BMEG646 and ECE 60146 — Homework #8

Nadine Amin

GAN:

Discriminator Network

Figure 1 shows the implementation of the discriminator network as per the DiscriminatorDG1
class in Prof. Kak's AdversarialLearning.py (https://engineering.purdue.edu/kak/distDLS/). The
network has 4 convolutional layers with different numbers of channels, each a kernel size of 4, a
stride of 2, and a padding of 1 (4-2-1). It also has an output convolutional layer with a single node
as the discriminator's output for each image. Lastly, it has 3 batch normalization layers with
different numbers of channels and a Sigmoid activation function to output a probability. In the
forward function, the input is first passed through the 1% convolutional layer, followed by a leaky
ReLU activation function to avoid the dying ReLLU problem. Next, the output is passed through
the 2" convolutional layer, the 1% batch normalization layer, and a leaky ReLU. This is then
repeated for the 3™ and 4™ convolutional layers. Lastly, the output is passed through the last
convolutional layer, followed by the Sigmoid activation function to output the discriminator’s
probability for each image.

f.conv_in = nn.Conv2d(3, &4, kernel_si
f in2 nn.Conv2d(64, 128, kernel

f.conv_ing nn.Conv2d(256, 512, kerne
-conv_in5 = nn.Conv2d(512, 1, kernel_size=4, stride=1, padding=8)
nn.BatchNorm2d(128)

= nn.BatchNorm2d(256)
= nn.BatchNorm2d(512)

self.
self.sig = nn.Sigmoid()
forward(self, x):

¢ = torch.nn.functional.leaky relu(self.conv_in(x), negative slope=8.2, inplace=

self.bnl(self.conv_in2(x))
torch.nn.functional.leaky relu(x, negative slope=8.2, inplace= )

self.bn2(self.conv_in3(x))
torch.nn.functional.leaky_relu(x, negative slope=8.2, inplace= )

self.bn3(self.conv_ina(x))
torch.nn.functional.leaky relu(x, negative slope=8.2, inplace= )

Figure 1


https://engineering.purdue.edu/kak/distDLS/

Generator Network

Figure 2 shows the implementation of the generator network as per the GeneratorDGIclass in
Prof. Kak's AdversarialLearning.py (https://engineering.purdue.edu/kak/distDLS/). The network
has a transpose convolutional layer that takes in the 1x1 noise input of 100 channels. Next, it has
3 transpose convolutional layers with different numbers of channels, each a kernel size of 4,
stride of 2, and padding of 1 (4-2-1). It also has an output convolutional layer with 3 output
channels resembling the generator's generated fake image. Lastly, it has 4 batch normalization
layers with different numbers of channels and a Tanh activation function. In the forward
function, the input is first passed through the 1% transpose convolutional layer, followed by the
1* batch normalization and a ReLU activation function. Next, the output is passed through the 3
transpose convolutional layers, each followed by a batch normalization layer and a ReLU
activation function. Lastly, the output is passed through the final transpose convolutional layer
and the Tanh activation function outputting the generated fake image (with 3 channels).

__dinit
super(gen, )-_init_ ()
self.latent_to_image = nn.ConvTranspose2d(10@, 512, kernel size=4, stride=1, padding=8, bias=
self.upsampler2 = nn.ConvTr se2, 2 KErne: stride=2, padding=1, bias=
self.upsampler3 = nn.Conv 3 b stride=2, paddin bias=

self.upsamplerd = nn.ConvTr: se2d (12 cerne stride=2, padding=1, bias=

self.upsampler5 = nn.ConvTranspose2d(64, 3, kernel_size=4, stride=2, padding-1, bias=

self.bnl = nn.BatchNorm2d(512)
f = nn.BatchNorm2d(

self.bn3 = nn.BatchNorm2d(128)
self.bn4 = nn.BatchNorm2d(64)

self.tanh = nn.Tanh()

forward(self, x):
< = self.latent to image(x)
ch.nn.functional.relu(self.bnl(x))
elf.bn2(x))
(self.bn3

elf.bn4(x))

