
ECE-60146 HW10

Ian Noronha

April 2025

1 Loss Graphs

I ran the two scripts seq2seq with transformerFG.py seq2seq with transformerPreLN.py with the default hyperparameters for
the specified 40 epochs. I added the function to calculate the Leveshtein distance in the run code for evaluating Transformer
function of DLStudio to print the outputs of the Leveshtein distance on the cleaned gt and predicted outputs

Figure 1: FG training loss

1

Figure 2: PreLN training loss

2 Output and Levenshtein distance

Figure 3: FG example with cleaned string and Levenshtein distance

Figure 4: FG example with cleaned string and Levenshtein distance

2

Figure 5: FG example with cleaned string and Levenshtein distance

Figure 6: FG example with cleaned string and Levenshtein distance

Figure 7: FG example with cleaned string and Levenshtein distance

Figure 8: PreLN example with cleaned string and Levenshtein distance

Figure 9: PreLN example with cleaned string and Levenshtein distance

3

Figure 10: PreLN example with cleaned string and Levenshtein distance

Figure 11: PreLN example with cleaned string and Levenshtein distance

Figure 12: PreLN example with cleaned string and Levenshtein distance

4

Figure 13: 2x5 Table of metrics

3 Discussion

The mean, and standard deviation of the transformerFG is lower indicating that the model is more accurate and that its
consistency is higher than the PreLN model. The median of the model is 0 indicating at least half the translations were
completely accurate. PreLN Normalizes the input before it enters the selfattention layer so it will take longer to converge.
In thoery it is supposed to perform better if the training is allowed to go on for a longer duration of time.

def levenshtein_distance(self, str1, str2):

if len(str1) < len(str2):

str1, str2 = str2, str1 # Ensure str1 is the longer string

len_str1, len_str2 = len(str1), len(str2)

Initialize two rows for dynamic programming

previous_row = list(range(len_str2 + 1))

current_row = [0] * (len_str2 + 1)

for i in range(1, len_str1 + 1):

current_row[0] = i

for j in range(1, len_str2 + 1):

cost = 0 if str1[i - 1] == str2[j - 1] else 1

current_row[j] = min(

previous_row[j] + 1, # Deletion

current_row[j - 1] + 1, # Insertion

previous_row[j - 1] + cost # Substitution

5

)

previous_row, current_row = current_row, previous_row

return previous_row[-1]

def run_code_for_evaluating_TransformerFG(self, master_encoder, master_decoder, result_file=None):

"""

The main difference between the training code shown in the previous function and the

evaluation code shown here is with regard to the input to MasterDecoder and how we

process its output. As shown in the previous function, for the training loop, the

input to MasterDecoder consists of the both the target sentence and the output of

the MasterEncoder for the source sentence. However, at inference time (that is, in

the evaluation loop shown below), the target sentence at the input to the MasterDecoder

is replaced by an encoding of a "starter stub" output sentence as defined in line (B).

The main message conveyed by the stub in line (B) is that we want to start the

translation with the first word of the output as being the token "SOS". The encoding

for the stub is generated in lines (F) and (G).

The second significant difference between the training and the testing code is

with regard to how we process the output of the MasterDecoder. As you will recall

from the docstring associated with MasterDecoder, it returns two things: (1) the

predicted log probabilities (logprob) over the target vocabulary for every word

position in the target language; and (2) for each target-language word position,

the word_vocab_index at which the logprob is maximum. The loss calculation in

the training code was based on the former. ON the other hand, as shown in line (H)

below, it is the latter that lets us do the the translations in the target words

in line (I).

"""

master_encoder.load_state_dict(torch.load(self.dl_studio.path_saved_model['encoder_FG']))

master_decoder.load_state_dict(torch.load(self.dl_studio.path_saved_model['decoder_FG']))

embeddings_generator_en = self.EmbeddingsGenerator(self, 'en', self.embedding_size)

embeddings_generator_es = self.EmbeddingsGenerator(self, 'es', self.embedding_size)

embeddings_generator_en.load_state_dict(torch.load(self.dl_studio.path_saved_model['embeddings_generator_en_FG']))↪→

embeddings_generator_es.load_state_dict(torch.load(self.dl_studio.path_saved_model['embeddings_generator_es_FG']))↪→

master_encoder.to(self.dl_studio.device)

master_decoder.to(self.dl_studio.device)

embeddings_generator_en.to(self.dl_studio.device)

embeddings_generator_es.to(self.dl_studio.device)

debug = False

FILE = open("translations_with_FG_" + str(self.dl_studio.epochs) + ".txt", 'w')

with torch.no_grad():

for iter in range(20):

starter_stub_for_translation = ['SOS', 'EOS', 'EOS', 'EOS', 'EOS', 'EOS', 'EOS', 'EOS', 'EOS',

