ECE-60146 HW10

Tan Noronha

April 2025

1 Loss Graphs

I ran the two scripts seq2seq with transformerFG.py seq2seq with transformerPreLN.py with the default hyperparameters for
the specified 40 epochs. T added the function to calculate the Leveshtein distance in the run_code_for_evaluating_Transformer
function of DLStudio to print the outputs of the Leveshtein distance on the cleaned gt and predicted outputs

FG Training Loss vs. Iterations

L2 -
—— Plot of loss versus iterations
1.0 -

0.8

0.6

training loss

0.4

0.2 1

0 5 10 15 20 25 30 35 40
terations

Figure 1: FG training loss

PreLN Training Loss vs. Iterations

1.2 - \
1.1 -
1.0 -
0.9

0.8 1

training loss

0.7 1

0.6

0.5

—— Plot of loss versus iterations

5 10

20
iterations

15

Figure 2: PreLN training loss

2 Output and Levenshtein distance

The input sentence pair:
The translation produced
The ground truth clean:

The translation produced

Levenshtein distance: 5

The input sentence pair:

The translation produced

The ground truth clean:

The translation produced

[why is this room locked EOS'] [5 por

qué esta con llave esta habitacidén E0S']

by TransformerFG: EOS por qué estad con con esta habitacldn EDS EOS

por qué esta con con esta hablitacldm
habitacién

by TransformerFG clean: por qué esta

Figure 3: FG example with cleaned string and Levenshtein distance

['s0S no one lives in this building Et
by TransformerFG:

nadie vive en este edificio

'] ['505 nadie vive en este edificlo Et

EOS nadie vive en este edifi

by TransformerFG clean:

nadie vive en

este edificio

Levenshtein

distance:

(i

Figure 4: FG example with cleaned string and Levenshtein distance

The input sentence pair: ['S05 you were busy last week EOS'] ['505 la semana pasada estuviste ocupado EOS’]
The translation produced by TransformerFG: EOS la semana pasada estuviste ocupado EOS EDS EDS EOS

The ground truth clean: Lla semana pasada estuviste ocupada

The translation produced by TransformerFG clean: 1la semana pasada estuviste ocupado

Levenshtein distance: @

Figure 5: FG example with cleaned string and Levenshtein distance

The input sentence pair: ['505 1 need my glasses EO0%'] ['S05 neceslto mis gafas EOS']
The translation produced by TransformerFG: EOS necesito mis gafas E0OS EDS EDS EDS EDS
The ground truth clean: necesite mis gafas

The translation produced by TransformerFG clean: necesito mis gafas

Levenshtein distance: @

Figure 6: FG example with cleaned string and Levenshtein distance

The input sentence pair: ['505 it hawve not been able to sleep well EOS'] ["505 no he podide dormir bien EDS']
The translation produced by TransformerFG: EOS no he podido dermir blen EO0OS EOS EOS EOS

The ground truth clean: no he podide dormir bien

The translation produced by TransformerFG clean: no he podido dormir bien

Levenshtein distance: @

Figure 7: FG example with cleaned string and Levenshtein distance

The input sentence pair: |['S0S do you travel a let EOS'] ['=S05 viajais mucho EOS']

The translation produced by TransformerPreLM: S0S5 te EOS EOS EOS EOS EOS EDS EOS EOS
The ground truth clean: te
The translation produced by TransformerFG clean: te

Levenshtein distance: 13

Figure 8: PreLN example with cleaned string and Levenshtein distance

The input sentence pair: ['S05 1 Torgot 1 owed you money EOS'] ['S0S5 olvidé que te debia dinero EDS']
The translation produced by TransformerPrelM: S05 me EOS EOS EOS EOS EOS EOS EOS EOS

The ground truth clean: me

The translation produced by TransformerFG clean: me

Levenshtein distance: 25

Figure 9: PreLN example with cleaned string and Levenshtein distance

The input sentence pair: ['505 1 guess it is true E0OS'] ['S0S supongo que verdad EOS']

The translation produced by TransformerPreLMN: SO0S yo EOS EOS EOS EOS EOS EOS EOS EOS
The ground truth clean: vo
The translation produced by TransformerFG clean: vo

