[]1:

hw9 JavonTimmerberg
April 10, 2024

1 Programming Section

1.1 Creating Dataset

Before constructing the recurrent neural network, we first had to process the dataset we were
provided into embeddings that would allow our network to function without relying on large one
hot vectors to account for the vocabulary size of whatever dataset is being trained and tested on.
These embeddings were generated through the DistilBert model, a lightweight transformer. These
embeddings were created first at the single word level and then afterwards the DistilBert library

was used to create n-gram tokens and their respective embeddings.

After generating the word embeddings, the respective sentiment classes for each review were con-

verted into one hot vectors.

The embedding tensors and the sentiment onehot vectors were stored in a list and then saved to

the disk to be used for the dataloader.

1.1.1 Generating Word Embeddings

import pandas as pd
from transformers import DistilBertTokenizer, DistilBertModel

data = pd.read_csv('/content/drive/MyDrive/ECE60146/HW9/data.csv"')
Split columns into lists

column lists = [datal[col].tolist() for col in data.columns]
sentences = column_lists[0]

sentiments = column lists[1]

nmnn

Tokenization procedure from HW9 pdf Code

nnn

word_tokenized_sentences = [sentence.split() for sentence in sentences]
max_len = max([len(sentence) for sentence in word_tokenized sentences])
padded_sentences = [sentence + ['[PAD]'] * (max_len - len(sentence)) for

sentence in word_tokenized_sentences]

vocab = {}

[1:

vocab['[PAD]'] = 0O
for sentence in padded_sentences:
for token in sentence:
if token not in vocab:
vocab[token] = len(vocab)

padded_sentences_ids = [[vocab[token] for token in sentence] for
sentence in padded_sentences]

word_embeddings = []
for tokens in padded_sentences_ids:
input_ids = torch.tensor (tokens) .unsqueeze (0)
with torch.no_grad():
outputs = distilbert_model (input_ids)
word_embeddings.append (outputs.last_hidden_state)

tensors_cpu = [tensor.cpu() for tensor in word_embeddings]

Save the list of temsors to a file
torch.save(tensors_cpu, '/content/drive/MyDrive/ECE60146/HW9/
oword_embeddings_tensor.pt')

1.1.2 Generating Subword Embeddings

nnn

Tokenization procedure from HW9 pdf Code

nnn

model_ckpt = "distilbert-base-uncased"
distilbert_tokenizer = DistilBertTokenizer.from_pretrained(model_ckpt)

bert_tokenized_sentences_ids = [distilbert_tokenizer.encode(sentence,
padding='max_length', truncation=True,
max_length=max_len) for sentence in
~sentences]

bert_tokenized_sentences_tokens = [distilbert_tokenizer.
«convert_ids_to_tokens(sentence)
for sentence in
~bert_tokenized_sentences_ids]

model name = 'distilbert/distilbert-base-uncased'
distilbert_model = DistilBertModel.from_pretrained(model_name)

subword_embeddings = []
for tokens in bert_tokenized_sentences_ids:
input_ids = torch.tensor (tokens) .unsqueeze (0)

with torch.no_grad(Q):
outputs = distilbert_model (input_ids)
subword_embeddings.append(outputs.last_hidden_state)

tensors_cpu = [tensor.cpu() for tensor in subword_embeddings]

Save the list of tensors to a file
torch.save(tensors_cpu, '/content/drive/MyDrive/ECE60146/HW9/
~subword_embeddings_tensor.pt')

1.1.3 Generating Sentiment One Hot Vectors

encoded_sents = [0 if sentiment == 'negative' \
else 1 if sentiment == 'neutral' \
else 2 for sentiment in sentiments]

Using pytorch function to generate one hot wvectors from encoded sentiment list

onehot_sents = [F.one_hot(torch.tensor(encoded_sent), num_classes=3) for,
<encoded_sent in encoded_sents]

tensors_cpu = [tensor.cpu() for tensor in onehot_sents]

