hw10_LoganDihel.md 2025-04-14

HW 10

ECE 60146

Logan Dihel
1: Loss Plots

1.1:FG

The loss plot for the First Generation transformer is shown below. You can see that the loss initially
decreased rapidly, but near epoch 15/40, the loss increased before finally decreasing even lower than the
local minimum achieved near epoch 10/40.

FG Training Loss vs. Iterations

1.2 A
—— Plot of loss versus iterations

1.0

o o
[=4] (=]
| |

training loss

o
s
1

0.2

T
0 5 10 15 20 25 30 35 40
iterations

1.2: PreLN

The loss plot for the PreLN transformer is shown below. This network quickly decreased the loss over the
first few epochs, but after 5/40 epochs, the learning rate was about constant for the remainder of the
training. The final loss value is much higher than that of the FG network, and because the learning rate is
essentially constant, it is likely that the PreLN needed more than 40 epochs to finish training.

hw10_LoganDihel.md

PreLN Training Loss vs. Iterations

2025-04-14

1.2

training loss

—— Plot of loss versus iterations

T
15 20

iterations

2: Five outputs from the networks

2.1: FG

Here are five outputs produced by the FG network, summarized in a table. Four of the 5 translations are

precisely correct, if you don't count the SOS token which should be at the beginning of the response.

. Ground Truth Output (Without
Input (English) . Output
(Spanish) SOS/EOS)
srilanka is a sri lanka es una EOS sri lanka es una hermosa isla sri lanka es una

beautiful island

hermosaisla

EOS EOS EOS

hermosaisla

do you travel a lot

viajais mucho

EOS viajais mucho EOS EOS EOS EQS

EOS EOS EOS

viajais mucho

i fForgot i owed you
money

olvidé que te debia
dinero

EOS olvidé que que debia dinero

EOS EOS EOS EOS

olvidé que que
debia dinero

iguessitis true

supongo que es
verdad

EOS supongo que es verdad EOS

EOS EOS EOS EOS

supongo que es
verdad

i meet a lot of
people

2.2: PreLN

conozco a mucha
gente

EOS conozco a mucha gente EOS

EOS EOS EOS EOS

conozco a mucha
gente

Here are five outputs produced by the PreLN network, summarized in a table. The PreLN does not construct

full sentences, indicating traning was not finished. However, unlike the output of the FG network, the PreLN

network put the SOS and EOS tokens in the correct location.

Input (English)

Ground Truth
(Spanish)

Output (With SOS/EOS)

Output (Without
SOS/EOS)

hw10_LoganDihel.md

Ground Truth

2025-04-14

Output (Without

Input (English Output (With SOS/EOS
put (English) (Spanish) put (/EOS) SOS/EOS)
srilankais a sri lanka es una SOS el es EOS EOS EOS EOS EOS l
eles
beautiful island hermosaisla EOS EOS
L SOS te EOS EOS EOS EOS EQOS
do you travel a lot viajais mucho te
EOS EOS EOS
i fForgot i owed you olvidé que te debia SOS me EOS EOS EOS EQOS EQS
me
money dinero EOS EOS EOS
) o SUpongo que es SOS lo es EOS EOS EOS EOS EOS
i guess it is true loes
verdad EOS EOS
i meet a lot of conozco a mucha SOS me EOS EOS EOS EOS EOS e
people gente EOS EOS EOS

3: Stop Word Removal

In order to remove the stop words, | just parsed the output text files from the networks and using the
module to grab the inputs in english/spanish without the EOS/SOS. However, for the output of the
networks, | just needed to replace SOS and EOS tokens with an empty string. | chose to just write a function

to process the entire text file, parsing out the result in an array of arrays, which | can use to create the tables

in section 2, and computing the Levenshtein distance between the

and

. In fact, this was the only piece of code | wrote for the entire homework
assignment, aside from modifying the file path pointing to the downloaded training dataset for the

python scripts.
import re
import numpy as np
def process_lines

result = []
1 =

for line in lines:

if line.startswith("The input sentence pair:"):

english, spanish = re.findall(r"\['S0OS (.*?) EOS'\]", 1line)

english = english.strip()
spanish = spanish.strip()
result.append([english, spanish])

elif line.startswith("The translation produced by"):

print(line)

translation = line.split(": ")[1].strip()
result[i].append(translation)

remove all EOS and SOS

translation = translation.replace("S0S", "").replace("EOS",

/

hw10_LoganDihel.md 2025-04-14

") strip()

result[i].append(translation)
i+=1

return result

this code was provided from the HW10 instructions
def levenshtein_distance(strl, str2):
if len(strl) < len(str2):
strl, str2 = str2, strl # Ensure strl is the longer string

len_strl, len_str2 = len(strl), len(str2)

