
ECE60146 Homework 1

Leonard Fan

January 2025

1 Tasks

1.1 1

The task asks us to create a Biomodel class with a sequence instance variable.
The code given to us in the assignment is as follows:

1 # Create class BioModel

2 class BioModel(object):

3 def __init__(self , sequence):

4 self.sequence = sequence # Class has input sequence

1.2 2

The task asks us to extend the BioModel class into an ExponentialGrowthModel
subclass. The __init__ method is defined with two parameters: start and rate,
which serve as the start and the rate of the growth model.

1 # Create class ExponentialGrowthModel

2 class ExponentialGrowthModel(BioModel):

3 def __init__(self , start , rate):

4 super ().__init__(sequence =[])

5 self.start = start # Class has input start

6 self.rate = rate # Class has input rate

To make ExponentialGrowthModel a subclass of BioModel, we instead use
BioModel in the class definition. In the __init__ method, we define the two
input parameters start and rate. The values are stored in self.start and
self.rate.

1



1.3 3

The task is to expand ExponentialGrowthModel further to make its instances
callable. It will include a method with a parameter length. A sequence of
values is calculated by:

next value = current value× (1 + rate)

The instance should also print the computed sequence.

1 # Create class ExponentialGrowthModel

2 class ExponentialGrowthModel(BioModel):

3 def __init__(self , start , rate):

4 super ().__init__(sequence =[])

5 self.start = start # Class has input start

6 self.rate = rate # Class has input rate

7

8 # Task 3

9 # Callable method

10 def __call__(self , length):

11 self.sequence = [self.start] # Sequence begins with

start parameter

12 curr_val = self.start # Calculation begins

with start parameter

13

14 # Loop through and calculate sequence

15 for _ in range(1, length):

16 next_val = curr_val * (1 + self.rate) #

Calculate next value

17 self.sequence.append(next_val) # Add next

value to sequence

18 curr_val = next_val # Update

current value to calculated value

19

20 print(self.sequence) # Print final sequence

21

22 # Define __len__ method to print length when called

23 def __len__(self):

24 return len(self.sequence)

The __call__ method will run a program when the instance is called. We start
with the sequence with the given start parameter to calculate the sequence. The
variable curr_val is iterated through and updated using the equation defined
previously. Each new calculated value is appended to the parameter self.

sequence. Lastly, the final sequence is printed.

The example shows the len() function called on the instance. We must add the

2



__len__ method. This method returns the length of the sequence when called.

The output is tested with the example:

1 GM = ExponentialGrowthModel(start =100, rate =0.1)

2 GM(length =5) # Output: [100, 110.0, 121.0, 133.1, 146.41]

3 print(len(GM)) # Output: 5

The output is as follows:

1 [100, 110.00 , 121.00 , 133.10 , 146.41]

2 5

Which matches the expected output in the example.

1.4 4

The task is to modify BioModel to be used as an integrator.

1 # Define iter method to start iterable

2 def __iter__(self):

3 self.index = 0 # Start index at 0

4 return self

5

6 # Define next method to continue iterable

7 def __next__(self):

8 # Logic to determine when to stop iteration

9 if self.index < len(self.sequence):

10 self.index += 1

11 return self.sequence[self.index - 1] # Subtract one

from index for accurate output

12 else:

13 raise StopIteration # Stop iteration if index is not

less than length

To make an instance iterable, we need to define the __iter__ and __next__

methods. __iter__ method defines the start of the iterable. We start with
the zero index to begin the sequence. __next__ method defines the iteration
pattern. If the index is less than the length of the sequence, we increment the
index. Otherwise, we stop the iterable and end iteration.

The output is tested with the example:

1 print([n for n in GM]) # Output: [100, 110.0 , 121.0 , 133.1 ,

146.41]

The output is as follows:

3



1 [100, 110.00 , 121.00 , 133.10 , 146.41]

Which follows the expected output.

