BME646 and ECE60146: Homework 1
Spring 2025

1 Introduction

This homework is designed to strengthen your understanding of Python Object-Oriented Programming (OOP), with a
particular focus on its applications in PyTorch. It is the only assignment that focuses on general OOP principles.

Future assignments will involve the Python classes from the PyTorch platform and your homework will involve either
using them or extending them in the object-oriented sense.

In this homework, you'll apply OOP concepts to model exponential growth related to a hypothetical exercise in
population dynamics.

2 Programming Tasks

Explanation of Task 1:

A BioModel class is created and initialized using a __init_ () method with a sequence parameter.

class BioModel(object): # Defining base class BioModel
def init (self, sequence): # Initializing instance with a parameter "sequence"
self.sequence = sequence # Instance variable sequence

Explanation of Task 2:

A derived class named "ExponentialGrowthModel" is created to inherit from the base class BioModel. The derived class
itself takes in a start and a rate parameters. They are assigned to "self" meaning they are only valid for the instance
under construction.

class ExponentialGrowthModel (BioModel): # Defining a subclass ExponentialGrowthModel

def init (self, start, rate): # Initializing parameters "start" and "step"

super(). init ([]) # Initializing base class with an empty list
self.start = start # Instance variable start
self.rate = rate # Instance variable rate

Explanation of Task 3:

The derived class ExponentialGrowthModel is further expanded to be callable using the __call__() method. Whenever the
class is called using a length parameter, it uses the start and rate attributes of the instance in addition to the following
fomula to print out a sequence

$$next value = current value x (1 + rate)$$
A system supplied __len__() method is also implimented to return the length of the new sequence.

class ExponentialGrowthModel (BioModel):
def init (self, start, rate):
super(). init ([])
self.start = start
self.rate = rate

def call (self, length): # call () method takes in a length para
self.currentvalue = self.start
self.sequence = [] # An empty list is initialized to store va
for in range(length):
self.sequence.append(self.currentvalue) # Looping length number of times and stori
self.nextvalue = self.currentvalue * (1 + self.rate) # Next value is calculated using the growt
self.currentvalue = self.nextvalue # Current value is updated to be the next
print([round(val, 2) for val in self.sequence]) # Rounding and printing the computed seque

return self.sequence

def len (self):

return len(self.sequence) # len () returns the length of the sequ

Required outputs
GM = ExponentialGrowthModel(start=100, rate=0.1)
GM(length=5)

[100, 110.0, 121.0, 133.1, 146.41]
print(len(GM)) #5

[160, 110.0, 121.0, 133.1, 146.41]
5

My chosen outputs
GM = ExponentialGrowthModel(start=200, rate=0.5)

GM(length=10) # [200, 300.0, 450.0, 675.0, 1012.5, 1518.75, 2278.12, 3417.1
print(len(GM)) # 10

[200, 300.0, 450.0, 675.0, 1012.5, 1518.75, 2278.12, 3417.19, 5125.78, 7688.67]

10

Explanation of Task 4:

The base class BioModel is further expanded to return the length of the sequence as well as make it iterable. The
__iter__() intialize an index which is then incremented by 1 the _ next_ () method is used. While this index smaller than
the length of the sequence, the correnponding element of the sequence is returned, Otherwise a 'Stoplteration’
exception is raised.

class BioModel(object):
def init (self, sequence):
self.sequence = sequence

def len (self):

return len(self.sequence) # len () returns the length of the sequence
def iter (self): # iter () method calls the iterator class BioModel
self.idx = -1 # Initialize the index

return self

def next (self):
self.idx += 1
if self.idx < len(self.sequence):
return round(self.sequence[self.idx], 2) # Returns sequence value one at a time
else:
raise StopIteration

next () is used to setup the iteration logic

#
Incrementing the index by 1 each time next () met

class ExponentialGrowthModel (BioModel):
def init (self, start, rate):
super(). init ([1])
self.start = start
self.rate = rate

def call (self, length):

self.currentvalue = self.start

self.sequence = []

for in range(length):
self.sequence.append(self.currentvalue)
self.nextvalue = self.currentvalue * (1 + self.rate)
self.currentvalue = self.nextvalue

print([round(val, 2) for val in self.sequence])

return self.sequence

Required outputs
GM = ExponentialGrowthModel(start=100, rate=0.1)

GM(length=5) # [100, 110.0, 121.0, 133.1, 146.41]
print(len(GM)) #5

print([n for n in GM]) # [100, 110.0, 121.0, 133.1, 146.41]
[160, 110.0, 121.0, 133.1, 146.41]

