
BME646	and	ECE60146:	Homework	1
Spring	2025

1 Introduction
This	homework	is	designed	to	strengthen	your	understanding	of	Python	Object-Oriented	Programming	(OOP),	with	a
particular	focus	on	its	applications	in	PyTorch.	It	is	the	only	assignment	that	focuses	on	general	OOP	principles.

Future	assignments	will	involve	the	Python	classes	from	the	PyTorch	platform	and	your	homework	will	involve	either
using	them	or	extending	them	in	the	object-oriented	sense.

In	this	homework,	you’ll	apply	OOP	concepts	to	model	exponential	growth	related	to	a	hypothetical	exercise	in
population	dynamics.

2 Programming	Tasks

Explanation	of	Task	1:
A	BioModel	class	is	created	and	initialized	using	a	__init__()	method	with	a	sequence	parameter.

Explanation	of	Task	2:
A	derived	class	named	"ExponentialGrowthModel"	is	created	to	inherit	from	the	base	class	BioModel.	The	derived	class
itself	takes	in	a	start	and	a	rate	parameters.	They	are	assigned	to	"self"	meaning	they	are	only	valid	for	the	instance
under	construction.

Explanation	of	Task	3:
The	derived	class	ExponentialGrowthModel	is	further	expanded	to	be	callable	using	the	__call__()	method.	Whenever	the
class	is	called	using	a	length	parameter,	it	uses	the	start	and	rate	attributes	of	the	instance	in	addition	to	the	following
fomula	to	print	out	a	sequence	

$$next	value	=	current	value	×	(1	+	rate)$$

A	system	supplied	__len__()	method	is	also	implimented	to	return	the	length	of	the	new	sequence.

class	BioModel(object):																					#	Defining	base	class	BioModel
				def	__init__	(self,	sequence):										#	Initializing	instance	with	a	parameter	"sequence"
								self.sequence	=	sequence												#	Instance	variable	sequence

class	ExponentialGrowthModel(BioModel):						#	Defining	a	subclass	ExponentialGrowthModel
				def	__init__(self,	start,	rate):									#	Initializing	parameters	"start"	and	"step"
								super().__init__([])																	#	Initializing	base	class	with	an	empty	list
								self.start	=	start																			#	Instance	variable	start
								self.rate	=	rate																					#	Instance	variable	rate

class	ExponentialGrowthModel(BioModel):
				def	__init__(self,	start,	rate):
								super().__init__([])
								self.start	=	start
								self.rate	=	rate
								
				def	__call__(self,	length):																																						#	__call__()	method	takes	in	a	length	parameter	to	make	the	class	callable
								self.currentvalue	=	self.start
								self.sequence	=	[]																																											#	An	empty	list	is	initialized	to	store	values	later	on
								for	_	in	range(length):
												self.sequence.append(self.currentvalue)																		#	Looping	length	number	of	times	and	storing	the	current	value	in	the	list
												self.nextvalue	=	self.currentvalue	*	(1	+	self.rate)					#	Next	value	is	calculated	using	the	growth	equation	
												self.currentvalue	=	self.nextvalue																							#	Current	value	is	updated	to	be	the	next	value
								print([round(val,	2)	for	val	in	self.sequence])														#	Rounding	and	printing	the	computed	sequence
								return	self.sequence
								
				def	__len__(self):
								return	len(self.sequence)																																				#	__len__()	returns	the	length	of	the	sequence

[100,	110.0,	121.0,	133.1,	146.41]
5

[200,	300.0,	450.0,	675.0,	1012.5,	1518.75,	2278.12,	3417.19,	5125.78,	7688.67]
10

Explanation	of	Task	4:
The	base	class	BioModel	is	further	expanded	to	return	the	length	of	the	sequence	as	well	as	make	it	iterable.	The
__iter__()	intialize	an	index	which	is	then	incremented	by	1	the	__next__()	method	is	used.	While	this	index	smaller	than
the	length	of	the	sequence,	the	correnponding	element	of	the	sequence	is	returned,	Otherwise	a	'StopIteration'
exception	is	raised.

