[

o o oA W oW e

ECE60146 Homework 1

Leonard Fan

January 2025

1 Tasks

1.1 1

The task asks us to create a Biomodel class with a sequence instance variable.
The code given to us in the assignment is as follows:

class BioModel (object):
def __init__(self, sequence):
self .sequence = sequence

1.2 2

The task asks us to extend the BioModel class into an Exponential GrowthModel
subclass. The __init__ method is defined with two parameters: start and rate,
which serve as the start and the rate of the growth model.

class ExponentialGrowthModel (BioModel):

def __init__(self, start, rate):
super () .__init__(sequence=[])
self.start = start
self.rate = rate

To make ExponentialGrowthModel a subclass of BioModel, we instead use
BioModel in the class definition. In the __init__ method, we define the two

input parameters start and rate. The values are stored in self.start and
self.rate.

10

11

12

13

14

15

16

17

18

19

20

21

23

24

1.3 3

The task is to expand ExponentialGrowthModel further to make its instances
callable. It will include a method with a parameter length. A sequence of
values is calculated by:

next value = current value x (1 + rate)

The instance should also print the computed sequence.

Create class ExponentialGrowthModel
class ExponentialGrowthModel (BioModel):
def __init__(self, start, rate):

super () . __init__(sequence=[])

self.start = start # Class has input start

self .rate = rate # Class has input rate
Task 3

Callable method
def call__(self, length):

self.sequence = [self.start] # Sequence begins with
start parameter
curr_val = self.start # Calculation begins

with start parameter

Loop through and calculate sequence
for _ in range(l, length):

next_val = curr_val * (1 + self.rate) #
Calculate next value

self.sequence.append (next_val) # Add next
value to sequence

curr_val = next_val # Update

current value to calculated value
print (self.sequence) # Print final sequence

Define __len__ method to print length when called
def len__(self):

return len(self.sequence)

The __call__ method will run a program when the instance is called. We start
with the sequence with the given start parameter to calculate the sequence. The
variable curr_val is iterated through and updated using the equation defined
previously. Each new calculated value is appended to the parameter self.

sequence. Lastly, the final sequence is printed.

The example shows the 1len() function called on the instance. We must add the

10

11

12

13

__len__ method. This method returns the length of the sequence when called.

The output is tested with the example:

GM = ExponentialGrowthModel(start=100, rate=0.1)
GM(length=5) # Output: [100, 110.0, 121.0, 133.1, 146.41]
print (len(GM)) # Output: 5

The output is as follows:

[100, 110.00, 121.00, 133.10, 146.41]
5

Which matches the expected output in the example.

14 4

The task is to modify BioModel to be used as an integrator.

Define iter method to start iterable
def __iter__(self):
self.index = 0 # Start index at 0
return self

Define next method to continue iterable
def __next__(self):
Logic to determine when to stop iteration
if self.index < len(self.sequence):
self.index += 1
return self.sequence[self.index - 1] # Subtract one
from index for accurate output
else:
raise Stoplteration # Stop diteration if index is not
less than length

To make an instance iterable, we need to define the __iter__ and __next__
methods. __iter__ method defines the start of the iterable. We start with
the zero index to begin the sequence. __next__ method defines the iteration
pattern. If the index is less than the length of the sequence, we increment the

index. Otherwise, we stop the iterable and end iteration.

The output is tested with the example:

print ([n for n in GM]) # Output: [100, 110.0, 121.0, 133.1,
146.41]

The output is as follows:

10

11

12

13

14

15

16

17

18

19

20

21

22

23

[100, 110.00, 121.00, 133.10, 146.41]

Which follows the expected output.

1.5 5

The task is to simulate a decay model. The class is identical except for the
decay model. The formula for the decay model is:

next value = current value x (1 — rate)

Create class ExponentialDecayModel
class ExponentialDecayModel (BioModel):
def __init__(self, start, rate):

super () . __init__(sequence=[])
self.start = start # Class has input start
self .rate = rate # Class has input rate

Callable method
def __call__(self, length):
self.sequence = [self.start] # Sequences begins with
start parameter
curr_val = self.start # Calculation begins with
start parameter

Loop through and calculate sequence
for _ in range (1, length):
next_val = curr_val * (1 - self.rate) #
Calculate next value
self.sequence.append(next_val) # Add next value
to sequence
curr_val = next_val # Update current value to
calculated value

print (self.sequence) # Print final sequence

Define __len__ method to print length when called
def len__(self):

return len(self.sequence)

Most of the ExponentialDecayModel subclass is the same as ExponentialGrowthModel

. The only difference is the calculation in the __call__ method. The formula is
adjusted with the previously mentioned equation.