5

[1060, 110.0, 121.0, 133.1, 146.41]

My chosen outputs
GM = ExponentialGrowthModel(start=200, rate=0.5)

GM(length=10) # [200, 300.0, 450.0, 675.0, 1012.5, 1518.75, 2278.12, 34
print(len(GM)) # 10

print([n for n in GM]) # [200, 300.0, 450.0, 675.0, 1012.5, 1518.75, 2278.12, 34
[200, 300.0, 450.0, 675.0, 1012.5, 1518.75, 2278.12, 3417.19, 5125.78, 7688.67]

10

[200, 300.0, 450.0, 675.0, 1012.5, 1518.75, 2278.12, 3417.19, 5125.78, 7688.67]

Explanation of Task 5:

A new derived class ExponentialDecayModel is defined in the same way as the ExponentialGrowthModel class with
BioModel class as the base class. The only difference is that the growth equation is replaced withe the following decay
equation:

$$next value = current value x (1 - rate)$$

class BioModel(object):
def init (self, sequence):
self.sequence = sequence

def len (self):

return len(self.sequence)
def iter (self):
self.idx = -1
return self
def next (self):
self.idx += 1
if self.idx < len(self.sequence):

return round(self.sequence[self.idx], 2)
else:

raise StopIteration

class ExponentialDecayModel (BioModel):
def init_ (self, start, rate):
super(). init ([])
self.start = start
self.rate = rate
def call (self, length):
self.currentvalue = self.start
self.sequence = []
for in range(length):
self.sequence.append(self.currentvalue)
self.nextvalue =
self.currentvalue = self.nextvalue
print([round(val, 2) for val in self.sequence])
return self.sequence

Required outputs

DM = ExponentialDecayModel(start=100, rate=0.2)
DM(length=5) # [100,
print(len(DM)) #5
print([n for n in DM]) # [100,
[100, 80.0, 64.0, 51.2, 40.96]

5

[100, 80.0, 64.0, 51.2, 40.96]

My chosen outputs

DM = ExponentialDecayModel(start=200, rate=0.5)
DM(length=5) # [200,
print(len(DM)) #5
print([n for n in DM]) # [200,

[200, 100.0, 50.0, 25.0, 12.5]
5
[200, 100.0, 50.0, 25.0, 12.5]

Explanation of Task 6:

self.currentvalue * (1 - self.rate)

Defining a subclass ExponentialDecayModel

New decay equation is implemented

80.0, 64.0, 51.2, 40.96]

80.0, 64.0, 51.2, 40.96]

160,60, 50.0, 25,0, 12.5]

100.0, 50.0, 25.0, 12.5]

The base class BioModel is futher expaneded with the __eq_ () method that is programmed to raise an exception if the
lengths to the current instance's sequence and another instance's sequence do not match. Otherwise, the two
sequences are paired up using the zip method and designed to return 1 if the two paired elements matches. These 1s

are summed up to count the number of matching elements.

class BioModel(object):
def init (self, sequence):
self.sequence = sequence

def len (self):

return len(self.sequence)
def iter (self):
self.idx = -1
return self
def next (self):
self.idx += 1
if self.idx < len(self.sequence):

return round(self.sequence[self.idx], 2)
else:

raise StopIteration

def eq (self, model2): # eq () method takes in the instan

if len(self.sequence) != len(model2.sequence):

raise ValueError("Two arrays are not equal in length!") # Raises an exception if the 2 sequen
c_matchingElemets = sum(1l for seql, seq2 in zip(self.sequence, model2.sequence) if seql==seq2)
return c matchingElemets # Counts and returns the number of ma

class ExponentialGrowthModel (BioModel):
def init (self, start, rate):
super()._ init_ ([])
self.start = start
self.rate = rate

def call (self, length):

self.currentvalue = self.start

self.sequence = []

for in range(length):
self.sequence.append(self.currentvalue)
self.nextvalue = self.currentvalue * (1 + self.rate)
self.currentvalue = self.nextvalue

print([round(val, 2) for val in self.sequence])

return self.sequence

class ExponentialDecayModel (BioModel):
def init (self, start, rate):
super(). init ([1])
self.start = start
self.rate = rate

def call (self, length):

self.currentvalue = self.start

self.sequence = []

for _ in range(length):
self.sequence.append(self.currentvalue)
self.nextvalue = self.currentvalue * (1 - self.rate)
self.currentvalue = self.nextvalue

print([round(val, 2) for val in self.sequence])

return self.sequence

Required outputs
GM = ExponentialGrowthModel(start=100, rate=0.1)

GM(length=5) # [100, 110.0, 121.0, 133.1, 146.41]

GM2 = ExponentialGrowthModel(start=100, rate=0.2)

GM2 (length=5) # [100, 120.0, 144.0, 172.8, 207.36]

print(GM == GM2) # 1

GM3 = ExponentialGrowthModel(start=100, rate=0.2)

GM3(length=3) # [100, 120.0, 144.0]

print(GM == GM3) # ValueError: Two arrays are not equal in length!