[100,	110.0,	121.0,	133.1,	146.41]
5
[100,	110.0,	121.0,	133.1,	146.41]

[200,	300.0,	450.0,	675.0,	1012.5,	1518.75,	2278.12,	3417.19,	5125.78,	7688.67]
10
[200,	300.0,	450.0,	675.0,	1012.5,	1518.75,	2278.12,	3417.19,	5125.78,	7688.67]

Explanation	of	Task	5:
A	new	derived	class	ExponentialDecayModel	is	defined	in	the	same	way	as	the	ExponentialGrowthModel	class	with
BioModel	class	as	the	base	class.	The	only	difference	is	that	the	growth	equation	is	replaced	withe	the	following	decay
equation:	

#	Required	outputs
GM	=	ExponentialGrowthModel(start=100,	rate=0.1)
GM(length=5)																																						#	[100,	110.0,	121.0,	133.1,	146.41]
print(len(GM))																																				#	5

#	My	chosen	outputs
GM	=	ExponentialGrowthModel(start=200,	rate=0.5)
GM(length=10)																																					#	[200,	300.0,	450.0,	675.0,	1012.5,	1518.75,	2278.12,	3417.19,	5125.78,	7688.67]
print(len(GM))																																				#	10

class	BioModel(object):
				def	__init__	(self,	sequence):
								self.sequence	=	sequence
								
				def	__len__(self):
								return	len(self.sequence)																								#	__len__()	returns	the	length	of	the	sequence
				
				def	__iter__(self):																																		#	__iter__()	method	calls	the	iterator	class	BioModel	itself
								self.idx	=	-1																																				#	Initialize	the	index
								return	self
				
				def	__next__(self):																																		#	__next__()	is	used	to	setup	the	iteration	logic
								self.idx	+=	1																																				#	Incrementing	the	index	by	1	each	time	__next__()	method	is	called
								if	self.idx	<	len(self.sequence):
												return	round(self.sequence[self.idx],	2)					#	Returns	sequence	value	one	at	a	time
								else:
												raise	StopIteration

class	ExponentialGrowthModel(BioModel):
				def	__init__(self,	start,	rate):
								super().__init__([])
								self.start	=	start
								self.rate	=	rate
								
				def	__call__(self,	length):
								self.currentvalue	=	self.start
								self.sequence	=	[]
								for	_	in	range(length):
												self.sequence.append(self.currentvalue)
												self.nextvalue	=	self.currentvalue	*	(1	+	self.rate)
												self.currentvalue	=	self.nextvalue
								print([round(val,	2)	for	val	in	self.sequence])
								return	self.sequence

#	Required	outputs
GM	=	ExponentialGrowthModel(start=100,	rate=0.1)
GM(length=5)																																										#	[100,	110.0,	121.0,	133.1,	146.41]
print(len(GM))																																								#	5
print([n	for	n	in	GM])																																#	[100,	110.0,	121.0,	133.1,	146.41]

#	My	chosen	outputs
GM	=	ExponentialGrowthModel(start=200,	rate=0.5)
GM(length=10)																																									#	[200,	300.0,	450.0,	675.0,	1012.5,	1518.75,	2278.12,	3417.19,	5125.78,	7688.67]
print(len(GM))																																								#	10
print([n	for	n	in	GM])																																#	[200,	300.0,	450.0,	675.0,	1012.5,	1518.75,	2278.12,	3417.19,	5125.78,	7688.67]

$$next	value	=	current	value	×	(1	-	rate)$$

[100,	80.0,	64.0,	51.2,	40.96]
5
[100,	80.0,	64.0,	51.2,	40.96]

[200,	100.0,	50.0,	25.0,	12.5]
5
[200,	100.0,	50.0,	25.0,	12.5]

