
BME646 and ECE 60146 – Homework #8

Nadine Amin

GAN:

Discriminator Network

Figure 1 shows the implementation of the discriminator network as per the DiscriminatorDG1

class in Prof. Kak's AdversarialLearning.py (https://engineering.purdue.edu/kak/distDLS/). The

network has 4 convolutional layers with different numbers of channels, each a kernel size of 4, a

stride of 2, and a padding of 1 (4-2-1). It also has an output convolutional layer with a single node

as the discriminator's output for each image. Lastly, it has 3 batch normalization layers with

different numbers of channels and a Sigmoid activation function to output a probability. In the

forward function, the input is first passed through the 1st convolutional layer, followed by a leaky

ReLU activation function to avoid the dying ReLU problem. Next, the output is passed through

the 2nd convolutional layer, the 1st batch normalization layer, and a leaky ReLU. This is then

repeated for the 3rd and 4th convolutional layers. Lastly, the output is passed through the last

convolutional layer, followed by the Sigmoid activation function to output the discriminator’s

probability for each image.

Figure 1

https://engineering.purdue.edu/kak/distDLS/

Generator Network

Figure 2 shows the implementation of the generator network as per the GeneratorDG1class in

Prof. Kak's AdversarialLearning.py (https://engineering.purdue.edu/kak/distDLS/). The network

has a transpose convolutional layer that takes in the 1x1 noise input of 100 channels. Next, it has

3 transpose convolutional layers with different numbers of channels, each a kernel size of 4,

stride of 2, and padding of 1 (4-2-1). It also has an output convolutional layer with 3 output

channels resembling the generator's generated fake image. Lastly, it has 4 batch normalization

layers with different numbers of channels and a Tanh activation function. In the forward

function, the input is first passed through the 1st transpose convolutional layer, followed by the

1st batch normalization and a ReLU activation function. Next, the output is passed through the 3

transpose convolutional layers, each followed by a batch normalization layer and a ReLU

activation function. Lastly, the output is passed through the final transpose convolutional layer

and the Tanh activation function outputting the generated fake image (with 3 channels).

Figure 2

https://engineering.purdue.edu/kak/distDLS/

Training

Figure 3 shows the function implementing the adversarial training logic for the GAN network as

per the run_gan_code function in Prop. Kak's AdversarialLearning.py

(https://engineering.purdue.edu/kak/distDLS/). The function starts by setting the number of

channels of the generator's 1x1 noise input vector to 100. It then moves both the discriminator and

generator networks to the device and initializes their parameters in an attempt to mitigate training

instability. A fixed noise vector is then defined to check the generator's progress during training.

Values of 1 and 0 are then set as the real and fake labels respectively. Adam optimizers are then

initialized for each of the discriminator and the generator networks, as well as a binary cross

entropy loss criterion. Lists for storing accumulated results during training are also initialized.

Next, for each training epoch, lists for storing running losses for each of the discriminator and

generator networks are initialized. For the discriminator network, the loss is calculated (and the

parameters are updated) in two steps. In the first step, the parameters are updated such that the

discriminator’s output probability is maximized for the real images. To do this, the gradients of

discriminator's learnable parameters are first set to zero, and the real images are moved to the

device. A label tensor is populated with 1s, which refers to the label of the real images. Next, the

real images are passed through the discriminator network, and the discriminator's loss for the real

images is calculated using the BCE criterion with labels being 1s. This loss is then backpropagated

through the discriminator network. For the second step, the parameters of the discriminator are

updated such that the discriminator’s output probability is minimized for the fake images. To do

this, a noise tensor is first initialized with the previously specified number of channels (100). It is

then passed through the generator network which correspondingly generates fake images. Next,

the label tensor is repopulated with the value of the fake label (0). Next, the generator’s output is

detached from the computational graph and then passed through the discriminator. This is done so

that the generator’s parameters are not updated or affected by the following calculations. The

discriminator's loss for the fake images is then calculated using the BCE criterion with labels being

0s this time. This loss is then backpropagated through the discriminator network. The combined

loss (from both steps) is then saved for displaying purposes, and the discriminator’s optimizer step

is updated.