'EOS'] ## (A)↪→

batched_pairs = random.sample(self.training_corpus, 1)

(B)↪→

source_sentences = [pair[0] for pair in batched_pairs]

target_sentences = [pair[1] for pair in batched_pairs]

if debug:

print("\n\nsource sentences: ", source_sentences)

print("\ntarget sentences: ", target_sentences)

en_sent_ints = self.sentence_with_words_to_ints(source_sentences,

'en').to(self.dl_studio.device) ## (C)↪→

if debug:

es_sent_ints = self.sentence_with_words_to_ints(target_sentences, 'es')

print("\n\nsource sentence tensor: ", en_sent_ints)

print("\n\ntarget sentence tensor: ", es_sent_ints)

en_sentence_tensor = embeddings_generator_en(en_sent_ints).float()

master_encoder_output = master_encoder(en_sentence_tensor)

(E)↪→

starter_stub_as_ints = self.sentence_with_words_to_ints(

[" ".join(starter_stub_for_translation)], 'es').to(self.dl_studio.device)

(F)↪→

starter_stub_tensor = embeddings_generator_es(starter_stub_as_ints).float()

(G)↪→

6

_, predicted_word_index_values = master_decoder(starter_stub_tensor, master_encoder_output)

(H)↪→

predicted_word_index_values = predicted_word_index_values[0].unsqueeze(1)

decoded_words = [self.es_index_2_word[predicted_word_index_values[di].item()]

for di in range(self.max_seq_length)]

(I)↪→

output_sentence = " ".join(decoded_words)

print("\n\n\nThe input sentence pair: ", source_sentences, target_sentences)

print("\nThe translation produced by TransformerFG: ", output_sentence)

FILE.write("\n\n\nThe input sentence pair: %s %s" % (source_sentences, target_sentences))

FILE.write("\nThe translation produced by TransformerFG: %s" % output_sentence)

decoded_words = [word for word in decoded_words if word not in ['SOS', 'EOS']]

target_tokens = target_sentences[0].split()

output_sentence = " ".join(decoded_words)

target_tokens = [word for word in target_tokens if word not in ['SOS', 'EOS']]

ground_truth = " ".join(target_tokens)

lev_distance = self.levenshtein_distance(output_sentence, ground_truth)

print("\nThe ground truth clean: ", output_sentence)

print("\nThe translation produced by TransformerFG clean: ", output_sentence)

print("\nLevenshtein distance: ", lev_distance)

def levenshtein_distance(self, str1, str2):

if len(str1) < len(str2):

str1, str2 = str2, str1 # Ensure str1 is the longer string

len_str1, len_str2 = len(str1), len(str2)

Initialize two rows for dynamic programming

previous_row = list(range(len_str2 + 1))

current_row = [0] * (len_str2 + 1)

for i in range(1, len_str1 + 1):

current_row[0] = i

for j in range(1, len_str2 + 1):

cost = 0 if str1[i - 1] == str2[j - 1] else 1

current_row[j] = min(

previous_row[j] + 1, # Deletion

current_row[j - 1] + 1, # Insertion

previous_row[j - 1] + cost # Substitution

)

previous_row, current_row = current_row, previous_row

return previous_row[-1]

def run_code_for_evaluating_TransformerPreLN(self, master_encoder, master_decoder):

"""

The main difference between the training code shown in the previous function and the

evaluation code shown here is with regard to the input to MasterDecoder and how we process

its output. As shown in the previous function, for the training loop, the input to

MasterDecoder consists of the both the target sentence and the output of the MasterEncoder

for the source sentence. However, at inference time (that is, in the evaluation loop shown

below), the target sentence at the input to the MasterDecoder is replaced by an encoding of

a "starter stub" output sentence as defined in line (B). The main message conveyed by the

stub in line (B) is that we want to start the translation with the first word of the output

as being the token "SOS". The encoding for the stub is generated in lines (F) and (G).

