BME646 and ECE60146: Homework 1

Spring 2025
Due Date: Monday, Jan 20, 2025, 11:59pm
TA: Akshita Kamsali (akamsali@purdue.edu)

A policy document related to homework programming assignments and
the submission of your solutions is being updated and will be posted at
BrightSpace before the end of the first week of the semester. Please hold off
on any policy related questions until then.

1 Introduction

This homework is designed to strengthen your understanding of Python
Object-Oriented Programming (OOP), with a particular focus on its appli-
cations in PyTorch. It is the only assignment that focuses on general OOP
principles.

Future assignments will involve the Python classes from the PyTorch
platform and your homework will involve either using them or extending
them in the object-oriented sense.

In this homework, you’ll apply OOP concepts to model exponential
growth related to a hypothetical exercise in population dynamics.

Note that you should use Python 3.x and NOT Python 2.x for this
and all future programming assignments. For the Python-related knowledge
required in this homework, refer to Prof. Kak’s tutorial on OO Python [1].

2 Programming Tasks (100 points)

1. Create a class named BioModel with an instance variable named sequence
as shown below:

1/ class BioModel (object):
2 def init__(self, sequence):

3 self .sequence = sequence

The input parameter sequence is expected to be a list of numbers, e.g.
[0, 1, 2]. This class will serve as the base class for the subclasses
later in this assignment.

2. Now, extend your BioModel class into a subclass called ExponentialGrowthModel
with its __init__ method defined with two input parameters: start



and rate. These two values will serve as the start and the rate of the
growth model.

. Further expand your ExponentialGrowthModel class to make its in-

N =

stances callable.

More specifically, when an instance of ExponentialGrowthModel is
called with a parameter named length, that should generate a se-
quence of length values based on the formula:

next value = current value x (1 + rate)

In addition, calling the instance should cause the computed sequence
to be printed. Shown below is a demonstration of the expected be-
haviour described so far:

GM = ExponentialGrowthModel (start=100, rate=0.1)

GM(length=5) # [100, 110, 121, 133.1, 146.41]
print (len(GM)) # 5

. Modify your class definitions so that your BioModel instance can be

used as an iterator. For example, when iterating through an instance
of ExponentialGrowthModel, the numbers should be returned one-by-
one.

The snippet below illustrates the expected behavior:

GM = ExponentialGrowthModel (start=100, rate=0.1)
GM(length=5) # [100, 110, 121, 133.1, 146.41]

3 print (len(GM)) # 5

print([n for n in GM]) # [100, 110, 121, 133.1, 146.41]

. Now, we simualte a decay model. Make another subclass of the BioModel

class named ExponentialDecayModel. As the name suggests, the new
class is identical to ExponentialGrowthModel except that it is a decay
model where rate will simply have a negative sign. When an instance
of ExponentialDecayModel is called with a parameter named length,
that should generate a sequence of length values based on the formula:

next value = current value x (1 — rate)

What is shown below illustrates the expected behavior:



1/ DM = ExponentialDecayModel (start=100, rate=0.2)
2| DM(length=5) # [100, 80, 64, 51.2, 40.96]
3/ print (len(DM)) # 5

(| print ([n for n in DM]) # [100, 80, 64, 51.2, 40.96]

6. Modify BioModel to allow for a comparison between two instances

using the == operator. If the sequences are of the same length, com-
pare them element-wise and return the count of matching elements.
Otherwise, raise a . Shown below is an example:

GM = ExponentialGrowthModel (start=100, rate=0.1)
GM(length=5) # [100, 110, 121, 133.1, 146.41]

GM2 = ExponentialGrowthModel (start=100, rate=0.2)
GM2 (length=5) # [100, 120, 144, 172.8, 207.36]

7 print (GM == GM2) # 1

9 GM3 = ExponentialGrowthModel (start=100, rate=0.2)
10/ GM3 (length=3) # [100, 120, 144]

12 print (GM == GM3) # will raise an error

13| # Traceback (most recent call last):

14| #

15| # ValueError: Two arrays are not equal in length!

Show it for both the growth and the decay models.

7. Once you have finished all the tasks. Now, choose your own values for
start and rate parameters and present the results.

3 Bonus (20 points)

1. Combined Model (10 points): Create a new subclass called CombinedBioModel
. This class will combine the effects of growth and decay. It will:

e Generate a growth sequence using ExponentialGrowthModel.
e Generate a decay sequence using ExponentialDecayModel.

e Combine these sequences by multiplying the corresponding values
from both sequences element-wise.

1| CBM = CombinedBioModel(growth_start=100, growth_rate=0.1,
decay_start=1.0,
decay_rate=0.05)



2| CBM(length=5) # [100.0, 104.50, 109.20, 114.12, 119.25]

2. Visualization (10 points):

e Plot the generated growth, decay and combined sequences for two
growth and two decay rates visualize growth and decay dynamics.

e Ensure that all 4 plots have the same y-axis limits to allow for
consistent comparison.

e (learly label each plot with a title that specifies the growth and
decay rates used.

e Add legends in each plot to indicate which line corresponds to
growth and which corresponds to decay.

e Use consistent colors for growth and decay lines across all plots
to maintain clarity (e.g., blue for growth, red for decay).

e Make sure the lines in the plots are clearly visible, and use line
styles (solid, dashed, etc.) if needed to distinguish between growth
and decay.

e Ensure that all axes are labeled appropriately (x-axis for time or
iteration, y-axis for value), and the legend should be easy to read.

4 Submission Instructions

Include a typed report explaining how you solved the given programming
tasks. You may refer to the homework solutions posted at the class website
for the previous years for examples of how to structure your report

1. Turn in a PDF file and mark all pages on gradescope. Rename .pdf
file as hwl_<First Name><Last Name>.pdf

2. Submit your code files(s) as zip file. Rename the .zip file as hwl_<First
Name><Last Name>.zip and follow the same file naming convention
for your pdf report too. Not adhering to the above naming con-
vention will lead to you receiving an automatic zero for the
homework.

3. For this homework, you are encouraged to use .ipynb for development
and the report. If you use .ipynb, please convert code to .py and
submit that as source code. Do NOT submit .ipynb notebooks.



4. You can resubmit a homework assignment as many times as you want
up to the deadline. Each submission will overwrite any previous sub-
mission. If you are submitting late, do it only once. Otherwise,
we cannot guarantee that your latest submission will be pulled for
grading and will not accept related regrade requests.

5. The sample solutions from previous years are for reference only. Your
code and final report must be your own work.

6. Your pdf must include a description of
e Outputs from your implementation for the parameter values in

the snippet.

e Outputs for each of the provided snippets above whith input pa-
rameters of your choice.

e Your source code. Make sure that your source code files are
adequately commented and cleaned up. You may refer to the
homework solutions posted at the class website for the previous
years for examples for reference.

References

[1] Python OO for DL. URL https://engineering.purdue.edu/
DeepLearn/pdf-kak/Python00.pdf.


https://engineering.purdue.edu/DeepLearn/pdf-kak/PythonOO.pdf
https://engineering.purdue.edu/DeepLearn/pdf-kak/PythonOO.pdf

	Introduction
	Programming Tasks (100 points)
	Bonus (20 points)
	Submission Instructions