For the generator network, the parameters are updated such that the discriminator’s output

probability is maximized for the fake images. To do so, the gradients of the generator’s learnable

parameters are first set to zero and the label tensor is repopulated with the value of the real label

(1). The generator’s output is then through the discriminator one more time, this time keeping it in

the computational graph (since we want to update the parameters of the generator). The generator's

loss is calculated using the BCE criterion with labels being 1s. The generator's loss is then stored

for displaying purposes. Lastly, the calculated loss is backpropagated through the generator

network and the generator's optimizer step is updated.

Every 100 iterations, the number of epochs, iterations, the elapsed time, and the average losses of

the discriminator and generator are printed. The running losses are then stored and reinitialized. At

the end of training, the discriminator and generator losses are plotted, and real and fake images are

displayed alongside each other. Lastly, model parameters are saved for future reference.

https://engineering.purdue.edu/kak/distDLS/

Figure 3

The code script for training the GAN model is copied from DLStudio's dcgan_DG1.py

(https://engineering.purdue.edu/kak/distDLS/) and is shown in Figure 4. An instance of DLStudio

is first created specifying the image size (64x64), learning rate, number of epochs, and batch size.

The dataroot is also specified such that it is where the celebrity dataset is saved. Next, an instance

of AdversarialLearning is created specifying size of the latent vector (1x1 noise image) and beta

value for Adam optimizer. Instances of AdversarialLearning.DataModeling, the discriminator

network, and the generator network are then created. The number of learnable parameters and

number of layers for each of the discriminator and generator networks are displayed, the dataloader

is set, and one batch from the dataset is displayed (Figure 5). Lastly, the run_gan_code function is

called to run the training logic for the GAN networks.

https://engineering.purdue.edu/kak/distDLS/

Figure 4

Figure 5 – One batch of real images.

Figure 6 shows the training losses of both the discriminator and the generator every 100 iterations,

and Figure 7 shows the corresponding plot. As can be seen, both losses decrease with iterations,

indicating that both models are learning. We can see that the discriminator loss is generally lower

than that of the generator. However, for both models, we can see spikes where the loss increases

and then falls back. This might be attributed to having both models being trained at the same time,

with the improvement in each of them meaning that the job is becoming harder for the other one.

Figure 8 shows the real and fake images displayed alongside each other (will comment on the

generated fake images later in this homework).

Figure 6

Figure 7

Figure 8 – Real images and GAN’s fake images

Generating Fake Images

Figure 9 shows the code used to generate fake images using the trained generator network. A noise

tensor with 2048 noise vectors (each with 100 channels) is first randomly initialized. After loading

the trained generator, the noise tensor is then passed to it as input and 2048 corresponding fake

images are generated. We then loop on those images and save each of them to our directory. (Note

that the choice of 2048 as the number of fake images to be generated was chosen based on an error

experienced when later calculating the FID value using a smaller number of images).

Figure 9

Calculate FID Values

Figure 10 shows the code used to calculate the FID value for the GAN’s fake images. First, the

paths of the real and the fake images are each stored in a list using os.listdir(). Next, the code

provided in HW8 instructions is used to calculate the FID value: an object of the Inception model

is instantiated, the mean and standard deviation of the distributions from the real and fake datasets

are all calculated, and lastly the FID values are calculated using calculate_frechet_distance. As

can be seen in Figure 10, the FID value was calculated to be 77.98.

Figure 10

Diffusion:

Generate Fake Images

As instructed in HW8, we use the network weights provided with the homework instructions to

generate fake images using diffusion. To do that, we run GenerateNewImageSamples.py from

DLStudio (https://engineering.purdue.edu/kak/distDLS/) and change the following:

• The num_diffusion_steps is changed to 200 instead of originally 1000. This change was

made because the diffusion network was taking too long to generate the fake images.

Therefore, for computational constraints, the number of diffusion steps was reduced to 200.

• The num_samples is changed to 2048. (Note that the choice of 2048 as the number of fake

images to be generated was chosen based on an error experienced when later calculating

the FID value using a smaller number of images).

• The model path was changed as shown in Figure 11 so that the provided model weights are

loaded.