Save the list of tensors to a file
torch.save(tensors_cpu, '/content/drive/MyDrive/ECE60146/HW9/sentiments.pt')

1.2 Dataset Class

After generating the review and sentiment tensors from data.csv, the lists were loaded into a dataset
class which then split 80% of the dataset to be used in training and 20% of the dataset to be used
in testing.

class SentimentDataset (torch.utils.data.Dataset):
def __init__(self, train=True, device=torch.device("cuda:0" if torch.cuda.
~is_available() else "cpu"),
embeddings_file='/content/drive/MyDrive/ECE60146/HW9/
~subword_embeddings_tensor.pt',
sentiments_file='/content/drive/MyDrive/ECE60146/HW9/sentiments.
spt'):

Load previously created embeddings and sentiment tensors
embeddings = torch.load(embeddings_file)

sentiments = torch.load(sentiments file)

self.train = train

self.device = device

self.tot_length = len(sentiments)

Assuming sentiments are untformly distributed

through the dataset, split dataset 80:20 for training:testing
train_length = int(self.tot_length // 1.25)

[]1:

if train == True:
self.length = train_length
self.embeddings = embeddings[:train_length]
self .sentiments = sentiments[:train_length]
else:
self.length = len(sentiments[train_length:])
self.embeddings = embeddings[train_length:]
self .sentiments = sentiments[train_length:]

def __len_ (self):
return self.length

def __getitem__(self, index):

return embedding and sentiment tensors

return torch.squeeze(self.embeddings[index] .to(self.device)), self.
~sentiments[index] .to(self.device)

1.3 Network

To predict the sentiment of the review, the following network was used. The main points of
the network are the GRU layer which processes the embedding sequence for a linear layer which
predicts the sentiment of the text. The LogSoftmax allows the output to be interpreted as the log
probabilities for each class of sentiment. This is then combined with the NLLLoss criterion used in
the training procedure.

class GRUnet(nn.Module):
def __init__(self, input_size, hidden_size, output_size, n_layers,
~drop_prob=0.2, bidirectional=False,
epochs=5, lr=le-4, device=torch.device("cuda:0" if torch.cuda.

~is_available() else "cpu")):

Network design adjusted from to include bidirectional setup:

https://engineering.purdue. edu/kak/distDLS/DLStudio-2.4.3. html

super().__init__Q

self .bidirectional = bidirectional

self . hidden_size = hidden_size

self.n_layers = n_layers

self.gru = nn.GRU(input_size, hidden_size, n_layers, batch_first=True,,
wdropout=drop_prob, bidirectional=bidirectional)

linear_hidden = hidden_size

if self.bidirectional:

linear_hidden = linear_hidden * 2

self.fc = nn.Linear(linear_hidden, output_size)

self.relu = nn.ReLU(Q)

self.logsoftmax = nn.LogSoftmax(dim=1)

self.epochs = epochs

[]1:

self.lr = 1r
self.device = device

def forward(self, x, h):
out, h = self.gru(x, h)
out = self.fc(self.relu(outl:,-11))
out = self.logsoftmax(out)
return out, h

def init_hidden(self, batch_size):
weight = next(self.parameters()).data
layers = self.n_layers
if self.bidirectional:
layers = layers * 2
hidden = weight.new(layers, batch_size, self.hidden_size).zero_()
return hidden

1.4 Sentiment Analysis Results

The training procedure shown below was adjusted from the DLStudio library. The main adjustment
to the code was to use weights with the loss criterion. During my initial training rounds, my network
would just learn to only predict neutral. When watching the outputs from the network and the
associated classes from each input, I noticed the training dataset featured a much larger amount of
neutral sentiment reviews. After multiple epochs, the network would converge to a local minima
where the inputted review would have little effect on what the output log probabilities were. The
learning rate, number of layers and the size of hidden input to the linear layer had no effect on
this convergence. The large number of neutral sentiment reviews far outnumbered the amount of
positive and especially the amount of negative reviews in the dataset. Any adjustments to the
parameters made by classes that weren’t neutral would be far outweighed by the number of neutral
sentiments which would push the network to the local minima. To account for this, I added weights
to the criterion which would account for the imbalance in the dataset so that each occurrrence of
a negative review would have the same overall weight as four occurrences of a neutral review, and
two occurrences for a positive review.

