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HOMEWORK 7 

Alexandre Olive Pellicer 
 

 

3. Programming tasks 

3.1. Execute the semantic segmentation.py script and evaluate both the training loss and the 

test results. Provide a brief write-up of your understanding of mUnet and how it carries out 

semantic segmentation of an image. By “evaluate” we mean just record the running losses 

during training. One of the most commonly used tools for evaluating a semantic 

segmentation network is through the IoU loss. If you wish, you can write that code yourself. 

But that is not required for this homework. 

 

Training loss: 

The following plot contains the “running_loss_segmentation” every 500 iterations. The train 

has been done during 6 epochs and a batch_size of 4 as done in the original code. 

 

Fig 1: Plot of the MSE Loss of the PurdueShapes5MultiObject dataset 

 

We can clearly see how the loss decreases converging towards a minimum although it does 

some fluctuations. It looks like by increasing the number of epochs the loss wouldn’t be 

reduced much more since it looks like it is converging to a minimum. 
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Test results: 

In order to do a qualitative analysis of the obtained results, we have plotted the testing images 

from the batch number 1, 50, 100, 150 and 200 with their predicted mask. These are the 

obtained results: 

     

Batch 1                                           Batch 50                                      Batch 100 

   

Batch 150                                     Batch 200 

Fig 2: Predicted masks obtained using the PurdueShapes5MultiObject testing dataset 

 

In general, the performance is good although we can see that there isn’t a lot of precision 

when it comes to specify correctly the boundaries. This also generates some confusion when it 
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comes to classify the detected objects, for example, between ovals and rectangles. Looking at 

each batch we can say: 

• Batch 1: we can see that the ovals from the first and fourth images (from left to right) 

aren’t detected correctly since they are classified as rectangles. Their mask doesn’t 

correctly fit with their real shape. 

• Batch 50: in the second image we can see that we are misclassifying a rectangle as oval 

and that the boundaries of the mask corresponding to the triangle are not accurate. 

• Batch 100: in the third image we can see that the boundaries of the mask of the small 

oval are not accurate. 

• Batch 150: in this case we can see that the performance in the 4 images is good. There 

are no relevant mistakes. 

• Batch 200: in this case we can see how in the third image we are not being able to 

detect the rectangle from the top right of the image. There is no mask associated to it. 

 

Brief write-up of your understanding of mUnet and how it carries out semantic segmentation 

of an image: 

Since the output of the mUnet is compared with the ground truth mask to compute the loss, 

we are forcing the network to predict the mask of the input images. Masks are composed of 5 

channels each of them containing the “mask/shape” of the instances contained in the image 

corresponding to each of the 5 classes “rectangle, triangle, disk, oval, star”. 

About the structure of the mUnet, we first have a convolutional layer that increases the 

number of the input image from 3 to 64. By doing this we are creating an embedding vector for 

each pixel containing the features that will be learnt during training. Afterwards a 

concatenation of several instances of “SkipBlockDN” are called. By doing this the image size is 

down sampled from 64x64 (original input size) to 16x16 (size of the feature map in the bottle 

neck of the mUnet) and the number of channels is increased from 64 to 128. 

Furthermore, there are 3 skip connections that will be used to pass the detailed spatial 

information from the encoder to the decoder. These skip connections take half of the channels 

at 3 different levels (feature maps) of the encoder and add them (in terms of substitution) at 

the corresponding 3 levels (feature maps) of the decoder. 

The decoder is composed of a concatenation of several instances of “SkipBlockUP” with which 

the feature map from the bottle neck goes from 128 channels and a size of 16x16 to 64 

channels and a size of 64x64. A final convolution reduces the number of channels to 5 which 

will be the 5 channels that characterize each mask as mentioned above. 

To sum up, for segmentation, the encoder-decoder structure is used so that the encoder 

gradually reduces the spatial dimensions of the input image to capture high-level features, 

while the decoder gradually up samples the feature maps to produce a segmentation map of 

the same size as the input image. Skip connections are used to pass the detailed spatial 

information from the encoder to the decoder. 
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3.2. The run_code_for_training_for_semantic_segmentation function of the 

SemanticSegmentation class in DLStudio uses just the MSE loss. MSE loss may not 

adequately capture the subtleties of segmentation boundaries. To this end, we will 

implement our own Dice loss and augment it with MSE loss and compare it against vanilla 

MSE. 

3.3. What follows is a code snippet to help you create your own implemenation for Dice Loss. 

Make sure you set required_grad=True wherever necessary to ensure backpropagation, 

therefore, enabling model learning. 

Find the implementation of the dice loss in the code section at the bottom of the document. 

 

3.4. Plot the best- and the worst-case training-loss vs. iterations using just the MSE loss, just 

the Dice Loss and a combination of the two. Provide insights into potential factors 

contributing to the observed variations in performance. 

The following plots contain the “running_loss_segmentation” every 500 iterations for the MSE 

loss, the Dice loss and the combination of the MSE and Dice loss. In all cases the train has been 

done during 6 epochs and a batch_size of 4 as done in the original code. 

 

 

Fig 3: Plot of the MSE Loss of the PurdueShapes5MultiObject dataset 
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Fig 4: Plot of the Dice Loss of the PurdueShapes5MultiObject dataset 

 

As can be seen, the values of the MSE loss are much bigger than the values of the Dice loss. 

Thus, to give to both of them relevance and following the advice from the TA Akshita Kamsali in 

Piazza we have given extra weight to the Dice loss with values 20, 30 and 40 so that the total 

loss has been computed 3 different times as: 

 

Total loss = MSE loss + {20, 30, 40} * Dice loss 

These are the obtained plots: 

   

(a)                                                                             (b)                                                                      (c) 

Fig 5: (a) Plot of the Total loss = (MSE loss + 20 * Dice loss) of the PurdueShapes5MultiObject 

dataset. (b) and (c) represent the same data as in (a) but in 2 different plots so that the loss 

curve can be seen clearly. 
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(a)                                                                             (b)                                                                      (c) 

Fig 6: (a) Plot of the Total loss = (MSE loss + 30 * Dice loss) of the PurdueShapes5MultiObject 

dataset. (b) and (c) represent the same data as in (a) but in 2 different plots so that the loss 

curve can be seen clearly. 

 

 

   

(a)                                                                             (b)                                                                      (c) 

Fig 7: (a) Plot of the Total loss = (MSE loss + 40 * Dice loss) of the PurdueShapes5MultiObject 

dataset. (b) and (c) represent the same data as in (a) but in 2 different plots so that the loss 

curve can be seen clearly. 

 

Fig 8: Plot containing the loss curves for MSE alone, MSE + 20* Dice, MSE + 30*Dice and MSE + 

40* Dice 
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Since the MSE loss and the Dice loss are at different orders of magnitude, it is difficult to obtain 

clear insights just by looking at the plots of the losses. For this reason, it is better to evaluate 

qualitatively the obtained masks as it is done in the following section. 

Nevertheless, we can also obtain some conclusions from the showed plots. For example, we 

can see that the Dice loss converges towards a lower value when using it combined with the 

MSE loss than when using it alone. This behavior happens when using scale_factor = 20, 30, 40. 

This is because the MSE loss helps to get a general shape of the mask while the dice loss is 

useful to define accurate boundaries of the mask. When using the Dice loss alone without the 

MSE loss it is more difficult to reach smaller values. 

We can also get some insights from the plot shown in Figure 8. We see that the MSE loss alone 

reaches a smaller value compared to the combined loss. This does not give us much 

information since the combined losses contain information about the overlap of the predicted 

and ground truth masks so that a higher value does not mean a worst performance. In some 

way, by comparing the MSE loss with the combined losses we could say that we are comparing 

pears with apples. Nevertheless, comparing the 3 combined losses we see that the minimum 

value is achieved when using a scale factor of 20.  

