xq'}

[Final] self.layer_vars: {@: ['xp', 'xq', 'xr', 'xs'], 1: ['xw', 'xz'], 2: ['x0']}

[Final] self.layer_params: {1: [['ap', 'aq', 'ar', 'as'], ['bp', 'bgq', 'br', 'b
s'11, 2: [['ep’, "cq’]1}

[Final] self.layer_exp_objects: {1: [<ComputationalGraphPrimer.Exp object at 0x0000
02348A6F2CBO>, <ComputationalGraphPrimer.Exp object at ©0x000002348A6F2D70>], 2: [<Co
mputationalGraphPrimer.Exp object at 0x000002348A9AFA30>]}
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self.layer_expressions: {1: ['xw=ap*xp+ag*xg+ar*xr+as*xs’', 'xz=bp*xp+bq*xqg+br*xr+bs
*xs'], 2: ['xo=cp*xw+cq*xz']}

[Final] independent vars: {'xr', 'xp', 'xs', 'xq'}

[Final] self.layer_vars: {0: ['xp', 'xq', 'xr', 'xs'], 1: ['xw', 'xz'], 2: ['x0o']}

[Final] self.layer_params: {1: [['ap', 'aq', 'ar', 'as'], ['bp', 'bq', 'br', 'b
s'11, 2: [['cp’, 'cq']1}

[Final] self.layer_exp_objects: {1: [<ComputationalGraphPrimer.Exp object at 0x0000
02349104FA90>, <ComputationalGraphPrimer.Exp object at 0x000002349104FACO>], 2: [<Co
mputationalGraphPrimer.Exp object at 0x000002349104FB20>]}

self.layer_expressions: {1: ['xw=ap*xp+ag*xqg+ar*xr+as*xs', 'xz=bp*xp+bg*xq+br*xr+bs
*xs'], 2: ['xo=cp*xw+cq*xz']}

[Final] independent vars: {'xr', 'xp',

xs', 'xq'}

[Final] self.layer _vars: {0: ['xp', 'xq', 'xr', 'xs'], 1: ['xw', 'xz'], 2: ['x0o']}

[Final] self.layer_params: {1: [['ap', 'aq', ‘'ar', ‘'as'], ['bp', 'bq', 'br', 'b
s']11, 2: [['cp’, "cq’]1}

[Final] self.layer_exp_objects: {1: [<ComputationalGraphPrimer.Exp object at ©x0000
02349104FAF0Q>, <ComputationalGraphPrimer.Exp object at 0x000002349104FACO>], 2: [<Co
mputationalGraphPrimer.Exp object at ©x00000234910BC1CO>]}

self.layer_expressions: {1: ['xw=ap*xp+ag*xqg+ar*xr+as*xs’', 'xz=bp*xp+bqg*xqg+br*xr+bs
*xs'], 2: ['xo=cp*xw+cq*xz']}

[Final] independent vars: {'xr', 'xp', 'xs', 'xq'}

[Final] self.layer_vars: {@: ['xp', 'xq', 'xr', 'xs'], 1: ['xw', 'xz'], 2: ['x0']}

[Final] self.layer_params: {1: [['ap', 'aq', 'ar', 'as'], ['bp', 'bgq', 'br', 'b
s'11, 2: [['ep’, "cq’]1}

[Final] self.layer_exp_objects: {1: [<ComputationalGraphPrimer.Exp object at 0x0000
02349104FACO>, <ComputationalGraphPrimer.Exp object at ©0x000002349104FBBO>], 2: [<Co
mputationalGraphPrimer.Exp object at 0x00000234910C4C40>]}
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self.layer_expressions: {1: ['xw=ap*xp+ag*xg+ar*xr+as*xs’', 'xz=bp*xp+bq*xqg+br*xr+bs
*xs'], 2: ['xo=cp*xw+cq*xz']}

[Final] independent vars: {'xr', 'xp', 'xs', 'xq'}

[Final] self.layer_vars: {0: ['xp', 'xq', 'xr', 'xs'], 1: ['xw', 'xz'], 2: ['x0o']}

[Final] self.layer_params: {1: [['ap', 'aq', 'ar', 'as'], ['bp', 'bq', 'br', 'b
s'11, 2: [['cp’, 'cq']1}

[Final] self.layer_exp_objects: {1: [<ComputationalGraphPrimer.Exp object at 0x0000
02349111FEBO>, <ComputationalGraphPrimer.Exp object at 0x000002349111FFDO>], 2: [<Co
mputationalGraphPrimer.Exp object at 0x00000234910C8070>]}

self.layer_expressions: {1: ['xw=ap*xp+ag*xqg+ar*xr+as*xs', 'xz=bp*xp+bg*xq+br*xr+bs
*xs'], 2: ['xo=cp*xw+cq*xz']}

[Final] independent vars: {'xr', 'xp',

xs', 'xq'}

[Final] self.layer _vars: {0: ['xp', 'xq', 'xr', 'xs'], 1: ['xw', 'xz'], 2: ['x0o']}

[Final] self.layer_params: {1: [['ap', 'aq', ‘'ar', ‘'as'], ['bp', 'bq', 'br', 'b
s']11, 2: [['cp’, "cq’]1}

[Final] self.layer_exp_objects: {1: [<ComputationalGraphPrimer.Exp object at ©x0000
0234910C8100>, <ComputationalGraphPrimer.Exp object at 0x00000234910C8040>], 2: [<Co
mputationalGraphPrimer.Exp object at ©x000002348A7E57B0O>]}

self.layer_expressions: {1: ['xw=ap*xp+ag*xqg+ar*xr+as*xs’', 'xz=bp*xp+bqg*xqg+br*xr+bs
*xs'], 2: ['xo=cp*xw+cq*xz']}

[Final] independent vars: {'xr', 'xp', 'xs', 'xq'}

[Final] self.layer_vars: {@: ['xp', 'xq', 'xr', 'xs'], 1: ['xw', 'xz'], 2: ['x0']}

[Final] self.layer_params: {1: [['ap', 'aq', 'ar', 'as'], ['bp', 'bgq', 'br', 'b
s'11, 2: [['ep’, "cq’]1}