Figure 11

Visualize Fake Images

After generating the fake images, we run the VisualizeSamples.py from DLStudio

(https://engineering.purdue.edu/kak/distDLS/) and change the following:

• The npz_archive is changed to be my_dataroot + “samples_2048x64x64x3.npz” to reflect

the newly generated fake images.

• The visualization_dir is changed to my_dataroot + “diffusion_fake_images” to indicate

the directory where we want the generated images to be saved.

• When calling img.save(), we give the location where we want the image to be saved in our

my_dataroot + “diffusion_fake_images” directory.

Calculate FID Values

Figure 12 shows the code used to calculate the FID value for the Diffusion’s fake images. First,

the paths of the real and the fake images are each stored in a list using os.listdir(). Next, the code

provided in HW8 instructions is used to calculate the FID value: an object of the Inception model

is instantiated, the mean and standard deviation of the distributions from the real and fake datasets

are all calculated, and lastly the FID values are calculated using calculate_frechet_distance. As

can be seen in Figure 13, the FID value was calculated to be 153.39.

https://engineering.purdue.edu/kak/distDLS/
https://engineering.purdue.edu/kak/distDLS/

Figure 12

Figure 13

Evaluating Models

Qualitative Evaluation

Figure 14 and Figure 15 show the 4x4 images generated by the GAN and Diffusion networks

respectively. We can see that both models were actually able to generate images from the input

noise vectors. As we can qualitatively spot from Figure 14, the generator from the GAN network

was able to generate semi-decent face images with similar color distributions to those in the real

dataset. However, the faces still look atypical and non-normal. As seen from Figure 15, the

Diffusion network was able to generate more normal-looking faces with much less atypicality.

However, we can see that the color distribution in the images is different from that in the real

dataset. Another point that can be noticed is that images generated by the Diffusion model are

generally less diverse than those generated by the GAN’s generator. In other words, all the

Diffusion’s fake images seem to be more or less similar.

Figure 14

Figure 15

Quantitative Evaluation

The FID values calculated for the GAN and the Diffusion networks are 77.98 and 153.39

respectively. Generally speaking, a lower FID value indicates that the distributions are more

similar; that the generated images are closer to the real ones when it comes to the visual quality

and diversity (https://www.linkedin.com/pulse/fr%C3%A9chet-inception-distance-yeshwanth-

n/). This means that the fake images generated by the GAN’s generator was closer in visual quality

and diversity to the real images that those generated by the Diffusion network. This interpretation

partially matches the qualitative observation because we can confirm that the generator’s images

do better match the color distribution in the real dataset as well as its diversity. On the other hand,

perhaps it qualitatively seems that the quality of the Diffusion’s fake images is generally better

than those of the generator’s (it is more apparent qualitatively than reflected by the FID values).

General Discussion

Overall, the Diffusion network seems to generate images with more normally looking images. It

seems to be closer to human faces in general, but not necessarily close to those in the celebrity

dataset in particular. In general, the output of the Diffusion network is expected to be enhanced by

increasing the number of diffusion steps (which was greatly reduced here for computational cost).

The GAN’s generator seems to capture the overall essence, color distribution, and diversity of the

dataset of real images. However, perhaps it could use some more epochs of training to enhance the

quality of the generated images and the typicality of the generated faces.

Full Source Code:

-*- coding: utf-8 -*-

"""hw8_NadineAmin.ipynb

BME646 and ECE 60146 - Homework 8 - Nadine Amin

Libraries

"""

import libraries, DLStudio, and AdversarialLearning

import random

import numpy as np

import os

import sys

import copy

import torch

import torch.nn as nn

import torch.optim as optim

import time

import pickle

from pytorch_fid.fid_score import calculate_activation_statistics,

calculate_frechet_distance

https://www.linkedin.com/pulse/fr%C3%A9chet-inception-distance-yeshwanth-n/
https://www.linkedin.com/pulse/fr%C3%A9chet-inception-distance-yeshwanth-n/

from pytorch_fid.inception import InceptionV3

from DLStudio import *

from AdversarialLearning import *

"""# GAN

Networks

Discriminator

"""

a class for the discriminator network

copied from the DiscriminatorDG1 class in Prof. Kak's AdversarialLearning.py

(https://engineering.purdue.edu/kak/distDLS/) with added comments

class disc(nn.Module):

 """

 This is an implementation of the DCGAN Discriminator. I refer to the DCGAN

network topology as

 the 4-2-1 network. Each layer of the Discriminator network carries out a

strided

 convolution with a 4x4 kernel, a 2x2 stride and a 1x1 padding for all but the

final

 layer. The output of the final convolutional layer is pushed through a sigmoid

to yield

 a scalar value as the final output for each image in a batch.