 

3.5. State your qualitative observations on the model test results for MSE loss vs. Dice+MSE 

loss. 

Comparing the results obtained by scaling the Dice loss by a factor of 20, 30 and 40 we have 

seen that the best result is achieved when we use scale_factor = 20. For this reason, we directly 

compare the results obtained when using the MSE loss alone and the results obtained when 

using the combined loss MSE + 20*Dice loss. 
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Batch 1 Batch 50 

MSE loss MSE loss + 20 * Dice loss MSE loss MSE loss + 20 * Dice loss 

    

Comments: 
We can clearly see here how thanks to the Dice loss 
the ovals from the firs and fourth image (from left to 
right) are correctly classified as “ovals” when using 
the MSE + Dice loss and not as rectangles as was 
happening when using only the MSE loss 

Comments: 
We can clearly see how in the second image, when 
using the MSE + Dice loss we are correctly classifying a 
rectangle as rectangle and not as oval. Furthermore 
the mask of the triangle in this same image is more 
accurate 

 

 

Batch 100 Batch 150 

MSE loss MSE loss + 20 * Dice loss MSE loss MSE loss + 20 * Dice loss 

    
Comments: 
We can see that with the MSE + Dice loss we are 
achieving a more accurate mask for one of the ovals from 
the third image 

Comments: 
In this particular case we can see that for the 4 images 
the performance is almost the same 
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Batch 200 

MSE loss MSE loss + 20 * Dice loss 

  
Comments: 
In this case we can see how when using the MSE + Dice loss 
we are able to get partially part of the mask of one of the 
rectangles from the third image that when using only the 
MSE loss was not detected 
 

 

In general, we can see that when using the MSE + Dice loss the performance has been 

improved in terms of being more accurate with the boundaries of the masks. Furthermore, we 

see that some thin objects that weren’t detected when using the MSE loss alone, are detected 

and created a mask for them when using the MSE + Dice loss.  
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4. Extra credit: 

Creating the dataset: 

We create a training and testing dataset using the COCO dataset and its API following the 

strategy like the strategy used in previous homeworks. In this case, we pick the images 

containing instances of “motorcycle”, “dog” or “cake” that accomplished the following 

condition: 

• Only contain a single object instance of at least 200 × 200 bounding box. 

In order to create a dataset with the same structure as the PurdueShapes5MultiObject dataset, 

we created a dictionary with key “index of image” and value a dictionary containing the 

following information: 

dataset[idx] = { 

            0: r,  

            1: g,  

            2: b,  

            3: final_mask,  

            4: bbox_dict 

        } 
 Where r, g and b contain a column array with the value of the pixels of the images for each of 

the RGB components respectively. Final_mask is a tensor with the same size as the image and 

with 3 channels. The first channel contains the mask of a motorcycle in case it exists with value 

50 to identify the mask. The second channel contains the mask of a dog in case it exists with 

value 100 to identify the mask. The third channel contains the mask of a cake in case it exists 

with value 150 to identify the mask. Bbox_dict contains the bounding boxes of the instances in 

the image with a vector [x1, y1, x2, y2] where “1” indicates top left and “2” indicates bottom 

right. It must be said that, as has been done with the images, masks and bounding boxes have 

been scaled to 256x256. The code used to create the dataset can be found at the end of the 

document. 

The obtained dataset has the following characteristics: 

• Length training dataset: 2606 

• Length testing dataset: 119 

 

Repeating the steps from section 3 for our portion of the COCO dataset: 

4.1. Execute the semantic segmentation.py script and evaluate both the training loss and the 

test results. Provide a brief write-up of your understanding of mUnet and how it carries out 

semantic segmentation of an image. By “evaluate” we mean just record the running losses 

during training. One of the most commonly used tools for evaluating a semantic 

segmentation network is through the IoU loss. If you wish, you can write that code yourself. 

But that is not required for this homework. 

In this case we have used a batch_size of 4 and trained for 50 epochs. In the loss plots from this 

section, we have plot the “running loss” every 50 iterations (i.e. the x axis represent 50 

iterations). 
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Training loss: 

This is the training Loss using only MSE loss: 

 

Fig 9: Plot of the MSE Loss using our portion of the COCO dataset 

We can clearly see how the loss decreases converging towards a minimum although it does 

some fluctuations. It looks like by increasing the number of epochs the loss wouldn’t be 

reduced much more since it looks like it is converging to a minimum. 

 

Testing results: 

These are some results obtained using the MSE loss: 

         

Group 1                                        Group 2                                        Group 3 
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Group 4                                           Group 5 

Fig 10: Predicted masks obtained using our portion of the COCO testing dataset 

 

First of all, it must be said that the first channel of the mask contains the mask of motorcycles, 

the second channel contains the mask of dogs and the third channel contains the mask of 

cakes. From the obtained results we can see that there are some mistakes in the performance. 

On the one hand, some instances are misclassified (i.e. for example, a motorcycle is classified 

as a cake). On the other hand, the predicted masks are not very accurate. It must be stated that 

in this case we are working with real world images that contain several objects and textures. 

Thus, the images from the COCO dataset are more complex than the images from the 

PurdueShapes5MultiObject and a decrease in the performance can be expected. Looking at 

each of the groups we can obtain the following observations: 

• Group 1: some masks are misclassified, and the shapes are not very accurate. 

• Group 2: all the masks are correctly classified as dogs. From left to right, we can see 

that the first and third masks are not very accurate. 

• Group 3: we can see that the performance in the first and last image is acceptable. The 

boundaries of the fourth mask aren’t very accurate. The network is not capable of 

correctly identifying the masks for the second and third image. 

• Group 4: for the first and fourth image the mask is built although the boundaries aren’t 

very accurate. For the second image the dog is not detected and for the third image it 

looks like the network has confused the dog with the horse. This is something possible 

since instances of “dog” and “horse” share several features. 

• Group 5: the second and third image create a mask of the cakes although the 

boundaries are not very accurate. The first and fourth images deserve some room for 

improvement. 

 

New U-Net architecture: 

Now we are working with images of size 256x256 that contain 1 instance of 3 different classes_ 

“dog”, “cake” or “motorcycle”. Since the mUnet given in the DLStudio is used to predict the 

masks for images of size 64x64 containing instances of 5 different classes, we need to do some 

modifications so that it can work with our new requirements.  
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The first change that is made is the number of channels that the output of the network will 

have. We changed it from 5 to 3 since now we are dealing with only 3 images. 

Another change that we make is increasing the depth of the network by incrementing the 

number of down sample and up sample layers following the original structure from mUnet. 

One of the characteristics from a U-Net architecture is reducing the amount of information in 

the bottleneck so that only the relevant information is kept and the noisy information is 

removed so that the relation between the pixels of the input image is learnt as desired. In the 

original mUnet the input feature map is down sampled and increased the number of channels 

from 64x32x32 to 128x16x16. If we didn’t increase the depth of the network, we would go 

from a 64x256x256 input to a 128x64x64 feature map in the bottleneck. The size of the feature 

map of the bottleneck might not be small enough to remove the noise. Thus, we add 2 more 

down sample and up sample layers with their respective skip connections so that the feature 

map in the bottleneck is of size 512x16x16. 

 

4.2. The run_code_for_training_for_semantic_segmentation function of the 

SemanticSegmentation class in DLStudio uses just the MSE loss. MSE loss may not 

adequately capture the subtleties of segmentation boundaries. To this end, we will 

implement our own Dice loss and augment it with MSE loss and compare it against vanilla 

MSE.  