1.5 5

The task is to simulate a decay model. The class is identical except for the
decay model. The formula for the decay model is:

next value = current value× (1− rate)

1 # Create class ExponentialDecayModel

2 class ExponentialDecayModel(BioModel):

3 def __init__(self , start , rate):

4 super ().__init__(sequence =[])

5 self.start = start # Class has input start

6 self.rate = rate # Class has input rate

7

8 # Callable method

9 def __call__(self , length):

10 self.sequence = [self.start] # Sequences begins with

start parameter

11 curr_val = self.start # Calculation begins with

start parameter

12

13 # Loop through and calculate sequence

14 for _ in range(1, length):

15 next_val = curr_val * (1 - self.rate) #

Calculate next value

16 self.sequence.append(next_val) # Add next value

to sequence

17 curr_val = next_val # Update current value to

calculated value

18

19 print(self.sequence) # Print final sequence

20

21 # Define __len__ method to print length when called

22 def __len__(self):

23 return len(self.sequence)

Most of the ExponentialDecayModel subclass is the same as ExponentialGrowthModel
. The only difference is the calculation in the __call__ method. The formula is
adjusted with the previously mentioned equation.

The output is tested with the example:

4



1 DM = ExponentialDecayModel(start =100, rate =0.2)

2 DM(length =5) # Output: [100, 80.0, 64.0, 51.2, 40.96]

3 print(len(DM)) # Output: 5

4 print([n for n in DM]) # Output: [100, 80.0, 64.0, 51.2,

40.96]

The output is as follows:

1 [100, 80.0, 64.0, 51.2, 40.96]

2 5

3 [100, 80.0, 64.0, 51.2, 40.96]

Which follows the expected output.

1.6 6

The task is to modify BioModel to allow for comparison between two instances
using the == operator. If the sequences are the same length, they should be
compared element-wise and return the count of matching elements. Otherwise
raise a ValueError

1 def __eq__(self , other):

2 if not isinstance(other , BioModel):

3 return NotImplemented

4 if len(self.sequence) != len(other.sequence):

5 raise ValueError("Two␣arrays␣are␣not␣equal␣in␣

length!")

6

7 count_match = 0

8 for x, y in zip(self.sequence , other.sequence):

9 if x == y:

10 count_match += 1

11

12 return count_match

The method __eq__ defines what an instance should do when compared. When
called, it compares to the ”other” instance. We cannot compare the two if the
other instance is not of type BioModel. Then, it compares the length for both
sequences. If they are not equal, then an error ValueError is raised. If they are
equal, each element will be compared pairwise. A counter count_match keeps
track of the number of matching elements. Lastly, the value is returned once all
values are compared.

The output is tested with the example:

1 print("Task␣6␣result")

2 GM = ExponentialGrowthModel(start =100, rate =0.1)

5



3 GM(length =5) # [100, 110.0, 121.0, 133.1, 146.41]

4

5 GM2 = ExponentialGrowthModel(start =100, rate =0.2)

6 GM2(length =5) # [100, 120.0, 144.0, 172.8, 207.36]

7

8 print(GM == GM2) # Output: 1 (only the first element

matches)

9

10 GM3 = ExponentialGrowthModel(start =100, rate =0.2)

11 GM3(length =3) # [100, 120.0, 144.0]

12

13 print(GM == GM3) # Raises ValueError: Two arrays are not

equal in length!

The output is as follows:

1 [100, 110.0, 121.0, 133.10 , 146.41]

2 [100, 120.0, 144.0, 172.8, 207.36]

3 1

4 [100, 120.0, 144.0]

5 Traceback (most recent call last):

6 File "c:\ Users\Fanle\OneDrive\Desktop\Code\ECE60146\

hw1_tasks.py", line 134, in <module >

7 print(GM == GM3) # Raises ValueError: Two arrays are

not equal in length!

8 ^^^^^^^^^

9 File "c:\ Users\Fanle\OneDrive\Desktop\Code\ECE60146\

hw1_tasks.py", line 29, in __eq__

10 raise ValueError("Two␣arrays␣are␣not␣equal␣in␣length!")

11 ValueError: Two arrays are not equal in length!

Which follows the expected output.

1.6.1 7

This task asks us to choose our start and rate parameter values and then show
the results.