[1060, 110.0, 121.0, 133.1, 146.41]
[100, 120.0, 144.0, 172.8, 207.36]
1

[100, 120.0, 144.0]

ValueError Traceback (most recent call last)
Cell In[13], line 13

10 GM3 = ExponentialGrowthModel(start=100, rate=0.2)

11 GM3(length=3)
---> 13 print(GM == GM3)

Cell In[12], line 21, in (self, model2)
19 def eq (self, model2):
20 if len(self.sequence) != len(model2.sequence):
---> 21 raise ValueError("Two arrays are not equal in length!")
22 c_matchingElemets = sum(1l for seql, seq2 in zip(self.sequence, model2.sequence) if seql==seq2)
23 return c_matchingElemets

ValueError: Two arrays are not equal in length!

My chosen outputs
GM = ExponentialGrowthModel(start=200, rate=0.5)

GM(length=5) # [200, 300.0, 450.0, 675.0, 1012.5]

DM = ExponentialDecayModel(start=1012.5, rate=0.5)

DM(length=5) # [1012.5, 506.25, 253.12, 126.56, 63.28]
print(GM == DM) i O

GM3 = ExponentialGrowthModel(start=200, rate=0.5)
GM3(length=10) # [200, 300.0, 450.0, 675.0, 1012.5, 1518.75, 2278.12, 341

print(GM == GM3) # ValueError: Two arrays are not equal in length!

[200, 300.0, 450.0, 675.0, 1012.5]

[1012.5, 506.25, 253.12, 126.56, 63.28]

0

[200, 300.0, 450.0, 675.0, 1012.5, 1518.75, 2278.12, 3417.19, 5125.78, 7688.67]

ValueError Traceback (most recent call last)
Cell In[14], line 13

10 GM3 = ExponentialGrowthModel(start=200, rate=0.5)

11 GM3(length=10)
---> 13 print(GM == GM3)

Cell In[12], line 21, in (self, model2)
19 def eq (self, model2):
20 if len(self.sequence) != len(model2.sequence):
--=> 21 raise ValueError("Two arrays are not equal in length!")
22 c_matchingElemets = sum(1l for seql, seq2 in zip(self.sequence, model2.sequence) if seql==seq2)
23 return c matchingElemets

ValueError: Two arrays are not equal in length!

Explanation of Task 7:

Reproducing the results using my own chosen values

print ("######HEHHEE Task 1, 2, 3 & 4 ###HH#HHHEHHEHE)
GM = ExponentialGrowthModel(start=300, rate=0.2)

GM(length=10) # [300, 360.0, 432.0, 518.4, 622.08, 746.5, 895.8, 1074.95,
print(len(GM)) # 10

print([n for n in GM]) # [300, 360.0, 432.0, 518.4, 622.08, 746.5, 895.8, 1074.95,
print("\n")

print ("###HHHHHHHHEEAAE Task 5 #HHHHEHHEHH)
DM = ExponentialDecayModel(start=1000, rate=0.5)

DM(length=6) # [1000, 500.0, 250.0, 125.0, 62.5, 31.25]
print(len(DM)) # 6

print([n for n in DM]) # [1000, 500.0, 250.0, 125.0, 62.5, 31.25]
print("\n")

print ("###HHHHHHHHEH A Task 6 ##HHHHHEHH)
GM = ExponentialGrowthModel(start=200, rate=0.5)

GM(length=5) # [200, 300.0, 450.0, 675.0, 1012.5]

DM = ExponentialDecayModel(start=1000, rate=0.5)

DM(length=5) # [1000, 500.0, 250.0, 125.0, 62.5]

print(GM == DM) # 0

GM3 = ExponentialGrowthModel(start=200, rate=0.5)

GM3 (length=10) # [200, 300.0, 450.0, 675.0, 1012.5, 1518.75, 2278.12, 3417.
print(GM == GM3) # ValueError: Two arrays are not equal in length!