4.3. What follows is a code snippet to help you create your own implemenation for Dice Loss. 

Make sure you set required_grad=True wherever necessary to ensure backpropagation, 

therefore, enabling model learning. 

The dice loss used in this section is the same as presented in Section 3 

 

4.4. Plot the best- and the worst-case training-loss vs. iterations using just the MSE loss, just 

the Dice Loss and a combination of the two. Provide insights into potential factors 

contributing to the observed variations in performance. 

 

Fig 11: Plot of the MSE Loss using our portion of the COCO dataset 
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Fig 12: Plot of the Dice Loss using our portion of the COCO dataset 

 

Fig 13: Plot containing the loss curves for MSE alone, MSE + 20* Dice, MSE + 40*Dice and MSE 

+ 80* Dice 

 

(a)                                                                              (b)                                                                      (c) 

Fig 14: (a) Plot of the Total loss = (MSE loss + 80 * Dice loss) of our portion of the COCO dataset. 

(b) and (c) represent the same data as in (a) but in 2 different plots so that the loss curve can 

be seen clearly. 
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Since the MSE loss and the Dice loss are at different orders of magnitude, it is difficult to obtain 

clear insights just by looking at the plots of the losses. For this reason, it is better to evaluate 

qualitatively the obtained masks as it is done in the following section. 

Nevertheless, we can also obtain some conclusions from the showed plots. For example, we 

can see that the Dice loss converges towards a lower value when using it combined with the 

MSE loss than when using it alone. This is because the MSE loss helps to get a general shape of 

the mask while the dice loss is useful to define accurate boundaries of the mask. When using 

the Dice loss alone without the MSE loss it is more difficult to reach smaller values. 

We can also get some insights from the plot shown in Figure 13. It can be seen that the 

performance when using a scale factor of 20, 40 or 80 is very similar. By doing a qualitative 

evaluation for each of these 3 different values of the scale factor, we saw that the best results 

were obtained when scale_factor = 80. That is the reason why we add Figure 14 with the plots 

of the loss when using a scale_factor=80 and why in the next section we also present the 

results for scale_factor=80. 

 

4.5. State your qualitative observations on the model test results for MSE loss vs. Dice+MSE 

loss 

Comparing the results obtained by scaling the Dice loss by a factor of 20, 40 and 80 we have 

seen that the best result is achieved when we use scale_factor = 80. For this reason, we directly 

compare the results obtained when using the MSE loss alone and the results obtained when 

using the combined loss MSE + 80*Dice loss. 

 

Group 1 Group 2 

MSE loss MSE loss + 80 * Dice loss MSE loss MSE loss + 80 * Dice loss 

    

Comments: 
In this case we can clearly see an improvement when 
using the MSE + Dice loss. All the masks are classified as 
motorcycles and the shapes are more accurate although 
they are not perfect yet. 

Comments: 
We can see that the performance has improved when 
using the MSE+Dice loss for the boundaries of the masks 
for the first, third and fourth images. Nevertheless, we can 
note that the mask of the second image is worst 
compared to the one obtained when using only the MSE 
loss. 
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Group 3 Group 4 

MSE loss MSE loss + 80 * Dice loss MSE loss MSE loss + 80 * Dice loss 

    

Comments: 
We can see a slightly performance in the boundaries of 
the mask of the first and third image when using the 
MSE + Dice loss. For the second and third image we are 
not reconstructing any mask. 

Comments: 
Using the MSE + Dice loss we are still not being able to 
predict a mask for the dog from the second image. The 
performance for the first image hasn’t changed a lot. In 
the third image we can see that with the MSE + Dice 
loss we are reconstructing the mask from the dog and 
not from the horse as it was happening when using the 
MSE loss alone. 

 

Group 5 

MSE loss MSE loss + 80 * Dice loss 

  

Comments: 
In this case we can see that using the MSE + Dice loss 
we are able to predict the mask of the second image 
with more accurate boundaries. For the fourth image 
we see that the network is confusing a plate of soup 
with a cake due to their similarity. The performance for 
the first image is almost the same using the MSE loss 
alone and using the MSE+Dice loss 

 

In general, we can see that when using the combination of MSE +80* Dice loss the results are 

better than using the MSE alone. Nevertheless, we can find some singular cases where this is 

not the exact behavior. We can also state that, although there is a general improvement when 

using the MSE + 80*Dice loss, in some cases the masks are not accurate yet. In the 
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PurdueShapes5MultiObject dataset all the images had a solid black background and the 

different instances were also from a solid color (for example, we could have a pink star over a 

black background). The simplicity of the input images helps to predict more accurate masks. 

The COCO dataset contains real world images (i.e. images with several objects and several 

textures, thus several edges and boundaries) which are complex due to their naturality. Thus, it 

is expected that the masks predicted by the network are not as accurate as the ones obtained 

when using the PurdueShapes5MultiObject dataset. 

 

CODE SECTION 3 

Semantic_segmentation_combined.py 

#!/usr/bin/env python 

 

##  semantic_segmentation.py 

 

import random 

import numpy 

import torch 

import os, sys 

 

import sys,os,os.path 

import torch 

import torch.nn as nn 

import torch.nn.functional as F 

import torchvision                   

import torchvision.transforms as tvt 

import torch.optim as optim 

import numpy as np 

from PIL import ImageFilter 

import numbers 

import re 

import math 

import random 

import copy 

import matplotlib.pyplot as plt 

import gzip 

import pickle 

import pymsgbox 

import time 

import logging 

import torchvision.transforms.functional as TF 

 

from DLStudio import * 

 

# WE CREATE SUPERCLASSES TO OVERWRITE THE FOLLOWING FUNCTIONS FROM THE 

DLSTUDIO LIBRARY: 
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# run_code_for_training_for_semantic_segmentation(self, net) 

#     WE IMPLEMENT THE COMBINED LOSS AND SAVE THE RUNNING LOSS VALUES TO 

DISPLAY THEM LATER IN PLOTS 

# run_code_for_testing_semantic_segmentation(self, net) 

#     WE MODIFY THE CODE IN ORDER TO SAVE THE TESTING IMAGES WITH THEIR 

MASKS 

# WE ADD THE METHOD dice_loss IMPLEMENTED FOLLOWING THE INSTRUCTIONS FROM 

SECTION 3.3 

# THE REST OF THE CODE IS TAKEN FROM THE DLSTUDIO LIBRARY 

 

class Prova1(DLStudio): 

    class Prova2(DLStudio.SemanticSegmentation): 

        # WE ADD THE METHOD dice_loss IMPLEMENTED FOLLOWING THE 

INSTRUCTIONS FROM SECTION 3.3 

        def dice_loss (self, preds : torch.Tensor, ground_truth : 

torch.Tensor, epsilon =1e-6 ): 

            """ 

            inputs : 

                preds : predicted mask 

                ground_truth : ground truth mask 

                epsilon ( float ): prevents division by zero 

            returns : 

                dice_loss 

            """ 

             

            # Step 1: Compute Dice Coefficient. 

            numerator = torch.sum(preds * ground_truth, dim=(2, 3)) 

            denominator = torch.sum(preds * preds, dim=(2, 3)) + 

torch.sum(ground_truth * ground_truth, dim=(2, 3)) 

             

            # Step 2: Compute dice_coefficient 

            dice_coefficient = (2 * numerator) / (denominator + epsilon) 

             

            # Step 3: Compute dice_loss 

            dice_loss = 1 - dice_coefficient 

         

            return dice_loss.mean() 