Explanation	of	Task	6:
The	base	class	BioModel	is	futher	expaneded	with	the	__eq__()	method	that	is	programmed	to	raise	an	exception	if	the
lengths	to	the	current	instance's	sequence	and	another	instance's	sequence	do	not	match.	Otherwise,	the	two
sequences	are	paired	up	using	the	zip	method	and	designed	to	return	1	if	the	two	paired	elements	matches.	These	1s
are	summed	up	to	count	the	number	of	matching	elements.

class	BioModel(object):
				def	__init__	(self,	sequence):
								self.sequence	=	sequence
								
				def	__len__(self):
								return	len(self.sequence)
				
				def	__iter__(self):
								self.idx	=	-1
								return	self
				
				def	__next__(self):
								self.idx	+=	1
								if	self.idx	<	len(self.sequence):
												return	round(self.sequence[self.idx],	2)
								else:
												raise	StopIteration

class	ExponentialDecayModel(BioModel):																														#	Defining	a	subclass	ExponentialDecayModel	that	inherits	from	the	base	class	BioModel
				def	__init__(self,	start,	rate):
								super().__init__([])
								self.start	=	start
								self.rate	=	rate
								
				def	__call__(self,	length):
								self.currentvalue	=	self.start
								self.sequence	=	[]
								for	_	in	range(length):
												self.sequence.append(self.currentvalue)
												self.nextvalue	=	self.currentvalue	*	(1	-	self.rate)				#	New	decay	equation	is	implemented
												self.currentvalue	=	self.nextvalue
								print([round(val,	2)	for	val	in	self.sequence])
								return	self.sequence

#	Required	outputs
DM	=	ExponentialDecayModel(start=100,	rate=0.2)
DM(length=5)																																					#	[100,	80.0,	64.0,	51.2,	40.96]
print(len(DM))																																			#	5
print([n	for	n	in	DM])																											#	[100,	80.0,	64.0,	51.2,	40.96]

#	My	chosen	outputs
DM	=	ExponentialDecayModel(start=200,	rate=0.5)
DM(length=5)																																					#	[200,	100.0,	50.0,	25.0,	12.5]
print(len(DM))																																			#	5
print([n	for	n	in	DM])																											#	[200,	100.0,	50.0,	25.0,	12.5]

class	BioModel(object):
				def	__init__	(self,	sequence):
								self.sequence	=	sequence
								
				def	__len__(self):
								return	len(self.sequence)
				
				def	__iter__(self):
								self.idx	=	-1
								return	self
				
				def	__next__(self):
								self.idx	+=	1
								if	self.idx	<	len(self.sequence):
												return	round(self.sequence[self.idx],	2)
								else:
												raise	StopIteration
				

[100,	110.0,	121.0,	133.1,	146.41]
[100,	120.0,	144.0,	172.8,	207.36]
1
[100,	120.0,	144.0]

ValueError																																Traceback	(most	recent	call	last)
Cell	In[13],	line	13
					10	GM3	=	ExponentialGrowthModel(start=100,	rate=0.2)
					11	GM3(length=3)
--->	13	print(GM	==	GM3)

Cell	In[12],	line	21,	in	BioModel.__eq__(self,	model2)
					19	def	__eq__(self,	model2):
					20					if	len(self.sequence)	!=	len(model2.sequence):
--->	21									raise	ValueError("Two	arrays	are	not	equal	in	length!")
					22					c_matchingElemets	=	sum(1	for	seq1,	seq2	in	zip(self.sequence,	model2.sequence)	if	seq1==seq2)
					23					return	c_matchingElemets

ValueError:	Two	arrays	are	not	equal	in	length!