Levenshtein distance: 28

Figure 10: PreLN example with cleaned string and Levenshtein distance

The input sentence pair: S0s 1 meet a lot of p] 5 505 conozco a mucha gente EDS']
The translation produced by TransformerPrelLMN: 505 me JS EOS EOS EOS EOS EOS EOS

The ground truth clean: me

The translation produced by TransformerFG clean: me

Levenshteln distance: 19

Figure 11: PreLN example with cleaned string and Levenshtein distance

The input sentence pair: ['505 i can ride a horse E0D5°] ['S05 puedo montar un eaballo EOS']

The translation produced by TransformerPrelN: 5S05 puedo EDS EOS EDS EOS EDS EOS EOS EOS

The ground truth cltean: puedo

The translation produced by TransformerFG clean: puedo

Lewvenshtein distance:

Figure 12: PreLN example with cleaned string and Levenshtein distance

TransformerFG Statistic
Mean: 2.45

Median: ©.88

Standard Deviation:
Maximum: 12.06

Minimum: ©.060

TransTorme
Mean: Z23.3
Median: 23.58
Standard Deviation: 6.28
Maximum: 35.00
Minimum: 13.06

Figure 13: 2x5 Table of metrics

3 Discussion

The mean, and standard deviation of the transformerFG is lower indicating that the model is more accurate and that its
consistency is higher than the PreLN model. The median of the model is 0 indicating at least half the translations were
completely accurate. PreLN Normalizes the input before it enters the selfattention layer so it will take longer to converge.
In thoery it is supposed to perform better if the training is allowed to go on for a longer duration of time.

def levenshtein_distance(self, strl, str2):
if len(strl) < len(str2):
strl, str2 = str2, strl # Ensure strl is the longer string
len_strl, len_str2 = len(strl), len(str2)
Initialize two rows for dynamic programming
previous_row = list(range(len_str2 + 1))
current_row = [0] * (len_str2 + 1)

for i in range(l, len_strl + 1):
current_row[0] = i
for j in range(l, len_str2 + 1):
cost = 0 if stri[i - 1] == str2[j - 1] else 1
current_row[j] = min(
previous_row[j] + 1, # Deletion
current_row[j - 1] + 1, # Insertion
previous_row[j - 1] + cost # Substitution

)

previous_row, current_row = current_row, previous_row

return previous_row[-1]

def run_code_for_evaluating_TransformerFG(self, master_encoder, master_decoder, result_file=None):
The main difference between the training code shown in the previous function and the
evaluation code shown here is with regard to the input to MasterDecoder and how we
process its output. As shown in the previous function, for the training loop, the
input to MasterDecoder consists of the both the target sentence and the output of
the MasterEncoder for the source sentence. However, at tinference time (that ts, in
the evaluation loop shown below), the target sentence at the input to the MasterDecoder
is replaced by an encoding of a "starter stub” output sentence as defined in line (B).
The main message conveyed by the stub in line (B) is that we want to start the
translation with the first word of the output as being the token "SOS". The encoding
for the stub is generated in lines (F) and (G).

The second significant difference between the training and the testing code is

with regard to how we process the output of the MasterDecoder. As you will recall

from the docstring assoctated with MasterDecoder, it returns two things: (1) the
predicted log probabilities (logprob) over the target vocabulary for every word

position in the target language; and (2) for each target-language word position,

the word_vocab_index at which the logprob <s mazimum. The loss calculation in

the training code was based on the former. ON the other hand, as shown in line (H)
below, it ¢s the latter that lets us do the the translations in the target words

in line (I).
master_encoder.load_state_dict(torch.load(self.dl_studio.path_saved_model['encoder_FG']))
master_decoder.load_state_dict(torch.load(self.dl_studio.path_saved_model['decoder_FG']))
embeddings_generator_en = self.EmbeddingsGenerator(self, 'en', self.embedding_size)
embeddings_generator_es = self.EmbeddingsGenerator(self, 'es', self.embedding_size)

< embeddings_generator_en.load_state_dict(torch.load(self.dl_studio.path_saved_model['embeddings_generator_en_