[Final] self.layer_exp_objects: {1: [<ComputationalGraphPrimer.Exp object at 0x0000
0234910C8040>, <ComputationalGraphPrimer.Exp object at 0x000002349111FFDO>], 2: [<Co
mputationalGraphPrimer.Exp object at 0x0000023491178700>]}
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self.layer_expressions: {1: ['xw=ap*xp+ag*xg+ar*xr+as*xs’', 'xz=bp*xp+bq*xqg+br*xr+bs
*xs'], 2: ['xo=cp*xw+cq*xz']}

[Final] independent vars: {'xr', 'xp', 'xs', 'xq'}

[Final] self.layer_vars: {0: ['xp', 'xq', 'xr', 'xs'], 1: ['xw', 'xz'], 2: ['x0o']}

[Final] self.layer_params: {1: [['ap', 'aq', 'ar', 'as'], ['bp', 'bq', 'br', 'b
s'11, 2: [['cp’, 'cq']1}

[Final] self.layer_exp_objects: {1: [<ComputationalGraphPrimer.Exp object at 0x0000
0234911F4610>, <ComputationalGraphPrimer.Exp object at 0x00000234911F44C0>], 2: [<Co
mputationalGraphPrimer.Exp object at 0x00000234911F4670>]}

self.layer_expressions: {1: ['xw=ap*xp+ag*xqg+ar*xr+as*xs', 'xz=bp*xp+bg*xq+br*xr+bs
*xs'], 2: ['xo=cp*xw+cq*xz']}

[Final] independent vars: {'xr', 'xp',

xs', 'xq'}

[Final] self.layer _vars: {0: ['xp', 'xq', 'xr', 'xs'], 1: ['xw', 'xz'], 2: ['x0o']}

[Final] self.layer_params: {1: [['ap', 'aq', ‘'ar', ‘'as'], ['bp', 'bq', 'br', 'b
s']11, 2: [['cp’, "cq’]1}

[Final] self.layer_exp_objects: {1: [<ComputationalGraphPrimer.Exp object at ©x0000
0234911F4640>, <ComputationalGraphPrimer.Exp object at 0x00000234911F44C0>], 2: [<Co
mputationalGraphPrimer.Exp object at ©0x00000234911F4BEO>]}

self.layer_expressions: {1: ['xw=ap*xp+ag*xqg+ar*xr+as*xs’', 'xz=bp*xp+bqg*xqg+br*xr+bs
*xs'], 2: ['xo=cp*xw+cq*xz']}

[Final] independent vars: {'xr', 'xp', 'xs', 'xq'}

[Final] self.layer_vars: {@: ['xp', 'xq', 'xr', 'xs'], 1: ['xw', 'xz'], 2: ['x0']}

[Final] self.layer_params: {1: [['ap', 'aq', 'ar', 'as'], ['bp', 'bgq', 'br', 'b
s'11, 2: [['ep’, "cq’]1}

[Final] self.layer_exp_objects: {1: [<ComputationalGraphPrimer.Exp object at 0x0000
0234911F46A0>, <ComputationalGraphPrimer.Exp object at 0x00000234911F44C0>], 2: [<Co
mputationalGraphPrimer.Exp object at 0x00000234910E5540>]}
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self.layer_expressions: {1: ['xw=ap*xp+ag*xg+ar*xr+as*xs’', 'xz=bp*xp+bq*xqg+br*xr+bs
*xs'], 2: ['xo=cp*xw+cq*xz']}

[Final] independent vars: {'xr', 'xp', 'xs', 'xq'}

[Final] self.layer_vars: {0: ['xp', 'xq', 'xr', 'xs'], 1: ['xw', 'xz'], 2: ['x0o']}

[Final] self.layer_params: {1: [['ap', 'aq', 'ar', 'as'], ['bp', 'bq', 'br', 'b
s'11, 2: [['cp’, 'cq']1}

[Final] self.layer_exp_objects: {1: [<ComputationalGraphPrimer.Exp object at 0x0000
02348A7FA4DO>, <ComputationalGraphPrimer.Exp object at ©0x000002348A7FBA30>], 2: [<Co
mputationalGraphPrimer.Exp object at 0x000002348A7FAD70>]}

self.layer_expressions: {1: ['xw=ap*xp+ag*xqg+ar*xr+as*xs', 'xz=bp*xp+bg*xq+br*xr+bs
*xs'], 2: ['xo=cp*xw+cq*xz']}

[Final] independent vars: {'xr', 'xp',

xs', 'xq'}

[Final] self.layer _vars: {0: ['xp', 'xq', 'xr', 'xs'], 1: ['xw', 'xz'], 2: ['x0o']}

[Final] self.layer_params: {1: [['ap', 'aq', ‘'ar', ‘'as'], ['bp', 'bq', 'br', 'b
s']11, 2: [['cp’, "cq’]1}

[Final] self.layer_exp_objects: {1: [<ComputationalGraphPrimer.Exp object at ©x0000
02348A7FA350>, <ComputationalGraphPrimer.Exp object at 0x000002348A7FBA30>], 2: [<Co
mputationalGraphPrimer.Exp object at ©0x000002348A7FBE80O>]}

self.layer_expressions: {1: ['xw=ap*xp+ag*xqg+ar*xr+as*xs’', 'xz=bp*xp+bqg*xqg+br*xr+bs
*xs'], 2: ['xo=cp*xw+cq*xz']}

[Final] independent vars: {'xr', 'xp', 'xs', 'xq'}

[Final] self.layer_vars: {@: ['xp', 'xq', 'xr', 'xs'], 1: ['xw', 'xz'], 2: ['x0']}

[Final] self.layer_params: {1: [['ap', 'aq', 'ar', 'as'], ['bp', 'bgq', 'br', 'b
s'11, 2: [['ep’, "cq’]1}

[Final] self.layer_exp_objects: {1: [<ComputationalGraphPrimer.Exp object at 0x0000
02348A7FBA30>, <ComputationalGraphPrimer.Exp object at ©0x000002348A7FB880>], 2: [<Co
mputationalGraphPrimer.Exp object at 0x000002349111E380>]}
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Learning Rate 0.09
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In case of multi-neuron unlike one-neuron, Adam optimizer did not always perform the best.