 Class Path: AdversarialLearning -> DataModeling -> DiscriminatorDG1

 """

 def __init__(self):

 super(disc, self).__init__()

 # 4 convolutional layers (different numbers of channels) with a kernel size

of 4, stride of 2, and padding of 1

 self.conv_in = nn.Conv2d(3, 64, kernel_size=4, stride=2, padding=1)

 self.conv_in2 = nn.Conv2d(64, 128, kernel_size=4, stride=2, padding=1)

 self.conv_in3 = nn.Conv2d(128, 256, kernel_size=4, stride=2, padding=1)

 self.conv_in4 = nn.Conv2d(256, 512, kernel_size=4, stride=2, padding=1)

 # 1 convolutional layer with a single node as the discriminator's output for

each image

 self.conv_in5 = nn.Conv2d(512, 1, kernel_size=4, stride=1, padding=0)

 # 3 batch normalization layers with different numbers of channels

 self.bn1 = nn.BatchNorm2d(128)

 self.bn2 = nn.BatchNorm2d(256)

 self.bn3 = nn.BatchNorm2d(512)

 # a Sigmoid activation function to output a probability

 self.sig = nn.Sigmoid()

 def forward(self, x):

 # pass input into 1st convolutional layer + leaky ReLU activation (to avoid

dying ReLU problem)

 x = torch.nn.functional.leaky_relu(self.conv_in(x), negative_slope=0.2,

inplace=True)

 # pass through 2nd convolutional layer + 1st batch normalization + leaky ReLU

 x = self.bn1(self.conv_in2(x))

 x = torch.nn.functional.leaky_relu(x, negative_slope=0.2, inplace=True)

 # pass through 3rd convolutional layer + 2nd batch normalization + leaky ReLU

 x = self.bn2(self.conv_in3(x))

 x = torch.nn.functional.leaky_relu(x, negative_slope=0.2, inplace=True)

 # pass through 4th convolutional layer + 3rd batch normalization + leaky ReLU

 x = self.bn3(self.conv_in4(x))

 x = torch.nn.functional.leaky_relu(x, negative_slope=0.2, inplace=True)

 # pass through last convolutional layer + Sigmoid activation function to

output probability

 x = self.conv_in5(x)

 x = self.sig(x)

 return x

"""### Generator"""

a class for the generator network

copied from the GeneratorDG1 class in Prof. Kak's AdversarialLearning.py

(https://engineering.purdue.edu/kak/distDLS/) with added comments

class gen(nn.Module):

 """

 This is an implementation of the DCGAN Generator. As was the case with the

Discriminator network,

 you again see the 4-2-1 topology here. A Generator's job is to transform a

random noise

 vector into an image that is supposed to look like it came from the training

dataset. (We refer

 to the images constructed from noise vectors in this manner as fakes.) As you

will see later

 in the "run_gan_code()" method, the starting noise vector is a 1x1 image with

100 channels. In

 order to output 64x64 output images, the network shown below use the Transpose

Convolution

 operator nn.ConvTranspose2d with a stride of 2. If (H_in, W_in) are the height

and the width

 of the image at the input to a nn.ConvTranspose2d layer and (H_out, W_out) the

same at the

 output, the size pairs are related by

 H_out = (H_in - 1) * s + k - 2 * p

 W_out = (W_in - 1) * s + k - 2 * p

 were s is the stride and k the size of the kernel. (I am assuming square

strides, kernels, and

 padding). Therefore, each nn.ConvTranspose2d layer shown below doubles the size

of the input.