             

        def run_code_for_training_for_semantic_segmentation(self, net):   

      

            filename_for_out1 = "performance_numbers_" + 

str(self.dl_studio.epochs) + ".txt" 

            FILE1 = open(filename_for_out1, 'w') 

            net = copy.deepcopy(net) 

            net = net.to(self.dl_studio.device) 

            optimizer = optim.SGD(net.parameters(),  

                            lr=self.dl_studio.learning_rate, 

momentum=self.dl_studio.momentum) 

            start_time = time.perf_counter() 
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            criterion1_loss = [] 

            criterion2_loss = [] 

            criterion3_loss = [] 

            criterion1 = nn.MSELoss() 

 

             

            for epoch in range(self.dl_studio.epochs):   

                print("") 

                running_loss = 0.0 

                running_mse_loss = 0.0 

                running_dice_loss = 0.0 

                for i, data in enumerate(self.train_dataloader):   

                    im_tensor,mask_tensor,bbox_tensor 

=data['image'],data['mask_tensor'],data['bbox_tensor'] 

                    im_tensor   = im_tensor.to(self.dl_studio.device) 

                    mask_tensor = mask_tensor.type(torch.FloatTensor) 

                    mask_tensor = mask_tensor.to(self.dl_studio.device)   

               

                    bbox_tensor = bbox_tensor.to(self.dl_studio.device) 

                     

                    optimizer.zero_grad() 

                    output = net(im_tensor)  

                     

                    #WE IMPLEMENT THE COMBINED LOSS. WE CREATE A LOSS 

VECTOR AND SET required_grad=True TO ENSURE BACKPROPAGATION 

                    loss = torch.tensor(0.0, 

requires_grad=True).float().to(self.dl_studio.device)                     

              

                    mse_loss = criterion1(output, mask_tensor)   

                    dice_loss = self.dice_loss(preds=output, 

ground_truth=mask_tensor) 

                    loss = mse_loss + 40 * dice_loss 

                    loss.backward() 

                     

                    optimizer.step() 

                     

                    running_loss += loss.item()    

                    running_mse_loss += mse_loss.item() 

                    running_dice_loss += dice_loss.item()  

                     

                    if i%500==499:     

                        current_time = time.perf_counter() 

                        elapsed_time = current_time - start_time 

                         

                        avg_loss = running_loss / float(500) 

                        avg_mse_loss = running_mse_loss / float(500) 

                        avg_dice_loss = running_dice_loss / float(500) 
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                        #WE SAVE THE RUNNING LOSS VALUES TO DISPLAY THEM 

LATER IN PLOTS 

                        criterion1_loss.append(running_loss) 

                        criterion2_loss.append(running_mse_loss) 

                        criterion3_loss.append(running_dice_loss) 

                         

                        print("[epoch=%d/%d, iter=%4d  elapsed_time=%3d 

secs]   loss: %.3f, MSE loss: %.3f, Dice loss: %.3f" % (epoch+1, 

self.dl_studio.epochs, i+1, elapsed_time, avg_loss, avg_mse_loss, 

avg_dice_loss)) 

                        FILE1.write("%.3f\n" % avg_loss) 

                        FILE1.flush() 

                         

                        running_loss = 0.0 

                        running_mse_loss = 0.0 

                        running_dice_loss = 0.0 

                         

            print("\nFinished Training\n") 

            self.save_model(net) 

             

            dictionary_losses = {} 

 

            nombre_imagen = 'yes' 

            dictionary_losses[nombre_imagen] = { 

                'criterion1': criterion1_loss, 

                'criterion2': criterion2_loss, 

                'criterion3': criterion3_loss, 

            } 

            with open('/home/aolivepe/ECE60146/HW7/DLStudio-

2.3.6/Examples/dictionary_Combined_scaleDice_40.pkl', 'wb') as archivo: 

                pickle.dump(dictionary_losses, archivo) 

 

        def save_model(self, model): 

            ''' 

            Save the trained model to a disk file 

            ''' 

            torch.save(model.state_dict(), 

self.dl_studio.path_saved_model) 

 

        def run_code_for_testing_semantic_segmentation(self, net): 

            

net.load_state_dict(torch.load(self.dl_studio.path_saved_model)) 

            batch_size = self.dl_studio.batch_size 

            image_size = self.dl_studio.image_size 

            max_num_objects = self.max_num_objects 

            with torch.no_grad(): 

                for i, data in enumerate(self.test_dataloader): 
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                    im_tensor,mask_tensor,bbox_tensor 

=data['image'],data['mask_tensor'],data['bbox_tensor'] 

                    if i % 50 == 0: 

                        aa= i+1 

                        print("\n\n\n\nShowing output for test batch %d: 

" % (aa)) 

                        outputs = net(im_tensor)                         

                        ## In the statement below: 1st arg for batch 

items, 2nd for channels, 3rd and 4th for image size 

                        output_bw_tensor = 

torch.zeros(batch_size,1,image_size[0],image_size[1], dtype=float) 

                        for image_idx in range(batch_size): 

                            for layer_idx in range(max_num_objects):  

                                for m in range(image_size[0]): 

                                    for n in range(image_size[1]): 

                                        output_bw_tensor[image_idx,0,m,n] 

 =  torch.max( outputs[image_idx,:,m,n] ) 

                        display_tensor = torch.zeros(7 * 

batch_size,3,image_size[0],image_size[1], dtype=float) 

                        for idx in range(batch_size): 

                            for bbox_idx in range(max_num_objects):    

                                bb_tensor = bbox_tensor[idx,bbox_idx] 

                                for k in range(max_num_objects): 

                                    i1 = int(bb_tensor[k][1]) 

                                    i2 = int(bb_tensor[k][3]) 

                                    j1 = int(bb_tensor[k][0]) 

                                    j2 = int(bb_tensor[k][2]) 

                                    output_bw_tensor[idx,0,i1:i2,j1] = 

255 

                                    output_bw_tensor[idx,0,i1:i2,j2] = 

255 

                                    output_bw_tensor[idx,0,i1,j1:j2] = 

255 

                                    output_bw_tensor[idx,0,i2,j1:j2] = 

255 

                                    im_tensor[idx,0,i1:i2,j1] = 255 

                                    im_tensor[idx,0,i1:i2,j2] = 255 

                                    im_tensor[idx,0,i1,j1:j2] = 255 

                                    im_tensor[idx,0,i2,j1:j2] = 255 

                        display_tensor[:batch_size,:,:,:] = 

output_bw_tensor 

                        display_tensor[batch_size:2*batch_size,:,:,:] = 

im_tensor 

 

                        for batch_im_idx in range(batch_size): 

                            for mask_layer_idx in range(max_num_objects): 

                                for i in range(image_size[0]): 

                                    for j in range(image_size[1]): 

                                        if mask_layer_idx == 0: 
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                                            if 25 < 

outputs[batch_im_idx,mask_layer_idx,i,j] < 85: 

                                                

outputs[batch_im_idx,mask_layer_idx,i,j] = 255 

                                            else: 

                                                

outputs[batch_im_idx,mask_layer_idx,i,j] = 50 

                                        elif mask_layer_idx == 1: 

                                            if 65 < 

outputs[batch_im_idx,mask_layer_idx,i,j] < 135: 

                                                

outputs[batch_im_idx,mask_layer_idx,i,j] = 255 

                                            else: 

                                                

outputs[batch_im_idx,mask_layer_idx,i,j] = 50 

                                        elif mask_layer_idx == 2: 

                                            if 115 < 

outputs[batch_im_idx,mask_layer_idx,i,j] < 185: 