. embeddings_generator_es.load_state_dict(torch.load(self.dl_studio.path_saved_model['embeddings_generator_es_
master_encoder.to(self.dl_studio.device)
master_decoder.to(self.dl_studio.device)
embeddings_generator_en.to(self.dl_studio.device)
embeddings_generator_es.to(self.dl_studio.device)
debug = False
FILE = open("translations_with_FG_" + str(self.dl_studio.epochs) + ".txt", 'w')
with torch.no_grad():

for iter in range(20):

starter_stub_for_translation = ['SOS', 'EOS', 'EOS', 'EOS', 'EOS', 'EOS', 'EOS', 'EOS', 'EO0S',

— 'E0S'] ## (4)
batched_pairs = random.sample(self.training_corpus, 1)
— ## (B)

source_sentences = [pair[0] for pair in batched_pairs]
target_sentences = [pair[1] for pair in batched_pairs]

if debug:
print("\n\nsource sentences: ", source_sentences)
print("\ntarget sentences: ", target_sentences)
en_sent_ints = self.sentence_with_words_to_ints(source_sentences,
— 'en').to(self.dl_studio.device) ## (C)
if debug:
es_sent_ints = self.sentence_with_words_to_ints(target_sentences, 'es')
print("\n\nsource sentence tensor: ", en_sent_ints)
print("\n\ntarget sentence tensor: ", es_sent_ints)

en_sentence_tensor = embeddings_generator_en(en_sent_ints) .float ()
master_encoder_output = master_encoder(en_sentence_tensor)

- ## (E)

starter_stub_as_ints = self.sentence_with_words_to_ints(
[" ".join(starter_stub_for_translation)], 'es').to(self.dl_studio.device)
o ## (F)

starter_stub_tensor = embeddings_generator_es(starter_stub_as_ints).float()

o ## (G)

_, predicted_word_index_values = master_decoder(starter_stub_tensor, master_encoder_output)

o ## (H)
predicted_word_index_values = predicted_word_index_values[0].unsqueeze(1)
decoded_words = [self.es_index_2_word[predicted_word_index_values[di].item()]

for di in range(self.max_seq_length)]

o ## (1)
output_sentence = " ".join(decoded_words)
print ("\n\n\nThe input sentence pair: ", source_sentences, target_sentences)
print("\nThe translation produced by TransformerFG: ", output_sentence)
FILE.write("\n\n\nThe input sentence pair: ’s %s" 7 (source_sentences, target_sentences))

FILE.write("\nThe translation produced by TransformerFG: Ys" 7, output_sentence)
decoded_words = [word for word in decoded_words if word not in ['S0S', 'E0S']]
target_tokens = target_sentences[0].split()

output_sentence = " ".join(decoded_words)

target_tokens = [word for word in target_tokens if word not in ['S0S', 'E0S']]

ground_truth = " ".join(target_tokens)

lev_distance = self.levenshtein_distance(output_sentence, ground_truth)

print ("\nThe ground truth clean: ", output_sentence)

print ("\nThe translation produced by TransformerFG clean: ", output_sentence)
print("\nLevenshtein distance: ", lev_distance)

def levenshtein_distance(self, strl, str2):

def

if len(strl) < len(str2):
strl, str2 = str2, strl # Ensure strl is the longer string
len_strl, len_str2 = len(stril), len(str2)
Initialize two rows for dynamic programming
previous_row = list(range(len_str2 + 1))
current_row = [0] * (len_str2 + 1)

for i in range(l, len_strl + 1):
current_row[0] = i
for j in range(l, len_str2 + 1):
cost = 0 if stri[i - 1] == str2[j - 1] else 1
current_row[j] = min(
previous_row[j] + 1, # Deletion
current_row[j - 1] + 1, # Insertion
previous_row[j - 1] + cost # Substitution
)

previous_row, current_row = current_row, previous_row
return previous_row[-1]

run_code_for_evaluating_TransformerPrelLN(self, master_encoder, master_decoder):

mmnn

The main difference between the training code shown in the previous function and the
evaluation code shown here is with regard to the input to MasterDecoder and how we process
1ts output. As shown in the previous function, for the training loop, the input to
MasterDecoder consists of the both the target sentence and the output of the MasterEncoder
for the source sentence. However, at inference time (that is, in the evaluation loop shown
below), the target sentence at the input to the MasterDecoder is replaced by an encoding of
a "starter stub" output sentence as defined in line (B). The main message conveyed by the
stub in line (B) is that we want to start the translation with the first word of the output
as being the token "SOS". The encoding for the stub ts generated in lines (F) and (G).

