
BME646 and ECE60146: Homework 9

Spring 2023
Due Date: 11:59pm, Apr 10, 2024

TA: Akshita Kamsali (akamsali@purdue.edu)

Turn in typed solutions via BrightSpace. Additional instructions can be
found at BrightSpace. Late submissions will be accepted with penalty: -10
points per-late-day, up to 5 days.

1 Introduction

The initial step in any Natural Language Processing (NLP) task involves text
preprocessing, particularly tokenization. Tokenization breaks down a stream
of text into meaningful units called tokens, such as words or sentences. This
process is essential as it transforms unstructured text data into a format
suitable for analysis.

Tokenization is fundamental to NLP pipelines, as it divides text into
discrete units, enabling their representation as vectors for machine learning.
This conversion from raw text to numerical data facilitates further analysis
and processing.

Following tokenization, the next step is to extract embeddings for these
tokens. Word embeddings, for instance, capture the semantic meaning of
words in a numerical form, facilitating various NLP tasks.

2 Getting Ready for This Homework

Before embarking on this homework, do the following:

1. Carefully review Slide 46 through 59 of the Week 12 slides on “Recur-
rent Neural Networks for Text Classification and Data Prediction” [1].
Make sure you understand how gating is done in GRU to address the
problem of vanishing gradients that are caused by the long chains of
feedback in a neural network.

2. Review the Week 13 slides on “Word Embeddings and Sequence-to-
Sequence Learning” [2]. In particular, pay attention to Slide 39 through
49 on word2vec and fastText. Make yourself familiar with their use
and advantages over one-hot vector encoding.

1

3. Download the text dataset provided on Brightspace. The provided
dataset is ”Financial Sentiment Analysis” dataset [4]. The dataset has
three sentiments, namely, ["positive", "neutral", "negative"].
This makes its a 3 class classification problem.

4. Install transformers library into your conda environment, as this will
be used to extract subword tokens, subsequently, word embeddings.

3 Programming Tasks

3.1 Tokenization

Your first task in this HW would be to tokenize the data. The steps are:

1. Depending on the specific task at hand, text can be tokenized at vari-
ous levels such as character, subword, word, or sentence level. For this
assignment, we will focus on tokenization at the word and subword
levels.

2. To tokenize text at the word level, each word is separated at whites-
pace boundaries. This can be achieved using the built-in split()

function. The following code snippet illustrates how this process can
be implemented:

1 import csv

2

3 # this is an example of how to read a csv file line by

line

4 # This snipped only shows the processing on the first 4

entries

5 sentences = []

6 sentiments = []

7 count = 0

8 with open(’data.csv’, ’r’) as f:

9 reader = csv.reader(f)

10 # ignore the first line

11 next(reader)

12 for row in reader:

13 count += 1

14 sentences.append(row[0])

15 sentiments.append(row[1])

16 if count == 4:

17 break

18

19 print(sentences)

2

20 # ["The GeoSolutions technology will leverage Benefon ’s

GPS solutions by providing

Location Based Search

Technology , a Communities

Platform , location

relevant multimedia

content and a new and

powerful commercial model

.",

21 # ’\$ESI on lows , down \$1.50 to \$2.50 BK a real

possibility ’,

22 # "For the last quarter of 2010 , Componenta ’s net sales

doubled to EUR131m from

EUR76m for the same period

a year earlier , while it

moved to a zero pre -tax

profit from a pre -tax loss

of EUR7m .",

23 # ’According to the Finnish -Russian Chamber of Commerce ,

all the major construction

companies of Finland are

operating in Russia .’]

24

25 print(sentiments)

26 # [’positive ’, ’negative ’, ’positive ’, ’neutral ’]

27

28 # tokenize the sentences word by word

29 word_tokenized_sentences = [sentence.split() for sentence

in sentences]

30 print(word_tokenized_sentences[:2])

31 # [[’The ’, ’GeoSolutions ’, ’technology ’, ’will ’, ’leverage

’, ’Benefon ’, "’s", ’GPS ’,

’solutions ’, ’by’, ’

providing ’, ’Location ’, ’

Based ’, ’Search ’, ’

Technology ’, ’,’, ’a’, ’

Communities ’, ’Platform ’,

’,’, ’location ’, ’relevant

’, ’multimedia ’, ’content

’, ’and ’, ’a’, ’new ’, ’and

’, ’powerful ’, ’commercial

’, ’model ’, ’.’], [’$ESI ’,
’on’, ’lows ,’, ’down ’, ’

$1.50’, ’to’, ’$2.50’, ’BK

’, ’a’, ’real ’, ’

possibility ’]]

32 # pad the sentences to the same length

33 # here I chose the max of all the sentences. You may set

it to a hard number such

3

as 64 , 128 etc.