 Class Path: AdversarialLearning -> DataModeling -> GeneratorDG1

 """

 def __init__(self):

 super(gen, self).__init__()

 # a transpose convolutional layer taking in a 1x1 input of 100 channels

 self.latent_to_image = nn.ConvTranspose2d(100, 512, kernel_size=4, stride=1,

padding=0, bias=False)

 # 3 transpose convolutional layers (different numbers of channels) with a

kernel size of 4, stride of 2, and padding of 1

 self.upsampler2 = nn.ConvTranspose2d(512, 256, kernel_size=4, stride=2,

padding=1, bias=False)

 self.upsampler3 = nn.ConvTranspose2d (256, 128, kernel_size=4, stride=2,

padding=1, bias=False)

 self.upsampler4 = nn.ConvTranspose2d (128, 64, kernel_size=4, stride=2,

padding=1, bias=False)

 # 1 transpose convolutional layer with 3 output channels resembling the

generator's fake image

 self.upsampler5 = nn.ConvTranspose2d(64, 3, kernel_size=4, stride=2,

padding=1, bias=False)

 # 4 batch normalization layers with different numbers of channels

 self.bn1 = nn.BatchNorm2d(512)

 self.bn2 = nn.BatchNorm2d(256)

 self.bn3 = nn.BatchNorm2d(128)

 self.bn4 = nn.BatchNorm2d(64)

 # a tanh activation function

 self.tanh = nn.Tanh()

 def forward(self, x):

 # pass input into first transpose convolutional layer + batch normalization +

ReLU activation

 x = self.latent_to_image(x)

 x = torch.nn.functional.relu(self.bn1(x))

 # pass through each of 3 transpose convolutional layers + batch normalization

+ ReLU activation

 x = self.upsampler2(x)

 x = torch.nn.functional.relu(self.bn2(x))

 x = self.upsampler3(x)

 x = torch.nn.functional.relu(self.bn3(x))

 x = self.upsampler4(x)

 x = torch.nn.functional.relu(self.bn4(x))

 # pass through last transpose convolutional layer outputting the generated

fake image

 x = self.upsampler5(x)

 x = self.tanh(x)

 return x

"""## Training"""

a function that trains the discriminator and the generator networks

(adversarial training logic)

copied from Prop. Kak's AdversarialLearning.py

(https://engineering.purdue.edu/kak/distDLS/) with

some edits and added comments

def run_gan_code(self, dlstudio, adversarial, discriminator, generator,

results_dir):

 """

 This function is meant for training a Discriminator-Generator based

Adversarial Network.

 The implementation shown uses several programming constructs from the

"official" DCGAN

 implementations at the PyTorch website and at GitHub.

 Regarding how to set the parameters of this method, see the following

script

 dcgan_DG1.py

 in the "ExamplesAdversarialLearning" directory of the distribution.

 """

 # prepare directory to hold results

 dir_name_for_results = results_dir

 if os.path.exists(dir_name_for_results):

 files = glob.glob(dir_name_for_results + "/*")

 for file in files:

 if os.path.isfile(file):

 os.remove(file)

 else:

 files = glob.glob(file + "/*")

 list(map(lambda x: os.remove(x), files))

 else:

 os.mkdir(dir_name_for_results)

 # the number of channels of the generator's 1x1 noise input vector

 nz = 100

 # move both the discriminator and generator networks to the device

 netD = discriminator.to(self.device)

 netG = generator.to(self.device)

 # initialize the parameters of the discriminator and generator

networks in an attempt to

 # mitigate training instability

 netD.apply(self.weights_init)

 netG.apply(self.weights_init)

 # define a fixed noise vector to check the generator's training

progress

 fixed_noise = torch.randn(self.dlstudio.batch_size, nz, 1, 1,

device=self.device)

 # set real and fake labels to 1 and 0 respectively

 real_label = 1

 fake_label = 0

 # Adam optimizers for each of the discriminator and the generator

 optimizerD = optim.Adam(netD.parameters(), lr=dlstudio.learning_rate,

betas=(adversarial.beta1, 0.999))

 optimizerG = optim.Adam(netG.parameters(), lr=dlstudio.learning_rate,

betas=(adversarial.beta1, 0.999))

 # binary cross entropy loss criterion

 criterion = nn.BCELoss()