Initialize two rows for dynamic programming
previous_row = list(range(len_str2 + 1))
current_row = [0] * (len_str2 + 1)

for i1 in range(1, len_strl + 1):
current_row[0] = 1
for j in range(1, len_str2 + 1):

cost = 0 if stri[i - 1] == str2[j - 1] else 1
current_row[j] = min(
previous_row[j] + 1, # Deletion
current_row[j - 1] + 1, # Insertion

previous_row[j - 1] + cost # Substitution
)

previous_row, current_row = current_row, previous_row
return previous_row[-1]

this code was modified based off the HW10 instructions
def report_statistics(distances):
print("| Mean | Median | Std Dev | Max | Min |")
SRR === | == || =o= | === (| === 7]
print(f"| {np.mean(distances):.2f} | {np.median(distances):.2f} |

{np.std(distances):.2f} | {np.max(distances):.2f} | {np.min(distances):.2f}
")

FG_file_path =

'/home/1ldihel/Desktop/ece60146/HW10/FG/translations_with_FG_40.txt'
PreLN_file_path =

'/home/1ldihel/Desktop/ece60146/HW10/PreLN/translations_with_PreLN_40.txt'
for file_path in [FG_file_path, PreLN_file_path]:
print("\n\nOpening file:", file_path)
with open(file_path, 'r') as fg_file:
fg_lines = fg_file.readlines()

result = process_lines(fg_lines)

print(f"{len(result)} translations found.")

hw10_LoganDihel.md 2025-04-14

print("| Input (English) | Input (Spanish) | Output (With SOS/EO0S)
| Output (Without SOS/E0S) |")
DR === || === | === | === ||}
for item in result[:5]:
print(f"| {item[0]} | {item[1]} | {item[2]} | {item[3]} [")

Calculate Levenshtein distances for all translations
distances = []
for item in result:
dist = levenshtein_distance(item[1], item[3])
distances.append(dist)

print("Statistics:")
report_statistics(distances)

number of perfect translations
perfect_count = sum(1l for item in result if item[1] == item[3])

print(f"Number of perfect translations: {perfect_count} out of
{len(result)}")

4: Levenschtein Metrics 2x5 Table

| calculated the levenschtein distance between 500 outputs of the two networks: FG and PreLN. The results
are summarized in the table below.

Model Mean Median Std Dev Max Min Perfect Translations

FG 4.94 4.00 5.49 34.00 0.00 187 out of 500

PreLN 22.52 22.00 8.12 48.00 5.00 0 out of 500

As you can clearly see from the results above, the FG network greatly out-performed the PreLN network. In
fact, 187/500 of the FG translations were perfect (ignoring the SOS/EOS tokens), while no translations from
the PreLN were perfect. The median score for the FG is lower than its average, which makes sense
considering that there were 187 scores of zero. The mean and median scores for the PreLN were about 5
times greater than the mean and median scores for the FG. In fact, the FG had better scores across every
single metric above: mean, median, standard deviation, max, min, and number of perfect translations.
However, the standard deviation score for FG is a little bit skewed because 187/500 translations were
perfect, so the deviation amoungst that subset of responses is zero. The max score for the FG is larger than
the minimum score for the PreLN, indicating that the FG is not uniformly better than the PreLN. Overall, we
conclude that the FG transformer preformed better than the PreLN transformer over the same dataset for
the same number of epochs (40). The reasoning for this is that adding in the Pre-Layer-Normalization makes
the network take longer to learn. The 40 epochs used the train the PreLN model are insufficient to fully train
the network.

5: Code

For completeness, | am including the two scripts | ran from DLStudio to train and test the networks. There is
a total of 3 lines that | modified from these scripts.

hw10_LoganDihel.md 2025-04-14

5.1:seq2seq_with_transformerFG.py

The only modification made in this script was to change dataroot to a location on my computer.

#!/usr/bin/env python

seq2seq_with_transformerFG.py

This script is for experimenting with TransformerFG.

For an introduction to TransformerFG, read the large comment block
associated

with the definition of this class in the Transformers co-class of
DLStudio.

Also read the doc block associated with the other transformer class,
TransformerPrelLN,
for the difference between TransformerFG and TransformerPrelLN.

To run this example, you will need to have installed at least one of
the following
two English-to-Spanish translation dataset archives:

en_es_xformer_8_10000.tar.gz
en_es_xformer_8_90000.tar.gz

The first consists of 10,000 pairs of English-Spanish sentences and the
second
90, 0000 such pairs.