				def	__eq__(self,	model2):																																													#	__eq__()	method	takes	in	the	instance	sequence	as	well	as	another	instance's	sequence
								if	len(self.sequence)	!=	len(model2.sequence):
												raise	ValueError("Two	arrays	are	not	equal	in	length!")							#	Raises	an	exception	if	the	2	sequences	do	not	have	the	same	length
								c_matchingElemets	=	sum(1	for	seq1,	seq2	in	zip(self.sequence,	model2.sequence)	if	seq1==seq2)
								return	c_matchingElemets																																										#	Counts	and	returns	the	number	of	matching	elements
								
class	ExponentialGrowthModel(BioModel):
				def	__init__(self,	start,	rate):
								super().__init__([])
								self.start	=	start
								self.rate	=	rate
								
				def	__call__(self,	length):
								self.currentvalue	=	self.start
								self.sequence	=	[]
								for	_	in	range(length):
												self.sequence.append(self.currentvalue)
												self.nextvalue	=	self.currentvalue	*	(1	+	self.rate)
												self.currentvalue	=	self.nextvalue
								print([round(val,	2)	for	val	in	self.sequence])
								return	self.sequence
								
class	ExponentialDecayModel(BioModel):
				def	__init__(self,	start,	rate):
								super().__init__([])
								self.start	=	start
								self.rate	=	rate
								
				def	__call__(self,	length):
								self.currentvalue	=	self.start
								self.sequence	=	[]
								for	_	in	range(length):
												self.sequence.append(self.currentvalue)
												self.nextvalue	=	self.currentvalue	*	(1	-	self.rate)
												self.currentvalue	=	self.nextvalue
								print([round(val,	2)	for	val	in	self.sequence])
								return	self.sequence

#	Required	outputs
GM	=	ExponentialGrowthModel(start=100,	rate=0.1)
GM(length=5)																																								#	[100,	110.0,	121.0,	133.1,	146.41]

GM2	=	ExponentialGrowthModel(start=100,	rate=0.2)
GM2(length=5)																																							#	[100,	120.0,	144.0,	172.8,	207.36]

print(GM	==	GM2)																																				#	1

GM3	=	ExponentialGrowthModel(start=100,	rate=0.2)
GM3(length=3)																																							#	[100,	120.0,	144.0]

print(GM	==	GM3)																																				#	ValueError:	Two	arrays	are	not	equal	in	length!

#	My	chosen	outputs
GM	=	ExponentialGrowthModel(start=200,	rate=0.5)					
GM(length=5)																																									#	[200,	300.0,	450.0,	675.0,	1012.5]

DM	=	ExponentialDecayModel(start=1012.5,	rate=0.5)			
DM(length=5)																																									#	[1012.5,	506.25,	253.12,	126.56,	63.28]

print(GM	==	DM)																																						#	0

GM3	=	ExponentialGrowthModel(start=200,	rate=0.5)
GM3(length=10)																																							#	[200,	300.0,	450.0,	675.0,	1012.5,	1518.75,	2278.12,	3417.19,	5125.78,	7688.67]

print(GM	==	GM3)																																					#	ValueError:	Two	arrays	are	not	equal	in	length!

[200,	300.0,	450.0,	675.0,	1012.5]
[1012.5,	506.25,	253.12,	126.56,	63.28]
0
[200,	300.0,	450.0,	675.0,	1012.5,	1518.75,	2278.12,	3417.19,	5125.78,	7688.67]

ValueError																																Traceback	(most	recent	call	last)
Cell	In[14],	line	13
					10	GM3	=	ExponentialGrowthModel(start=200,	rate=0.5)
					11	GM3(length=10)
--->	13	print(GM	==	GM3)

Cell	In[12],	line	21,	in	BioModel.__eq__(self,	model2)
					19	def	__eq__(self,	model2):
					20					if	len(self.sequence)	!=	len(model2.sequence):
--->	21									raise	ValueError("Two	arrays	are	not	equal	in	length!")
					22					c_matchingElemets	=	sum(1	for	seq1,	seq2	in	zip(self.sequence,	model2.sequence)	if	seq1==seq2)
					23					return	c_matchingElemets

ValueError:	Two	arrays	are	not	equal	in	length!

