
hw10_LoganDihel.md 2025-04-14

 /

HW 10

ECE 60146

Logan Dihel

1: Loss Plots

1.1: FG

The loss plot for the First Generation transformer is shown below. You can see that the loss initially

decreased rapidly, but near epoch 15/40, the loss increased before �nally decreasing even lower than the

local minimum achieved near epoch 10/40.

1.2: PreLN

The loss plot for the PreLN transformer is shown below. This network quickly decreased the loss over the

�rst few epochs, but after 5/40 epochs, the learning rate was about constant for the remainder of the

training. The �nal loss value is much higher than that of the FG network, and because the learning rate is

essentially constant, it is likely that the PreLN needed more than 40 epochs to �nish training.

hw10_LoganDihel.md 2025-04-14

 /

2: Five outputs from the networks

2.1: FG

Here are �ve outputs produced by the FG network, summarized in a table. Four of the 5 translations are

precisely correct, if you don't count the SOS token which should be at the beginning of the response.

Input (English)
Ground Truth

(Spanish)
Output

Output (Without

SOS/EOS)

sri lanka is a

beautiful island

sri lanka es una

hermosa isla

EOS sri lanka es una hermosa isla

EOS EOS EOS

sri lanka es una

hermosa isla

do you travel a lot viajáis mucho
EOS viajáis mucho EOS EOS EOS EOS

EOS EOS EOS
viajáis mucho

i forgot i owed you

money

olvidé que te debía

dinero

EOS olvidé que que debía dinero

EOS EOS EOS EOS

olvidé que que

debía dinero

i guess it is true
supongo que es

verdad

EOS supongo que es verdad EOS

EOS EOS EOS EOS

supongo que es

verdad

i meet a lot of

people

conozco a mucha

gente

EOS conozco a mucha gente EOS

EOS EOS EOS EOS

conozco a mucha

gente

2.2: PreLN

Here are �ve outputs produced by the PreLN network, summarized in a table. The PreLN does not construct

full sentences, indicating traning was not �nished. However, unlike the output of the FG network, the PreLN

network put the SOS and EOS tokens in the correct location.

Input (English)
Ground Truth

(Spanish)
Output (With SOS/EOS)

Output (Without

SOS/EOS)

hw10_LoganDihel.md 2025-04-14

 /

Input (English)
Ground Truth

(Spanish)
Output (With SOS/EOS)

Output (Without

SOS/EOS)

sri lanka is a

beautiful island

sri lanka es una

hermosa isla

SOS el es EOS EOS EOS EOS EOS

EOS EOS
el es

do you travel a lot viajáis mucho
SOS te EOS EOS EOS EOS EOS

EOS EOS EOS
te

i forgot i owed you

money

olvidé que te debía

dinero

SOS me EOS EOS EOS EOS EOS

EOS EOS EOS
me

i guess it is true
supongo que es

verdad

SOS lo es EOS EOS EOS EOS EOS

EOS EOS
lo es

i meet a lot of

people

conozco a mucha

gente

SOS me EOS EOS EOS EOS EOS

EOS EOS EOS
me

3: Stop Word Removal

In order to remove the stop words, I just parsed the output text �les from the networks and using the re
module to grab the inputs in english/spanish without the EOS/SOS. However, for the output of the

networks, I just needed to replace SOS and EOS tokens with an empty string. I chose to just write a function

to process the entire text �le, parsing out the result in an array of arrays, which I can use to create the tables

in section 2, and computing the Levenshtein distance between the Ground Truth (Spanish) and

Output (Without SOS/EOS). In fact, this was the only piece of code I wrote for the entire homework

assignment, aside from modifying the �le path pointing to the downloaded training dataset for the

seq2seq python scripts.

import re
import numpy as np

def process_lines(lines):

 result = []
 i = 0

 for line in lines:

 if line.startswith("The input sentence pair:"):
 english, spanish = re.findall(r"\['SOS (.*?) EOS'\]", line)
 english = english.strip()
 spanish = spanish.strip()
 result.append([english, spanish])

 elif line.startswith("The translation produced by"):
 # print(line)
 translation = line.split(": ")[1].strip()
 result[i].append(translation)
 # remove all EOS and SOS
 translation = translation.replace("SOS", "").replace("EOS",

hw10_LoganDihel.md 2025-04-14

 /

"").strip()
 result[i].append(translation)
 i += 1

 return result

this code was provided from the HW10 instructions
def levenshtein_distance(str1, str2):
 if len(str1) < len(str2):
 str1, str2 = str2, str1 # Ensure str1 is the longer string

 len_str1, len_str2 = len(str1), len(str2)