34 max_len = max([len(sentence) for sentence in

word_tokenized_sentences])

35 padded_sentences = [sentence + [’[PAD]’] * (max_len - len(

sentence)) for sentence in

word_tokenized_sentences]

36 print(padded_sentences[:2])

37 #[[’The ’, ’GeoSolutions ’, ’technology ’, ’will ’, ’leverage

’, ’Benefon ’, "’s", ’GPS ’,

’solutions ’, ’by’, ’

providing ’, ’Location ’, ’

Based ’, ’Search ’, ’

Technology ’, ’,’, ’a’, ’

Communities ’, ’Platform ’,

’,’, ’location ’, ’relevant

’, ’multimedia ’, ’content

’, ’and ’, ’a’, ’new ’, ’and

’, ’powerful ’, ’commercial

’, ’model ’, ’.’, ’[PAD]’,

’[PAD]’, ’[PAD]’, ’[PAD]’,

’[PAD]’, ’[PAD]’, ’[PAD

]’], [’$ESI ’, ’on’, ’lows

,’, ’down ’, ’$1.50’, ’to’,

’$2.50’, ’BK’, ’a’, ’real

’, ’possibility ’, ’[PAD]’,

’[PAD]’, ’[PAD]’, ’[PAD

]’, ’[PAD]’, ’[PAD]’, ’[

PAD]’, ’[PAD]’, ’[PAD]’,

’[PAD]’, ’[PAD]’, ’[PAD]’,

’[PAD]’, ’[PAD]’, ’[PAD

]’, ’[PAD]’, ’[PAD]’, ’[

PAD]’, ’[PAD]’, ’[PAD]’,

’[PAD]’, ’[PAD]’, ’[PAD]’,

’[PAD]’, ’[PAD]’, ’[PAD

]’, ’[PAD]’, ’[PAD]’]]

3. Subword level tokenization, also known as wordpiece tokenization em-
ployed in models like BERT, offers the advantage of breaking down
less frequent words into subwords that occur more frequently. Below
is code snippet demonstrating how one can perform subword tokeniza-
tion as used in BERT:

1 from transformers import DistilBertTokenizer

2 model_ckpt = "distilbert -base -uncased"

3 distilbert_tokenizer = DistilBertTokenizer.from_pretrained

(model_ckpt)

4

5 # bert encode returns the tokens as ids.

4

6 # i have set the max length to what we have padded the

sentences to in word

tokens

7 # you are free to choose any size but be consistent so

that you may use the same

model for training.

8 bert_tokenized_sentences_ids = [distilbert_tokenizer.

encode(sentence , padding=’

max_length ’,

9 truncation=True ,

max_length=max_len)

10 for sentence in sentences]

11

12 print(bert_tokenized_sentences_ids[:2])

13 # [[101 , 1996 , 20248 , 19454 , 13700 , 2015 , 2974 , 2097 ,

21155 , 3841 , 12879 , 2239 ,

1005 , 1055 , 14658 , 7300 ,

2011 , 4346 , 3295 , 2241 ,

3945 , 2974 , 1010 , 1037 ,

4279 , 4132 , 1010 , 3295 ,

7882 , 14959 , 4180 , 1998 ,

1037 , 2047 , 1998 , 3928 ,

3293 , 2944 , 102], [101 ,

1002 , 9686 , 2072 , 2006 ,

2659 , 2015 , 1010 , 2091 ,

1002 , 1015 , 1012 , 2753 ,

2000 , 1002 , 1016 , 1012 ,

2753 , 23923 , 1037 , 2613 ,

6061 , 102 , 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0]]

14 bert_tokenized_sentences_tokens = [distilbert_tokenizer.

convert_ids_to_tokens(

sentence) for sentence in

bert_tokenized_sentences_ids

]

15 print(bert_tokenized_sentences_tokens[:2])