                                                

outputs[batch_im_idx,mask_layer_idx,i,j] = 255 

                                            else: 

                                                

outputs[batch_im_idx,mask_layer_idx,i,j] = 50 

                                        elif mask_layer_idx == 3: 

                                            if 165 < 

outputs[batch_im_idx,mask_layer_idx,i,j] < 230: 

                                                

outputs[batch_im_idx,mask_layer_idx,i,j] = 255 

                                            else: 

                                                

outputs[batch_im_idx,mask_layer_idx,i,j] = 50 

                                        elif mask_layer_idx == 4: 

                                            if 

outputs[batch_im_idx,mask_layer_idx,i,j] > 210: 

                                                

outputs[batch_im_idx,mask_layer_idx,i,j] = 255 

                                            else: 

                                                

outputs[batch_im_idx,mask_layer_idx,i,j] = 50 

 

                                

display_tensor[2*batch_size+batch_size*mask_layer_idx+batch_im_idx,:,:,:]

= outputs[batch_im_idx,mask_layer_idx,:,:] 

                                 

                        #WE MODIFY THE CODE IN ORDER TO SAVE THE TESTING 

IMAGES WITH THEIR MASKS 

                        # self.dl_studio.display_tensor_as_image( 

                        #    torchvision.utils.make_grid(display_tensor, 

nrow=batch_size, normalize=True, padding=2, pad_value=10)) 
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                        image = 

TF.to_pil_image(torchvision.utils.make_grid(display_tensor, 

nrow=batch_size, normalize=True, padding=2, pad_value=10)) 

                        

image.save(f"/home/aolivepe/ECE60146/HW7/DLStudio-

2.3.6/Examples/testing_imgs_comb_40/{aa}.png") 

 

# WE USE THE NAME OF THE SUPERCLASSES THAT WE HAVE CREATED 

dls = Prova1( 

                  dataroot = "./../../data/", 

                  image_size = [64,64], 

                  path_saved_model = "./saved_model", 

                  momentum = 0.9, 

                  learning_rate = 1e-4, 

                  epochs = 6, 

                  batch_size = 4, 

                  classes = 

('rectangle','triangle','disk','oval','star'), 

                  use_gpu = True, 

              ) 

 

segmenter = Prova1.Prova2(  

                  dl_studio = dls,  

                  max_num_objects = 5, 

              ) 

 

dataserver_train = Prova1.Prova2.PurdueShapes5MultiObjectDataset( 

                          train_or_test = 'train', 

                          dl_studio = dls, 

                          segmenter = segmenter, 

                          dataset_file = "PurdueShapes5MultiObject-10000-

train.gz",  

                        ) 

dataserver_test = Prova1.Prova2.PurdueShapes5MultiObjectDataset( 

                          train_or_test = 'test', 

                          dl_studio = dls, 

                          segmenter = segmenter, 

                          dataset_file = "PurdueShapes5MultiObject-1000-

test.gz" 

                        ) 

segmenter.dataserver_train = dataserver_train 

segmenter.dataserver_test = dataserver_test 

 

segmenter.load_PurdueShapes5MultiObject_dataset(dataserver_train, 

dataserver_test) 

 

model = segmenter.mUnet(skip_connections=True, depth=16) 

#model = segmenter.mUnet(skip_connections=False, depth=4) 
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number_of_learnable_params = sum(p.numel() for p in model.parameters() if 

p.requires_grad) 

print("\n\nThe number of learnable parameters in the model: %d\n" % 

number_of_learnable_params) 

 

num_layers = len(list(model.parameters())) 

print("\nThe number of layers in the model: %d\n\n" % num_layers) 

 

segmenter.run_code_for_training_for_semantic_segmentation(model) 

 

# import pymsgbox 

# response = pymsgbox.confirm("Finished training.  Start testing on 

unseen data?") 

# if response == "OK":  

segmenter.run_code_for_testing_semantic_segmentation(model) 

 

 

CODE SECTION 4 

Creation of the dataset 

import torchvision.transforms as tvt 

import cv2 

from PIL import Image 

import skimage.io as io 

from pycocotools.coco import COCO 

import os 

import random 

from torch.utils.data import DataLoader 

import torch 

import torch.nn as nn 

import torch.nn.functional as F 

from tqdm import tqdm 

import matplotlib.pyplot as plt 

import numpy as np 

import skimage 

import pickle 

from skimage.transform import resize 

 

#Data to use for either the training or validation dataset 

full_COCO_training_path = "../../../../Downloads/train2017/train2017"  

full_COCO_validation_path = "../../../../Downloads/val2017/val2017"  

 

our_COCO_training_path = "./HW7_TRAINING_DATASET" 

our_COCO_validation_path = "./HW7_VALIDATION_DATASET" 
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annotations_training_path = 

"./../HW6/annotations/instances_train2017.json" 

annotations_validation_path = 

"./../HW6/annotations/instances_val2017.json" 

 

coco=COCO(annotations_validation_path) 

 

# Mapping from COCO label to Class indices 

classes = ["dog", "cake", "motorcycle"] 

catIds = coco.getCatIds(catNms=classes) 

categories = coco.loadCats(catIds) 

categories.sort(key=lambda x: x['id']) 

coco_labels_inverse = {} 

for idx, in_class in enumerate(classes): 

    for c in categories: 

        if c['name'] == in_class: 

            coco_labels_inverse[c['id']] = idx 

 

#4: motorcycle, 18: dog, 61: cake 

# Save in an array the image ids of the images containing instance of 2 

or more of the targeted classes             

imgIds_4_18 = coco.getImgIds(catIds=[4, 18]) 

imgIds_4_61 = coco.getImgIds(catIds=[4, 61]) 

imgIds_61_18 = coco.getImgIds(catIds=[61, 18]) 

imgIds_4_61_18 = coco.getImgIds(catIds=[4, 61, 18]) 

 

total_ids = imgIds_4_18 + imgIds_4_61 + imgIds_61_18 + imgIds_4_61_18 

print(len(total_ids)) 

 

dataset = {} 

a = 0 

# Iterate 3 times each over the images containing instances of ["dog", 

"cake", "motorcycle"] and if accomplish the requirements, add it to the 

dataset 

for i, cat_id in enumerate(catIds): 

    imgIds = coco.getImgIds(catIds=cat_id) 

     

    # Remove the images containing instance of 2 or more of the targeted 

classes  

    filtered_array = [x for x in imgIds if x not in total_ids] 

 

    for j, img_id in enumerate(filtered_array): 

        annIds = coco.getAnnIds(imgIds=img_id, catIds=cat_id, 

iscrowd=False) 

        anns = coco.loadAnns(annIds) 

         

        # If there is more than one instance of one class in the image we 

skip it 
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        if len(anns) != 1: 

            continue 

         

        # Get the r, g, b arrays to save in the final dictionary resized 

to 256x256 

        img = coco.loadImgs(img_id)[0] 

        I = io.imread(os.path.join(full_COCO_validation_path, 

img['file_name'])) 

        if len(I.shape) == 2: 

            I = skimage.color.gray2rgb(I) 

        img_h, img_w = I.shape[0], I.shape[1] 

        I = resize(I, (256, 256), anti_aliasing=True, 

preserve_range=True) 

        image = np.uint8(I) 

         

        r = image[:,:,0] 

        g = image[:,:,1] 

        b = image[:,:,2] 

 

        # Reshaping each channel into a 1D array 

        r = r.reshape(-1, 1)  # Reshape to (256*256, 1) 

        g = g.reshape(-1, 1) 

        b = b.reshape(-1, 1) 