As we observe from the above plots as the learning rate increased, the performance of the
Adam optimizer reduced which is opposite of what we observed in the one-neuron, it isn't
the expected behaviour. But our implementation of the optimizers and the multi-neural
network is very basic. Another factor could be the Bais, incase of one-neuron we used only
bais for the whole network/layer where as here in case of multi-neuron we used different
Bais for every node in every layer. This could have made the optimizer more volatile
compared to the single-neuron.

When the learning rate was low, Adam outperformed the SGD+ and SGD, converged faster
as it used both RMS and momentum for faster convergence. It is followed by SGD+ then
SGD, very similar to one-neuron.

Comparing Effects of Hyperparameters:

import time
from prettytable import PrettyTable

def compute_one_neuron_betas(bl,b2):

# results = []

cgp = UpdatedComputationalGraphPrimer(
one_neuron_model = True,
expressions = ['xw=ab*xa+bc*xb+cd*xc+ac*xd'],
output_vars = ['xw'],
dataset_size = 5000,
learning_rate = 1le-3,
training_iterations = 40000,
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batch_size = 8,
display_loss_how_often = 100,
debug = False,
momentum = 0.9,

betal = b1,

beta2 = b2,

epsilon = 1e-8, # Small constant to prevent division by zero
optimizer = Optimizer.ADAM, #Enum to switch between optimi

cgp.parse_expressions()
training_data = cgp.gen_training_data()

start_time = time.time() # Start timing

loss_running_record = cgp.run_training loop_one_neuron_model( training_data )
end_time = time.time() # End timing

# results.append()

# print("resultsssssSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS
plt.plot(loss_running_record, label=f"Betal {bl}, Beta2 {b2}")

return ([bl, b2, np.round(end_time-start_time,2), np.round(loss_running_recor

[0.8, ©.95, ©.99, 0.5]

[0.89, 0.9, 0.95, 0.5]

= [0.99, 0.5]

= [0.95, 0.5]

igure(figsize=(10, 6))

ts = []

in b1l:

or y in b2:
results.append(compute_one_neuron_betas(x,y))

nt("rrrrrrrrrrrrrrrrrresults™)

nt(results)

label("Iterations™)

label("Loss")

itle(f"Effect of Hyperparameters: Betal & Beta2")

egend()

rid()

how()

# Display the table from the data

table
table
table
table
table
print

= PrettyTable()
.title = "Effect of Hyperparameters: Betal & Beta2"
.field names = ["Betal", "Beta2", "Time Taken (s)", "Final Loss", "Min Loss"]

.add_rows(results)
.sortby = "Final Loss"
(table)
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Effect of Hyperparameters: Betal & Beta2
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Betal 0.99, Betaz 0.9
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e e e L +
| Effect of Hyperparameters: Betal & Beta2 |
Fe------ Fo-mm--- Fommmm e e Fommmm e Fommmm - +
| Betal | Beta2 | Time Taken (s) | Final Loss | Min Loss |
+------- +------- B S Fo-mm - +
| 0.5 | eo.5 | 11.24 | ©.0881 | 0.0021 |
| ©.99 | 0.5 | 11.4 | ©0.088 | 0.0021 |
| ©.95 | 0.95 | 11.15 | ©.0891 | 0.0023 |
| .5 | .95 | 11.49 | ©0.095 | ©.0032 |
| ©.99 | 0.95 | 11.37 | 0.097 | @.0032 |
| .95 | 0.9 | 11.31 | ©.0984 | 0.0048 |
| 0.8 | 0.95 | 11.18 | ©.0993 | @.002 |
| .95 | 0.5 | 11.19 | ©.1e01 | 0.0041 |
| 0.5 | ©.89 | 11.3 | ©.1008 | 0.0059 |
| 0.8 | 0.9 | 10.97 | o.101 | ©.0035
| 0.8 | ©.89 | 11.57 | ©0.1032 | 0.0027 |
| ©.99 | 0.89 | 11.21 | ©.1e46 | ©.0039 |
| o.5 | 0.9 | 11.35 | ©.1059 | ©.0035 |
| ©.95 | ©.89 | 11.03 | ©.10e64 | ©0.0032 |
| 0.8 | 0.5 | 11.13 | ©.1077 | 0.0022 |
| .99 | 0.9 | 11.61 | ©0.1125 | @.e017 |
F-mmm—-- +---m--- Frmmm e Fommm e Frmmm e +

bl = [0.8, ©.95, 0.99, 0.5]

b2 = [0.89, 0.9, 0.95, 0.5]

# bl = [0.99, 0.5]

# b2 = [0.95, 0.5]

plt.figure(figsize=(10, 6))

results = []

for x in bil:

for y in b2:

# print(results)

plt.
plt.
plt.
plt.
plt
plt.

results.append(compute_one_neuron_betas(x,y))
# print("rrrrrrrrrrrrrrrrrresults”)

xlabel("Iterations")
ylabel("Loss")
title(f"Effect of Hyperparameters: Betal & Beta2")

legend()

.grid()

show()

# Display the table from the data
table = PrettyTable()
table.title = "Effect of Hyperparameters: Betal & Beta2"

table.field _names = ["Betal", "Beta2", "Time Taken (s)", "Final Loss", "Min Loss"]

table.add_rows(results)

prin
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Effect of Hyperparameters: Betal & Beta2
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Fe------ +------- +
| Betal | Beta2 |
+------- +------- +
| 0.8 | ©.89 |
| 0.8 | 0.9 |
| 0.8 | ©.95 |
| 0.8 | 0.5 |
| ©.95 | 0.89 |
| .95 | 0.9 |
| ©.95 | .95 |
| ©.95 | 0.5 |
| ©.99 | ©.89 |
| ©.99 | 0.9 |
| ©.99 | 0.95 |
| ©.99 | 0.5 |
| 0.5 | 0.89 |
| ©.5 | 0.9 |
| .5 | .95 |
| 0.5 | eo.5 |
F-mmm—-- +--m— - +