The values were chosen randomly by a random number generator. The start

value for all tasks ranges from 100 to 999. The generator chose 285. Each rate is
randomly selected from 0.1 to 0.9 except for the GM and GM2 instances in example
6. They will be set to the same to show the count matches correctly.

The output is tested with the example:

1 # Task 3 result

2 print("Task␣3␣result")

3 GM = ExponentialGrowthModel(start =285, rate =0.9)

6



4 GM(length =5)

5 print(len(GM)) # Output: 5

6

7 # Task 4 Result

8 print("Task␣4␣result")

9 print([n for n in GM])

10

11 # Task 5 Result

12 DM = ExponentialDecayModel(start =285, rate =0.4)

13 DM(length =5)

14 print(len(DM)) # Output: 5

15 print([n for n in DM])

16

17 # Task 6 Result

18 GM = ExponentialGrowthModel(start =285, rate =0.3)

19 GM(length =5)

20

21 GM2 = ExponentialGrowthModel(start =285, rate =0.3)

22 GM2(length =5)

23

24 print(GM == GM2) # Output: 5 (All output matches)

25

26 GM3 = ExponentialGrowthModel(start =285, rate =0.1)

27 GM3(length =3) # [100, 120.0, 144.0]

28

29 print(GM == GM3) # Raises ValueError: Two arrays are not

equal in length!

The output is as follows:

1 Task 3 result

2 [285, 541.5, 1028.85 , 1954.8149999999998 ,

3714.1484999999993]

3 5

4 Task 4 result

5 [285, 541.5, 1028.85 , 1954.8149999999998 ,

3714.1484999999993]

6 Task 5 result

7 [285, 171.0, 102.6, 61.559999999999995 , 36.93599999999999]

8 5

9 [285, 171.0, 102.6, 61.559999999999995 , 36.93599999999999]

10 Task 6 result

11 [285, 370.5, 481.65000000000003 , 626.1450000000001 ,

813.9885000000002]

12 [285, 370.5, 481.65000000000003 , 626.1450000000001 ,

813.9885000000002]

13 5

14 [285, 313.5, 344.85]

15 Traceback (most recent call last):

16 File "c:\ Users\Fanle\OneDrive\Desktop\Code\ECE60146\

7



hw1_choice_parameters.py", line 115, in <module >

17 print(GM == GM3) # Raises ValueError: Two arrays are

not equal in length!

18 ^^^^^^^^^

19 File "c:\Users\Fanle\OneDrive\Desktop\Code\ECE60146\

hw1_choice_parameters.py", line 29, in __eq__

20 raise ValueError("Two␣arrays␣are␣not␣equal␣in␣length!")

21 ValueError: Two arrays are not equal in length!

Which follows the expected output.

2 Bonus

2.1 1

This task asks us to create a new subclass called CombinedBioModel. It has the
following requirements:

1. Generate a growth sequence using ExponentialGrowthModel

2. Generate a decay sequence using ExponentialDecayModel

3. Combine these sequences by multiplying the corresponding values from
both sequences element-wise.

1 # Create class CombinedBioModel

2 class CombinedBioModel(BioModel):

3 def __init__(self , growth_start , growth_rate ,

decay_start , decay_rate):

4 super ().__init__(sequence = [])

5 self.growth_model = ExponentialGrowthModel(start=

growth_start , rate=growth_rate) # Class has

growth model

6 self.decay_model = ExponentialDecayModel(start=

decay_start , rate=decay_rate) # Class has decay

model

7

8 # Callable method

9 def __call__(self , length):

10 # Initialize growth and decay model with length

11 self.growth_model(length)

12 self.decay_model(length)

13

14 # Multiply elements pairwise from growth and decay

model

8



15 self.sequence = [g * d for g, d in zip(self.

growth_model.sequence , self.decay_model.sequence)

]

16

17 # Print calculated sequence

18 print(self.sequence)

The class CombinedBioModel initializes a growth model and decay model instances
using the input parameters. The __call__ method receives an input parameter
length, initializing the two instances. The pairwise product is then calculated
using list comprehension.