 

        area = True 

        for i, ann in enumerate(anns): 

            # If the area of the bounding box is lower than 200*200 we 

skip it 

            if ann['area']<200*200: 

                area=False 

                continue 

             

            # Get the bounding box and mask resized to 256x256 

            [x, y, w, h] = ann['bbox'] 

            bbox = [x*(256/img_w), y*(256/img_h), w*(256/img_w), 

h*(256/img_h)] 

            mask = coco.annToMask(ann) 

            mask = resize(mask, (256, 256), anti_aliasing=True, 

preserve_range=True) 

             

            threshold = 0.5 

 

            # Binarize the array 

            mask = (mask > threshold).astype(int) 

             

            # Save the mask and the bounding box following the 

characteristics mentioned at the beginning of section 4 

            final_mask = torch.zeros(3, 256, 256) 

            if cat_id == 4: 
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                final_mask[0, :, :] = torch.from_numpy(mask)*50 

                bbox_dict = { 

                    0:[[x*(256/img_w), y*(256/img_h), x*(256/img_w) + 

w*(256/img_w), y*(256/img_h) + h*(256/img_h)]],  

                    1:[],  

                    2:[] 

                } 

            if cat_id == 18: 

                final_mask[1, :, :] = torch.from_numpy(mask)*100 

                bbox_dict = { 

                    0:[],  

                    1:[[x*(256/img_w), y*(256/img_h), x*(256/img_w) + 

w*(256/img_w), y*(256/img_h) + h*(256/img_h)]],  

                    2:[] 

                } 

            if cat_id == 61: 

                final_mask[2, :, :] = torch.from_numpy(mask)*150 

                bbox_dict = { 

                    0:[],  

                    1:[],  

                    2:[[x*(256/img_w), y*(256/img_h), x*(256/img_w) + 

w*(256/img_w), y*(256/img_h) + h*(256/img_h)]] 

                } 

 

        if area == False: 

            continue 

         

        # We create a dictionary called dataset where for each image with 

index "a" we save the following information 

        dataset[a] = { 

            0: r,  

            1: g,  

            2: b,  

            3: final_mask,  

            4: bbox_dict 

        } 

         

        a = a+1 

    print(f"**Acumulated** Num of images labeled with cat_id {cat_id}: 

{a}") 

 

#Save the dictionary in a "pkl" file 

with open('validation_dataset.pkl', 'wb') as file: 

    pickle.dump(dataset, file) 
 

semantic_segmentation_combined_COCO.py 

#!/usr/bin/env python 
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##  semantic_segmentation.py 

 

import random 

import numpy 

import torch 

import os, sys 

 

import sys,os,os.path 

import torch 

import torch.nn as nn 

import torch.nn.functional as F 

import torchvision                   

import torchvision.transforms as tvt 

import torch.optim as optim 

import numpy as np 

from PIL import ImageFilter 

import numbers 

import re 

import math 

import random 

import copy 

import matplotlib.pyplot as plt 

import gzip 

import pickle 

import pymsgbox 

import time 

import logging 

import torchvision.transforms.functional as TF 

 

from DLStudio import * 

 

# WE CREATE SUPERCLASSES TO OVERWRITE THE FOLLOWING FUNCTIONS FROM THE 

DLSTUDIO LIBRARY: 

     

# run_code_for_training_for_semantic_segmentation(self, net) 

#     WE IMPLEMENT THE COMBINED LOSS AND SAVE THE RUNNING LOSS VALUES TO 

DISPLAY THEM LATER IN PLOTS 

     

# run_code_for_testing_semantic_segmentation(self, net) 

#     WE MODIFY THE CODE IN ORDER TO SAVE THE TESTING IMAGES WITH THEIR 

MASKS 

     

# WE ADD THE METHOD dice_loss IMPLEMENTED FOLLOWING THE INSTRUCTIONS FROM 

SECTION 3.3 

 

# WE CREATE A SUPERCLASS OF THE DATASET CLASS TO OVERWRITE ITS METHODS 
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# WE CREATE A SUPERCLASS OF THE mUnet CLASS TO OVERWRITE ITS METHODS 

 

# THE REST OF THE CODE IS TAKEN FROM THE DLSTUDIO LIBRARY 

 

class Prova1(DLStudio): 

    class Prova2(DLStudio.SemanticSegmentation): 

        class MyDataset(torch.utils.data.Dataset): 

            def __init__(self, dl_studio, segmenter, train_or_test, 

dataset_file): 

                super(Prova1.Prova2.MyDataset, self).__init__() 

                max_num_objects = segmenter.max_num_objects 

                if train_or_test == 'train': 

                    print("\nLoading training data from torch saved 

file") 

                     

                    # Load dictionary with training dataset 

                    with 

open('/home/aolivepe/ECE60146/HW7/training_dataset.pkl', 'rb') as file: 

                        self.dataset = pickle.load(file) 

                     

                    self.label_map = { 

                        'motorcycle': 50, 

                        'dog': 100,  

                        'cake': 150 

                    } 

                                         

                    self.num_shapes = len(self.label_map) 

                    self.image_size = dl_studio.image_size 

                else: 

                    # Load dictionary with testing dataset 

                    with 

open('/home/aolivepe/ECE60146/HW7/validation_dataset.pkl', 'rb') as file: 

                        self.dataset = pickle.load(file) 

                     

                    self.label_map = { 

                        'motorcycle': 50, 

                        'dog': 100,  

                        'cake': 150 

                    } 

                     

                    # reverse the key-value pairs in the label 

dictionary: 

                    self.class_labels = { 

                        50: 'motorcycle', 

                        100: 'dog',  

                        150: 'cake' 

                    } 

                    self.num_shapes = len(self.class_labels) 

                    self.image_size = dl_studio.image_size 
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            def __len__(self): 

                return len(self.dataset) 

 

            def __getitem__(self, idx): 

                 

                # Creating image 

                image_size = self.image_size 

                r = np.array( self.dataset[idx][0] ) 

                g = np.array( self.dataset[idx][1] ) 

                b = np.array( self.dataset[idx][2] ) 

                R,G,B = r.reshape(image_size[0],image_size[1]), 

g.reshape(image_size[0],image_size[1]), 

b.reshape(image_size[0],image_size[1]) 

                im_tensor = torch.zeros(3,image_size[0],image_size[1], 

dtype=torch.float) 

                im_tensor[0,:,:] = torch.from_numpy(R) 

                im_tensor[1,:,:] = torch.from_numpy(G) 

                im_tensor[2,:,:] = torch.from_numpy(B) 

                 

                # Getting mask 

                mask_array = np.array(self.dataset[idx][3]) 

                max_num_objects = len( mask_array[0] ) 

                mask_tensor = torch.from_numpy(mask_array) 

                 

                 

                mask_val_to_bbox_map =  self.dataset[idx][4] 

                max_bboxes_per_entry_in_map = max([ 

len(mask_val_to_bbox_map[key]) for key in mask_val_to_bbox_map ]) 

                ##  The first arg 5 is for the number of bboxes we are 

going to need. If all the 

                ##  shapes are exactly the same, you are going to need 

five different bbox'es. 