Incase of Adam, beta 1 is used for the momentum. It helps to keep moving more and more if

HW3_PranayChimmani

---------------- L L
Time Taken (s) | Final Loss | Min Loss |
———————————————— et DEEE LR R
11.58 | ©.0887 | 0.0019 |
11.27 | ©0.097 | ©.0024 |
11.47 | ©.1077 | ©.0031 |
11.08 | ©.0983 | 0.0023
11.33 | ©.1007 | 0.0003
11.34 | eo.111 | ©.0024 |
11.22 | o.105 | @.002 |
11.24 | ©.0849 | 0.0078 |
11.3 | ©.1053 | 0.0039 |
11.49 | ©.0957 | @.004 |
11.13 | ©.0983 | 0.0025
11.56 | ©.0955 | @.0041 |
11.31 | ©.098 | @.0042 |
11.74 | ©.1077 | 0.0018 |
12.12 | ©.1057 | ©0.0045 |
11.63 | ©.1029 | @.004 |
———————————————— e e L LR L

the direction of the gradient is same,it helps to converge faster and get out of loccal

minimum. Beta 2 is used for squared gradient depending on the previous.

The running times, the convergence are very close to each other as we can see from the plot

and the table. The final lose is very very slightly different, which again can just be margin or

error. Its too close

to say.

| have sorted it according to the final loss, to maybe get any insights as we observe we got

least Final loss when both B1 and b2 were the least 0.5 and 0.5 which is not expected. and

the seconf highest when b2 was 0.5 and b1 was 0.95, maybe b2 being less has more effect
than b17? as the third least is when b1 n b2 are 0.95.

When sorted according to B1, | dont really observe any trends that are on your face visible.

3. Extra cred

it

def compute_one_neuron( normalization: Normalization):
plt.figure(figsize=(10, 6))
for optimizer in Optimizer:
cgp = UpdatedComputationalGraphPrimer(

one_neuron_model = True,

expressions = ['xw=ab*xa+bc*xb+cd*xc+ac*xd'],
output_vars = ['xw'],

dataset_size = 5000,

learning_rate = 1le-3,

training_iterations = 40000,

batch_size = 8,

display loss_how_often = 100,
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debug = False,
momentum = 0.9,
betal = 9.9 ,
beta2 = 0.999,
epsilon = 1le-8, # Small constant to prevent division by ze
optimizer = optimizer, #Enum to switch between optim

cgp.parse_expressions()

training_data = cgp.gen_training data()

loss_running_record = cgp.run_training loop_one_neuron_model( training_
plt.plot(loss_running record, label=optimizer.name)

# Plot Labels

plt.xlabel("Iterations")

plt.ylabel("Loss")

plt.title(f"Normalization {normalization.name}")

plt.legend()

plt.grid()

plt.show()
if __name__ == '__main__':
# Learning_rates = [le-3,1e-4,3e-3]
# Learning _rates = [le-3]

for x in Normalization:
compute_one_neuron(x)

0
0
0
Normalization NONE
0.5 i I Il [ WAl | | H el
0.4 1
0.3 4 —— VANILLASGD
% —— SGDMOMENTUM
—— ADAM
0.2 1
0.1
0.0 1
T T T T T T T T T
0 50 100 150 200 250 300 350 400
lterations
0
0
0
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No Normalization vs Normalization vs Truncated Standard Deviation

Remap Normalization

Case 1 No Normalization: Since the training data was already Gaussian input it was already

around the mean with the infinite interval range (-o,0). Since the data is already clean but
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with extreme values, it should work pretty good. From the plot we can see that It performed
very well in case of SGD+ and Adam as the data does not have any irregularities, it

converged to the min loss faster than max normalization and was also very smooth.

Case 2 Max Value Normalization: Here we are just diving the batch by its max value, each
batch will have different batch values, also the extreme values are very extreme might also
be infinite. So, the it will cause alot of irregularities cause of varying batch max values and
the scaling done by just diving by max value. We can observe that the plot becomes more

volatile cause the irregularies and also its the slowest convergence.

Case 2 Trncated SD Normalization: Here we are truncating to the interval (u-50,p+50)
remove all the extreme outliers which once you cross 5 SD are irrelavant anyways. Then we
are Rescaling it to (-1,1). Since this also changes the distribution slightly it became more
volatile. But it is smoother than the Max Value and also converges the fastest among the

three, The scaling is very rudimetry but effective.

Source Code for the new class

Majority again borrowed from Prof. Kak's work.

from ComputationalGraphPrimer import *
from enum import Enum

class Optimizer(Enum):
VANILLASGD = 1
SGDMOMENTUM = 2
ADAM = 3

class Normalization(Enum):
NONE = 1
MAXVALUE = 2
SD = 3

class UpdatedComputationalGraphPrimer(ComputationalGraphPrimer):

def __init_ (self, *args, **kwargs):
if 'momentum’' in kwargs : momentum = kwargs.pop( 'momentum")
if 'betal' in kwargs:
betal = kwargs.pop('betal’)
if 'beta2' in kwargs:
beta2 = kwargs.pop('beta2")
if 'epsilon' in kwargs:
epsilon = kwargs.pop('epsilon")
if 'optimizer' in kwargs : optimizer = kwargs.pop('optimizer")

if momentum:
self.momentum = momentum
else:
self.momentum
if betal:
self.betal = betal

0.9
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else:

self.betal = 0.9
if beta2:

self.beta2 = beta2
else:

self.beta2 = 0.999
if epsilon:

self.epsilon = epsilon
else:

self.epsilon = 1e-8

if optimizer:

self.optimizer = optimizer
else:

self.optimizer = Optimizer.VANILLASGD
super().__init__ (*args, **kwargs)

# Initialize first and second moment estimates for Adam Optimizer
self.t =1 # Time step counter

B B B B e L Bl e e e e T
HHARHHARBH AR AR AR one neuron model ##HAHRBHAHBHHAHHHAATY
def run_training_loop_one_neuron_model(self, training_data,normalization = Norm