The output is tested with the example:

1 print("Bonus␣1␣result")

2 CBM = CombinedBioModel(growth_start =100, growth_rate =0.1,

decay_start =1.0, decay_rate =0.05)

3 CBM(length =5) # Output: [100.0 , 104.5, 109.2, 114.12 ,

119.25]

The output is as follows:

1 [100, 110.00 , 121.00 , 133.10 , 146.41]

2 [1.0, 0.95, 0.9025 , 0.86, 0.81]

3 [100.0 , 104.50 , 109.2, 114.12 , 119.25]

Which follows the expected output.

2.2 2

This task asks us to visualize the comparison between two growth and decay
rates.

1 # Two growth and decay rates

2 # Length is set to 10 for visualization

3 # Growth and decay set at same start point to visualize

difference

4 growth_rate_1 = 0.1

5 growth_rate_2 = 0.5

6 decay_rate_1 = 0.02

7 decay_rate_2 = 0.1

8 length = 10

9 growth_start = 10

10 decay_start = 10

11

12 # Combination of Growth Rates

13 print("Growth␣rate␣1,␣Decay␣rate␣1")

9



14 combined_model_1 = CombinedBioModel(growth_start=

growth_start , growth_rate=growth_rate_1 , decay_start=

decay_start , decay_rate=decay_rate_1)

15 combined_model_1(length)

16 growth_model_1 = combined_model_1.growth_model

17 decay_model_1 = combined_model_1.decay_model

18

19 print("Growth␣rate␣2,␣Decay␣rate␣2")

20 combined_model_2 = CombinedBioModel(growth_start=

growth_start , growth_rate=growth_rate_2 , decay_start=

decay_start , decay_rate=decay_rate_2)

21 combined_model_2(length)

22 growth_model_2 = combined_model_2.growth_model

23 decay_model_2 = combined_model_2.decay_model

24

25 print("Growth␣rate␣2,␣Decay␣rate␣1")

26 combined_model_3 = CombinedBioModel(growth_start=

growth_start , growth_rate=growth_rate_2 , decay_start=

decay_start , decay_rate=decay_rate_1)

27 combined_model_3(length)

28

29 print("Growth␣rate␣1,␣Decay␣rate␣2")

30 combined_model_4 = CombinedBioModel(growth_start=

growth_start , growth_rate=growth_rate_1 , decay_start=

decay_start , decay_rate=decay_rate_2)

31 combined_model_4(length)

32

33 fig , axs = plt.subplots(2, 2, figsize =(12, 10))

34 fig.suptitle("Growth ,␣Decay ,␣and␣Combined␣Dynamics",

fontsize =16)

35

36 # Plot subplots

37 axs[0, 0]. plot(range(length), growth_model_1.sequence , label

="Growth", color="blue", linestyle="solid")

38 axs[0, 0]. plot(range(length), decay_model_1.sequence , label=

"Decay", color="red", linestyle="dashed")

39 axs[0, 0]. plot(range(length), combined_model_1.sequence ,

label="Combined", color="green", linestyle="dotted")

40 axs[0, 0]. set_title(f"Growth␣Rate:␣{growth_rate_1},␣Decay␣

Rate:␣{decay_rate_1}")

41 axs[0, 0]. set_xlabel("Iteration")

42 axs[0, 0]. set_ylabel("Value")

43 axs[0, 0]. legend ()

44

45 axs[0, 1]. plot(range(length), growth_model_2.sequence , label

="Growth", color="blue", linestyle="solid")

46 axs[0, 1]. plot(range(length), decay_model_1.sequence , label=

"Decay", color="red", linestyle="dashed")

47 axs[0, 1]. plot(range(length), combined_model_3.sequence ,

label="Combined", color="green", linestyle="dotted")

10



48 axs[0, 1]. set_title(f"Growth␣Rate:␣{growth_rate_2},␣Decay␣

Rate:␣{decay_rate_1}")

49 axs[0, 1]. set_xlabel("Iteration")

50 axs[0, 1]. set_ylabel("Value")

51 axs[0, 1]. legend ()