 # lists for storing accumulated results during training

 img_list = []

 D_losses = []

 G_losses = []

 iters = 0

 print("\n\nStarting Training Loop...\n\n")

 start_time = time.perf_counter()

 # for every training epoch

 for epoch in range(dlstudio.epochs):

 # lists for storing running losses for each of the discriminator

and generator

 d_losses_per_print_cycle = []

 g_losses_per_print_cycle = []

 # For each batch of images

 for i, data in enumerate(self.train_dataloader, 0):

 ## Maximization Part of the Min-Max Objective of Eq. (3):

 ##

 ## As indicated by Eq. (3) in the DCGAN part of the doc

section at the beginning of this

 ## file, the GAN training boils down to carrying out a min-

max optimization. Each iterative

 ## step of the max part results in updating the

Discriminator parameters and each iterative

 ## step of the min part results in the updating of the

Generator parameters. For each

 ## batch of the training data, we first do max and then do

min. Since the max operation

 ## affects both terms of the criterion shown in the doc

section, it has two parts: In the

 ## first part we apply the Discriminator to the training

images using 1.0 as the target;

 ## and, in the second part, we supply to the Discriminator

the output of the Generator

 ## and use 0 as the target. In what follows, the

Discriminator is being applied to

 ## the training images:

 # set gradients of discriminator's learnable parameters to

zero

 netD.zero_grad()

 # move dataset images to device

 real_images_in_batch = data[0].to(self.device)

 # get number of images in batch

 b_size = real_images_in_batch.size(0)

 # populate a tensor with values of the real label (1) with

that size

 label = torch.full((b_size,), real_label, dtype=torch.float,

device=self.device)

 # pass dataset images through the discriminator network

 output = netD(real_images_in_batch).view(-1)

 # calculate the discriminator's loss for the real images

using the BCE criterion

 lossD_for_reals = criterion(output, label)

 # perform back propagation for the discriminator network (1st

time)

 lossD_for_reals.backward()

 ###

###################################

 ## That brings us the second part of what it takes to carry

out the max operation on the

 ## min-max criterion shown in Eq. (3) in the doc section at

the beginning of this file.

 ## part calls for applying the Discriminator to the images

produced by the Generator from noise:

 # initialize a noise tensor with the previously specified

number of channels

 noise = torch.randn(b_size, nz, 1, 1, device=self.device)

 # pass the noise tensor through the generator network

 fakes = netG(noise)

 # populate the label tensor with the value of the fake label

(0)

 label.fill_(fake_label)

 ## The call to fakes.detach() in the next statement returns

a copy of the 'fakes' tensor

 ## that does not exist in the computational graph. That is,

the call shown below first

 ## makes a copy of the 'fakes' tensor and then removes it

from the computational graph.

 ## The original 'fakes' tensor continues to remain in the

computational graph. This ploy

 ## ensures that a subsequent call to backward() in the 3rd

statement below would only

 ## update the netD weights.

 # detach the generator output from the computational graph

then pass it through the discriminator

 output = netD(fakes.detach()).view(-1)

 # calculate the discriminator's loss for the fake images

using the BCE criterion

 lossD_for_fakes = criterion(output, label)

 # perform back propagation for the discriminator network (2nd

time)

 lossD_for_fakes.backward()

 # store combined loss for the discriminator for displaying

purposes

 lossD = lossD_for_reals + lossD_for_fakes

 d_losses_per_print_cycle.append(lossD)

 # update the discriminator's optimizer step

 optimizerD.step()

 ###

###################################

 ## Minimization Part of the Min-Max Objective of Eq. (3):

 ##

 ## That brings to the min part of the max-min optimization

described in Eq. (3) the doc

 ## section at the beginning of this file. The min part

requires that we minimize

 ## "1 - D(G(z))" which, since D is constrained to lie in the

interval (0,1), requires that

 ## we maximize D(G(z)). We accomplish that by applying the

Discriminator to the output

 ## of the Generator and use 1 as the target for each image:

 # set gradients of generator's learnable parameters to zero

 netG.zero_grad()

 # populate the label tensor with the value of the real label

(1)

 label.fill_(real_label)