The training loop must first initialize the learnable parameters. Remember
symbolic names in your input expressions for the neural layer that do not b
letter 'x'. 1In this case, we are initializing with random numbers from a u
over the interval (0,1).
self.vals_for_learnable_params = {param: random.uniform(@,1) for param in s
self.velocity bias = 0.0

self.velocity = {param: 0.0 for param in self.vals_for_learnable_params}

self.bias = random.uniform(9,1) ## Adding the bias improv
##  We initialize it to

self.m_t = {param: 0.0 for param in self.vals for_learnable params}

self.v_t = {param: 0.0 for param in self.vals for_learnable_params}

self.m_t_bias = 0.0 # For bias

self.v_t_bias = 0.0 # For bias

class Dataloader:
To understand the logic of the dataloader, it would help if you first u
the training dataset is created. Search for the following function in

gen_training_data(self)

As you will see in the implementation code for this method, the trainin
consists of a Python dict with two keys, © and 1, the former points to
all Class © samples and the latter to a list of all Class 1 samples. I
the data samples are drawn from a multi-dimensional Gaussian distributi
classes have different means and variances. The dimensionality of each
is set by the number of nodes in the input layer of the neural network.
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data loader's job is to construct a batch of samples drawn randomly

lists mentioned above. And it mush also associate the class label with
separately.

def

def

def

def

__init_ (self, training_data, batch_size):

self.training_data = training_data

self.batch_size = batch_size

self.class_© _samples = [(item, @) for item in self.training_data[@]
self.class_1 samples = [(item, 1) for item in self.training_data[1]

__len__(self):
return len(self.training_data[@]) + len(self.training_data[1])

_getitem(self):
cointoss = random.choice([0,1]) ## When
## sam
if cointoss == @:
return random.choice(self.class_©_samples)
else:
return random.choice(self.class_1 samples)

getbatch(self):
batch_data,batch_labels = [],[] ## First
maxval = 0.0 ## For a
for _ in range(self.batch_size):

item = self._getitem()

if np.max(item[@]) > maxval:

maxval = np.max(item[0@])

batch_data.append(item[@])

batch_labels.append(item[1])
if(normalization == Normalization.MAXVALUE):

batch_data = [item/maxval for item in batch_data] ## N
# Truncates data to (u - 50, yu + 50) and rescales to (-1,1).
elif normalization == Normalization.SD:

mean = np.mean(batch_data)

sigma = np.std(batch_data)

# Define truncation range

lower_bound = mean - (5 * sigma)

upper_bound = mean + (5 * sigma)

# Truncating the values to remove outliers

batch_data = np.clip(batch_data, lower_bound, upper_bound)

# Rescale to (-1,1)

batch_data = 2 * (batch_data - lower_bound) / (upper_bound - lo
batch = [batch_data, batch_labels]
return batch

data_loader = DatalLoader(training_data, batch_size=self.batch_size)

data = data_loader.getbatch()
loss_running_record = []

i=o0

avg_loss_over_iterations = 0.0

for i in range(self.training_iterations):
data = data_loader.getbatch()
data_tuples_in_batch = data[9]
class_labels_in_batch = data[1]
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y_preds, deriv_sigmoids = self.forward_prop_one_neuron_model(data_tupl
loss = sum([(abs(class_labels_in_batch[i] - y _preds[i]))**2 for i in ra
avg_loss_over_iterations += loss / float(len(class_labels_in_batch))
if i%(self.display_loss_how_often) == @:
avg_loss_over_iterations /= self.display_loss_how_often
loss_running_record.append(avg_loss_over_iterations)
# print("[iter=%d] Lloss = %.4f" % (i+1, avg_Lloss_over iterations)
avg_loss_over_iterations = 0.0
y_errors_in_batch = list(map(operator.sub, class_labels_in_batch, y pre
# Adam Optimizer
if self.optimizer == Optimizer.ADAM:
self.backprop_and_update_params_one_neuron_model adam(data_tuples_i
# SGD+ momentum
elif self.optimizer == Optimizer.SGDMOMENTUM:
self.backprop_and_update_params_one_neuron_model sgd plus(data_tupl
# Vanilla SGD
else:
self.backprop_and_update_params_one_neuron_model(data_tuples_in_bat
return loss_running_record

backprop_and_update_params_one_neuron_model_sgd plus(self, data_tuples_in_b
This function implements the equations shown on Slide 61 of my Week 3 prese
class at Purdue. All four parameters defined above are lists of what was e
forward prop function or calculated by it for each training data sample in
input_vars = self.independent_vars
input_vars_to_param_map = self.var_to_var_param[self.output_vars[0]]
param_to_vars_map = {param : var for var, param in input_vars_to_param_map.
vals_for_learnable_params = self.vals_for_learnable_params
# Compute gradients and apply momentum updates for weights
for param in self.vals_for_learnable_params:

partial_of_loss_wrt_param = 0.0

for j in range(self.batch_size):
vals_for_input_vars_dict = dict(zip(input_vars, list(data_tuples_in
partial of loss_wrt_param += - y_errors_in_batch[j] * vals_for_inpu
partial_of loss_wrt_param /= float(self.batch_size)

# Apply momentum update rule

# formula from youtube video: https://www.youtube.com/watch?v=k8fTYIPd3
# self.velocity[param] = self.momentum * self.velocity[param] + (1 - se

# Formula form the Class Lecture pdf: pk+1 = pk - 2-a-JF(pR)-€kR
# self.velocity[param] = self.momentum * self.velocity[param] + 2 * se

# formula from the HW pdf: vt+l = Bvt +gt
self.velocity[param] = self.momentum * self.velocity[param] + partial_

# Update weight using velocity: wt+l = wt -nvt+l
self.vals_for_learnable_params[param] -= self.learning rate * self.velo

# Compute gradients and apply momentum updates for bias
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y_error_avg = sum(y_errors_in_batch) / float(self.batch_size)
deriv_sigmoid_avg = sum(deriv_sigmoids) / float(self.batch_size)

gradient_bias = y_error_avg * deriv_sigmoid_avg

# Apply momentum update rule for bias
# self.velocity bias = self.momentum * self.velocity bias + (1 - seljf.momen
self.velocity bias = self.momentum * self.velocity bias + gradient_bias