Figure 2
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Training

Figure 3 shows the function implementing the adversarial training logic for the GAN network as
per the rum gan code  function in Prop. Kak's  AdversarialLearning.py
(https://engineering.purdue.edu/kak/distDLS/). The function starts by setting the number of
channels of the generator's 1x1 noise input vector to 100. It then moves both the discriminator and
generator networks to the device and initializes their parameters in an attempt to mitigate training
instability. A fixed noise vector is then defined to check the generator's progress during training.
Values of 1 and 0 are then set as the real and fake labels respectively. Adam optimizers are then
initialized for each of the discriminator and the generator networks, as well as a binary cross
entropy loss criterion. Lists for storing accumulated results during training are also initialized.

Next, for each training epoch, lists for storing running losses for each of the discriminator and
generator networks are initialized. For the discriminator network, the loss is calculated (and the
parameters are updated) in two steps. In the first step, the parameters are updated such that the
discriminator’s output probability is maximized for the real images. To do this, the gradients of
discriminator's learnable parameters are first set to zero, and the real images are moved to the
device. A label tensor is populated with 1s, which refers to the label of the real images. Next, the
real images are passed through the discriminator network, and the discriminator's loss for the real
images is calculated using the BCE criterion with labels being 1s. This loss is then backpropagated
through the discriminator network. For the second step, the parameters of the discriminator are
updated such that the discriminator’s output probability is minimized for the fake images. To do
this, a noise tensor is first initialized with the previously specified number of channels (100). It is
then passed through the generator network which correspondingly generates fake images. Next,
the label tensor is repopulated with the value of the fake label (0). Next, the generator’s output is
detached from the computational graph and then passed through the discriminator. This is done so
that the generator’s parameters are not updated or affected by the following calculations. The
discriminator's loss for the fake images is then calculated using the BCE criterion with labels being
Os this time. This loss is then backpropagated through the discriminator network. The combined
loss (from both steps) is then saved for displaying purposes, and the discriminator’s optimizer step
is updated.

For the generator network, the parameters are updated such that the discriminator’s output
probability is maximized for the fake images. To do so, the gradients of the generator’s learnable
parameters are first set to zero and the label tensor is repopulated with the value of the real label
(1). The generator’s output is then through the discriminator one more time, this time keeping it in
the computational graph (since we want to update the parameters of the generator). The generator's
loss is calculated using the BCE criterion with labels being 1s. The generator's loss is then stored
for displaying purposes. Lastly, the calculated loss is backpropagated through the generator
network and the generator's optimizer step is updated.

Every 100 iterations, the number of epochs, iterations, the elapsed time, and the average losses of
the discriminator and generator are printed. The running losses are then stored and reinitialized. At
the end of training, the discriminator and generator losses are plotted, and real and fake images are
displayed alongside each other. Lastly, model parameters are saved for future reference.


https://engineering.purdue.edu/kak/distDLS/

1f, dlstudio, adversarial, discriminator, ge esults_dir):

dir_name_for_results = results_dir
if os.path.exists(dir_name_for_results):
files = glob.glob(dir_name_for_results +
file in fil
os.path.isfile(file):
os.remove(file)

os.mkdir(dir_name_for_results)

nz = 1688

discriminator.to(self.devi
= generator.to(self.device)

1f.weights_init)
1f.weights_init)

.randn(self.dlstudio.batch_size, nz, 1, 1, device-self.device)

real_label = 1
fake label = @

optimizerD = optim.Adam(netD.parameters(), lr=dlstudio.learning rate, betas=(adversarial.betal, @.
optimizerG = optim.Adam(netG.parameters(), lr=dlstudio.learning_rate, betas=(adversarial.betal, ©.9

criterion = nn.BCELoss()

print(”
start_time

1
[1

data in enumerate(self.train_dataloader, 8):




netD. zero_grad()

real_images_in_batch = data[e].to(self.d

real images_in_batch
label = torch.full(({b_. »)s real_label, dtype=torch
output = netD(real_ images_in_batch).view(-1)
lossD_for_reals = criterion(output, label)