 # pass the generator output through the discriminator one

more time, this time keeping it

 # in the computational graph

 output = netD(fakes).view(-1)

 # calculate the generator's loss using the BCE criterion

 lossG = criterion(output, label)

 # store the generator's loss for displaying purposes

 g_losses_per_print_cycle.append(lossG)

 # perform back propagation for the generator network

 lossG.backward()

 # update the generator's optimizer step

 optimizerG.step()

 # for displaying purposes

 if i % 100 == 99:

 current_time = time.perf_counter()

 elapsed_time = current_time - start_time

 mean_D_loss =

torch.mean(torch.FloatTensor(d_losses_per_print_cycle))

 mean_G_loss =

torch.mean(torch.FloatTensor(g_losses_per_print_cycle))

 # print number of epochs, iterations, the elapsed time,

and the average losses of both netwotks

 print("[epoch=%d/%d iter=%4d elapsed_time=%5d

secs] mean_D_loss=%7.4f mean_G_loss=%7.4f" %

 ((epoch+1),dlstudio.epochs,(i+1),elapsed_ti

me,mean_D_loss,mean_G_loss))

 # reinitialize the lists of running losses

 d_losses_per_print_cycle = []

 g_losses_per_print_cycle = []

 # add calculated losses to lists for plotting

 G_losses.append(lossG.item())

 D_losses.append(lossD.item())

 # check generator's progress on the fixed noise vector every

500 iterations

 if (iters % 500 == 0) or ((epoch == dlstudio.epochs-1) and (i

== len(self.train_dataloader)-1)):

 with torch.no_grad():

 fake = netG(fixed_noise).detach().cpu()

 img_list.append(torchvision.utils.make_grid(fake,

padding=1, pad_value=1, normalize=True))

 iters += 1

 # plot discriminator and generator training losses

 plt.figure(figsize=(10,5))

 plt.title("Generator and Discriminator Loss During Training")

 plt.plot(G_losses,label="G")

 plt.plot(D_losses,label="D")

 plt.xlabel("iterations")

 plt.ylabel("Loss")

 plt.legend()

 plt.savefig(dir_name_for_results + "/gen_and_disc_loss_training.png")

 plt.show()

 # display a batch-size sample of real images and another of the

generator's outputs at the end of training

 real_batch = next(iter(self.train_dataloader))

 real_batch = real_batch[0]

 plt.figure(figsize=(15,15))

 plt.subplot(1,2,1)

 plt.axis("off")

 plt.title("Real Images")

 plt.imshow(np.transpose(torchvision.utils.make_grid(real_batch.to(sel

f.device),

 padding=1, pad_value=1,

normalize=True).cpu(),(1,2,0)))

 plt.subplot(1,2,2)

 plt.axis("off")

 plt.title("Fake Images")

 plt.imshow(np.transpose(img_list[-1],(1,2,0)))

 plt.savefig(dir_name_for_results + "/real_vs_fake_images.png")

 plt.show()

 # save discriminator and generator parameters

 torch.save(netD.state_dict(), my_dataroot + 'netD.pth')

 torch.save(netG.state_dict(), my_dataroot + 'netG.pth')

training code is copied from DLStudio's dcgan_DG1.py

(https://engineering.purdue.edu/kak/distDLS/) with added comments

create an instance of DLStudio specifying image size, learning rate, number of

epochs, and batch size

specify the dataroot where the celebrity dataset is saved

dls = DLStudio(dataroot = my_dataroot,

 image_size = [64,64],

 path_saved_model = "./saved_model",

 learning_rate = 1e-4,

 epochs = 30,

 batch_size = 32,

 use_gpu = True,)

create an instance of AdversarialLearning specifying size of the latent vector

(1x1 noise image) and beta value for Adam optimizer

adversarial = AdversarialLearning(

 dlstudio = dls,

 ngpu = 1,

 latent_vector_size = 100,

 beta1 = 0.5,)

create an instance of AdversarialLearning.DataModeling

dcgan = AdversarialLearning.DataModeling(dlstudio = dls, adversarial =

adversarial)

create instances of the discriminator and generator networks

discriminator = disc()