The output is tested with the example:

10

11

12

DM = ExponentialDecayModel(start=100, rate=0.2)
DM(length=5)

print (len(DM))

print ([n for n in DM])

The output is as follows:

[100, 80.0, 64.0, 51.2, 40.96]
5
[100, 80.0, 64.0, 51.2, 40.96]

Which follows the expected output.

1.6 6

The task is to modify BioModel to allow for comparison between two instances
using the == operator. If the sequences are the same length, they should be
compared element-wise and return the count of matching elements. Otherwise
raise a ValueError

def __eq__(self, other):
if not isinstance(other, BioModel):
return NotImplemented

if len(self.sequence) != len(other.sequence):
raise ValueError ("Two arrays are not equal in
length!")
count_match = 0
for x, y in zip(self.sequence, other.sequence):
if x == y:

count_match += 1

return count_match

The method __eq__ defines what an instance should do when compared. When
called, it compares to the "other” instance. We cannot compare the two if the
other instance is not of type BioModel. Then, it compares the length for both
sequences. If they are not equal, then an error ValueError is raised. If they are
equal, each element will be compared pairwise. A counter count_match keeps
track of the number of matching elements. Lastly, the value is returned once all
values are compared.

The output is tested with the example:

print ("Task 6,result")
GM = ExponentialGrowthModel(start=100, rate=0.1)

10

11

12

13

10

11

GM(length=5) # [100, 110.0, 121.0, 133.1, 146.41]

GM2 = ExponentialGrowthModel(start=100, rate=0.2)
GM2 (length=5) # [100, 120.0, 144.0, 172.8, 207.36]

print (GM == GM2) # Output: 1 (only the first element
matches)

GM3 = ExponentialGrowthModel(start=100, rate=0.2)
GM3 (length=3) # [100, 120.0, 144.0]

print (GM == GM3) # Raises ValueError: Two arrays are not
equal in length!

The output is as follows:

[100, 110.0, 121.0, 133.10, 146.41]
[100, 120.0, 144.0, 172.8, 207.36]
1
[100, 120.0, 144.0]
Traceback (most recent call last):
File "c:\Users\Fanle\OneDrive\Desktop\Code\ECE60146\
hwil_tasks.py", line 134, in <module>
print(GM == GM3) # Raises ValueError: Two arrays are
not equal in length!

File "c:\Users\Fanle\OneDrive\Desktop\Code\ECE60146\
hwl_tasks.py", line 29, in __eq__
raise ValueError ("Two,arrays are_ not equal inlength!")
ValueError: Two arrays are not equal in length!

Which follows the expected output.

1.6.1 7

This task asks us to choose our start and rate parameter values and then show
the results.

The values were chosen randomly by a random number generator. The start
value for all tasks ranges from 100 to 999. The generator chose 285. Each rate is
randomly selected from 0.1 to 0.9 except for the GM and GM2 instances in example
6. They will be set to the same to show the count matches correctly.

The output is tested with the example:

Task 3 result
print ("Task 3 ,result")
GM = ExponentialGrowthModel (start=285, rate=0.9)

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

10

11

12

13

14

15

GM(length=5)
print (len(GM))

print ("Task_ 4, ,result")
print ([n for n in GM])

DM = ExponentialDecayModel (start=285, rate=0.4)
DM(length=5)

print (len (DM))

print ([n for n in DM])

GM = ExponentialGrowthModel (start=285, rate=0.3)
GM(length=5)

GM2 = ExponentialGrowthModel (start=285, rate=0.3)
GM2 (length=5)

print (GM == GM2)

GM3 = ExponentialGrowthModel (start=285, rate=0.1)
GM3 (length=3)

print (GM == GM3)

The output is as follows:

Task 3 result

[285, 541.5, 1028.85, 1954.8149999999998,
3714.1484999999993]