D_for_reals.backward()

noise = torch.randn(b_ 1, device=self.device)
fakes = netG(noise)

label.fill (fake_label)

output = .detach()).view(-1)

criterion(output, label)

) for_fakes.backward()

lossD for_reals + lossD for fakes
ses_per_print cycle.append(lossD)

rD.step()

label.fill (real_label)

output = netD(fak:

time.perf nter()
current_time - start time
torch.mean(torch.FloatTensor(d_.
mean_G ] torch.mean(torch.FloatTensor

elf.device)




print("[

_per_print

etach().cpu()
on.utils.make_grid(fake, padding=1, pad_value=1, normalize=

(netD.state_dict(), my dataroot + '

(netG.state_dict(), my dataroot + °
Figure 3

The code script for training the GAN model is copied from DLStudio's dcgan DGIl.py
(https://engineering.purdue.edu/kak/distDLS/) and is shown in Figure 4. An instance of DLStudio
is first created specifying the image size (64x64), learning rate, number of epochs, and batch size.
The dataroot is also specified such that it is where the celebrity dataset is saved. Next, an instance
of AdversarialLearning is created specifying size of the latent vector (1x1 noise image) and beta
value for Adam optimizer. Instances of AdversarialLearning.DataModeling, the discriminator
network, and the generator network are then created. The number of learnable parameters and
number of layers for each of the discriminator and generator networks are displayed, the dataloader
is set, and one batch from the dataset is displayed (Figure 5). Lastly, the run_gan code function is
called to run the training logic for the GAN networks.



https://engineering.purdue.edu/kak/distDLS/

dls = DLStudio(datarcot
image
path_saved_model
learning rate = 1e
epochs

adversarial = Adversariallearning(
dlstudio = dls,
ngpu = 1,
latent_vector_siz
betal = )

Adversariallearning.DataModeling(dlstudio = dls, adversarial = adversarial)

discriminator = disc()
generator = gen()

num_learnable_params_di (p- F i i if| p.requires_grad)
print("\n\n b a : num_learnable_params_disc)
num_learnable_param: (p- ~ p in generator.paramete p.requires_gra
print({"\nThe b 1 T % num_learnable params_gen)
num_laye

print("\nTh * ¥ num_layers_disc)

num_layers

print(" ) E n” % num_layers_gen)

dcgan.set_dataloader

print({"\n

dcgan.show_sample imag
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Figure 5 — One batch of real images.



Figure 6 shows the training losses of both the discriminator and the generator every 100 iterations,
and Figure 7 shows the corresponding plot. As can be seen, both losses decrease with iterations,
indicating that both models are learning. We can see that the discriminator loss is generally lower
than that of the generator. However, for both models, we can see spikes where the loss increases
and then falls back. This might be attributed to having both models being trained at the same time,
with the improvement in each of them meaning that the job is becoming harder for the other one.
Figure 8 shows the real and fake images displayed alongside each other (will comment on the
generated fake images later in this homework).

Starting Training Loop...
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Figure 6

Generator and Discriminator Loss During Training
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Real Images

Figure 8 — Real images and GAN’s fake images
Generating Fake Images

Figure 9 shows the code used to generate fake images using the trained generator network. A noise
tensor with 2048 noise vectors (each with 100 channels) is first randomly initialized. After loading
the trained generator, the noise tensor is then passed to it as input and 2048 corresponding fake
images are generated. We then loop on those images and save each of them to our directory. (Note
that the choice of 2048 as the number of fake images to be generated was chosen based on an error
experienced when later calculating the FID value using a smaller number of images).