# Update bias using velocity
self.bias += self.learning_rate * self.velocity_bias
# self.bias += self.velocity bias

backprop_and_update_params_one_neuron_model adam(self, data_tuples_in_batch

Implements backpropagation using the Adam Optimizer.

input_vars = self.independent_vars

input_vars_to_param_map = self.var_to_var_param[self.output_vars[0]]
param_to_vars_map = {v: k for k, v in input_vars_to_param_map.items()} # C

# Compute gradients and apply Adam updates for weights
for param in self.vals_for_learnable_params:
partial_of_loss_wrt_param = 0.0

for j in range(self.batch_size):
vals_for_input_vars_dict = dict(zip(input_vars, list(data_tuples_in
partial_of_loss_wrt_param += - y_errors_in_batch[j] * vals_for_inpu

partial_of _loss_wrt param /= float(self.batch_size)

# Update biased first moment estimate
# mt+l = 61 » mt +(1-61)+gradt,
self.m_t[param] = self.betal * self.m t[param] + (1 - self.betal) * par

# Update biased second raw moment estimate:
# vt+l = 62 x vt +(1-62)+(gradt)2
self.v_t[param] = self.beta2 * self.v_t[param] + (1 - self.beta2) * (pa

# Compute bias-corrected moment estimates
# “mt+l= mt / 1 - 61"t

m_t_hat = self.m_t[param] / (1 - self.betal ** self.t)
# "vt+l = vt / 1 - B2t
v_t _hat = self.v_t[param] / (1 - self.beta2 ** self.t)

# Apply Adam update rule
# pt+l = pt - (Lr « ("mt+1 / ("vt+l +€) * -1/2))
self.vals_for_learnable_params[param] -= self.learning rate * (m_t_hat

# Compute bias gradient

y_error_avg = sum(y_errors_in_batch) / float(self.batch_size)
deriv_sigmoid_avg = sum(deriv_sigmoids) / float(self.batch_size)
gradient_bias = y_error_avg * deriv_sigmoid_avg

# Using the same formulas as above but for bias
# Update biased first moment estimate for bias
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61 * mt_b +(1-61)*gradt

self.m_t _bias = self.betal * self.m_t_bias + (1 - self.betal) * gradient_bi

# Update biased second moment estimate for bias

# vt b =

62 x vt_ b +(1-62)x(gradt)2

self.v_t _bias = self.beta2 * self.v_t_bias + (1 - self.beta2) * (gradient_b

# Compute bias-corrected estimates for bias

# "mt_b=

mt b /1 - 61t

m_t_bias_hat = self.m_t_bias / (1 - self.betal ** self.t)

# vt B

=vt b/ 1- 62°t

v_t_bias_hat = self.v_t_bias / (1 - self.beta2 ** self.t)

# Apply
# bt+1

Adam update rule for bias
=bt + (Lr x ("'mt b / (vt b +€) * -1/2))

self.bias += self.learning_rate * (m_t_bias_hat / (v_t_bias_hat + self.epsi
# Increment time step
self.t += 1

B L L L e e

HHBHA B H AR A A A A A A A A A A A A
HHAHHHHHAH AR multl neuron model ##HHHHHHHHIHHHHIHHH

def run_training_loop_multi_neuron_model(self, training_data):

class Dataloader:

To understand the logic of the dataloader, it would help if you first u

the

training dataset is created. Search for the following function in

gen_training_data(self)

As you will see in the implementation code for this method, the trainin
consists of a Python dict with two keys, © and 1, the former points to

all
the

Class © samples and the latter to a list of all Class 1 samples. I
data samples are drawn from a multi-dimensional Gaussian distributi

classes have different means and variances. The dimensionality of each
is set by the number of nodes in the input layer of the neural network.

The

data loader's job is to construct a batch of samples drawn randomly

lists mentioned above. And it mush also associate the class label with
separately.

def

def

def

__init_ (self, training_data, batch_size):

self.training_data = training_data

self.batch_size = batch_size

self.class_© samples = [(item, @) for item in self.training_data[@]
self.class_1 samples = [(item, 1) for item in self.training data[1]

__len_ (self):
return len(self.training data[@]) + len(self.training data[1])

_getitem(self):
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cointoss = random.choice([0,1]) ## When
## sam
if cointoss ==
return random.choice(self.class_©_samples)
else:
return random.choice(self.class_1 samples)

def getbatch(self):

batch_data,batch_labels = [],[] ## First
maxval = 0.0 ## For a
for _ in range(self.batch_size):

item = self. getitem()

if np.max(item[@]) > maxval:

maxval = np.max(item[0@])

batch_data.append(item[0])

batch_labels.append(item[1])
batch_data = [item/maxval for item in batch_data] ## Norma
batch = [batch_data, batch_labels]
return batch