5

Task 4 result

[285, 541.5, 1028.85, 1954.8149999999998,
3714.1484999999993]

Task 5 result

[285, 171.0, 102.6, 61.559999999999995, 36.93599999999999]

5

[285, 171.0, 102.6, 61.559999999999995, 36.93599999999999]

Task 6 result

[285, 370.5, 481.65000000000003, 626.1450000000001,
813.9885000000002]

[285, 370.5, 481.65000000000003, 626.1450000000001,
813.9885000000002]

5

[285, 313.5, 344.85]

Traceback (most recent call last):

File "c:\Users\Fanle\OneDrive\Desktop\Code\ECE60146\

17

18

19

20

21

10

11

12

13

14

hwil_choice_parameters.py", line 115, in <module>
print (GM == GM3) # Raises ValueError: Two arrays are
not equal in length!

File "c:\Users\Fanle\OneDrive\Desktop\Code\ECE60146\
hwl_choice_parameters.py", line 29, in __eq__
raise ValueError("Twouarraysuareunotuequaluinulength!")
ValueError: Two arrays are not equal in length!

Which follows the expected output.

2 Bonus

21 1

This task asks us to create a new subclass called CombinedBioModel. It has the

following requirements:

1. Generate a growth sequence using ExponentialGrowthModel

2. Generate a decay sequence using ExponentialDecayModel

3. Combine these sequences by multiplying the corresponding values from

both sequences element-wise.

Create class CombinedBioModel
class CombinedBioModel (BioModel) :
def __init__(self, growth_start, growth_rate,
decay_start, decay_rate):
super () . __init__(sequence = [])
self .growth_model = ExponentialGrowthModel (start=
growth_start, rate=growth_rate) # Class has
growth model
self.decay_model = ExponentialDecayModel (start=
decay_start, rate=decay_rate) # Class has decay
model

Callable method

def __call__(self, length):
Initialize growth and decay model with length
self.growth_model (length)

self.decay_model (length)

Multiply elements pairwise from growth and decay
model

15

16

17

18

10

11

12

13

self.sequence = [g * d for g, d in zip(self.
growth_model.sequence, self.decay_model.sequence)

]

Print calculated sequence
print (self.sequence)

The class CombinedBioModel initializes a growth model and decay model instances
using the input parameters. The __call__ method receives an input parameter
length, initializing the two instances. The pairwise product is then calculated
using list comprehension.

The output is tested with the example:

print ("Bonus, 1, ,result")

CBM = CombinedBioModel (growth_start=100, growth_rate=0.1,
decay_start=1.0, decay_rate=0.05)

CBM(length=5) # Output: [100.0, 104.5, 109.2, 114.12,
119.25]

The output is as follows:

[100, 110.00, 121.00, 133.10, 146.41]
[1t.0, 0.95, 0.9025, 0.86, 0.81]
[100.0, 104.50, 109.2, 114.12, 119.25]

Which follows the expected output.

22 2

This task asks us to visualize the comparison between two growth and decay
rates.

Two growth and decay rates

Length is set to 10 for visualization

Growth and decay set at same start point to visualize

difference

growth_rate_1 = 0.
growth_rate_2 = 0.
decay_rate_1
decay_rate_2
length = 10
growth_start 10
decay_start = 10

1
5
0.02
0.1

Combination of Growth Rates
print ("Growth,rate 1, Decay,rate, 1")

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

36

37

38

39

40

41

42

43

44

45

46

47

combined_model_1 = CombinedBioModel (growth_start=
growth_start, growth_rate=growth_rate_1, decay_start=
decay_start, decay_rate=decay_rate_1)

combined_model_1(length)

growth_model_1 = combined_model_1.growth_model

decay_model_1 = combined_model_1.decay_model

print ("Growth,rate2, Decay,rate;;2")

combined_model_2 = CombinedBioModel(growth_start=
growth_start, growth_rate=growth_rate_2, decay_start=
decay_start, decay_rate=decay_rate_2)

combined_model_2(length)

growth_model_2 = combined_model_2.growth_model

decay_model_2 = combined_model_2.decay_model

print ("Growth,rate 2, ,Decayyrate, 1")

combined_model_3 = CombinedBioModel(growth_start=
growth_start, growth_rate=growth_rate_2, decay_start=
decay_start, decay_rate=decay_rate_1)