num_fakes

noise vectors = torch.randn({num fakes, 188, 1, 1, device=dcgan.device)

trained gen = gen()
trained gen.load state dict(torch.load(my datarocot +
trained gen = traimed gen.to(dcgan.device)

fakes_2848 = trained_gen(noise_vectors)

for i in range(num_fakes):
fake image = fake 48[1]

fake image = torchvision.utils.make grid(fake image, padding=1, pad value=1, normalize=

fake_image = tvtF.to_pil image(f
fake_ image.save(my datarcot + "

Calculate FID Values

Figure 10 shows the code used to calculate the FID value for the GAN’s fake images. First, the
paths of the real and the fake images are each stored in a list using os.listdir(). Next, the code
provided in HWS instructions is used to calculate the FID value: an object of the Inception model
is instantiated, the mean and standard deviation of the distributions from the real and fake datasets



are all calculated, and lastly the FID values are calculated using calculate frechet distance. As
can be seen in Figure 10, the FID value was calculated to be 77.98.

real paths = os.listdir({my_datatoot + '
real paths = [my_datatoot + "r

fake paths = os.listdir(my_ datatoot +

fake_paths [my datatoot + '

block idx = InceptionV3.BLOCK INDEX BY DIM[dims]

model = InceptionV3({[block_ idx]).
calculate activation statistics(real paths[:2048], model, dewvice
calculate_activation_statistics (fake_paths, model, device =

fid value = calculate frechet distance(ml, s1, m2, s2)

print(f'FID: {fid walue:.2f}")

100%| | 21/21 [02:07<00:00,
100% || 21/21 [00:03<00:00,

FID: 77.98

Figure 10



Diffusion:
Generate Fake Images

As instructed in HW8, we use the network weights provided with the homework instructions to
generate fake images using diffusion. To do that, we run GenerateNewlmageSamples.py from
DLStudio (https://engineering.purdue.edu/kak/distDLS/) and change the following:

e The num_diffusion_steps is changed to 200 instead of originally 1000. This change was
made because the diffusion network was taking too long to generate the fake images.
Therefore, for computational constraints, the number of diffusion steps was reduced to 200.

e The num_samples is changed to 2048. (Note that the choice of 2048 as the number of fake
images to be generated was chosen based on an error experienced when later calculating
the FID value using a smaller number of images).

e The model path was changed as shown in Figure 11 so that the provided model weights are
loaded.

model path = my_dataroot + "diffusion.pt”

network. load state dict({torch.load(model path}))

Figure 11
Visualize Fake Images

After generating the fake images, we run the VisualizeSamples.py from DLStudio
(https://engineering.purdue.edu/kak/distDLS/) and change the following:

o The npz_archive is changed to be my dataroot + “samples 2048x64x64x3.npz” to reflect
the newly generated fake images.

e The visualization dir is changed to my dataroot + “diffusion fake images” to indicate
the directory where we want the generated images to be saved.

e When calling img.save(), we give the location where we want the image to be saved in our
my _dataroot + “diffusion_fake images” directory.

Calculate FID Values

Figure 12 shows the code used to calculate the FID value for the Diffusion’s fake images. First,
the paths of the real and the fake images are each stored in a list using os./listdir(). Next, the code
provided in HWS instructions is used to calculate the FID value: an object of the Inception model
is instantiated, the mean and standard deviation of the distributions from the real and fake datasets
are all calculated, and lastly the FID values are calculated using calculate frechet distance. As
can be seen in Figure 13, the FID value was calculated to be 153.39.


https://engineering.purdue.edu/kak/distDLS/
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real paths = os.listdir({my_datatoot + "r
real paths [my datatoot + "real da

fake_paths os.listdir(my datatoot +
‘F-EIF:E_Flﬂth'f' [m}.'_datﬂtlj ot +

diffusion_

dims = 2848
block_idx = InceptionV3.BLOCK _INDEX BY DIM[dims]

model = InceptionV3([block idx]).to("cpu™)
calculate activation statistics({real paths[:2848], model, dewvice = "cpu™)

calculate_activation_statistics (fake paths, model, device = "cpu™)

fid value = calculate frechet_distance(ml, s1, m2, s2)
print({f'FID: {fid_walue:.2f}")