16 # [[’[CLS]’, ’the ’, ’geo ’, ’##sol ’, ’##ution ’, ’##s’, ’

technology ’, ’will ’, ’

leverage ’, ’ben ’, ’##ef’,

’##on’, "’", ’s’, ’gps ’, ’

solutions ’, ’by’, ’

providing ’, ’location ’, ’

based ’, ’search ’, ’

technology ’, ’,’, ’a’, ’

communities ’, ’platform ’,

’,’, ’location ’, ’relevant

’, ’multimedia ’, ’content

’, ’and ’, ’a’, ’new ’, ’and

5

’, ’powerful ’, ’commercial

’, ’model ’, ’[SEP]’], [’[

CLS]’, ’$’, ’es’, ’##i’, ’

on’, ’low ’, ’##s’, ’,’, ’

down ’, ’$’, ’1’, ’.’, ’50

’, ’to’, ’$’, ’2’, ’.’, ’

50’, ’bk’, ’a’, ’real ’, ’

possibility ’, ’[SEP]’, ’[

PAD]’, ’[PAD]’, ’[PAD]’,

’[PAD]’, ’[PAD]’, ’[PAD]’,

’[PAD]’, ’[PAD]’, ’[PAD

]’, ’[PAD]’, ’[PAD]’, ’[

PAD]’, ’[PAD]’, ’[PAD]’,

’[PAD]’, ’[PAD]’]]

4. You will observe that tokens have an extra [CLS] and [SEP] token
when used with the bert tokenizer. Some words are split into subwords.
Example: "solution" is split into "##sol" and "##ution".

3.2 Word Embeddings

Following tokenization, the next step involves generating word embeddings.
Before proceding further, it’s important to note that while the BERT to-
kenizer provides token IDs, our word tokenization process yields only the
words themselves. Therefore, before extracting embeddings, we need to cre-
ate token IDs for the word tokens. The code snippet shows one way of doing
this:

1 vocab = {}

2 vocab[’[PAD]’] = 0

3 for sentence in padded_sentences:

4 for token in sentence:

5 if token not in vocab:

6 vocab[token] = len(vocab)

7

8 # print(vocab)

9

10 # convert the tokens to ids

11 padded_sentences_ids = [[vocab[token] for token in sentence]

for sentence in

padded_sentences]

12 print(padded_sentences_ids[:2])

13 # [[1, 2, 3, 4, 5, 6, 7, 8, 9, 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 ,

18 , 19 , 16 , 20 , 21 , 22 , 23 , 24 ,

17, 25, 24, 26 , 27 , 28 , 29 , 0,

0, 0, 0, 0, 0, 0], [30, 31, 32

6

, 33 , 34 , 35 , 36 , 37 , 17 , 38 ,

39 , 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

, 0, 0, 0, 0, 0, 0, 0, 0]]

Now, let us move onto extracting embeddings.

1 from transformers import DistilBertModel

2 import torch

3

4 model_name = ’distilbert/distilbert -base -uncased ’

5 distilbert_model = DistilBertModel.from_pretrained(model_name)

6

7 # extract word embeddings

8 # we will use the last hidden state of the model

9 # you can use the other hidden states if you want

10 # the last hidden state is the output of the model

11 # after passing the input through the model

12 word_embeddings = []

13 # convert padded sentence tokens into ids

14 for tokens in padded_sentences_ids:

15 input_ids = torch.tensor(tokens).unsqueeze(0)

16 with torch.no_grad ():

17 outputs = distilbert_model(input_ids)

18

19 word_embeddings.append(outputs.last_hidden_state)

20

21 print(word_embeddings[0].shape)

22 # torch.Size([1, 39 , 768])

23

24 # subword embeddings extraction

25 subword_embeddings = []

26 for tokens in bert_tokenized_sentences_ids:

27

28 input_ids = torch.tensor(tokens).unsqueeze(0)

29 with torch.no_grad ():

30 outputs = distilbert_model(input_ids)

31

32 subword_embeddings.append(outputs.last_hidden_state)

33

34 print(subword_embeddings[0].shape)

35 # torch.Size([1, 39 , 768])

3.3 Sentiment Analysis Using torch.nn.GRU

In this task, we ask you to carry out the same sentiment prediction task but
with PyTorch’s GRU implementation. The steps are:

7

1. First, familiarize yourself with the documentation of the torch.nn.GRU
module [3]. Also, you should go through Slide 67 through 87 of the
Week 12 slides to understand how you may feed in an entire sequence
of embeddings at once when using torch.nn.GRU. Using the module
in such manner may help you speed up training dramatically.

2. Before training, split your dataset into 80:20 ratio for train and test
sets respectively. Create your custom dataloaders which returns word
embeddings and the sentiment as a one-hot vector of 3 dimensions
corresponding to each emotion.