combined_model_3(length)

print ("Growth,rate 1, Decay,rate ;2")

combined_model_4 = CombinedBioModel(growth_start=
growth_start, growth_rate=growth_rate_1, decay_start=
decay_start, decay_rate=decay_rate_2)

combined_model_4 (length)

fig, axs = plt.subplots(2, 2, figsize=(12, 10))
fig.suptitle ("Growth, Decay,_ and Combined Dynamics",
fontsize=16)

axs [0, 0].plot(range(length), growth_model_1.sequence, label
="Growth", color="blue", linestyle="solid")

axs [0, 0].plot(range(length), decay_model_1.sequence, label=
"Decay", color="red", linestyle="dashed")

axs [0, O0].plot(range(length), combined_model_1.sequence,
label="Combined", color="green", linestyle="dotted")

axs [0, 0].set_title(f"Growth_ Rate: {growth_rate_13}, Decay
Rate:{decay_rate_13}")

axs [0, 0].set_xlabel("Iteration")

axs [0, 0].set_ylabel("Value")

axs [0, 0].legend ()

axs [0, 1].plot(range(length), growth_model_2.sequence, label
="Growth", color="blue", linestyle="solid")

axs [0, 1].plot(range(length), decay_model_1.sequence, label=
"Decay", color="red", linestyle="dashed")

axs [0, 1].plot(range(length), combined_model_3.sequence,
label="Combined", color="green", linestyle="dotted")

10

48

49

50

52

53

54

o
&

56

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

N

P

axs [0, 1].set_title(f"Growth_ Rate: {growth_rate_23}, Decay
Rate:{decay_rate_13}")

axs [0, 1].set_xlabel("Iteration")

axs [0, 1].set_ylabel("Value")

axs [0, 1].legend ()

axs[1, 0].plot(range(length), growth_model_1.sequence, label
="Growth", color="blue", linestyle="solid")

axs[1, 0].plot(range(length), decay_model_2.sequence, label=
"Decay", color="red", linestyle="dashed")

axs[1, 0].plot(range(length), combined_model_4.sequence,
label="Combined", color="green", linestyle="dotted")

axs[1, 0].set_title(f"Growth, Rate: {growth_rate_1}, Decay
Rate:{decay_rate_2}")

axs[1, 0].set_xlabel("Iteration")

axs[1, 0].set_ylabel("Value")

axs[1, 0].legend ()

axs[1, 1].plot(range(length), growth_model_2.sequence, label
="Growth", color="blue", linestyle="solid")

axs[1, 1].plot(range(length), decay_model_2.sequence, label=
"Decay", color="red", linestyle="dashed")

axs[1, 1].plot(range(length), combined_model_2.sequence,
label="Combined", color="green", linestyle="dotted")

axs[1, 1].set_title(f"Growth_ Rate: {growth_rate_2}, Decay
Rate:{decay_rate_2}")

axs[1, 1].set_xlabel("Iteration")

axs[1, 1].set_ylabel("Value")

axs[1, 1].legend ()

Set all y axis equal
for ax in axs.flat:

ax.set_ylim (0, 200)

plt.show ()

Values were chosen at random. The plots are shown in Figure 1.

3 Source Code

The code for all the tasks and bonus is presented below

hwl_tasks.py
import matplotlib.pyplot as plt

Task 1

11

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

Growth, Decay, and Combined Dynamics

Growth Rate: 0.1, Decay Rate: 0.02 Growth Rate: 0.5, Decay Rate: 0.02

— Growth -
175{ ==~ Decay e 175

+++ Combined -~ Combined

Value
Value

o 2 4 6 8 o 2 4 6 8

Reration teration
Growth Rate: 0.1, Decay Rate: 0.1 Growth Rate: 0.5, Decay Rate: 0.1

-+ Combined -+ Combined

Value
Value

M
teration teration

Figure 1: Generated growth, decay and combined sequences for two growth and
two decay rates

Create class BioModel
class BioModel (object):

def __init__(self, sequence):
self .sequence = sequence # Class has input sequence
#Task 4

Define iter method to start iterable
def __iter__(self):
self.index = 0 # Start index at 0
return self