Figure 12

100% | | 41/41 [14:43<@0:00, 21.555/it]
100% | | 41/41 [14:45<00:00, 21.608s/it]

FID: 153.39

Figure 13
Evaluating Models

Qualitative Evaluation

Figure 14 and Figure 15 show the 4x4 images generated by the GAN and Diffusion networks
respectively. We can see that both models were actually able to generate images from the input
noise vectors. As we can qualitatively spot from Figure 14, the generator from the GAN network
was able to generate semi-decent face images with similar color distributions to those in the real
dataset. However, the faces still look atypical and non-normal. As seen from Figure 15, the
Diffusion network was able to generate more normal-looking faces with much less atypicality.
However, we can see that the color distribution in the images is different from that in the real
dataset. Another point that can be noticed is that images generated by the Diffusion model are
generally less diverse than those generated by the GAN’s generator. In other words, all the
Diffusion’s fake images seem to be more or less similar.






Quantitative Evaluation

The FID values calculated for the GAN and the Diffusion networks are 77.98 and 153.39
respectively. Generally speaking, a lower FID value indicates that the distributions are more
similar; that the generated images are closer to the real ones when it comes to the visual quality
and diversity (https://www.linkedin.com/pulse/fr%C3%A9chet-inception-distance-yeshwanth-
n/). This means that the fake images generated by the GAN’s generator was closer in visual quality
and diversity to the real images that those generated by the Diffusion network. This interpretation
partially matches the qualitative observation because we can confirm that the generator’s images
do better match the color distribution in the real dataset as well as its diversity. On the other hand,
perhaps it qualitatively seems that the quality of the Diffusion’s fake images is generally better
than those of the generator’s (it is more apparent qualitatively than reflected by the FID values).

General Discussion

Overall, the Diffusion network seems to generate images with more normally looking images. It
seems to be closer to human faces in general, but not necessarily close to those in the celebrity
dataset in particular. In general, the output of the Diffusion network is expected to be enhanced by
increasing the number of diffusion steps (which was greatly reduced here for computational cost).
The GAN’s generator seems to capture the overall essence, color distribution, and diversity of the
dataset of real images. However, perhaps it could use some more epochs of training to enhance the
quality of the generated images and the typicality of the generated faces.

Full Source Code:

"""hw8_NadineAmin.ipynb

# BME646 and ECE 60146 - Homework 8 - Nadine Amin

## Libraries

import random

import numpy as np

import os

import sys

import copy

import torch

import torch.nn as nn
import torch.optim as optim
import time

import pickle

from pytorch_fid.fid_score import calculate_activation_statistics,
calculate frechet distance



https://www.linkedin.com/pulse/fr%C3%A9chet-inception-distance-yeshwanth-n/
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from pytorch_fid.inception import InceptionV3
from DLStudio import *
from Adversariallearning import *

wung GAN
## Networks

### Discriminator

disc(nn.Module):

This is an implementation of the DCGAN Discriminator. I refer to the DCGAN
network topology as

the 4-2-1 network. Each layer of the Discriminator network carries out a
strided

convolution with a 4x4 kernel, a 2x2 stride and a 1x1 padding for all but the
final

layer. The output of the final convolutional layer is pushed through a sigmoid
to yield

a scalar value as the final output for each image in a batch.