Explanation	of	Task	7:
Reproducing	the	results	using	my	own	chosen	values

#################	Task	1,	2,	3	&	4	#################
[300,	360.0,	432.0,	518.4,	622.08,	746.5,	895.8,	1074.95,	1289.95,	1547.93]
10
[300,	360.0,	432.0,	518.4,	622.08,	746.5,	895.8,	1074.95,	1289.95,	1547.93]

######################	Task	5	######################
[1000,	500.0,	250.0,	125.0,	62.5,	31.25]
6
[1000,	500.0,	250.0,	125.0,	62.5,	31.25]

######################	Task	6	######################
[200,	300.0,	450.0,	675.0,	1012.5]
[1000,	500.0,	250.0,	125.0,	62.5]
0
[200,	300.0,	450.0,	675.0,	1012.5,	1518.75,	2278.12,	3417.19,	5125.78,	7688.67]

ValueError																																Traceback	(most	recent	call	last)
Cell	In[15],	line	23
					21	GM3	=	ExponentialGrowthModel(start=200,	rate=0.5)
					22	GM3(length=10)
--->	23	print(GM	==	GM3)

Cell	In[12],	line	21,	in	BioModel.__eq__(self,	model2)
					19	def	__eq__(self,	model2):
					20					if	len(self.sequence)	!=	len(model2.sequence):
--->	21									raise	ValueError("Two	arrays	are	not	equal	in	length!")
					22					c_matchingElemets	=	sum(1	for	seq1,	seq2	in	zip(self.sequence,	model2.sequence)	if	seq1==seq2)
					23					return	c_matchingElemets

ValueError:	Two	arrays	are	not	equal	in	length!

3 Bonus
Explanation	of	Task	1:

print("#################	Task	1,	2,	3	&	4	#################")
GM	=	ExponentialGrowthModel(start=300,	rate=0.2)
GM(length=10)																																						#	[300,	360.0,	432.0,	518.4,	622.08,	746.5,	895.8,	1074.95,	1289.95,	1547.93]
print(len(GM))																																					#	10
print([n	for	n	in	GM])																													#	[300,	360.0,	432.0,	518.4,	622.08,	746.5,	895.8,	1074.95,	1289.95,	1547.93]
print("\n")

print("######################	Task	5	######################")
DM	=	ExponentialDecayModel(start=1000,	rate=0.5)
DM(length=6)																																							#	[1000,	500.0,	250.0,	125.0,	62.5,	31.25]
print(len(DM))																																					#	6
print([n	for	n	in	DM])																													#	[1000,	500.0,	250.0,	125.0,	62.5,	31.25]
print("\n")

print("######################	Task	6	######################")
GM	=	ExponentialGrowthModel(start=200,	rate=0.5)
GM(length=5)																																							#	[200,	300.0,	450.0,	675.0,	1012.5]
DM	=	ExponentialDecayModel(start=1000,	rate=0.5)
DM(length=5)																																							#	[1000,	500.0,	250.0,	125.0,	62.5]
print(GM	==	DM)																																				#	0
GM3	=	ExponentialGrowthModel(start=200,	rate=0.5)
GM3(length=10)																																					#	[200,	300.0,	450.0,	675.0,	1012.5,	1518.75,	2278.12,	3417.19,	5125.78,	7688.67]
print(GM	==	GM3)																																			#	ValueError:	Two	arrays	are	not	equal	in	length!

Explanation	of	Task	1:
A	new	subsclass	CombinedBioModel	is	initialized	with	the	ExponentialGrowthModel	and	ExponentialDecayModel.	This
class	takes	in	the	growth	and	decay	starts	and	rates	parameters	and	passes	them	to	the	appropriate	classes	to	for	the
respective	sequences.	The	subclass	is	made	callable	to	return	and	print	the	elementwise	multiplication	og	the	two
sequences.