The training loss results for the subword and word embeddings of both the unidirectional and
bidirectional networks are shown below in figures 1-4. All the trained network losses leveled out
within 5 epochs of the training datasets but the bidirectional networks took longer to reach their
minimums.

1.4.1 Training Procedure Code

def run_code_for_training for_text_classification_with_GRU(net,
~train_dataloader, net _num):
Training code adjusted from:
https://engineering.purdue. edu/kak/distDLS/DLStudio-2.4.3.html

mnimnn

filename_for_out = "/content/drive/MyDrive/ECE60146/HW9/
operformance_numbers_" + str(net.epochs) + str(net_num) +".txt"
FILE = open(filename_for_out, 'w')
net = net.to(net.device)
Added weights to NLLLoss algorithm to account for training set imbalance.
Weights are determined by ratios between sentiments
Negative: 675
Neutral: 2516
Positive: 1482
criterion = nn.NLLLoss(weight = torch.tensor([1, 0.25, .5]).to(net.device))
optimizer = optim.Adam(net.parameters(), lr=net.lr)
negative_total = 0
neutral_total = 0
positive_total = 0
for epoch in range(net.epochs):
print("")
running_loss = 0.0
start_time = time.time()
for i, data in enumerate(train_dataloader):
review_tensor,sentiment = data
review_tensor = review_tensor.to(net.device)
sentiment = sentiment.to(net.device)
optimizer.zero_grad()
hidden = net.init_hidden(1).to(net.device) ## (4)
output, hidden = net(review_tensor, hidden) ## (C)
gt_idx = torch.argmax(sentiment).item()
Recording counts of sentiments for network weights
if gt_idx ==
negative_total += 1
elif gt_idx ==
neutral_total += 1
elif gt_idx ==
positive_total += 1
print (output, sentiment)
loss = criterion(output, torch.unsqueeze(torch.argmax(sentiment), 0))
running_ loss += loss.item()
loss.backward()
optimizer.step()
if i % 100 == 99:
avg_loss = running loss / float(99)
current_time = time.time()
time_elapsed = current_time-start_time
print (" [epoch:%d iter:%3d elapsed_time: %d secs] loss: %.3f" %,
< (epoch+1,i+1, time_elapsed,avg_loss))
FILE.write("%.3f\n" 7 avg_loss)
FILE.flushQ)
running_loss = 0.0

[]1:

print (negative_total, neutral_total, positive_total)
torch.save(net.state_dict(), "/content/drive/MyDrive/ECE60146/HW9/net" +,
«str(net_num))

Create dataloaders for subword embeddings
train_set = SentimentDataset ()
test_set = SentimentDataset(train=False)

train_loader = Dataloader(train_set, batch_size=1, num_workers=0, shuffle=True)
test_loader = Dataloader(test_set, batch_size=1, num_workers=0, shuffle=True)

hidden_size=2048
n_layers=2

Train subword sentiment networks

net = GRUnet (input_size=768, hidden_size=hidden_size, output_size=3,
-n_layers=n_layers, bidirectional=False)

run_code_for_training for_text_classification_with_GRU(net, train_loader, 0)

run_code_for_testing_text_classification_with_GRU(net, test_loader, 0)

net = GRUnet(input_size=768, hidden_size=hidden_size, output_size=3,
~n_layers=n_layers, bidirectional=True)

run_code_for_training for_text_classification_with_GRU(net, train_loader, 1)

run_code_for_testing_text_classification_with_GRU(net, test_loader, 1)