HHHHA A Task 1, 2, 3 & 4 ###HH#HHHHHH

[300, 360.0, 432.0, 518.4, 622.08, 746.5, 895.8, 1074.95, 1289.95, 1547.93]
10

[300, 360.0, 432.0, 518.4, 622.08, 746.5, 895.8, 1074.95, 1289.95, 1547.93]

HAHHHHHHRHHHHR AR TasK 5 ####HH#HHHHHHHHE S
[1600, 500.0, 250.0, 125.0, 62.5, 31.25]

6

[1000, 500.0, 250.0, 125.0, 62.5, 31.25]

HHHHHHHH A TasK 6 #fHH

[200, 300.0, 450.0, 675.0, 1012.5]

[1000, 500.0, 250.0, 125.0, 62.5]

0

[200, 300.0, 450.0, 675.0, 1012.5, 1518.75, 2278.12, 3417.19, 5125.78, 7688.67]

ValueError Traceback (most recent call last)
Cell In[15], line 23

21 GM3 = ExponentialGrowthModel(start=200, rate=0.5)

22 GM3(length=10)
---> 23 print(GM == GM3)

Cell In[12], line 21, in (self, model2)
19 def eq (self, model2):
20 if len(self.sequence) != len(model2.sequence):
--=> 21 raise ValueError("Two arrays are not equal in length!")
22 c_matchingElemets = sum(1l for seql, seq2 in zip(self.sequence, model2.sequence) if seql==seq2)
23 return c matchingElemets

ValueError: Two arrays are not equal in length!

3 Bonus

Explanation of Task 1:

A new subsclass CombinedBioModel is initialized with the ExponentialGrowthModel and ExponentialDecayModel. This
class takes in the growth and decay starts and rates parameters and passes them to the appropriate classes to for the
respective sequences. The subclass is made callable to return and print the elementwise multiplication og the two

sequences.

class BioModel(object):
def init (self, sequence):
self.sequence = sequence

def len (self):
return len(self.sequence)

def iter (self):
self.idx = -1
return self

def next (self):
self.idx += 1
if self.idx < len(self.sequence):
return round(self.sequence[self.idx], 2)
else:
raise StopIteration

def eq (self, model2):
if len(self.sequence) != len(model2.sequence):
raise ValueError("Two arrays are not equal in length!")

c _matchingElemets = sum(1l for seql, seq2 in zip(self.sequence, model2.sequence) if seql==seq2)

return ¢ matchingElemets

class ExponentialGrowthModel (BioModel):
def init_ (self, start, rate):
super(). init ([])
self.start = start
self.rate = rate

def call (self, length):

self.currentvalue = self.start

self.sequence = []

for in range(length):
self.sequence.append(self.currentvalue)
self.nextvalue = self.currentvalue * (1 + self.rate)
self.currentvalue = self.nextvalue

return self.sequence

class ExponentialDecayModel(BioModel):
def init_ (self, start, rate):
super(). init ([])
self.start = start
self.rate = rate

def call (self, length):

self.currentvalue = self.start

self.sequence = []

for _ in range(length):
self.sequence.append(self.currentvalue)
self.nextvalue = self.currentvalue * (1 - self.rate)
self.currentvalue = self.nextvalue

return self.sequence

class CombinedBioModel (ExponentialGrowthModel, ExponentialDecayModel):
def init (self, growth start, growth rate, decay start, decay rate):
self.growth_start = growth_start

It takes
Instance

HoH H H W K

CombinedBioModel subclass

in growth and dec
variable

self.growth rate = growth rate Instance variable
self.decay start = decay start Instance variable
self.decay rate = decay rate Instance variable

def call (self, length):
GM = ExponentialGrowthModel(start=self.growth start, rate=self.growth rate)
seqGM = GM(length) # Generates a sequence from
DM = ExponentialDecayModel(start=self.decay start, rate=self.decay rate)
seqDM = DM(length) # Generates a sequence from
self.multiplied = [seql*seq2 for seql, seq2 in zip(seqGM, seqDM)] # Elementwise multiplies the

print([round(val, 2) for val in self.multiplied])
return self.multiplied

Required outputs
CBM = CombinedBioModel(growth start=100, growth rate=0.1, decay start=1.0, decay rate=0.05)

CBM(length=5) # [100.0, 104.5, 109.2, 114.