52

53 axs[1, 0]. plot(range(length), growth_model_1.sequence , label

="Growth", color="blue", linestyle="solid")

54 axs[1, 0]. plot(range(length), decay_model_2.sequence , label=

"Decay", color="red", linestyle="dashed")

55 axs[1, 0]. plot(range(length), combined_model_4.sequence ,

label="Combined", color="green", linestyle="dotted")

56 axs[1, 0]. set_title(f"Growth␣Rate:␣{growth_rate_1},␣Decay␣

Rate:␣{decay_rate_2}")

57 axs[1, 0]. set_xlabel("Iteration")

58 axs[1, 0]. set_ylabel("Value")

59 axs[1, 0]. legend ()

60

61 axs[1, 1]. plot(range(length), growth_model_2.sequence , label

="Growth", color="blue", linestyle="solid")

62 axs[1, 1]. plot(range(length), decay_model_2.sequence , label=

"Decay", color="red", linestyle="dashed")

63 axs[1, 1]. plot(range(length), combined_model_2.sequence ,

label="Combined", color="green", linestyle="dotted")

64 axs[1, 1]. set_title(f"Growth␣Rate:␣{growth_rate_2},␣Decay␣

Rate:␣{decay_rate_2}")

65 axs[1, 1]. set_xlabel("Iteration")

66 axs[1, 1]. set_ylabel("Value")

67 axs[1, 1]. legend ()

68

69 # Set all y axis equal

70 for ax in axs.flat:

71 ax.set_ylim(0, 200)

72

73 plt.show()

Values were chosen at random. The plots are shown in Figure 1.

3 Source Code

The code for all the tasks and bonus is presented below

1 hw1_tasks.py

2

3 import matplotlib.pyplot as plt

4

5 # Task 1

11



Figure 1: Generated growth, decay and combined sequences for two growth and
two decay rates

6 # Create class BioModel

7 class BioModel(object):

8 def __init__(self , sequence):

9 self.sequence = sequence # Class has input sequence

10

11 #Task 4

12 # Define iter method to start iterable

13 def __iter__(self):

14 self.index = 0 # Start index at 0

15 return self

16

17 # Define next method to continue iterable

18 def __next__(self):

19 # Logic to determine when to stop iteration

20 if self.index < len(self.sequence):

21 self.index += 1

22 return self.sequence[self.index - 1] # Too lazy

to add more lines. Subtract one from index

for accurate output

23 else:

24 raise StopIteration # Stop iteration if index is

not less than length

25

26 # Task 6

27 def __eq__(self , other):

28 if not isinstance(other , BioModel):

29 return NotImplemented

12



30 if len(self.sequence) != len(other.sequence):

31 raise ValueError("Two␣arrays␣are␣not␣equal␣in␣

length!")

32

33 count_match = 0

34 for x, y in zip(self.sequence , other.sequence):

35 if x == y:

36 count_match += 1

37

38 return count_match

39

40 # Task 2

41 # Create class ExponentialGrowthModel

42 class ExponentialGrowthModel(BioModel):

43 def __init__(self , start , rate):

44 super ().__init__(sequence =[])

45 self.start = start # Class has input start

46 self.rate = rate # Class has input rate

47

48 # Task 3

49 # Callable method

50 def __call__(self , length):

51 self.sequence = [self.start] # Sequences begins with

start parameter

52 curr_val = self.start # Calculation begins with

start parameter

53

54 # Loop through and calculate sequence

55 for _ in range(1, length):

56 next_val = curr_val * (1 + self.rate) #

Calculate next value

57 self.sequence.append(next_val) # Add next value

to sequence

58 curr_val = next_val # Update current value to

calculated value

59

60 print(self.sequence) # Print final sequence

61

62 # Define __len__ method to print length when called

63 def __len__(self):

64 return len(self.sequence)

65

66 # Task 5

67 # Create class ExponentialDecayModel

68 class ExponentialDecayModel(BioModel):

69 def __init__(self , start , rate):

70 super ().__init__(sequence =[])