The second significant difference between the training and the testing code <s with regard
to how we process the output of the MasterDecoder. As you will recall from the docstring
assoctated with MasterDecoder, it returns two things: (1) the predicted log probabilities
(logprob) over the target vocabulary for every word postition in the target language; and

(2) for each target-language word position, the word_vocab_indezr at which the logprob s
mazxzimum. The loss calculation in the training code was based on the former. ON the other
hand, as shown in line (H) below, it %s the latter that lets us do the the translations in
the target words in line (I).
master_encoder.load_state_dict(torch.load(self.dl_studio.path_saved_model['encoder_PreLN']))
master_decoder.load_state_dict(torch.load(self.dl_studio.path_saved_model['decoder_PrelLN']))
embeddings_generator_en = self.EmbeddingsGenerator(self, 'en', self.embedding_size)

embeddings_generator_es = self.EmbeddingsGenerator(self, 'es', self.embedding_size)
< embeddings_generator_en.load_state_dict(torch.load(self.dl_studio.path_saved_model['embeddings_generator_en_

. embeddings_generator_es.load_state_dict(torch.load(self.dl_studio.path_saved_model['embeddings_generator_es_
master_encoder.to(self.dl_studio.device)
master_decoder.to(self.dl_studio.device)
embeddings_generator_en.to(self.dl_studio.device)
embeddings_generator_es.to(self.dl_studio.device)
debug = False
FILE = open("translations_with_PreLN_" + str(self.dl_studio.epochs) + ".txt", 'w')
with torch.no_grad():

for iter in range(20):

starter_stub_for_translation = ['SOS', 'EOS', 'EOS', 'EOS', 'EOS', 'E0OS', 'E0OS', 'E0OS', 'EOS',

— 'E0S'] ## (A)
batched_pairs = random.sample(self.training_corpus, 1)
— ## (B)

source_sentences = [pair[0] for pair in batched_pairs]
target_sentences [pair[1] for pair in batched_pairs]

if debug:
print("\n\nsource sentences: ", source_sentences)
print("\ntarget sentences: ", target_sentences)
en_sent_ints = self.sentence_with_words_to_ints(source_sentences, 'en')
o ## (C)
if debug:
es_sent_ints = self.sentence_with_words_to_ints(target_sentences, 'es')
print("\n\nsource sentence tensor: ", en_sent_ints)
print("\n\ntarget sentence tensor: ", es_sent_ints)

en_sentence_tensor = embeddings_generator_en(en_sent_ints).float ()
master_encoder_output = master_encoder(en_sentence_tensor)
- ## (E)
starter_stub_as_ints = self.sentence_with_words_to_ints(

[" ".join(starter_stub_for_translation)],

< 'es').to(self.dl_studio.device) ## (F)
starter_stub_tensor = embeddings_generator_es(starter_stub_as_ints).float()

— ## (G)
_, predicted_word_index_values = master_decoder(starter_stub_tensor, master_encoder_output)
— ## (H)
predicted_word_index_values = predicted_word_index_values[0].unsqueeze(1)
decoded_words = [self.es_index_2_word[predicted_word_index_values[di].item()]
for di in range(self.max_seq_length)]
o ## (1)
output_sentence = " ".join(decoded_words)
print("\n\n\nThe input sentence pair: ", source_sentences, target_sentences)
print ("\nThe translation produced by TransformerPreLN: ", output_sentence)
FILE.write("\n\n\nThe input sentence pair: ’s %s" 7 (source_sentences, target_sentences))

FILE.write("\nThe translation produced by TransformerPreLN: 7s" J, output_sentence)
decoded_words = [word for word in decoded_words if word not in ['S0S', 'E0S']]
output_sentence = " ".join(decoded_words)

target_tokens = target_sentences[0].split()

target_tokens = [word for word in target_tokens if word not in ['S0S', 'E0S']]

ground_truth = " ".join(target_tokens)

lev_distance = self.levenshtein_distance(output_sentence, ground_truth)

print ("\nThe ground truth clean: ", output_sentence)

print ("\nThe translation produced by TransformerPreLN clean: ", output_sentence)
print("\nLevenshtein distance: ", lev_distance)