## The training loop must first initialize the Llearnable parameters. Reme
## symbolic names 1in your input expressions for the neural Llayer that do n
## Letter 'x'. In this case, we are initializing with random numbers from
## over the interval (0,1):
self.vals_for_learnable_params = {param: random.uniform(@,1) for param in s
## In the same manner, we must also initialize the biases at each node th
## propagating data:
self.bias = {i : [random.uniform(©,1) for j in range( self.layers_config|
data_loader = DatalLoader(training_data, batch_size=self.batch_size)
loss_running_record = []
i=o
avg_loss_over_iterations = 0.0 ##t
H#
# momentum parameters
self.velocity = {param: 0.0 for param in self.all params}
self.velocity bias = {i: [0.0 for _ in range(self.layers_config[i])]
for i in range(1l, self.num_layers)}
## For estimating the changes to the bias to be made on the basis of the de
self.m_t = {param: 0.0 for param in self.vals for_learnable_params}
self.v_t = {param: 0.0 for param in self.vals for_learnable_params}
self.m_t_bias = {i: [0.0 for _ in range(self.layers_config[i])]
for i in range(l, self.num_layers)}
self.v_t_bias = {i: [0.0 for _ in range(self.layers_config[i])]
for i in range(l, self.num_layers)}
for i in range(self.training_iterations):
data = data_loader.getbatch()
data_tuples = data[@]
class_labels = data[1]
self.forward_prop_multi_neuron_model(data_tuples)
predicted_labels_for_batch = self.forw_prop_vals_at_layers[self.num_lay
y_preds = [item for sublist in predicted_labels_for_batch for item i
loss = sum([(abs(class_labels[i] - y_preds[i]))**2 for i in range(len(c
loss_avg = loss / float(len(class_labels))
avg_loss_over_iterations += loss_avg
if i%(self.display_loss_how_often) == 0:
avg_loss_over_iterations /= self.display_loss_how_often
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loss_running_record.append(avg_loss_over_iterations)
# print("[iter=%d] Lloss = %.4f" % (i+1, avg_loss_over_iterations)
avg_loss_over_iterations = 0.0
y_errors_in_batch = list(map(operator.sub, class_labels, y preds))
self.backprop_and _update_params_multi_neuron_model(y_preds, y errors_in
# Adam Optimizer
if self.optimizer == Optimizer.ADAM:
self.backprop_and_update_params_multi_neuron_model_adam(y_preds, y_
# SGD+ momentum
elif self.optimizer == Optimizer.SGDMOMENTUM:
self.backprop_and_update_params_multi_neuron_model sgd_plus(y_preds
# Vanilla SGD
else:
self.backprop_and_update_params_multi_neuron_model(y_preds, y_error
return loss_running_record

backprop_and_update_params_multi_neuron_model sgd plus(self, predictions, y
First note that loop index variable 'back_layer_index' starts with the inde
the last layer. For the 3-layer example shown for 'forward', back_layer_in
starts with a value of 2, its next value is 1, and that's it.

In the code below, the outermost loop is over the data samples in a batch.

on Slide 73 of my Week 3 lecture, in order to calculate the partials of Los
respect to the learnable params, we need to backprop the prediction errors

the gradients of the Sigmoid. For the purpose of satisfying the requiremen
SGD, the backprop of the prediction errors and the gradients needs to be ca
out separately for each training data sample in a batch. That's what the o
loop is for.

After we exit the outermost loop, we average over the results obtained from
training data sample in a batch.

Pay attention to the variable ‘'vars_in_layer'. These store the node variab
the current layer during backpropagation.
## Eq. (24) on Slide 73 of my Week 3 Llecture says we need to store backprop
pred_err_backproped_at_layers = [ {i : [None for j in range( self.layers_
for i in range(se
## This will store "\delta L / \delta w" you see at the LHS of the equation
partial_of_loss_wrt_params = {param : 0.0 for param in self.all params}
## For estimating the changes to the bias to be made on the basis of the de
bias_changes = {i : [0.0 for j in range( self.layers_config[i] ) ] for i
for b in range(self.batch_size):
pred_err_backproped_at_layers[b][self.num_layers - 1] = [ y_errors[b] ]
for back_layer_index in reversed(range(1l,self.num_layers)):
input_vals = self.forw_prop_vals_at_layers[back_layer_index -1]
deriv_sigmoids = self.gradient_vals_for_layers[back_layer_index]
vars_in_layer = self.layer_vars[back_layer_index]
vars_in_next_layer_back = self.layer_vars[back_layer_index - 1]
vals_for_input_vars_dict = dict(zip(vars_in_next_layer_back, self.
## For the next statement, note that lLayer_params are stored in a a
## {1: [['ap’, 'aq’, ‘ar’, ‘as'], ['bp’', 'bq’, 'br’', 'bs']],
## "layer_params[idx]" is a list of Llists for the link weights in L
layer_params = self.layer_params[back_layer_index]
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transposed_layer_params = list(zip(*layer_params))
for k,varl in enumerate(vars_in_next_layer back):
for j,var2 in enumerate(vars_in_layer):
pred_err_backproped_at_layers[b][back_layer_index - 1][k] =

for j,var in enumerate(vars_in_layer):
layer_params = self.layer_params[back_layer_index][j]
input_vars_to_param_map = self.var_to_var_param[var]
param_to_vars_map = {param : var for var, param in input_vars_t

## Update the partials of Loss wrt to the lLearnable parameters
## and the previous layer. You are accumulating these partials
## data samples in the batch being processed. For each traini
## being used is shown in Eq. (29) on Slide 77 of my Week 3 sl
for i,param in enumerate(layer_params):
partial_of_loss_wrt_params[param] +=  pred_err_backprope
vals_for_in
## We will now estimate the change in the bias that needs to be ma
## from the derivatives the sigmoid at the nodes in the current Lla
## backproped to the previous Llayer nodes:
for k,varl in enumerate(vars_in_next_layer back):
for j,var2 in enumerate(vars_in_layer):
if back_layer_index-1 > 0:
bias_changes[back_layer_index-1][k] += pred_err_backpro

## Now update the Llearnable parameters. The Loop shown below carries out S

for

##
for

param in partial_of_loss_wrt_params:

partial of loss_wrt_param = partial_of loss_wrt_params[param] / float(
self.velocity[param] = self.momentum * self.velocity[param] + partial o
# self.velocity[param] = self.momentum * self.velocity[param] + (1 - se
self.vals_for_learnable_params[param] += self.learning rate * self.velo
# self.vals_for_Llearnable_params[param] -= self.velocity[param]

# step = self.learning_rate * partial_of_Loss_wrt_param
# self.vals_for_learnable_params[param] += step

Finally we update the biases at all the nodes that aggregate data:

layer_index in range(1,self.num_layers):

for k in range(self.layers_config[layer_index]):
# self.bias[layer_index][kR] += self.learning_rate * ( bias_change
bias_gradient = bias_changes[layer_index][k] / float(self.batch_siz
self.velocity bias[layer_index][k] = self.momentum * self.velocity_
self.bias[layer_index][k] += self.learning_rate * self.velocity bia
# self.velocity bias[layer_index][k] = self.momentum * self.velocit
# self.bias[layer _index][R] -= self.velocity bias[layer_index][R]

def backprop_and_update_params_multi_neuron_model adam(self, predictions, y_ernr

First note that loop index variable 'back_layer_index' starts with the inde

the

last layer. For the 3-layer example shown for 'forward', back_layer_in

starts with a value of 2, its next value is 1, and that's it.