Create dataloaders for whole word embeddings

word_train_set = SentimentDataset(embeddings_file='/content/drive/MyDrive/
~ECE60146/HW9/word_embeddings_tensor.pt')

word_test_set = SentimentDataset(embeddings_file='/content/drive/MyDrive/
~ECE60146/HW9/word_embeddings_tensor.pt',train=False)

word_train_loader = Dataloader(train_set, batch_size=1, num_workers=0,
«shuffle=True)

word_test_loader = DatalLoader(test_set, batch_size=1, num_workers=0,
«shuffle=True)

Train whole word setiment networks

net = GRUnet(input_size=768, hidden_size=hidden_size, output_size=3,
~n_layers=n_layers, bidirectional=False)

run_code_for_training for_text_classification_with_GRU(net, word_train_loader,,
-2)

run_code_for_testing_text_classification_with_GRU(net, word_test_loader, 2)

net = GRUnet(input_size=768, hidden_size=hidden_size, output_size=3,
-n_layers=n_layers, bidirectional=True)

run_code_for_training for_text_classification_with_GRU(net, word_train_loader,,
-3)

run_code_for_testing_text_classification_with_GRU(net, word_test_loader, 3)

1.4.2 Figure 1. Training Loss Results from Unidirectional Network from Subwords
Encodings generated from data.csv

Loss for Subword Embeddings Unidirectional GRU Network

1.1
1.0

0.9 - |

0.8 A

Loss

0.7 A

0.6 1

0.5 1

50 100 150 200
Iteration

o_

1.4.3 Figure 2. Training Loss Results from Bidirectional Network on Subwords En-
codings generated from data.csv

Loss for Subword Embeddings Bidirectional GRU Network

1.2

1.0

0.8

Loss

0.6 1

0.4 -

0.2 T T T T T
0 50 100 150 200

Iteration

1.4.4 Figure 3. Training Loss Results from Unidirectional Network on Whole Word
Encodings generated from data.csv

Loss for Word Embeddings Unidirectional GRU Network

1.0

0.8

Loss

0.6 1

0.4 A

0 50 100 150 200
Iteration

10

[1:

1.4.5 Figure 4. Training Loss Results from Bidirectional Network on Whole Word
Encodings generated from data.csv

Loss for Word Embeddings Bidirectional GRU Network

1.1 A

1.0

0.9 1

0.8

Loss

0.7 A

0.6 1

0.5 1

0.4 A

0 50 100 150 200
Iteration

1.4.6 Testing Procedure Code

After training each of the networks, the following testing procedure was run to see the accuracy over
the testing dataset. The best performing network was the Unidirectional network trained on the
full word embeddings with an average sentiment accuracy of 75%. The worst performing network
was the Unidirectional network trained on the subword embeddings with an average sentiment
accuracy of 54%. While the total accuracy of the network would be higher, this would be skewed
by the ability of the network to prioritize predicting a neutral sentiment from the largest class of the
testing dataset. On average the Bidirectional networks performed better than the Unidirectional
networks but the average accuracy difference was only 2%.

def run_code_for_testing_text_classification_with_GRU(net, test_dataloader,
~net_num) :
Testing code adjusted from: https://engineering.purdue.edu/kak/distDLS/
<DLStudi0-2.4.3.html
net.load_state_dict(torch.load("/content/drive/MyDrive/ECE60146/HW9/net" +
~str(net_num)))

11

net = net.to(net.device)
classification_accuracy = 0.0
negative_total = 0
neutral _total = 0
positive_total = 0O
confusion _matrix = torch.zeros(3,3)
with torch.no_grad():
for i, data in enumerate(test_dataloader):
review_tensor,sentiment = data
hidden = net.init_hidden(1) .to(net.device) ## (4)

output, hidden = net(review_tensor, hidden) ## (C)
print (review_tensor.shape)
predicted_idx = torch.argmax(output).item()
gt_idx = torch.argmax(sentiment).item()
if i % 100 == 99:
print (" [i=id] predicted_label=d gt_label=%d\n\n" 7 (i+1,,
wpredicted_idx,gt_idx))
if predicted_idx == gt_idx:
classification_accuracy += 1
if gt_idx ==
negative_total += 1
elif gt_idx ==
neutral_total += 1
elif gt_idx == 2:
positive_total += 1
confusion_matrix[gt_idx,predicted_idx] += 1