Define next method to continue iterable
def __next__(self):
Logic to determine when to stop iteration
if self.index < len(self.sequence):
self.index += 1
return self.sequence[self.index - 1] # Too lazy
to add more lines. Subtract one from index
for accurate output
else:
raise Stoplteration # Stop iteration if index is
not less than length

Task 6
def __eq__(self, other):
if not isinstance(other, BioModel):
return NotImplemented

12

30

31

32

33

34

35

36

37

38

39

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

if len(self.sequence) != len(other.sequence):
raise ValueError ("Twogarraysgare_ not equalin

length!")
count_match = 0
for x, y in zip(self.sequence, other.sequence):
if x == y:

count_match += 1
return count_match

Task 2

Create class ExponentialGrowthModel

class ExponentialGrowthModel (BioModel):
def __init__(self, start, rate):

super () . __init__(sequence=[])
self.start = start # Class has input start
self .rate = rate # Class has input rate

Task 3

Callable method
def __call__(self, length):

self.sequence = [self.start] # Sequences begins with
start parameter
curr_val = self.start # Calculation begins with

start parameter

Loop through and calculate sequence
for _ in range (1, length):
next_val = curr_val * (1 + self.rate) #
Calculate next value
self.sequence.append(next_val) # Add next value
to sequence
curr_val = next_val # Update current value to
calculated value

print (self.sequence) # Print final sequence

Define __len__ method to print length when called
def __len__(self):
return len(self.sequence)

Task 5

Create class ExponentialDecayModel

class ExponentialDecayModel (BioModel):
def init__(self, start, rate):

super () .__init__(sequence=[])
self.start = start # Class has input start
self .rate = rate # Class has input rate

13

74

75

76

T

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

103

104

105

106

107

109

110

Callable method
def __call__(self, length):

self.sequence = [self.start] # Sequences begins with
start parameter
curr_val = self.start # Calculation begins with

start parameter

Loop through and calculate sequence
for _ in range(l, length):
next_val = curr_val * (1 - self.rate) #
Calculate next value
self.sequence.append(next_val) # Add next value
to sequence
curr_val = next_val # Update current value to

calculated value
print (self.sequence) # Print final sequence

Define __len__ method to print length when called
def len__(self):

return len(self.sequence)

Bonus 1
Create class CombinedBioModel
class CombinedBioModel (BioModel):
def __init__(self, growth_start, growth_rate,
decay_start, decay_rate):
super () . __init__(sequence = [])
self.growth_model = ExponentialGrowthModel (start=
growth_start, rate=growth_rate) # Class has
growth model
self.decay_model = ExponentialDecayModel(start=
decay_start, rate=decay_rate) # Class has decay
model

Callable method

def __call__(self, length):
Initialize growth and decay model with length
self .growth_model (length)
self.decay_model (length)

Multiply elements pairwise from growth and decay
model

self.sequence = [g * d for g, d in zip(self.
growth_model.sequence, self.decay_model.sequence)

]

Print calculated sequence
print (self.sequence)

14

111

112

114

115

116

119

120

122

123

124

126

127

128

130

131

132

134

135

136

147

149

150

151

153

Task 3 result

print ("Task_ 3, ,result")

GM = ExponentialGrowthModel (start=100, rate=0.1)
GM(length=5) # Output: [100, 110.0, 121.0, 133.1, 146.41]
print (len(GM)) # Output: 5

Task 4 Result

print ("Task_ 4, ,result")

print ([n for n in GM]) # Output: [100, 110.0, 121.0, 133.1,
146.41]

Task 5 Result

print ("Task, 5, ,result")

DM = ExponentialDecayModel(start=100, rate=0.2)

DM(length=5) # Output: [100, 80.0, 64.0, 51.2, 40.96]

print (len(DM)) # Output: 5

print ([n for n in DM]) # Output: [100, 80.0, 64.0, 51.2,
40.96]

Task 6 Result

print ("Task_ 6,result")

GM = ExponentialGrowthModel(start=100, rate=0.1)
GM(length=5) # [100, 110.0, 121.0, 133.1, 146.41]

GM2 = ExponentialGrowthModel (start=100, rate=0.2)
GM2 (length=5) # [100, 120.0, 144.0, 172.8, 207.36]

print (GM == GM2) # Output: 1 (only the first element
matches)

GM3 = ExponentialGrowthModel (start=100, rate=0.2)
GM3 (length=3) # [100, 120.0, 144.0]

Commented out for running bonus outputs
print(GM == GM3) # Raises ValueError: Two arrays are not
equal in length!