71 self.start = start # Class has input start

72 self.rate = rate # Class has input rate

73

13



74 # Callable method

75 def __call__(self , length):

76 self.sequence = [self.start] # Sequences begins with

start parameter

77 curr_val = self.start # Calculation begins with

start parameter

78

79 # Loop through and calculate sequence

80 for _ in range(1, length):

81 next_val = curr_val * (1 - self.rate) #

Calculate next value

82 self.sequence.append(next_val) # Add next value

to sequence

83 curr_val = next_val # Update current value to

calculated value

84

85 print(self.sequence) # Print final sequence

86

87 # Define __len__ method to print length when called

88 def __len__(self):

89 return len(self.sequence)

90

91 # Bonus 1

92 # Create class CombinedBioModel

93 class CombinedBioModel(BioModel):

94 def __init__(self , growth_start , growth_rate ,

decay_start , decay_rate):

95 super ().__init__(sequence = [])

96 self.growth_model = ExponentialGrowthModel(start=

growth_start , rate=growth_rate) # Class has

growth model

97 self.decay_model = ExponentialDecayModel(start=

decay_start , rate=decay_rate) # Class has decay

model

98

99 # Callable method

100 def __call__(self , length):

101 # Initialize growth and decay model with length

102 self.growth_model(length)

103 self.decay_model(length)

104

105 # Multiply elements pairwise from growth and decay

model

106 self.sequence = [g * d for g, d in zip(self.

growth_model.sequence , self.decay_model.sequence)

]

107

108 # Print calculated sequence

109 print(self.sequence)

110

14



111 # Task 3 result

112 print("Task␣3␣result")

113 GM = ExponentialGrowthModel(start =100, rate =0.1)

114 GM(length =5) # Output: [100, 110.0, 121.0, 133.1, 146.41]

115 print(len(GM)) # Output: 5

116

117 # Task 4 Result

118 print("Task␣4␣result")

119 print([n for n in GM]) # Output: [100, 110.0 , 121.0 , 133.1 ,

146.41]

120

121 # Task 5 Result

122 print("Task␣5␣result")

123 DM = ExponentialDecayModel(start =100, rate =0.2)

124 DM(length =5) # Output: [100, 80.0, 64.0, 51.2, 40.96]

125 print(len(DM)) # Output: 5

126 print([n for n in DM]) # Output: [100, 80.0, 64.0, 51.2,

40.96]

127

128 # Task 6 Result

129 print("Task␣6␣result")

130 GM = ExponentialGrowthModel(start =100, rate =0.1)

131 GM(length =5) # [100, 110.0, 121.0, 133.1, 146.41]

132

133 GM2 = ExponentialGrowthModel(start =100, rate =0.2)

134 GM2(length =5) # [100, 120.0, 144.0, 172.8, 207.36]

135

136 print(GM == GM2) # Output: 1 (only the first element

matches)

137

138 GM3 = ExponentialGrowthModel(start =100, rate =0.2)

139 GM3(length =3) # [100, 120.0, 144.0]

140

141 # Commented out for running bonus outputs

142 # print(GM == GM3) # Raises ValueError: Two arrays are not

equal in length!

143

144 # Bonus 1

145 print("Bonus␣1␣result")

146 CBM = CombinedBioModel(growth_start =100, growth_rate =0.1,

decay_start =1.0, decay_rate =0.05)

147 CBM(length =5) # Output: [100.0 , 104.5, 109.2, 114.12 ,

119.25]

148

149 # Bonus 2

150 print("Bonus␣2␣result")

151

152 # Two growth and decay rates

153 # Length is set to 10 for visualization

15



154 # Growth and decay set at same start point to visualize

difference

155 growth_rate_1 = 0.1

156 growth_rate_2 = 0.5

157 decay_rate_1 = 0.02

158 decay_rate_2 = 0.1

159 length = 10

160 growth_start = 10

161 decay_start = 10

162

163 # Combination of Growth Rates

164 print("Growth␣rate␣1,␣Decay␣rate␣1")

165 combined_model_1 = CombinedBioModel(growth_start=

growth_start , growth_rate=growth_rate_1 , decay_start=

decay_start , decay_rate=decay_rate_1)