Create confusion matriz of inference percentages
out_percent = np.zeros((3,3), dtype='float')
out_percent[0,0] = "%.3f" 7 (100 * confusion_matrix[0,0] /.
~float(negative_total))

out_percent[0,1] = "%.3f" 7 (100 * confusion_matrix[0,1] /.
~float(negative_total))

out_percent[0,2] = "%,.3f" 7 (100 * confusion_matrix[0,2] /.
~float(negative_total))

out_percent[1,0] = "%.3f" % (100 * confusion_matrix[1,0] /,
~float(neutral total))

out_percent[1,1] = "J.3f" J, (100 * confusion_matrix[1,1] /.
~float(neutral total))

out_percent[1,2] = "J.3f" 7, (100 * confusion_matrix[1,2] /,
~float(neutral_total))

out_percent[2,0] = "J.3f" J, (100 * confusion_matrix[2,0] /.
~float(positive_total))

out_percent[2,1] = "J.3f" , (100 * confusion_matrix[2,1] /.
~float(positive_total))

12

out_percent[2,2] = "J.3f" J, (100 * confusion_matrix[2,2] /,
~float(positive_total))

print ("\n\nNumber of positive reviews tested: %d" 7, positive_total)
print ("\n\nNumber of neutral reviews tested: %d" 7 neutral_total)
print ("\n\nNumber of negative reviews tested: %d" 7, negative_total)
print ("\n\nDisplaying the confusion matrix:\n")
out_str = " "
out_str += "%18s %18s %18s" J ('predicted negative', 'predicted,
neutral', 'predicted positive')
print (out_str + "\n")
for i,label in enumerate(['true negative', 'true neutral ', 'true positive'l]):
out_str = "%12s: " % label
for j in range(3):
out_str += "%18s" 7, out_percent[i, j]
print (out_str)

13

1.4.7 Figure 5. Testing Results Confusion Matrix for Unidirectional Subword Em-
beddings Network

Inference Percentages Subword Unidirectional

Negative 2.162
[%2]
K9]
o]
L Neutral - 0.0
(0]
=}
=

Positive 0.0

4 > e
& ¥ S’
N R

Predicted labels

14

1.4.8 Figure 6. Testing Results Confusion Matrix for Bidirectional Subword Embed-
dings Network

Inference Percentages Subword Bidirectional

Negative 1.622

Neutral A

True labels

Positive - 21.622
\
¥ @ <
& & &
$® % %

Predicted labels

15

1.4.9 Figure 7. Testing Results Confusion Matrix for Unidirectional Word Embed-
dings Network

Inference Percentages Word Unidirectional

Negative 20.0

Neutral

True labels

Positive 1 5.135
\
¥ @ <
> e\))
$®q % Qo

Predicted labels

16

1.4.10 Figure 8. Testing Results Confusion Matrix for Bidirectional Word Embed-
dings Network

Inference Percentages Word Bidirectional

Negative - 16.757
(%]
Ka]
O

L Neutral - 0.326
(0]
>
=

Positive - 0.541

\
¥ @ <
& & &
$® % %

Predicted labels

2 Extra Credit

After performing the testing and training procedure using the data.csv dataset, the process was
repeated using the text classification dataset from DLStudio. The overall design of the network
stayed the same but the procedure was adjusted to use the dataloader from the DLStudio library.
The network was adjusted to have a smaller hidden size to save on training time but the training
loss was much more variable with respect to the average loss during training than the original
network. The average accuracy for both the unidirectional and the bidirectional networks were
80.5% but the best performing network was the bidirectional network. The worst performing still
had an average accuracy of 79%. Throughout both experiments, while the bidirectional networks
outperformed the unidirectional networks, the improvement was minimal.