[100.0,	104.5,	109.2,	114.12,	119.25]

class	BioModel(object):
				def	__init__	(self,	sequence):
								self.sequence	=	sequence
								
				def	__len__(self):
								return	len(self.sequence)
				
				def	__iter__(self):
								self.idx	=	-1
								return	self
				
				def	__next__(self):
								self.idx	+=	1
								if	self.idx	<	len(self.sequence):
												return	round(self.sequence[self.idx],	2)
								else:
												raise	StopIteration
				
				def	__eq__(self,	model2):
								if	len(self.sequence)	!=	len(model2.sequence):
												raise	ValueError("Two	arrays	are	not	equal	in	length!")
								c_matchingElemets	=	sum(1	for	seq1,	seq2	in	zip(self.sequence,	model2.sequence)	if	seq1==seq2)
								return	c_matchingElemets
								
class	ExponentialGrowthModel(BioModel):
				def	__init__(self,	start,	rate):
								super().__init__([])
								self.start	=	start
								self.rate	=	rate
								
				def	__call__(self,	length):
								self.currentvalue	=	self.start
								self.sequence	=	[]
								for	_	in	range(length):
												self.sequence.append(self.currentvalue)
												self.nextvalue	=	self.currentvalue	*	(1	+	self.rate)
												self.currentvalue	=	self.nextvalue
								return	self.sequence
								
class	ExponentialDecayModel(BioModel):
				def	__init__(self,	start,	rate):
								super().__init__([])
								self.start	=	start
								self.rate	=	rate
								
				def	__call__(self,	length):
								self.currentvalue	=	self.start
								self.sequence	=	[]
								for	_	in	range(length):
												self.sequence.append(self.currentvalue)
												self.nextvalue	=	self.currentvalue	*	(1	-	self.rate)
												self.currentvalue	=	self.nextvalue
								return	self.sequence

class	CombinedBioModel(ExponentialGrowthModel,	ExponentialDecayModel):													#	CombinedBioModel	subclass	is	defined	
				def	__init__(self,	growth_start,	growth_rate,	decay_start,	decay_rate):								#	It	takes	in	growth	and	decay	starts	and	rates	parameters
								self.growth_start	=	growth_start																																											#	Instance	variable
								self.growth_rate	=	growth_rate																																													#	Instance	variable
								self.decay_start	=	decay_start																																													#	Instance	variable
								self.decay_rate	=	decay_rate																																															#	Instance	variable
								
				def	__call__(self,	length):
								GM	=	ExponentialGrowthModel(start=self.growth_start,	rate=self.growth_rate)
								seqGM	=	GM(length)																																																									#	Generates	a	sequence	from	the	ExponentialGrowthModel	class
								
								DM	=	ExponentialDecayModel(start=self.decay_start,	rate=self.decay_rate)
								seqDM	=	DM(length)																																																									#	Generates	a	sequence	from	the	ExponentialDecayModel	class
								
								self.multiplied	=	[seq1*seq2	for	seq1,	seq2	in	zip(seqGM,	seqDM)]										#	Elementwise	multiplies	the	pairing	elements	from	the	two	sequences
								print([round(val,	2)	for	val	in	self.multiplied])
								return	self.multiplied

#	Required	outputs
CBM	=	CombinedBioModel(growth_start=100,	growth_rate=0.1,	decay_start=1.0,	decay_rate=0.05)
CBM(length=5)																																																																						#	[100.0,	104.5,	109.2,	114.12,	119.25]

[100.0,
	104.50000000000001,

	109.20250000000003,
	114.11661250000003,
	119.25186006250004]

[400.0,	540.0,	729.0,	984.15,	1328.6,	1793.61,	2421.38]
[400.0,
	540.0,
	729.0,
	984.1500000000001,
	1328.6025000000002,
	1793.6133750000006,
	2421.3780562500006]