Class Path: Adversariallearning -> DataModeling -> DiscriminatorDG1
__init_ (self):
super(disc, self)._ init ()

.conv_in = nn.Conv2d(3, 64, kernel size=4, stride=2, padding=1)

.conv_in2 = nn.Conv2d(64, 128, kernel size=4, stride=2, padding=1)
.conv_in3 = nn.Conv2d(128, 256, kernel size=4, stride=2, padding=1)
.conv_in4 = nn.Conv2d(256, 512, kernel size=4, stride=2, padding=1)

.conv_in5 = nn.Conv2d(512, 1, kernel size=4, stride=1, padding=0)

.bnl nn.BatchNorm2d(128)
.bn2 nn.BatchNorm2d(256)
.bn3 nn.BatchNorm2d(512)

.sig = nn.Sigmoid()




forward(self, x):

x = torch.nn.functional.leaky relu(self.conv_in(x), negative slope=0.2,
inplace= )

self.bnl(self.conv_in2(x))
torch.nn.functional.leaky relu(x, negative slope=0.2, inplace=

self.bn2(self.conv_in3(x))
torch.nn.functional.leaky relu(x, negative slope=0.2, inplace=

self.bn3(self.conv_in4(x))
torch.nn.functional.leaky relu(x, negative_slope=0.2, inplace=

x = self.conv_in5(x)
x = self.sig(x)
return x

""Ui#Het Generator"""

gen(nn.Module):

This is an implementation of the DCGAN Generator. As was the case with the

Discriminator network,

you again see the 4-2-1 topology here. A Generator's job is to transform a
random noise

vector into an image that is supposed to look like it came from the training
dataset. (We refer

to the images constructed from noise vectors in this manner as fakes.) As you
will see later

in the "run_gan code()" method, the starting noise vector is a 1x1 image with
100 channels. 1In

order to output 64x64 output images, the network shown below use the Transpose
Convolution

operator nn.ConvTranspose2d with a stride of 2. If (H_in, W_in) are the height
and the width

of the image at the input to a nn.ConvTranspose2d layer and (H out, W out) the
same at the

output, the size pairs are related by




H out = (H.in - 1) *s + k - 2 *p
W out = (W_in - 1) * s + Kk - 2 *p
were s is the stride and k the size of the kernel. (I am assuming square
strides, kernels, and
padding). Therefore, each nn.ConvTranspose2d layer shown below doubles the size
of the input.
Class Path: AdversariallLearning -> DataModeling -> GeneratorDG1
__init_ (self):
super(gen, self). init ()

self.latent _to image = nn.ConvTranspose2d(100, 512, kernel size=4, stride=1,
padding=0, bias= )

self.upsampler2 nn.ConvTranspose2d(512, 256, kernel size=4, stride=2,
padding=1, bias=

self.upsampler3 .ConvTranspose2d (256, 128, kernel size=4, stride=2,
padding=1, bias=

self.upsampler4 .ConvTranspose2d (128, 64, kernel size=4, stride=2,
padding=1, bias=

self.upsampler5 = nn.ConvTranspose2d(64, 3, kernel size=4, stride=2,

padding=1, bias= )

self.bnl .BatchNorm2d(512)
self.bn2 .BatchNorm2d(256)
self.bn3 .BatchNorm2d(128)
self.bn4 .BatchNorm2d(64)

self.tanh = nn.Tanh()

forward(self, x):

self.latent_to_image(x)
torch.nn.functional.relu(self.bnl(x))

self.upsampler2(x)
torch.nn.functional.relu(self.bn2(x))
self.upsampler3(x)
torch.nn.functional.relu(self.bn3(x))
self.upsamplerd(x)




torch.nn.functional.relu(self.bn4(x))

X = self.upsampler5(x)
x = self.tanh(x)
return x

## Training

run_gan_code(self, dlstudio, adversarial, discriminator, generator,
results_dir):
This function is meant for training a Discriminator-Generator based
Adversarial Network.
The implementation shown uses several programming constructs from the
"official" DCGAN
implementations at the PyTorch website and at GitHub.