The second significant difference between the training and the testing code is with regard

to how we process the output of the MasterDecoder. As you will recall from the docstring

associated with MasterDecoder, it returns two things: (1) the predicted log probabilities

(logprob) over the target vocabulary for every word position in the target language; and

(2) for each target-language word position, the word_vocab_index at which the logprob is

maximum. The loss calculation in the training code was based on the former. ON the other

hand, as shown in line (H) below, it is the latter that lets us do the the translations in

the target words in line (I).

"""

master_encoder.load_state_dict(torch.load(self.dl_studio.path_saved_model['encoder_PreLN']))

master_decoder.load_state_dict(torch.load(self.dl_studio.path_saved_model['decoder_PreLN']))

embeddings_generator_en = self.EmbeddingsGenerator(self, 'en', self.embedding_size)

7

embeddings_generator_es = self.EmbeddingsGenerator(self, 'es', self.embedding_size)

embeddings_generator_en.load_state_dict(torch.load(self.dl_studio.path_saved_model['embeddings_generator_en_PreLN']))↪→

embeddings_generator_es.load_state_dict(torch.load(self.dl_studio.path_saved_model['embeddings_generator_es_PreLN']))↪→

master_encoder.to(self.dl_studio.device)

master_decoder.to(self.dl_studio.device)

embeddings_generator_en.to(self.dl_studio.device)

embeddings_generator_es.to(self.dl_studio.device)

debug = False

FILE = open("translations_with_PreLN_" + str(self.dl_studio.epochs) + ".txt", 'w')

with torch.no_grad():

for iter in range(20):

starter_stub_for_translation = ['SOS', 'EOS', 'EOS', 'EOS', 'EOS', 'EOS', 'EOS', 'EOS', 'EOS',

'EOS'] ## (A)↪→

batched_pairs = random.sample(self.training_corpus, 1)

(B)↪→

source_sentences = [pair[0] for pair in batched_pairs]

target_sentences = [pair[1] for pair in batched_pairs]

if debug:

print("\n\nsource sentences: ", source_sentences)

print("\ntarget sentences: ", target_sentences)

en_sent_ints = self.sentence_with_words_to_ints(source_sentences, 'en')

(C)↪→

if debug:

es_sent_ints = self.sentence_with_words_to_ints(target_sentences, 'es')

print("\n\nsource sentence tensor: ", en_sent_ints)

print("\n\ntarget sentence tensor: ", es_sent_ints)

en_sentence_tensor = embeddings_generator_en(en_sent_ints).float()

master_encoder_output = master_encoder(en_sentence_tensor)

(E)↪→

starter_stub_as_ints = self.sentence_with_words_to_ints(

[" ".join(starter_stub_for_translation)],

'es').to(self.dl_studio.device) ## (F)↪→

starter_stub_tensor = embeddings_generator_es(starter_stub_as_ints).float()

(G)↪→

_, predicted_word_index_values = master_decoder(starter_stub_tensor, master_encoder_output)

(H)↪→

predicted_word_index_values = predicted_word_index_values[0].unsqueeze(1)

decoded_words = [self.es_index_2_word[predicted_word_index_values[di].item()]

for di in range(self.max_seq_length)]

(I)↪→

output_sentence = " ".join(decoded_words)

print("\n\n\nThe input sentence pair: ", source_sentences, target_sentences)

print("\nThe translation produced by TransformerPreLN: ", output_sentence)

FILE.write("\n\n\nThe input sentence pair: %s %s" % (source_sentences, target_sentences))

FILE.write("\nThe translation produced by TransformerPreLN: %s" % output_sentence)

decoded_words = [word for word in decoded_words if word not in ['SOS', 'EOS']]

output_sentence = " ".join(decoded_words)

target_tokens = target_sentences[0].split()

target_tokens = [word for word in target_tokens if word not in ['SOS', 'EOS']]

ground_truth = " ".join(target_tokens)

lev_distance = self.levenshtein_distance(output_sentence, ground_truth)

print("\nThe ground truth clean: ", output_sentence)

print("\nThe translation produced by TransformerPreLN clean: ", output_sentence)

print("\nLevenshtein distance: ", lev_distance)

8