Explanation	of	Task:	2
By	looping	through	a	set	of	two	growth	and	decay	rates,	sequences	from	ExponentialGrowthModel,
ExponentialDecayModel	and	CombinedBioModel	are	derived	and	temorarily	stored	in	an	array.	The	y	axis	minima	and
maxima	is	determined	from	the	decay	sequence	and	combined	sequence	repectively	as	they	demostrates	the	extreme
values.	The	plotting	is	then	setup	with	each	distinguised	with	a	different	color	and	style	using	the	matplotlib	library,

[10000,	8800.0,	7744.0,	6814.72,	5996.95,	5277.32,	4644.04,	4086.76,	3596.35,	3164.78]
[10000,	9900.0,	9801.0,	9702.99,	9605.96,	9509.9,	9414.8,	9320.65,	9227.45,	9135.17]
[10000,	9600.0,	9216.0,	8847.36,	8493.47,	8153.73,	7827.58,	7514.47,	7213.9,	6925.34]
[10000,	10800.0,	11664.0,	12597.12,	13604.89,	14693.28,	15868.74,	17138.24,	18509.3,	19990.05]

#	My	chosen	outputs
CBM	=	CombinedBioModel(growth_start=200,	growth_rate=0.5,	decay_start=2.0,	decay_rate=0.1)
CBM(length=7)																																																																						#	[400.0,	540.0,	729.0,	984.15,	1328.6,	1793.61,	2421.38]

import	matplotlib.pyplot	as	plt																																													#	Importing	matplotlib	library

growth_rates	=	[0.1,	0.2]
decay_rates	=	[0.2,	0.1]
starts	=	[100,	100]
length	=	10

arr	=	[]

for	growth_rate	in	growth_rates:																																												#	Looping	through	eacg	growth	and	decay	rates
				for	decay_rate	in	decay_rates:
								GM	=	ExponentialGrowthModel(start=starts[0],	rate=growth_rate)
								seqGM	=	GM(length=length)
								
								DM	=	ExponentialDecayModel(start=starts[1],	rate=decay_rate)
								seqDM	=	DM(length=length)
								
								CBM	=	CombinedBioModel(growth_start=starts[0],	growth_rate=growth_rate,	decay_start=starts[1],	decay_rate
								seqCBM	=	CBM(length=length)
								
								arr.append([growth_rate,	decay_rate,	seqGM,	seqDM,	seqCBM])									#	Storing	the	data	in	a	list

fig,	axes	=	plt.subplots(2,	2,	figsize=(10,	10))																												#	Defining	the	plot	parameters
axes	=	axes.flatten()
for	_,	_,	seqGM,	seqDM,	seqCBM	in	arr:	ymin,	ymax	=	min(seqDM),	max(seqCBM)	#	Determiming	the	y	axis	limits

for	i,	(growth_rate,	decay_rate,	seqGM,	seqDM,	seqCBM)	in	enumerate(arr):
				ax	=	axes[i]
				#	Plotting	each	line	with	a	differen	color	and	style
				ax.plot(range(length),	seqGM,	label=f"Growth	(rate={growth_rate})",	color="blue",	linestyle="solid")
				ax.plot(range(length),	seqDM,	label=f"Decay	(rate={decay_rate})",	color="red",	linestyle="dashed")
				ax.plot(range(length),	seqCBM,	label="Combined",	color="green",	linestyle="dashdot")
				#	Labelling	each	plot
				ax.set_title(f"Growth	Rate:	{growth_rate},	Decay	Rate:	{decay_rate}")
				ax.set_xlabel("Iteration")
				ax.set_ylabel("Value")
				ax.set_ylim(ymin,	ymax)
				ax.legend(loc="upper	left")
				#	Turning	plot	grid
				ax.grid(True)

#	Displaying	the	plots
plt.tight_layout()
plt.show()

	