The maximum number of words in any sentence, English or Spanish, is 8.
When you

include the sentence delimiter tokens SOS and EOS, that makes for a max
length of

10 for the sentences.

RECOMMENDATION:
I recommend that you first try to run this script with exactly the
settings
that are currently in the script:
1. Use the smaller debugging dataset for a faster turn-
around from
the code:

en_es_xformer_8_10000.tar.gz

2. Use the option

hw10_LoganDihel.md

masking = True

3. epochs = 40

2025-04-14

Note that with the smaller dataset, you will only get one training

iteration

per epoch, assuming you are using a batch-size of 50.

Subsequently, try running the script for the larger dataset.

import random
import numpy
import torch
import os, sys

seed = 0

random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)

numpy . random.seed(seed)
torch.backends.cudnn.deterministic=True
torch.backends.cudnn.benchmarks=False
os.environ['PYTHONHASHSEED'] = str(seed)

watch -d -n 0.5 nvidia-smi

from DLStudio import *
from Transformers import *

dataroot = "./data/"
#dataroot = "/home/kak/TextDatasets/en_es_corpus_xformer/"
#dataroot = "/mnt/cloudNAS3/Avi/TextDatasets/en_es_corpus_xformer/"

dataroot = '/home/ldihel/Desktop/ece60146/data/HW10/"'

data_archive = '"en_es_xformer_8_10000.tar.gz"

debugging only

#data_archive = "en_es_xformer_8_90000.tar.gz"

max_seq_Llength = 10

embedding_size = 256
#embedding_size = 128
#embedding_size = 64

num_basic_encoders = num_basic_decoders =
#num_basic_encoders = num_basic_decoders

#optimizer_params = {'betal' : 0.9, 'beta2':
optimizer_params = {'betal' : 0.9, ‘'beta2':

/

num_atten_heads
num_atten_heads

'epsilon'
'epsilon'

for

hw10_LoganDihel.md 2025-04-14

num_warmup_steps = 4000

masking = True ## for better results
#masking = False

dls = DLStudio(
dataroot = dataroot,
path_saved_model = {"encoder_FG" : "./saved_encoder_FG",
"decoder_FG" : "./saved_decoder_FG",
"embeddings_generator_en_FG"
"./saved_embeddings_generator_en_FG",
"embeddings_generator_es_FG"
"./saved_embeddings_generator_es_FG",
3
batch_size = 50,
use_gpu = True,
epochs = 40,
)

xformer = TransformerFG(
dl_studio = dls,
dataroot = dataroot,
data_archive = data_archive,
max_seq_Llength max_seq_length,
embedding_size = embedding_size,
save_checkpoints = True,
num_warmup_steps num_warmup_steps,
optimizer_params optimizer_params,

)
master_encoder = TransformerFG.MasterEncoder (
dls,
xformer,

num_basic_encoders = num_basic_encoders,
num_atten_heads = num_atten_heads,

master_decoder = TransformerFG.MasterDecoderWithMasking(
dls,
xformer,
num_basic_decoders = num_basic_decoders,
num_atten_heads = num_atten_heads,
masking = masking

number_of_Tlearnable_params_in_encoder = sum(p.numel() for p in
master_encoder .parameters() if p.requires_grad)

print("\n\nThe number of learnable parameters in the Master Encoder: %d" %
number_of_learnable_params_in_encoder)

number_of_learnable_params_in_decoder = sum(p.numel() for p in
/

hw10_LoganDihel.md 2025-04-14

master_decoder.parameters() if p.requires_grad)
print("\nThe number of learnable parameters in the Master Decoder: %d" %
number_of_learnable_params_in_decoder)

if masking:

xformer.run_code_for_training_TransformerFG(dls, master_encoder,master_decod
er,display_train_loss=True,

checkpoints_dir="checkpoints_with_masking_FG")
else:

xformer.run_code_for_training_TransformerFG(dls, master_encoder,master_decod
er,display_train_loss=True,

checkpoints_dir="checkpoints_no_masking_FG")

#import pymsgbox
#response = pymsgbox.confirm("Finished training. Start evaluation?")

#if response == "OK":

xformer.run_code_for_evaluating_TransformerFG(master_encoder,
master_decoder, 'myoutput.txt')

5.2:seq2seq_with_transformerPreLN.py

The only modifications made to this script are changing dataroot to a suitable location on my computer
and changing epochs from 60 to 40.

#1/usr/bin/env python

seg2seq_with_transformerPreLN.py

This script is for experimenting with TransformerPreLN.