 # Initialize two rows for dynamic programming
 previous_row = list(range(len_str2 + 1))
 current_row = [0] * (len_str2 + 1)

 for i in range(1, len_str1 + 1):
 current_row[0] = i
 for j in range(1, len_str2 + 1):
 cost = 0 if str1[i - 1] == str2[j - 1] else 1
 current_row[j] = min(
 previous_row[j] + 1, # Deletion
 current_row[j - 1] + 1, # Insertion
 previous_row[j - 1] + cost # Substitution
)
 previous_row, current_row = current_row, previous_row

 return previous_row[-1]

this code was modified based off the HW10 instructions
def report_statistics(distances):
 print("| Mean | Median | Std Dev | Max | Min |")
 print("| --- | --- | --- | --- | --- |")
 print(f"| {np.mean(distances):.2f} | {np.median(distances):.2f} |
{np.std(distances):.2f} | {np.max(distances):.2f} | {np.min(distances):.2f}
|")

FG_file_path =
'/home/ldihel/Desktop/ece60146/HW10/FG/translations_with_FG_40.txt'
PreLN_file_path =
'/home/ldihel/Desktop/ece60146/HW10/PreLN/translations_with_PreLN_40.txt'

for file_path in [FG_file_path, PreLN_file_path]:

 print("\n\nOpening file:", file_path)

 with open(file_path, 'r') as fg_file:
 fg_lines = fg_file.readlines()
 result = process_lines(fg_lines)

 print(f"{len(result)} translations found.")

hw10_LoganDihel.md 2025-04-14

 /

 print("| Input (English) | Input (Spanish) | Output (With SOS/EOS)
| Output (Without SOS/EOS) |")
 print("| --- | --- | --- | --- |")
 for item in result[:5]:
 print(f"| {item[0]} | {item[1]} | {item[2]} | {item[3]} |")

 # Calculate Levenshtein distances for all translations
 distances = []
 for item in result:
 dist = levenshtein_distance(item[1], item[3])
 distances.append(dist)

 print("Statistics:")
 report_statistics(distances)

 # number of perfect translations
 perfect_count = sum(1 for item in result if item[1] == item[3])
 print(f"Number of perfect translations: {perfect_count} out of
{len(result)}")

4: Levenschtein Metrics 2x5 Table

I calculated the levenschtein distance between 500 outputs of the two networks: FG and PreLN. The results

are summarized in the table below.

Model Mean Median Std Dev Max Min Perfect Translations

FG 4.94 4.00 5.49 34.00 0.00 187 out of 500

PreLN 22.52 22.00 8.12 48.00 5.00 0 out of 500

As you can clearly see from the results above, the FG network greatly out-performed the PreLN network. In

fact, 187/500 of the FG translations were perfect (ignoring the SOS/EOS tokens), while no translations from

the PreLN were perfect. The median score for the FG is lower than its average, which makes sense

considering that there were 187 scores of zero. The mean and median scores for the PreLN were about 5

times greater than the mean and median scores for the FG. In fact, the FG had better scores across every

single metric above: mean, median, standard deviation, max, min, and number of perfect translations.

However, the standard deviation score for FG is a little bit skewed because 187/500 translations were

perfect, so the deviation amoungst that subset of responses is zero. The max score for the FG is larger than

the minimum score for the PreLN, indicating that the FG is not uniformly better than the PreLN. Overall, we

conclude that the FG transformer preformed better than the PreLN transformer over the same dataset for

the same number of epochs (40). The reasoning for this is that adding in the Pre-Layer-Normalization makes

the network take longer to learn. The 40 epochs used the train the PreLN model are insu�cient to fully train

the network.

5: Code

For completeness, I am including the two scripts I ran from DLStudio to train and test the networks. There is

a total of 3 lines that I modi�ed from these scripts.

hw10_LoganDihel.md 2025-04-14

 /

5.1: seq2seq_with_transformerFG.py

The only modi�cation made in this script was to change dataroot to a location on my computer.

#!/usr/bin/env python

seq2seq_with_transformerFG.py

"""
 This script is for experimenting with TransformerFG.

 For an introduction to TransformerFG, read the large comment block
associated
 with the definition of this class in the Transformers co-class of
DLStudio.

 Also read the doc block associated with the other transformer class,
TransformerPreLN,
 for the difference between TransformerFG and TransformerPreLN.

 To run this example, you will need to have installed at least one of
the following
 two English-to-Spanish translation dataset archives:

 en_es_xformer_8_10000.tar.gz

 en_es_xformer_8_90000.tar.gz

 The first consists of 10,000 pairs of English-Spanish sentences and the
second
 90,0000 such pairs.

 The maximum number of words in any sentence, English or Spanish, is 8.
When you
 include the sentence delimiter tokens SOS and EOS, that makes for a max
length of
 10 for the sentences.