Regarding how to set the parameters of this method, see the following

dcgan_DG1.py

in the "ExamplesAdversariallearning" directory of the distribution.

dir_name for results = results dir
if os.path.exists(dir_name_for_results):
files = glob.glob(dir_name_for_results + "/*")
for file in files:
if os.path.isfile(file):
os.remove(file)
else:
files = glob.glob(file + "/*")
list(map( X: os.remove(x), files))
else:
os.mkdir(dir_name_for results)
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discriminator.to(self.device)
generator.to(self.device)

apply(self.weights_init)
apply(self.weights _init)

fixed noise = torch.randn(self.dlstudio.batch size, nz, 1, 1,
device=self.device)

real label
fake_label

optimizerD = optim.Adam(netD.parameters(), lr=dlstudio.learning_rate,
betas=(adversarial.betal, 0.999))

optimizerG = optim.Adam(netG.parameters(), lr=dlstudio.learning rate,
betas=(adversarial.betal, 9.999))

criterion = nn.BCELoss()

img_list
D losses
G_losses

iters = 0

print("\n\nStarting Training Loop...\n\n")
start_time = time.perf_counter()

for epoch in range(dlstudio.epochs):

d losses per_print_cycle
g losses_per_print_cycle




for i, data in enumerate(self.train_dataloader, 0):

netD.zero _grad()

real_images_in_batch = data[@].to(self.device)

b_size = real_images_in_batch.size(9)

label = torch.full((b_size,), real_label, dtype=torch.float,
device=self.device)

output = netD(real_images_in_batch).view(-1)

lossD_for_reals = criterion(output, label)

lossD_for_reals.backward()




torch.randn(b_size, nz, 1, 1, device=self.device)

netG(noise)

fill (fake_label)

output = netD(fakes.detach()).view(-1)

lossD for fakes = criterion(output, label)

lossD_for_fakes.backward()

lossD = lossD_for _reals + lossD for_ fakes
d _losses per print cycle.append(lossD)

optimizerD.step()




netG.zero_grad()

label.fill (real label)

output = netD(fakes).view(-1)
lossG = criterion(output, label)
g losses_per_print_cycle.append(lossG)

lossG.backward()

optimizerG.step()

if i % 100 == 99:
current_time = time.perf_counter()
elapsed_time = current_time - start_time
mean_D_loss =
torch.mean(torch.FloatTensor(d_losses per_ print cycle))
mean_G_loss =
torch.mean(torch.FloatTensor(g_losses _per_print_cycle))




print("[epoch=%d/ iter= elapsed time=
secs] mean_D loss= mean_G_loss= 4
((epoch+1),dlstudio.epochs, (i+1),elapsed ti
me,mean_D loss,mean_G_loss))

d losses per_print_cycle
g losses_per_print_cycle

G_losses.append(lossG.item())
D_losses.append(lossD.item())

if (iters % 500 == 0) ((epoch == dlstudio.epochs-1)
== len(self.train dataloader)-1)):
with torch.no_grad():
fake = netG(fixed_noise).detach().cpu()
img_list.append(torchvision.utils.make_grid(fake,
padding=1, pad_value=1, normalize= ))
iters += 1

plt.figure(figsize=(10,5))
plt.title("Generator and Discriminator Loss During Training")

plt.plot(G_losses,label="G")

plt.plot(D losses,label="D")

plt.xlabel("iterations")

plt.ylabel("Loss")

plt.legend()

plt.savefig(dir _name for results + "/gen_and disc_loss training.png")
plt.show()

real batch = next(iter(self.train_dataloader))
real batch = real batch[9]
plt.figure(figsize=(15,15))
plt.subplot(1,2,1)
plt.axis("off")
plt.title("Real Images")
plt.imshow(np.transpose(torchvision.utils.make_grid(real_batch.to(sel
f.device),
padding=1, pad_value=1,
normalize= .cpu(),(1,2,0)))
subplot(1,2,2)
.axis("off")
.title("Fake Images")