For an introduction to TransformerPreLN, read the large comment block

associated
with the definition of this class in the Transformers co-class of
DLStudio.
That introduction explains the difference between TransformerPreLN and
TransformerFG.

To run this example, you will need to have installed at least one of
the following
two English-to-Spanish translation dataset archives:

en_es_xformer_8_10000.tar.gz

en_es_xformer_8_90000.tar.gz

hw10_LoganDihel.md 2025-04-14

The first consists of 10,000 pairs of English-Spanish sentences and the
second of
90, 0000.

The maximum number of words in any sentence, English or Spanish, is 8.
When you

include the sentence delimiter tokens SOS and EOS, that makes for a max
length of

10 for the sentences.

*** RECOMMENDATION ***:

I recommend that you first try to run this script with exactly the
settings
that are currently in the script:

1. Use the smaller debugging dataset for a faster turn-
around from
the code:

en_es_xformer_8_10000.tar.gz
2. Use the option

masking = True
3. epochs = 60

Note that with the smaller dataset, you will only get one training
iteration
per epoch, assuming you are using a batch-size of 50.

Subsequently, try running the script for the larger dataset.

import random
import numpy
import torch
import os, sys

seed = 0

random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)

numpy . random.seed(seed)
torch.backends.cudnn.deterministic=True
torch.backends.cudnn.benchmarks=False
os.environ['PYTHONHASHSEED'] = str(seed)

watch -d -n 0.5 nvidia-smi

from DLStudio import *
from Transformers import *

hw10_LoganDihel.md 2025-04-14

dataroot = "./data/"
#dataroot = "/home/kak/TextDatasets/en_es_corpus_xformer/"
#dataroot = "/mnt/cloudNAS3/Avi/TextDatasets/en_es_corpus_xformer/"

dataroot = '/home/ldihel/Desktop/ece60146/data/HW10/"'

data_archive = '"en_es_xformer_8_10000.tar.gz" ## for
debugging only
#data_archive = "en_es_xformer_8_90000.tar.gz"

max_seq_Llength = 10

embedding_size 256
#embedding_size = 128
#embedding_size = 64

num_basic_encoders = num_basic_decoders = num_atten_heads = 4
#num_basic_encoders = num_basic_decoders = num_atten_heads = 2

masking = True ## For better results
#masking = False

dls = DLStudio(
dataroot = dataroot,
path_saved_model = {"encoder_PreLN"
./saved_encoder_PreLN",

"decoder_PreLN"
"./saved_decoder_PreLN",
"embeddings_generator_en_PreLN"
"./saved_embeddings_generator_en_PreLN",
"embeddings_generator_es_PreLN"
"./saved_embeddings_generator_es_PreLN",
3
learning_rate = 1le-5,
batch_size = 50,
use_gpu = True,
epochs = 40,

xformer = TransformerPreLN(
dl_studio = dls,
dataroot = dataroot,
save_checkpoints = True,
data_archive = data_archive,
max_seq_Llength = max_seq_length,
embedding_size = embedding_size,

)
master_encoder = TransformerPrelLN.MasterEncoder (
dls,
xformer,

num_basic_encoders = num_basic_encoders,
num_atten_heads = num_atten_heads,

/

hw10_LoganDihel.md 2025-04-14

master_decoder = TransformerPreLN.MasterDecoderWithMasking(
dls,
xformer,
num_basic_decoders = num_basic_decoders,
num_atten_heads = num_atten_heads,
masking = masking,

number_of_learnable_params_in_encoder = sum(p.numel() for p in
master_encoder.parameters() if p.requires_grad)

print("\n\nThe number of learnable parameters in the Master Encoder: %d" %
number_of_learnable_params_in_encoder)

number_of_learnable_params_in_decoder = sum(p.numel() for p in
master_decoder.parameters() if p.requires_grad)

print("\n\nThe number of learnable parameters in the Master Decoder: %d" %
number_of_learnable_params_in_decoder)

if masking:

xformer.run_code_for_training_TransformerPreLN(dls, master_encoder,master_de
coder,display_train_loss=True,

checkpoints_dir="checkpoints_with_masking_PreLN")
else:

xformer.run_code_for_training_TransformerPreLN(dls, master_encoder,master_de
coder,display_train_loss=True,

checkpoints_dir="checkpoints_no_masking_PreLN")
#import pymsgbox
#response = pymsgbox.confirm("Finished training. Start evaluation?")

#if response == "OK":

xformer.run_code_for_evaluating_TransformerPreLN(master_encoder,
master_decoder)

5.3: Code for generating tables

See section 3 for the code | used to generate all of the tables throughout this document. | tried to write
clean, reusable code because the output of the two networks was the same, structurally.