3. Perform the sentiment prediction experiment using torch.nn.GRU sim-
ilar to that presented in the lecture slides. Perform quantitative eval-
uation of the unidirectional RNN on the sequestered test set.

4. Now, repeat the above step with PyTorch’s bidirectional GRU (i.e.
with bidirectional=True). Note that you’ll also need to adjust sev-
eral other places in your RNN to accommodate the change of shape
for the hidden state. Does using a bidirectional scan make a difference
in terms of test performance?

5. In your report, report the overall accuracy and the confusion matrix
produced by your RNN that is based on torch.nn.GRU as well as its
bidirectional variant. Also, you should include plots of the training
losses for the two RNNs. Write a paragraph comparing the test per-
formances of the both RNN implementations that you have done.

4 Extra Credit (25 points)

Repeat the above sentiment analysis on the text classification dataset on
the course website. The link to download the dataset is below:

https://engineering.purdue.edu/kak/distDLS/text_datasets_for_

DLStudio.tar.gz

1. First of all, extract the dataset and analuyse the files inside them. You
may refer to Slides 11 through 15 of the Week 12 slides to familiarize
yourself with how the datasets are organized.

2. Refer to Examples/text_classification_with_GRU_word2vec.py on
how to create dataloaders for this dataset. You may report results on

8

https://engineering.purdue.edu/kak/distDLS/text_datasets_for_DLStudio.tar.gz
https://engineering.purdue.edu/kak/distDLS/text_datasets_for_DLStudio.tar.gz

embedding sizes 200 and 400 in the dataset, (i.e. sentiment_dataset_train_200
.tar.gz and sentiment_dataset_train_400.tar.gz, and correspond-
ing test datasets.)

3. Train and test your Unidirectional and Bidirection RNNs you created
in 3. You may refer to DLStudio code on how to create your training
loop.

4. Repeat steps 3 and 5 from Section 3.

5 Submission Instructions

Include a typed report explaining how did you solve the given programming
tasks. For HW9, you need to submit the following:

1. Your pdf must include a description of

• The figures and descriptions as mentioned in Sec. 3, and 4 if you
choose to do the extra credit.

• Your source code. Make sure that your source code files are
adequately commented and cleaned up.

2. Turn in a pdf file a typed self-contained report with source code and re-
sults. Rename your .pdf file as hw9 <First Name><Last Name>.pdf

3. Turn in a zipped file, it should include all source code files (only .py
files are accepted). Rename your .zip file as hw9 <First Name><Last
Name>.zip .

4. Do NOT submit your network weights.

5. Do NOT submit your dataset.

6. For all homeworks, you are encouraged to use .ipynb for development
and the report. If you use .ipynb, please convert it to .py and submit
that as source code.

7. You can resubmit a homework assignment as many times as you want
up to the deadline. Each submission will overwrite any previous
submission. If you are submitting late, do it only once on
BrightSpace. Otherwise, we cannot guarantee that your latest sub-
mission will be pulled for grading and will not accept related regrade
requests.

9

8. The sample solutions from previous years are for reference only. Your
code and final report must be your own work.

9. To help better provide feedback to you, make sure to number your
figures and tables.

References

[1] Recurrent Neural Networks for Text Classification and Data Prediction,
. URL https://engineering.purdue.edu/DeepLearn/pdf-kak/RNN.

pdf.

[2] Word Embeddings and Sequence-to-Sequence Learning, . URL https:

//engineering.purdue.edu/DeepLearn/pdf-kak/Seq2Seq.pdf.

[3] GRU. URL https://pytorch.org/docs/stable/generated/torch.

nn.GRU.html.

[4] Pekka Malo, Ankur Sinha, Pyry Takala, Pekka Korhonen, and Jyrki
Wallenius. Good debt or bad debt: Detecting semantic orientations in
economic texts, 2013.

10

https://engineering.purdue.edu/DeepLearn/pdf-kak/RNN.pdf
https://engineering.purdue.edu/DeepLearn/pdf-kak/RNN.pdf
https://engineering.purdue.edu/DeepLearn/pdf-kak/Seq2Seq.pdf
https://engineering.purdue.edu/DeepLearn/pdf-kak/Seq2Seq.pdf
https://pytorch.org/docs/stable/generated/torch.nn.GRU.html
https://pytorch.org/docs/stable/generated/torch.nn.GRU.html

	Introduction
	Getting Ready for This Homework
	Programming Tasks
	Tokenization
	Word Embeddings
	Sentiment Analysis Using torch.nn.GRU

	Extra Credit (25 points)
	Submission Instructions