166 combined_model_1(length)

167 growth_model_1 = combined_model_1.growth_model

168 decay_model_1 = combined_model_1.decay_model

169

170 print("Growth␣rate␣2,␣Decay␣rate␣2")

171 combined_model_2 = CombinedBioModel(growth_start=

growth_start , growth_rate=growth_rate_2 , decay_start=

decay_start , decay_rate=decay_rate_2)

172 combined_model_2(length)

173 growth_model_2 = combined_model_2.growth_model

174 decay_model_2 = combined_model_2.decay_model

175

176 print("Growth␣rate␣2,␣Decay␣rate␣1")

177 combined_model_3 = CombinedBioModel(growth_start=

growth_start , growth_rate=growth_rate_2 , decay_start=

decay_start , decay_rate=decay_rate_1)

178 combined_model_3(length)

179

180 print("Growth␣rate␣1,␣Decay␣rate␣2")

181 combined_model_4 = CombinedBioModel(growth_start=

growth_start , growth_rate=growth_rate_1 , decay_start=

decay_start , decay_rate=decay_rate_2)

182 combined_model_4(length)

183

184 fig , axs = plt.subplots(2, 2, figsize =(12, 10))

185 fig.suptitle("Growth ,␣Decay ,␣and␣Combined␣Dynamics",

fontsize =16)

186

187 # Plot subplots

188 axs[0, 0]. plot(range(length), growth_model_1.sequence , label

="Growth", color="blue", linestyle="solid")

189 axs[0, 0]. plot(range(length), decay_model_1.sequence , label=

"Decay", color="red", linestyle="dashed")

190 axs[0, 0]. plot(range(length), combined_model_1.sequence ,

label="Combined", color="green", linestyle="dotted")

16



191 axs[0, 0]. set_title(f"Growth␣Rate:␣{growth_rate_1},␣Decay␣

Rate:␣{decay_rate_1}")

192 axs[0, 0]. set_xlabel("Iteration")

193 axs[0, 0]. set_ylabel("Value")

194 axs[0, 0]. legend ()

195

196 axs[0, 1]. plot(range(length), growth_model_2.sequence , label

="Growth", color="blue", linestyle="solid")

197 axs[0, 1]. plot(range(length), decay_model_1.sequence , label=

"Decay", color="red", linestyle="dashed")

198 axs[0, 1]. plot(range(length), combined_model_3.sequence ,

label="Combined", color="green", linestyle="dotted")

199 axs[0, 1]. set_title(f"Growth␣Rate:␣{growth_rate_2},␣Decay␣

Rate:␣{decay_rate_1}")

200 axs[0, 1]. set_xlabel("Iteration")

201 axs[0, 1]. set_ylabel("Value")

202 axs[0, 1]. legend ()

203

204 axs[1, 0]. plot(range(length), growth_model_1.sequence , label

="Growth", color="blue", linestyle="solid")

205 axs[1, 0]. plot(range(length), decay_model_2.sequence , label=

"Decay", color="red", linestyle="dashed")

206 axs[1, 0]. plot(range(length), combined_model_4.sequence ,

label="Combined", color="green", linestyle="dotted")

207 axs[1, 0]. set_title(f"Growth␣Rate:␣{growth_rate_1},␣Decay␣

Rate:␣{decay_rate_2}")

208 axs[1, 0]. set_xlabel("Iteration")

209 axs[1, 0]. set_ylabel("Value")

210 axs[1, 0]. legend ()

211

212 axs[1, 1]. plot(range(length), growth_model_2.sequence , label

="Growth", color="blue", linestyle="solid")

213 axs[1, 1]. plot(range(length), decay_model_2.sequence , label=

"Decay", color="red", linestyle="dashed")

214 axs[1, 1]. plot(range(length), combined_model_2.sequence ,

label="Combined", color="green", linestyle="dotted")

215 axs[1, 1]. set_title(f"Growth␣Rate:␣{growth_rate_2},␣Decay␣

Rate:␣{decay_rate_2}")