17

2.0.1 Training Procedure Code

[1: def run_code_for_training for_text_classification_with_GRU_extra(net,,
«train_dataloader, net_num):
nimnn
Code adjusted from: https://engineering.purdue.edu/kak/distDLS/DLStudio-2.4.
3. html
filename_for_out = "/content/drive/MyDrive/ECE60146/HW9/
operformance_numbers_" + str(net.epochs) + str(net_num) +".txt"
FILE = open(filename_for_out, 'w')
net = net.to(net.device)
criterion = nn.NLLLoss()
optimizer = optim.Adam(net.parameters(), lr=net.lr)
negative_total = 0
neutral_total = 0
positive_total = 0O
for epoch in range(net.epochs):
print("")
running_loss = 0.0
start_time = time.time()
for i, data in enumerate(train_dataloader):
review_tensor,_,sentiment = data['review'], datal['category']l,.
~data['sentiment']
review_tensor = review_tensor.to(net.device)
sentiment = sentiment.to(net.device)
optimizer.zero_grad()
hidden = net.init_hidden(1).to(net.device) ## (4)
output, hidden = net(review_tensor, hidden) ## (C)
gt_idx = torch.argmax(sentiment).item()
if gt_idx ==
negative_total += 1
elif gt_idx ==
neutral_total += 1
elif gt_idx ==
positive_total += 1
print (output, sentiment)
loss = criterion(output, torch.unsqueeze(torch.argmax(sentiment), 0))
running loss += loss.item()
loss.backward ()
optimizer.step()
if i % 100 == 99:
avg_loss = running_loss / float(99)
current_time = time.time()
time_elapsed = current_time-start_time
print (" [epoch:%d iter:%3d elapsed_time: J%d secs] loss: %.3f" %y,
< (epoch+1,i+1, time_elapsed,avg_loss))

18

[1:

FILE.write("%.3f\n" 7 avg_loss)
FILE.flush()
running_loss = 0.0
print(negative_total, neutral_total, positive_total)
torch.save(net.state_dict(), "/content/drive/MyDrive/ECE60146/HW9/net" +,
<str(net_num))

nmnn

Code adjusted from: https://engineering.purdue.edu/kak/distDLS/DLStudio-2.4.3.
<html

nnn

from DLStudio import *
dataroot = "/content/drive/MyDrive/ECE60146/HW9/data/"

dataset_archive_train = "sentiment_dataset_train_200.tar.gz"
#dataset_archive_train = "sentimenti_dataset_train_200.tar.gz"
dataset_archive_test = '"sentiment_dataset_test_200.tar.gz"
#dataset_archive_test = "sentiment_dataset_test_200.tar.gz"

path_to_saved_embeddings = "/content/drive/MyDrive/ECE60146/HW9/word2vec/"
#path_to_saved_embeddings = "./data/TextDatasets/word2vec/"

dls = DLStudio(
dataroot = dataroot,
path_saved_model = "/content/drive/MyDrive/ECE60146/HW9/data/
~dlstudio_model 1",
momentum = 0.9,
learning_rate = 1le-5,
epochs = 1,
batch_size = 1,
classes = ('negative', 'positive'),
use_gpu = True,

dataserver_train = DLStudio.TextClassificationWithEmbeddings.
~SentimentAnalysisDataset (
train_or_test = 'train',
dl_studio = dls,
dataset_file = dataset_archive_train,
path_to_saved_embeddings =
~path_to_saved_embeddings,

)