In the code below, the outermost loop is over the data samples in a batch.
on Slide 73 of my Week 3 lecture, in order to calculate the partials of Los
respect to the learnable params, we need to backprop the prediction errors
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the gradients of the Sigmoid. For the purpose of satisfying the requiremen
SGD, the backprop of the prediction errors and the gradients needs to be ca
out separately for each training data sample in a batch. That's what the o
loop is for.

After we exit the outermost loop, we average over the results obtained from
training data sample in a batch.

Pay attention to the variable 'vars_in_layer'. These store the node variab
the current layer during backpropagation.
## Eq. (24) on Slide 73 of my Week 3 lecture says we need to store backprop
pred_err_backproped_at_layers = [ {i : [None for j in range( self.layers_
for i in range(se
## This will store "\delta L / \delta w" you see at the LHS of the equation
partial_of loss_wrt_params = {param : 0.0 for param in self.all params}
bias_changes = {i : [0.0 for j in range( self.layers_config[i] ) ] for i

for b in range(self.batch_size):
pred_err_backproped_at_layers[b][self.num_layers - 1] = [ y_errors[b] ]
for back_layer_index in reversed(range(1l,self.num_layers)):
input_vals = self.forw_prop_vals_at_layers[back_layer_index -1]
deriv_sigmoids = self.gradient_vals_for_layers[back_layer_index]
vars_in_layer = self.layer_vars[back_layer_index]
vars_in_next_layer_back = self.layer_vars[back_layer_index - 1]
vals_for_input_vars dict = dict(zip(vars_in_next_layer_back, self.
## For the next statement, note that layer_params are stored in a ad
#H# {1: [['ap', 'aq', 'ar", 'GS'], ['bp', 'bq'.v 'bP'J 'bS']]J
## "layer params[idx]" is a list of Llists for the Llink weights in L
layer_params = self.layer_params[back_layer_index]
transposed_layer_params = list(zip(*layer_params))
for k,varl in enumerate(vars_in_next_layer_ back):
for j,var2 in enumerate(vars_in_layer):
pred_err_backproped_at_layers[b][back_layer_index - 1][k] =

for j,var in enumerate(vars_in_layer):
layer_params = self.layer_params[back_layer_index][j]
input_vars_to_param_map = self.var_to_var_param[var]
param_to_vars_map = {param : var for var, param in input_vars_t

## Update the partials of Loss wrt to the lLearnable parameters
## and the previous layer. You are accumulating these partials
## data samples in the batch being processed. For each traini
## being used is shown in Eq. (29) on Slide 77 of my Week 3 sl
for i,param in enumerate(layer_params):
partial_of_loss_wrt_params[param] +=  pred_err_backprope
vals_for_in
## We will now estimate the change in the bias that needs to be ma
## from the derivatives the sigmoid at the nodes in the current Lla
## backproped to the previous Llayer nodes:
for k,varl in enumerate(vars_in_next_layer_back):
for j,var2 in enumerate(vars_in_layer):
if back_layer_index-1 > O:
bias_changes[back_layer_index-1][k] += pred_err_backpro
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## Now update the Llearnable parameters. The Loop shown below carries out S

for param in partial_of_loss_wrt_params:

partial of loss_wrt_param = partial_of loss_wrt_params[param] / float(

# Update biased first moment estimate
# mt+l = 61 * mt +(1-81)xgradt,

self.m_t[param] = self.betal * self.m_t[param] + (1 - self.betal) * par

# Update biased second raw moment estimate:
# vt+l = 62 x vt +(1-62)*(gradt)2

self.v_t[param] = self.beta2 * self.v_t[param] + (1 - self.beta2) * (pa

# Compute bias-corrected moment estimates
# “mt+l= mt / 1 - 61"t

m_t_hat = self.m_t[param] / (1 - self.betal ** self.t)

# “vt+l = vt / 1 - 62"t

v_t_hat = self.v_t[param] / (1 - self.beta2 ** self.t)

# Apply Adam update rule

# pt+l = pt + (Lr x ("mt+1 / ("vt+l +€) * -1/2))

self.vals for_learnable_params[param] -= self.learning rate * (m_t_hat
# step = self.learning_rate * partial_of Loss_wrt_param

# self.vals_for_Llearnable_params[param] += step

## Finally we update the biases at all the nodes that aggregate data:

for layer_index in range(1,self.num_layers):

for k in range(self.layers_config[layer_index]):

# self.bias[layer_index][kR] += self.learning _rate * ( bias_change
# self.bias[layer _index][R] -= self.velocity bias[layer_index][R]
gradient_bias = bias_changes[layer_index][k] / float(self.batch_siz
# Using the same formulas as above but for bias

# Update biased first moment estimate for bias

# mt_ b = 61 x mt_b +(1-61)+gradt

self.m_t_bias[layer_index][k] = self.betal * self.m_t_bias[layer_in

# Update biased second moment estimate for bias

# vt b = 82 x vt_ b +(1-62)x(gradt)2

self.v_t_bias[layer_index][k] = self.beta2 * self.v_t_bias[layer_in

# Compute bias-corrected estimates for bias

# mt_ b= mt b /1 - 81t

m_t _bias_hat = self.m_t_bias[layer_index][k] / (1 - self.betal ** s

# vt B=vt b /1 - 682/t

v_t_bias_hat = self.v_t_bias[layer_index][k] / (1 - self.beta2 ** s

# Apply Adam update rule for bias

# bt+l = bt + (Lr x ("'mt. b / (vt b +€) * -1/2))
self.bias[layer_index][k] += self.learning_rate * (m_t_bias_hat / (

self.t += 1
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