plt.imshow(np.transpose(img_list[-1],(1,2,0)))
plt.savefig(dir_name_for_results + "/real vs fake images.png")
plt.show()

torch.save(netD.state dict(), my dataroot + 'netD.pth")
torch.save(netG.state dict(), my dataroot + 'netG.pth")

dls = DLStudio(dataroot = my dataroot,
image size = [64,64],
path_saved model = "./saved model",
learning_rate = le-4,
epochs = 30,
batch_size = 32,
use_gpu = )

adversarial = Adversariallearning(
dlstudio = dls,
ngpu = 1,
latent_vector size = 100,
betal = 9.5,)

dcgan = Adversariallearning.DataModeling(dlstudio = dls, adversarial =
adversarial)

discriminator = disc()
generator = gen()

num_learnable params_disc = sum(p.numel() for p in discriminator.parameters() if
p.requires_grad)

print("\n\nThe number of learnable parameters in the Discriminator: \n" %
num_learnable_params_disc)

num_learnable_params_gen = sum(p.numel() for p in generator.parameters() if
p.requires_grad)

print("\nThe number of learnable parameters in the Generator: \n" %
num_learnable params_gen)




num_layers disc = len(list(discriminator.parameters()))

print("\nThe number of layers in the discriminator: \n" % num_layers disc)
num_layers_gen = len(list(generator.parameters()))

print("\nThe number of layers in the generator: \n\n" % num_layers gen)

dcgan.set dataloader()
print("\n\nHere is one batch of images from the training dataset:")
dcgan.show sample images from dataset(dls)

run_gan_code(dcgan, dls, adversarial, discriminator=discriminator,
generator=generator, results dir="gan results")

## Generate Fake Images

num_fakes = 2048

noise vectors = torch.randn(num_fakes, 100, 1, 1, device=dcgan.device)

trained_gen = gen()
trained _gen.load state dict(torch.load(my_dataroot + 'netG.pth'))
trained_gen = trained_gen.to(dcgan.device)

fakes 2048 = trained_gen(noise_vectors)

for i in range(num_fakes):
fake image = fakes 2048[i]
fake_image = torchvision.utils.make_ grid(fake_image, padding=1, pad_value=1,
normalize= )
fake image = tvtF.to_pil image(fake_image)
fake_image.save(my_dataroot + "gan_ fake dataset/" + str(i) +

.jpg")

""U## Calculate FID Values"""

real paths = os.listdir(my_datatoot + "real dataset/")
real paths [my datatoot + "real dataset/" + i for i in real paths]

fake paths os.listdir(my datatoot + "gan fake dataset/")




fake paths = [my datatoot + "gan fake dataset/" + i for i in fake_ paths]
dims = 2048
block_idx = InceptionV3.BLOCK INDEX BY DIM[dims]

model = InceptionV3([block idx]).to("cuda:0")

calculate_activation_statistics(real paths[:2048], model, device =
)
m2, s2 = calculate activation statistics (fake_paths, model, device = "cuda:90")

fid value = calculate_frechet_distance(ml, sl1, m2, s2)
print(f'FID: {fid value ")

"""# Diffusion Model
## Calculate FID Values

real paths = os.listdir(my_datatoot + "real dataset/")
real paths [my datatoot + "real dataset/" + i for i in real paths]

fake paths = os.listdir(my_datatoot + "diffusion fake dataset/")
fake paths [my_datatoot + "diffusion_fake dataset/" + i for i in fake_paths]

dims = 2048
block _idx = InceptionV3.BLOCK INDEX BY DIM[dims]

model = InceptionV3([block_idx]).to("cpu™)

ml, sl = calculate activation_statistics(real_paths[:2048], model, device =
"Cpu")

m2, s2 = calculate activation statistics (fake_paths, model, device = "cpu")

fid value = calculate frechet distance(ml, s1, m2, s2)




print(f'FID: {fid value