19

train_200_dataloader = torch.utils.data.Dataloader(dataserver_train,
batch_size=1,shuffle=True, num_workers=1)

hidden_size=400

epochs=4

net = GRUnet(input_size=300, hidden_size=hidden_size, epochs=epochs,
coutput_size=2, lr=le-5, n_layers=n_layers, bidirectional=False)

run_code_for_training for_text_classification_with_GRU_extra(net,,
otrain_200_dataloader, 10)

netl = GRUnet (input_size=300, hidden_size=hidden_size, lr=1e-5, epochs=epochs,
woutput_size=2, n_layers=n_layers, bidirectional=True)

run_code_for_training for_text_classification_with_GRU_extra(netl,
otrain_200_dataloader, 11)

2.0.2 Figure 9. Training Loss Results from Unidirectional Network with 200 Embed-
dings

Loss for Word Embeddings Unidirectional GRU Network

0.70 A

0.65 A

0.60

0.55 A

Loss

0.50 A

0.45 A

0.40 A

0.35 A

0 50 100 150 200 250 300
Iteration

20

2.0.3 Figure 10. Training Loss Results from Bidirectional Network with 200 Embed-
dings

Loss for Word Embeddings Bidirectional GRU Network

0.70 A

0.65 A

0.60

0.55 A

Loss

0.50 A

0.45 A

0.40 A

0.35 A

0 50 100 150 200 250 300
Iteration

21

2.0.4 Figure 11. Training Loss Results from Unidirectional Network with 400 Em-
beddings

Loss for Word Embeddings Unidirectional GRU Network

0.70 A

0.65 A

0.60

0.55 A

Loss

0.50 A

0.45 A

0.40 A

0.35 A

0.30 A

0 100 200 300 400 500
Iteration

22

[]:

2.0.5 Figure 12. Training Loss Results from Unidirectional Network with 400 Em-

beddings

Loss for Word Embeddings Bidirectional GRU Network

0.7 A

0.6 1

Loss

0.5 1

0.4 A

0.3 1

0 100 200 300 400 500
Iteration

2.0.6 Testing Procedure Code

Code adjusted from: https://engineering.purdue.edu/kak/distDLS/DLStudio-2.4.3.
<~html

nnn

def run_code_for_testing_text_classification_with_GRU_extra(net,,
~test_dataloader, net num):
net.load_state_dict(torch.load("/content/drive/MyDrive/ECE60146/HW9/net" +
~str(net_num)))
classification_accuracy = 0.0
negative_total = 0
positive_total = 0
confusion _matrix = torch.zeros(2,2)
with torch.no_grad():
for i, data in enumerate(test_dataloader):
review_tensor,_,sentiment = datal['review'], datal['category']l,.
~data['sentiment']

23

[1:

hidden = net.init_hidden(1) .to(net.device) ## (4)
review_tensor = review_tensor.to(net.device)
sentiment = sentiment.to(net.device)
output, hidden = net(review_tensor, hidden) ## (C)
print (review_tensor.shape)
predicted_idx = torch.argmax(output).item()
gt_idx = torch.argmax(sentiment).item()
if i % 100 == 99:
print(" [i=%d] predicted_label=%d gt_label=Jd\n\n" % (i+1,
wpredicted_idx,gt_idx))
if predicted_idx == gt_idx:
classification_accuracy += 1
if gt_idx ==
negative_total += 1
else:
positive_total += 1

confusion_matrix[gt_idx,predicted_idx] += 1

out_percent = np.zeros((3,3), dtype='float')
out_percent[0,0] = "%.3f" % (100 * confusion_matrix[0,0] /,
~float(negative_total))

out_percent[0,1] = "%.3f" 7 (100 * confusion_matrix[0,1] /,
~float(negative_total))

out_percent[1,0] = "%.3f" % (100 * confusion_matrix[1,0] /,
~float(positive_total))

out_percent[1,1] = "%.3f" 7 (100 * confusion_matrix[1,1] /,
~float(positive_total))

print ("\n\nNumber of positive reviews tested: %d" 7, positive_total)
print ("\n\nNumber of negative reviews tested: %d" 7, negative_total)
print ("\n\nDisplaying the confusion matrix:\n")
out_str = " "
out_str += "%18s %18s" Y ('predicted negative', 'predicted positive')
print (out_str + "\n")
for i,label in enumerate(['true negative', 'true positive']):

out_str = "%12s: " % label

for j in range(2):

out_str += "Y18s" 7 out_percentl[i,j]
print (out_str)

niunn

Code adjusted from: https://engineering.purdue.edu/kak/distDLS/DLStudio-2.4.3.
<html

nnn

dataserver_test = DLStudio.TextClassificationWithEmbeddings.
~SentimentAnalysisDataset (