[100.0, 104.5, 109.2, 114.12, 119.25]

[100.0,
104.50000000000001,

109.20250000000003,
114.11661250000003,
119.25186006250004]

My chosen outputs
CBM = CombinedBioModel(growth start=200, growth rate=0.5, decay start=2.0, decay rate=0.1)

CBM(length=7) # [400.0, 540.0, 729.0, 984.
[400.0, 540.0, 729.0, 984.15, 1328.6, 1793.61, 2421.38]

[400.0,

540.0,

729.0,

984.1500000000001,

1328.6025000000002,
1793.6133750000006,
2421.3780562500006]

Explanation of Task: 2

By looping through a set of two growth and decay rates, sequences from ExponentialGrowthModel,
ExponentialDecayModel and CombinedBioModel are derived and temorarily stored in an array. The y axis minima and
maxima is determined from the decay sequence and combined sequence repectively as they demostrates the extreme
values. The plotting is then setup with each distinguised with a different color and style using the matplotlib library,

import matplotlib.pyplot as plt # Importing matplotlib library

growth rates = [0.1, 0.2]
decay rates = [0.2, 0.1]

starts = [100, 100]

length = 10

arr = []

for growth rate in growth rates: # Looping through eacg growth and d

for decay rate in decay rates:
GM = ExponentialGrowthModel(start=starts[0], rate=growth rate)
seqGM = GM(length=1length)

DM = ExponentialDecayModel(start=starts[1], rate=decay rate)
seqDM = DM(length=1length)

CBM = CombinedBioModel(growth start=starts[0], growth rate=growth rate, decay start=starts[1l], decay ra
seqCBM = CBM(length=length)

arr.append([growth rate, decay rate, seqGM, seqDM, seqCBM]) # Storing the data in a list
fig, axes = plt.subplots(2, 2, figsize=(10, 10)) # Defining the plot parameters
axes = axes.flatten()
for , , seqGM, seqDM, seqCBM in arr: ymin, ymax = min(seqgDM), max(seqCBM) # Determiming the y axis limits

for i, (growth rate, decay rate, seqGM, seqDM, seqCBM) in enumerate(arr):
ax = axes[i]
Plotting each line with a differen color and style
ax.plot(range(length), seqGM, label=f"Growth (rate={growth rate})", color="blue", linestyle="solid")
ax.plot(range(length), seqDM, label=f"Decay (rate={decay rate})", color="red", linestyle="dashed")
ax.plot(range(length), seqCBM, label="Combined", color="green", linestyle="dashdot")
Labelling each plot
ax.set title(f"Growth Rate: {growth rate}, Decay Rate: {decay rate}")
ax.set xlabel("Iteration")
ax.set ylabel("Value")
ax.set ylim(ymin, ymax)
ax.legend(loc="upper left")
Turning plot grid
ax.grid(True)

Displaying the plots
plt.tight layout()
plt.show()

[10000, 8800.0, 7744.0, 6814.72, 5996.95, 5277.32, 4644.04, 4086.76, 3596.35, 3164.78]

[10000, 9900.0, 9801.0, 9702.99, 9605.96, 9509.9, 9414.8, 9320.65, 9227.45, 9135.17]

[10000, 9600.0, 9216.0, 8847.36, 8493.47, 8153.73, 7827.58, 7514.47, 7213.9, 6925.34]

[10000, 10800.0, 11664.0, 12597.12, 13604.89, 14693.28, 15868.74, 17138.24, 18509.3, 19990.05]

Growth Rate: 0.1, Decay Rate: 0.2

—— Growth (rate=0.1)
e === Decay (rate=0.2)
—-= Combined
15000 1
12500 ~
g
= 10000 1=
£ ~.
~.
\b
7500 RS
~.
~.
-
\"'-\-
5000 - ~
"'\-\.‘_-.--‘.-"
" —
2500 A
T T T T T
0 2 4 6 8
Iteration
Growth Rate: 0.2, Decay Rate: 0.2
—— Growth (rate=0.2)
=== Decay (rate=0.2)
17500 7. Combined
15000
12500
g
= 10000 1+t~
E iy
-—'-""-_.___
7500 et
5000 o
2500 -
T T T T T
0 2 4 6 8

Iteration

Value

Value

Growth Rate: 0.1, Decay Rate: 0.1

—— Growth (rate=0.1)
e === Decay (rate=0.1)
—-= Combined
15000 A
12500
10000 =+ — v L =
7500
5000
2500
T T T T
0 2 4 6 8
Iteration
Growth Rate: 0.2, Decay Rate: 0.1
—— Growth (rate=0.2)
=== Decay (rate=0.1) R
17500 : =
—-- Combined e
o~
P
15000 - -
e
"
o
12500 e
+
-
.
-
10000 T
7500 -
5000 A
2500
T T T T
0 2 4 [}

Iteration