                ##  The second arg is the index reserved for each shape 

in a single bbox 

                bbox_tensor = 

torch.zeros(max_num_objects,self.num_shapes,4, dtype=torch.float) 

                for bbox_idx in range(max_bboxes_per_entry_in_map): 

                    for key in mask_val_to_bbox_map: 

                        if len(mask_val_to_bbox_map[key]) == 1: 

                            if bbox_idx == 0: 

                                bbox_tensor[bbox_idx,key,:] = 

torch.from_numpy(np.array(mask_val_to_bbox_map[key][bbox_idx])) 

                        elif len(mask_val_to_bbox_map[key]) > 1 and 

bbox_idx < len(mask_val_to_bbox_map[key]): 

                            bbox_tensor[bbox_idx,key,:] = 

torch.from_numpy(np.array(mask_val_to_bbox_map[key][bbox_idx])) 

                sample = {'image'        : im_tensor,  

                          'mask_tensor'  : mask_tensor, 
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                          'bbox_tensor'  : bbox_tensor } 

                return sample 

                 

        class MymUnet(nn.Module): 

            # EXTENSION OF THE mUnet PROVIDED IN DLSTUDIO BUILT FOLLOWING 

THE EXPLANATIONS FROM SECTION 4.1. 

            def __init__(self, skip_connections=True, depth=16): 

                super(Prova1.Prova2.MymUnet, self).__init__() 

                self.depth = depth // 2 

                self.conv_in = nn.Conv2d(3, 64, 3, padding=1) 

                 

                ##  For the DN arm of the U: 

                self.bn1DN  = nn.BatchNorm2d(64) 

                self.bn2DN  = nn.BatchNorm2d(128) 

                self.bn3DN  = nn.BatchNorm2d(256) 

                self.bn4DN  = nn.BatchNorm2d(512) 

                 

                self.skip64DN_arr = nn.ModuleList() 

                for i in range(self.depth): 

                    

self.skip64DN_arr.append(DLStudio.SemanticSegmentation.SkipBlockDN(64, 

64, skip_connections=skip_connections)) 

                self.skip64dsDN = 

DLStudio.SemanticSegmentation.SkipBlockDN(64, 64,   downsample=True, 

skip_connections=skip_connections) 

                 

                self.skip64to128DN = 

DLStudio.SemanticSegmentation.SkipBlockDN(64, 128, 

skip_connections=skip_connections ) 

                 

                self.skip128DN_arr = nn.ModuleList() 

                for i in range(self.depth): 

                    

self.skip128DN_arr.append(DLStudio.SemanticSegmentation.SkipBlockDN(128, 

128, skip_connections=skip_connections)) 

                self.skip128dsDN = 

DLStudio.SemanticSegmentation.SkipBlockDN(128,128, downsample=True, 

skip_connections=skip_connections) 

                 

                self.skip128to256DN = 

DLStudio.SemanticSegmentation.SkipBlockDN(128, 256, 

skip_connections=skip_connections ) 

                 

                self.skip256DN_arr = nn.ModuleList() 

                for i in range(self.depth): 

                    

self.skip256DN_arr.append(DLStudio.SemanticSegmentation.SkipBlockDN(256, 

256, skip_connections=skip_connections)) 
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                self.skip256dsDN = 

DLStudio.SemanticSegmentation.SkipBlockDN(256,256, downsample=True, 

skip_connections=skip_connections) 

                 

                self.skip256to512DN = 

DLStudio.SemanticSegmentation.SkipBlockDN(256, 512, 

skip_connections=skip_connections ) 

                 

                self.skip512DN_arr = nn.ModuleList() 

                for i in range(self.depth): 

                    

self.skip512DN_arr.append(DLStudio.SemanticSegmentation.SkipBlockDN(512, 

512, skip_connections=skip_connections)) 

                self.skip512dsDN = 

DLStudio.SemanticSegmentation.SkipBlockDN(512,512, downsample=True, 

skip_connections=skip_connections) 

                 

                 

                ##  For the UP arm of the U: 

                self.bn1UP  = nn.BatchNorm2d(512) 

                self.bn2UP  = nn.BatchNorm2d(256) 

                self.bn3UP  = nn.BatchNorm2d(128) 

                self.bn4UP  = nn.BatchNorm2d(64) 

                 

                self.skip64UP_arr = nn.ModuleList() 

                for i in range(self.depth): 

                    

self.skip64UP_arr.append(DLStudio.SemanticSegmentation.SkipBlockUP(64, 

64, skip_connections=skip_connections)) 

                self.skip64usUP = 

DLStudio.SemanticSegmentation.SkipBlockUP(64, 64, upsample=True, 

skip_connections=skip_connections) 

                 

                self.skip128to64UP = 

DLStudio.SemanticSegmentation.SkipBlockUP(128, 64, 

skip_connections=skip_connections ) 

                 

                self.skip128UP_arr = nn.ModuleList() 

                for i in range(self.depth): 

                    

self.skip128UP_arr.append(DLStudio.SemanticSegmentation.SkipBlockUP(128, 

128, skip_connections=skip_connections)) 

                self.skip128usUP = 

DLStudio.SemanticSegmentation.SkipBlockUP(128,128, upsample=True, 

skip_connections=skip_connections) 

                 

                self.skip256to128UP = 

DLStudio.SemanticSegmentation.SkipBlockUP(256, 128, 

skip_connections=skip_connections ) 
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                self.skip256UP_arr = nn.ModuleList() 

                for i in range(self.depth): 

                    

self.skip256UP_arr.append(DLStudio.SemanticSegmentation.SkipBlockUP(256, 

256, skip_connections=skip_connections)) 

                self.skip256usUP = 

DLStudio.SemanticSegmentation.SkipBlockUP(256,256, upsample=True, 

skip_connections=skip_connections) 

                 

                self.skip512to256UP = 

DLStudio.SemanticSegmentation.SkipBlockUP(512, 256, 

skip_connections=skip_connections ) 

                 

                self.skip512UP_arr = nn.ModuleList() 

                for i in range(self.depth): 

                    

self.skip512UP_arr.append(DLStudio.SemanticSegmentation.SkipBlockUP(512, 

512, skip_connections=skip_connections)) 

                self.skip512usUP = 

DLStudio.SemanticSegmentation.SkipBlockUP(512,512, upsample=True, 

skip_connections=skip_connections) 

                 

                self.conv_out = nn.ConvTranspose2d(64, 3, 3, 

stride=2,dilation=2,output_padding=1,padding=2) 

 

            def forward(self, x): 

                ##  Going down to the bottom of the U: 

                x = 

nn.MaxPool2d(2,2)(nn.functional.relu(self.conv_in(x)))  

                          

                for i,skip64 in 

enumerate(self.skip64DN_arr[:self.depth//4]): 

                    x = skip64(x)                 

                num_channels_to_save1 = x.shape[1] // 2 

                save_for_upside_1 = 

x[:,:num_channels_to_save1,:,:].clone() 

                x = self.skip64dsDN(x) 

                for i,skip64 in 

enumerate(self.skip64DN_arr[self.depth//4:]): 

                    x = skip64(x)                 

                x = self.bn1DN(x) 

                num_channels_to_save2 = x.shape[1] // 2 

                save_for_upside_2 = 

x[:,:num_channels_to_save2,:,:].clone() 

                 

                x = self.skip64to128DN(x) 
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                for i,skip128 in 

enumerate(self.skip128DN_arr[:self.depth//4]): 

                    x = skip128(x)  

                num_channels_to_save3 = x.shape[1] // 2 

                save_for_upside_3 = 

x[:,:num_channels_to_save3,:,:].clone() 

                x = self.skip128dsDN(x) 

                for i,skip128 in 

enumerate(self.skip128DN_arr[self.depth//4:]): 

                    x = skip128(x)                 

                x = self.bn2DN(x) 

                num_channels_to_save4 = x.shape[1] // 2 

                save_for_upside_4 = 

x[:,:num_channels_to_save4,:,:].clone() 

                 

                x = self.skip128to256DN(x) 