 RECOMMENDATION:

 I recommend that you first try to run this script with exactly the
settings
 that are currently in the script:

 1. Use the smaller debugging dataset for a faster turn-
around from
 the code:

 en_es_xformer_8_10000.tar.gz

 2. Use the option

hw10_LoganDihel.md 2025-04-14

 /

 masking = True

 3. epochs = 40

 Note that with the smaller dataset, you will only get one training
iteration
 per epoch, assuming you are using a batch-size of 50.

 Subsequently, try running the script for the larger dataset.

"""

import random
import numpy
import torch
import os, sys

seed = 0
random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
numpy.random.seed(seed)
torch.backends.cudnn.deterministic=True
torch.backends.cudnn.benchmarks=False
os.environ['PYTHONHASHSEED'] = str(seed)

watch -d -n 0.5 nvidia-smi

from DLStudio import *
from Transformers import *

dataroot = "./data/"
#dataroot = "/home/kak/TextDatasets/en_es_corpus_xformer/"
#dataroot = "/mnt/cloudNAS3/Avi/TextDatasets/en_es_corpus_xformer/"
dataroot = '/home/ldihel/Desktop/ece60146/data/HW10/'

data_archive = "en_es_xformer_8_10000.tar.gz" ## for
debugging only
#data_archive = "en_es_xformer_8_90000.tar.gz"

max_seq_length = 10

embedding_size = 256
#embedding_size = 128
#embedding_size = 64

num_basic_encoders = num_basic_decoders = num_atten_heads = 4
#num_basic_encoders = num_basic_decoders = num_atten_heads = 2

#optimizer_params = {'beta1' : 0.9, 'beta2': 0.98, 'epsilon' : 1e-9}
optimizer_params = {'beta1' : 0.9, 'beta2': 0.98, 'epsilon' : 1e-6}

hw10_LoganDihel.md 2025-04-14

 /

num_warmup_steps = 4000

masking = True ## for better results
#masking = False

dls = DLStudio(
 dataroot = dataroot,
 path_saved_model = {"encoder_FG" : "./saved_encoder_FG",
 "decoder_FG" : "./saved_decoder_FG",
 "embeddings_generator_en_FG" :
"./saved_embeddings_generator_en_FG",
 "embeddings_generator_es_FG" :
"./saved_embeddings_generator_es_FG",
 },
 batch_size = 50,
 use_gpu = True,
 epochs = 40,
)

xformer = TransformerFG(
 dl_studio = dls,
 dataroot = dataroot,
 data_archive = data_archive,
 max_seq_length = max_seq_length,
 embedding_size = embedding_size,
 save_checkpoints = True,
 num_warmup_steps = num_warmup_steps,
 optimizer_params = optimizer_params,
)

master_encoder = TransformerFG.MasterEncoder(
 dls,
 xformer,
 num_basic_encoders = num_basic_encoders,
 num_atten_heads = num_atten_heads,
)

master_decoder = TransformerFG.MasterDecoderWithMasking(
 dls,
 xformer,
 num_basic_decoders = num_basic_decoders,
 num_atten_heads = num_atten_heads,
 masking = masking
)

number_of_learnable_params_in_encoder = sum(p.numel() for p in
master_encoder.parameters() if p.requires_grad)
print("\n\nThe number of learnable parameters in the Master Encoder: %d" %
number_of_learnable_params_in_encoder)

number_of_learnable_params_in_decoder = sum(p.numel() for p in

hw10_LoganDihel.md 2025-04-14

 /

master_decoder.parameters() if p.requires_grad)
print("\nThe number of learnable parameters in the Master Decoder: %d" %
number_of_learnable_params_in_decoder)

if masking:

xformer.run_code_for_training_TransformerFG(dls,master_encoder,master_decod
er,display_train_loss=True,

checkpoints_dir="checkpoints_with_masking_FG")
else:

xformer.run_code_for_training_TransformerFG(dls,master_encoder,master_decod
er,display_train_loss=True,

checkpoints_dir="checkpoints_no_masking_FG")

#import pymsgbox
#response = pymsgbox.confirm("Finished training. Start evaluation?")

#if response == "OK":
xformer.run_code_for_evaluating_TransformerFG(master_encoder,
master_decoder, 'myoutput.txt')

5.2: seq2seq_with_transformerPreLN.py

The only modi�cations made to this script are changing dataroot to a suitable location on my computer

and changing epochs from 60 to 40.

#!/usr/bin/env python

seq2seq_with_transformerPreLN.py

"""
 This script is for experimenting with TransformerPreLN.

 For an introduction to TransformerPreLN, read the large comment block
associated
 with the definition of this class in the Transformers co-class of
DLStudio.
 That introduction explains the difference between TransformerPreLN and
 TransformerFG.