Bonus 1

print ("Bonus,1,result")

CBM = CombinedBioModel (growth_start=100, growth_rate=0.1,
decay_start=1.0, decay_rate=0.05)

CBM(length=5) # Output: [100.0, 104.5, 109.2, 114.12,
119.25]

Bonus 2
print ("Bonus 2, ,result")

Two growth and decay rates
Length is set to 10 for visualization

15

154

167

168

169

170

178

179

181

182

184

185

188

189

190

growth_rate_1 =
growth_rate_2 =
decay_rate_1
decay_rate_2
length = 10
growth_start 10
decay_start = 10

[elNe]
-+ OO
N O

print ("Growth,rate 1, ,Decay,rate, 1")

combined_model_1 = CombinedBioModel (growth_start=
growth_start, growth_rate=growth_rate_1, decay_start=
decay_start, decay_rate=decay_rate_1)

combined_model_1(length)

growth_model_1 = combined_model_1.growth_model

decay_model_1 = combined_model_1.decay_model

print ("Growth,rate_ 2, ,Decay rate, ,2")

combined_model_2 = CombinedBioModel (growth_start=
growth_start, growth_rate=growth_rate_2, decay_start=
decay_start, decay_rate=decay_rate_2)

combined_model_2(length)

growth_model_2 = combined_model_2.growth_model

decay_model_2 = combined_model_2.decay_model

print ("Growth,rate 2, Decay,rate, 1")

combined_model_3 = CombinedBioModel(growth_start=
growth_start, growth_rate=growth_rate_2, decay_start=
decay_start, decay_rate=decay_rate_1)

combined_model_3(length)

print ("Growth,rate 1, Decay,rate 2")

combined_model_4 = CombinedBioModel(growth_start=
growth_start, growth_rate=growth_rate_1, decay_start=
decay_start, decay_rate=decay_rate_2)

combined_model_4 (length)

fig, axs = plt.subplots(2, 2, figsize=(12, 10))
fig.suptitle ("Growth, Decay,_ and Combined Dynamics",
fontsize=16)

axs [0, 0].plot(range(length), growth_model_1.sequence, label

="Growth", color="blue", linestyle="solid")

axs [0, O0].plot(range(length), decay_model_1.sequence, label=

"Decay", color="red", linestyle="dashed")
axs [0, 0].plot(range(length), combined_model_1.sequence,
label="Combined", color="green", linestyle="dotted")

16

191

193

194

195

197

198

199

200

202

203

204

206

208

209

210

213

218
219

220

222

223

224

axs [0, 0].set_title(f"Growth_ Rate: {growth_rate_13}, Decay
Rate:{decay_rate_13}")

axs [0, 0].set_xlabel("Iteration")

axs [0, 0].set_ylabel("Value")

axs [0, 0].legend ()

axs [0, 1].plot(range(length), growth_model_2.sequence, label
="Growth", color="blue", linestyle="solid")

axs [0, 1].plot(range(length), decay_model_1.sequence, label=
"Decay", color="red", linestyle="dashed")

axs [0, 1].plot(range(length), combined_model_3.sequence,
label="Combined", color="green", linestyle="dotted")

axs [0, 1].set_title(f"Growth_ Rate: {growth_rate_2}, Decay
Rate:{decay_rate_1}")

axs [0, 1].set_xlabel("Iteration")

axs [0, 1].set_ylabel("Value")

axs [0, 1].legend ()

axs[1, 0].plot(range(length), growth_model_1.sequence, label
="Growth", color="blue", linestyle="solid")

axs[1, 0].plot(range(length), decay_model_2.sequence, label=
"Decay", color="red", linestyle="dashed")

axs[1, 0].plot(range(length), combined_model_4.sequence,
label="Combined", color="green", linestyle="dotted")

axs[1, 0].set_title(f"Growth, Rate: {growth_rate_1}, Decay
Rate:{decay_rate_2}")

axs[1, 0].set_xlabel("Iteration")

axs[1, 0].set_ylabel("Value")