generator = gen()

print number of learnable parameters and number of layers for each of the

discriminator and generator networks

num_learnable_params_disc = sum(p.numel() for p in discriminator.parameters() if

p.requires_grad)

print("\n\nThe number of learnable parameters in the Discriminator: %d\n" %

num_learnable_params_disc)

num_learnable_params_gen = sum(p.numel() for p in generator.parameters() if

p.requires_grad)

print("\nThe number of learnable parameters in the Generator: %d\n" %

num_learnable_params_gen)

num_layers_disc = len(list(discriminator.parameters()))

print("\nThe number of layers in the discriminator: %d\n" % num_layers_disc)

num_layers_gen = len(list(generator.parameters()))

print("\nThe number of layers in the generator: %d\n\n" % num_layers_gen)

set the dataloader and show one batch from the dataset

dcgan.set_dataloader()

print("\n\nHere is one batch of images from the training dataset:")

dcgan.show_sample_images_from_dataset(dls)

run the training loop for the GAN networks

run_gan_code(dcgan, dls, adversarial, discriminator=discriminator,

generator=generator, results_dir="gan_results")

"""## Generate Fake Images"""

specify number of fake images to generate

num_fakes = 2048

create a corresponding tensor of noise vectirs, each with 100 channels

noise_vectors = torch.randn(num_fakes, 100, 1, 1, device=dcgan.device)

load saved parameters of trained generator

trained_gen = gen()

trained_gen.load_state_dict(torch.load(my_dataroot + 'netG.pth'))

trained_gen = trained_gen.to(dcgan.device)

pass the noise tensor to the trained generator to generate the fakes

fakes_2048 = trained_gen(noise_vectors)

change every generated image to a PIL image and save it

for i in range(num_fakes):

 fake_image = fakes_2048[i]

 fake_image = torchvision.utils.make_grid(fake_image, padding=1, pad_value=1,

normalize=True)

 fake_image = tvtF.to_pil_image(fake_image)

 fake_image.save(my_dataroot + "gan_fake_dataset/" + str(i) + ".jpg")

"""## Calculate FID Values"""

get paths of images in the real dataset

real_paths = os.listdir(my_datatoot + "real_dataset/")

real_paths = [my_datatoot + "real_dataset/" + i for i in real_paths]

get paths of images in the fake dataset

fake_paths = os.listdir(my_datatoot + "gan_fake_dataset/")

fake_paths = [my_datatoot + "gan_fake_dataset/" + i for i in fake_paths]

code copied from HW8 instructions

dims = 2048

block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[dims]

instantiate an inception model

model = InceptionV3([block_idx]).to("cuda:0")

calculate the mean and standard deviation of the distribution from the real

dataset

m1, s1 = calculate_activation_statistics(real_paths[:2048], model, device =

"cuda:0")

calculate the mean and standard deviation of the distribution from the fake

dataset

m2, s2 = calculate_activation_statistics (fake_paths, model, device = "cuda:0")

calculate and pring the FID value

fid_value = calculate_frechet_distance(m1, s1, m2, s2)

print(f'FID: {fid_value:.2f}')

"""# Diffusion Model

Calculate FID Values

"""

get paths of images in the real dataset

real_paths = os.listdir(my_datatoot + "real_dataset/")

real_paths = [my_datatoot + "real_dataset/" + i for i in real_paths]

get paths of images in the fake dataset

fake_paths = os.listdir(my_datatoot + "diffusion_fake_dataset/")

fake_paths = [my_datatoot + "diffusion_fake_dataset/" + i for i in fake_paths]

code copied from HW8 instructions

dims = 2048

block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[dims]

instantiate an inception model

model = InceptionV3([block_idx]).to("cpu")

calculate the mean and standard deviation of the distribution from the real

dataset

m1, s1 = calculate_activation_statistics(real_paths[:2048], model, device =

"cpu")

calculate the mean and standard deviation of the distribution from the fake

dataset

m2, s2 = calculate_activation_statistics (fake_paths, model, device = "cpu")

calculate and pring the FID value

fid_value = calculate_frechet_distance(m1, s1, m2, s2)

print(f'FID: {fid_value:.2f}')