 To run this example, you will need to have installed at least one of
the following
 two English-to-Spanish translation dataset archives:

 en_es_xformer_8_10000.tar.gz

 en_es_xformer_8_90000.tar.gz

hw10_LoganDihel.md 2025-04-14

 /

 The first consists of 10,000 pairs of English-Spanish sentences and the
second of
 90,0000.

 The maximum number of words in any sentence, English or Spanish, is 8.
When you
 include the sentence delimiter tokens SOS and EOS, that makes for a max
length of
 10 for the sentences.

 *** RECOMMENDATION ***:

 I recommend that you first try to run this script with exactly the
settings
 that are currently in the script:

 1. Use the smaller debugging dataset for a faster turn-
around from
 the code:

 en_es_xformer_8_10000.tar.gz

 2. Use the option

 masking = True

 3. epochs = 60

 Note that with the smaller dataset, you will only get one training
iteration
 per epoch, assuming you are using a batch-size of 50.

 Subsequently, try running the script for the larger dataset.
"""

import random
import numpy
import torch
import os, sys

seed = 0
random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
numpy.random.seed(seed)
torch.backends.cudnn.deterministic=True
torch.backends.cudnn.benchmarks=False
os.environ['PYTHONHASHSEED'] = str(seed)

watch -d -n 0.5 nvidia-smi

from DLStudio import *
from Transformers import *

hw10_LoganDihel.md 2025-04-14

 /

dataroot = "./data/"
#dataroot = "/home/kak/TextDatasets/en_es_corpus_xformer/"
#dataroot = "/mnt/cloudNAS3/Avi/TextDatasets/en_es_corpus_xformer/"
dataroot = '/home/ldihel/Desktop/ece60146/data/HW10/'

data_archive = "en_es_xformer_8_10000.tar.gz" ## for
debugging only
#data_archive = "en_es_xformer_8_90000.tar.gz"

max_seq_length = 10

embedding_size = 256
#embedding_size = 128
#embedding_size = 64

num_basic_encoders = num_basic_decoders = num_atten_heads = 4
#num_basic_encoders = num_basic_decoders = num_atten_heads = 2

masking = True ## For better results
#masking = False

dls = DLStudio(
 dataroot = dataroot,
 path_saved_model = {"encoder_PreLN" :
"./saved_encoder_PreLN",
 "decoder_PreLN" :
"./saved_decoder_PreLN",
 "embeddings_generator_en_PreLN" :
"./saved_embeddings_generator_en_PreLN",
 "embeddings_generator_es_PreLN" :
"./saved_embeddings_generator_es_PreLN",
 },
 learning_rate = 1e-5,
 batch_size = 50,
 use_gpu = True,
 epochs = 40,
)

xformer = TransformerPreLN(
 dl_studio = dls,
 dataroot = dataroot,
 save_checkpoints = True,
 data_archive = data_archive,
 max_seq_length = max_seq_length,
 embedding_size = embedding_size,
)

master_encoder = TransformerPreLN.MasterEncoder(
 dls,
 xformer,
 num_basic_encoders = num_basic_encoders,
 num_atten_heads = num_atten_heads,

hw10_LoganDihel.md 2025-04-14

 /

)

master_decoder = TransformerPreLN.MasterDecoderWithMasking(
 dls,
 xformer,
 num_basic_decoders = num_basic_decoders,
 num_atten_heads = num_atten_heads,
 masking = masking,
)

number_of_learnable_params_in_encoder = sum(p.numel() for p in
master_encoder.parameters() if p.requires_grad)
print("\n\nThe number of learnable parameters in the Master Encoder: %d" %
number_of_learnable_params_in_encoder)

number_of_learnable_params_in_decoder = sum(p.numel() for p in
master_decoder.parameters() if p.requires_grad)
print("\n\nThe number of learnable parameters in the Master Decoder: %d" %
number_of_learnable_params_in_decoder)

if masking:

xformer.run_code_for_training_TransformerPreLN(dls,master_encoder,master_de
coder,display_train_loss=True,

checkpoints_dir="checkpoints_with_masking_PreLN")
else:

xformer.run_code_for_training_TransformerPreLN(dls,master_encoder,master_de
coder,display_train_loss=True,

checkpoints_dir="checkpoints_no_masking_PreLN")

#import pymsgbox
#response = pymsgbox.confirm("Finished training. Start evaluation?")
#if response == "OK":

xformer.run_code_for_evaluating_TransformerPreLN(master_encoder,
master_decoder)

5.3: Code for generating tables

See section 3 for the code I used to generate all of the tables throughout this document. I tried to write

clean, reusable code because the output of the two networks was the same, structurally.