axs[1, 0].legend ()

axs[1, 1].plot(range(length), growth_model_2.sequence, label
="Growth", color="blue", linestyle="solid")

axs[1, 1].plot(range(length), decay_model_2.sequence, label=
"Decay", color="red", linestyle="dashed")

axs[1, 1].plot(range(length), combined_model_2.sequence,
label="Combined", color="green", linestyle="dotted")

axs[1, 1].set_title(f"Growth Rate: {growth_rate_2}, Decay
Rate:{decay_rate_2}")

axs[1, 1].set_xlabel("Iteration")

axs[1, 1].set_ylabel("Value")

axs[1, 1].legend ()

Set all y axis equal
for ax in axs.flat:
ax.set_ylim (0, 200)

plt.show ()

hwl_choice_parameters.py

17

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

import matplotlib.pyplot as plt

Task 1
Create class BioModel
class BioModel (object):

def __init__(self, sequence):
self .sequence = sequence # Class has input sequence
#Task 4

Define iter method to start iterable
def __iter__(self):

self.index = 0 # Start index at O
return self

Define next method to continue iterable
def __next__{(self):
Logic to determine when to stop iteration
if self.index < len(self.sequence):
self.index += 1
return self.sequence[self.index - 1] # Too lazy
to add more lines. Subtract one from index
for accurate output
else:
raise Stoplteration # Stop diteration if index is
not less than length

Task 6
def __eq__(self, other):
if not isinstance (other, BioModel):
return NotImplemented

if len(self.sequence) != len(other.sequence):
raise ValueError ("Two arrays are_ not equal in
length!™")
count_match = 0
for x, y in zip(self.sequence, other.sequence):
if x == y:

count_match += 1
return count_match

Task 2

Create class ExponentialGrowthModel

class ExponentialGrowthModel (BioModel):
def __init__(self, start, rate):

super () . __init__(sequence=[])
self.start = start # Class has input start
self .rate = rate # Class has input rate

Task 3

18

49 # Callable method

50 def __call__(self, length):

51 self.sequence = [self.start] # Sequences begins with
start parameter

52 curr_val = self.start # Calculation begins with

start parameter

53

54 # Loop through and calculate sequence

55 for _ in range(l, length):

56 next_val = curr_val * (1 + self.rate) #
Calculate next value

57 self .sequence.append(next_val) # Add next value
to sequence

58 curr_val = next_val # Update current value to

calculated value

59

60 print (self.sequence) # Print final sequence

61

62 # Define __len__ method to print length when called
63 def __len__(self):

64 return len(self.sequence)

65
66 # Task 5
67 class ExponentialDecayModel (BioModel):

68 def __init__(self, start, rate):

69 super () . __init__(sequence=[])

70 self.start = start

71 self .rate = rate

72

73 def __call__(self, length):

74 self.sequence = [self.start]

75 curr_val = self.start

76

77 for _ in range (1, length):

78 next_val = curr_val * (1 - self.rate)
79 self.sequence.append (next_val)
80 curr_val = next_val

81

82 print (self.sequence)

83

84 def __len__(self):

85 return len(self.sequence)

86

g7 # Task 3 result

ss print ("Task, 3, ,result")

s9 GM = ExponentialGrowthModel (start=285, rate=0.9)
90 GM(length=5)

91 print(len(GM)) # Output: 5

92

93 # Task 4 Result

19

94
95
96
97
98

99

101
102
103

104

106
107

108

110
111
112

113

116

117

print ("Task_ 4, ,result")
print([n for n in GM])

Task 5 Result

print ("Task, 5, ,result")

DM = ExponentialDecayModel (start=285, rate=0.4)
DM(length=5)

print (len(DM)) # Output: 5

print ([n for n in DM])

Task 6 Result

print ("Task_ 6,result")

GM = ExponentialGrowthModel (start=285, rate=0.3)
GM(length=5)

GM2 = ExponentialGrowthModel (start=285, rate=0.3)
GM2 (length=5)

print (GM == GM2) # Output: 5 (A1l output matches)

GM3 = ExponentialGrowthModel (start=285, rate=0.1)
GM3(length=3) # [100, 120.0, 144.0]

print (GM == GM3) # Raises ValueError: Two arrays
equal in length!

20

are not