24

train_or_test = 'test',
dl_studio = dls,
dataset_file = dataset_archive_test,
path_to_saved_embeddings =
~path_to_saved_embeddings,
)
test_200_dataloader = torch.utils.data.Dataloader (dataserver_test,
batch_size=1,shuffle=False, num workers=1)
run_code_for_testing_text_classification_with_GRU_extra(net,
~test_200_dataloader, 10)

run_code_for_testing_text_classification_with_GRU_extra(netl,
~test_200_dataloader, 11)

2.0.7 Figure 13. Testing Results Confusion Matrix for Unidirectional 200 Embed-
dings

Inference Percentages 200 Unidirectional

Negative

True labels

Positive A

T
<
&
S N
Si R

Predicted labels

25

2.0.8 Figure 14. Testing Results Confusion Matrix for Bidirectional 200 Embeddings

Inference Percentages 200 Bidirectional

Negative

True labels

Positive A

4

Q)
S

%

. \4@
RS
$®Q QOQ\

Predicted labels

26

2.0.9 Figure 15. Testing Results Confusion Matrix for Unidirectional 400 Embed-
dings

Inference Percentages 400 Unidirectional

Negative

True labels

Positive A

T

< <

q’b
Si R

Predicted labels

27

2.0.10 Figure 16. Testing Results Confusion Matrix for Bidirectional 400 Embeddings

Inference Percentages 400 Bidirectional

Negative

True labels

Positive A

4

Q)
S

%

. \4@
RS
$®Q QOQ\

Predicted labels

28

	Programming Section
	Creating Dataset
	Generating Word Embeddings
	Generating Subword Embeddings
	Generating Sentiment One Hot Vectors

	Dataset Class
	Network
	Sentiment Analysis Results
	Training Procedure Code
	Figure 1. Training Loss Results from Unidirectional Network from Subwords Encodings generated from data.csv
	Figure 2. Training Loss Results from Bidirectional Network on Subwords Encodings generated from data.csv
	Figure 3. Training Loss Results from Unidirectional Network on Whole Word Encodings generated from data.csv
	Figure 4. Training Loss Results from Bidirectional Network on Whole Word Encodings generated from data.csv
	Testing Procedure Code
	Figure 5. Testing Results Confusion Matrix for Unidirectional Subword Embeddings Network
	Figure 6. Testing Results Confusion Matrix for Bidirectional Subword Embeddings Network
	Figure 7. Testing Results Confusion Matrix for Unidirectional Word Embeddings Network
	Figure 8. Testing Results Confusion Matrix for Bidirectional Word Embeddings Network

	Extra Credit
	Training Procedure Code
	Figure 9. Training Loss Results from Unidirectional Network with 200 Embeddings
	Figure 10. Training Loss Results from Bidirectional Network with 200 Embeddings
	Figure 11. Training Loss Results from Unidirectional Network with 400 Embeddings
	Figure 12. Training Loss Results from Unidirectional Network with 400 Embeddings
	Testing Procedure Code
	Figure 13. Testing Results Confusion Matrix for Unidirectional 200 Embeddings
	Figure 14. Testing Results Confusion Matrix for Bidirectional 200 Embeddings
	Figure 15. Testing Results Confusion Matrix for Unidirectional 400 Embeddings
	Figure 16. Testing Results Confusion Matrix for Bidirectional 400 Embeddings