216 axs[1, 1]. set_xlabel("Iteration")

217 axs[1, 1]. set_ylabel("Value")

218 axs[1, 1]. legend ()

219

220 # Set all y axis equal

221 for ax in axs.flat:

222 ax.set_ylim(0, 200)

223

224 plt.show()

1 hw1_choice_parameters.py

2

17



3 import matplotlib.pyplot as plt

4

5 # Task 1

6 # Create class BioModel

7 class BioModel(object):

8 def __init__(self , sequence):

9 self.sequence = sequence # Class has input sequence

10

11 #Task 4

12 # Define iter method to start iterable

13 def __iter__(self):

14 self.index = 0 # Start index at 0

15 return self

16

17 # Define next method to continue iterable

18 def __next__(self):

19 # Logic to determine when to stop iteration

20 if self.index < len(self.sequence):

21 self.index += 1

22 return self.sequence[self.index - 1] # Too lazy

to add more lines. Subtract one from index

for accurate output

23 else:

24 raise StopIteration # Stop iteration if index is

not less than length

25

26 # Task 6

27 def __eq__(self , other):

28 if not isinstance(other , BioModel):

29 return NotImplemented

30 if len(self.sequence) != len(other.sequence):

31 raise ValueError("Two␣arrays␣are␣not␣equal␣in␣

length!")

32

33 count_match = 0

34 for x, y in zip(self.sequence , other.sequence):

35 if x == y:

36 count_match += 1

37

38 return count_match

39

40 # Task 2

41 # Create class ExponentialGrowthModel

42 class ExponentialGrowthModel(BioModel):

43 def __init__(self , start , rate):

44 super().__init__(sequence =[])

45 self.start = start # Class has input start

46 self.rate = rate # Class has input rate

47

48 # Task 3

18



49 # Callable method

50 def __call__(self , length):

51 self.sequence = [self.start] # Sequences begins with

start parameter

52 curr_val = self.start # Calculation begins with

start parameter

53

54 # Loop through and calculate sequence

55 for _ in range(1, length):

56 next_val = curr_val * (1 + self.rate) #

Calculate next value

57 self.sequence.append(next_val) # Add next value

to sequence

58 curr_val = next_val # Update current value to

calculated value

59

60 print(self.sequence) # Print final sequence

61

62 # Define __len__ method to print length when called

63 def __len__(self):

64 return len(self.sequence)

65

66 # Task 5

67 class ExponentialDecayModel(BioModel):

68 def __init__(self , start , rate):

69 super ().__init__(sequence =[])

70 self.start = start

71 self.rate = rate

72

73 def __call__(self , length):

74 self.sequence = [self.start]

75 curr_val = self.start

76

77 for _ in range(1, length):

78 next_val = curr_val * (1 - self.rate)

79 self.sequence.append(next_val)

80 curr_val = next_val

81

82 print(self.sequence)

83

84 def __len__(self):

85 return len(self.sequence)

86

87 # Task 3 result

88 print("Task␣3␣result")

89 GM = ExponentialGrowthModel(start =285, rate =0.9)

90 GM(length =5)

91 print(len(GM)) # Output: 5

92

93 # Task 4 Result

19



94 print("Task␣4␣result")

95 print([n for n in GM])

96

97 # Task 5 Result

98 print("Task␣5␣result")

99 DM = ExponentialDecayModel(start =285, rate =0.4)

100 DM(length =5)

101 print(len(DM)) # Output: 5

102 print([n for n in DM])

103

104 # Task 6 Result

105 print("Task␣6␣result")

106 GM = ExponentialGrowthModel(start =285, rate =0.3)

107 GM(length =5)

108

109 GM2 = ExponentialGrowthModel(start =285, rate =0.3)

110 GM2(length =5)

111

112 print(GM == GM2) # Output: 5 (All output matches)

113

114 GM3 = ExponentialGrowthModel(start =285, rate =0.1)

115 GM3(length =3) # [100, 120.0, 144.0]

116

117 print(GM == GM3) # Raises ValueError: Two arrays are not

equal in length!

20