                 

                for i,skip256 in 

enumerate(self.skip256DN_arr[:self.depth//4]): 

                    x = skip256(x)  

                num_channels_to_save5 = x.shape[1] // 2 

                save_for_upside_5 = 

x[:,:num_channels_to_save5,:,:].clone() 

                x = self.skip256dsDN(x) 

                for i,skip256 in 

enumerate(self.skip256DN_arr[self.depth//4:]): 

                    x = skip256(x)                 

                x = self.bn3DN(x) 

                num_channels_to_save6 = x.shape[1] // 2 

                save_for_upside_6 = 

x[:,:num_channels_to_save6,:,:].clone() 

                 

                x = self.skip256to512DN(x) 

                 

                for i,skip512 in 

enumerate(self.skip512DN_arr[:self.depth//4]): 

                    x = skip512(x)                 

                x = self.bn4DN(x) 

                num_channels_to_save7 = x.shape[1] // 2 

                save_for_upside_7 = 

x[:,:num_channels_to_save7,:,:].clone() 

                for i,skip512 in 

enumerate(self.skip512DN_arr[self.depth//4:]): 

                    x = skip512(x)                 

                x = self.skip512dsDN(x) 

                 

                 

                ## Coming up from the bottom of U on the other side: 

                x = self.skip512usUP(x)  
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                for i,skip512 in 

enumerate(self.skip512UP_arr[:self.depth//4]): 

                    x = skip512(x)     

                x[:,:num_channels_to_save7,:,:] =  save_for_upside_7 

                x = self.bn1UP(x) 

                for i,skip512 in 

enumerate(self.skip512UP_arr[:self.depth//4]): 

                    x = skip512(x)  

                     

                x = self.skip512to256UP(x) 

                 

                for i,skip256 in 

enumerate(self.skip256UP_arr[self.depth//4:]): 

                    x = skip256(x)   

                x[:,:num_channels_to_save6,:,:] =  save_for_upside_6 

                x = self.bn2UP(x) 

                x = self.skip256usUP(x) 

                for i,skip256 in 

enumerate(self.skip256UP_arr[:self.depth//4]): 

                    x = skip256(x)      

                x[:,:num_channels_to_save5,:,:] =  save_for_upside_5 

                 

                x = self.skip256to128UP(x) 

                 

                for i,skip128 in 

enumerate(self.skip128UP_arr[self.depth//4:]): 

                    x = skip128(x)   

                x[:,:num_channels_to_save4,:,:] =  save_for_upside_4 

                x = self.bn3UP(x) 

                x = self.skip128usUP(x) 

                for i,skip128 in 

enumerate(self.skip128UP_arr[:self.depth//4]): 

                    x = skip128(x)      

                x[:,:num_channels_to_save3,:,:] =  save_for_upside_3 

                 

                x = self.skip128to64UP(x) 

                 

                for i,skip64 in 

enumerate(self.skip64UP_arr[self.depth//4:]): 

                    x = skip64(x)   

                x[:,:num_channels_to_save2,:,:] =  save_for_upside_2 

                x = self.bn4UP(x) 

                x = self.skip64usUP(x) 

                for i,skip64 in 

enumerate(self.skip64UP_arr[:self.depth//4]): 

                    x = skip64(x)      

                x[:,:num_channels_to_save1,:,:] =  save_for_upside_1 
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                x = self.conv_out(x) 

                return x 

             

        # WE ADD THE METHOD dice_loss IMPLEMENTED FOLLOWING THE 

INSTRUCTIONS FROM SECTION 3.3         

        def dice_loss (self, preds : torch.Tensor, ground_truth : 

torch.Tensor, epsilon =1e-6 ): 

            """ 

            inputs : 

                preds : predicted mask 

                ground_truth : ground truth mask 

                epsilon ( float ): prevents division by zero 

            returns : 

                dice_loss 

            """ 

             

            # Step 1: Compute Dice Coefficient. 

            numerator = torch.sum(preds * ground_truth, dim=(2, 3)) 

            denominator = torch.sum(preds * preds, dim=(2, 3)) + 

torch.sum(ground_truth * ground_truth, dim=(2, 3)) 

             

            # Step 2: Compute dice_coefficient 

            dice_coefficient = (2 * numerator) / (denominator + epsilon) 

             

            # Step 3: Compute dice_loss 

            dice_loss = 1 - dice_coefficient 

         

            return dice_loss.mean() 

             

        def run_code_for_training_for_semantic_segmentation(self, net):   

      

            filename_for_out1 = "performance_numbers_" + 

str(self.dl_studio.epochs) + ".txt" 

            FILE1 = open(filename_for_out1, 'w') 

            net = copy.deepcopy(net) 

            net = net.to(self.dl_studio.device) 

            optimizer = optim.SGD(net.parameters(),  

                            lr=self.dl_studio.learning_rate, 

momentum=self.dl_studio.momentum) 

            start_time = time.perf_counter() 

             

            criterion1_loss = [] 

            criterion2_loss = [] 

            criterion3_loss = [] 

            criterion1 = nn.MSELoss() 

 

             

            for epoch in range(self.dl_studio.epochs):   

                print("") 



Alexandre Olive Pellicer 

37 
 

                running_loss = 0.0 

                running_mse_loss = 0.0 

                running_dice_loss = 0.0 

                for i, data in enumerate(self.train_dataloader):   

                    im_tensor,mask_tensor,bbox_tensor 

=data['image'],data['mask_tensor'],data['bbox_tensor'] 

                    im_tensor   = im_tensor.to(self.dl_studio.device) 

                    mask_tensor = mask_tensor.type(torch.FloatTensor) 

                    mask_tensor = mask_tensor.to(self.dl_studio.device)   

               

                    bbox_tensor = bbox_tensor.to(self.dl_studio.device) 

                     

                    optimizer.zero_grad() 

                    output = net(im_tensor)  

                     

                    # print("output: ", output.shape, torch.max(output), 

torch.min(output)) 

                    # print("mask_tensor: ", mask_tensor.shape, 

torch.max(mask_tensor), torch.min(mask_tensor)) 

                     

                    #WE IMPLEMENT THE COMBINED LOSS. WE CREATE A LOSS 

VECTOR AND SET required_grad=True TO ENSURE BACKPROPAGATION 

                    loss = torch.tensor(0.0, 

requires_grad=True).float().to(self.dl_studio.device)                     

              

                    mse_loss = criterion1(output, mask_tensor)   

                    dice_loss = self.dice_loss(preds=output, 

ground_truth=mask_tensor) 

                    loss = mse_loss + 80 * dice_loss 

                    loss.backward() 

                     

                    optimizer.step() 

                     

                    running_loss += loss.item()    

                    running_mse_loss += mse_loss.item() 

                    running_dice_loss += dice_loss.item()  

                     

                    if i%50==49:     

                        current_time = time.perf_counter() 

                        elapsed_time = current_time - start_time 

                         

                        avg_loss = running_loss / float(50) 

                        avg_mse_loss = running_mse_loss / float(50) 

                        avg_dice_loss = running_dice_loss / float(50) 

                         

                        #WE SAVE THE RUNNING LOSS VALUES TO DISPLAY THEM 

LATER IN PLOTS 

                        criterion1_loss.append(running_loss) 

                        criterion2_loss.append(running_mse_loss) 
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                        criterion3_loss.append(running_dice_loss) 

                         

                        print("[epoch=%d/%d, iter=%4d  elapsed_time=%3d 

secs]   loss: %.3f, MSE loss: %.3f, Dice loss: %.3f" % (epoch+1, 

self.dl_studio.epochs, i+1, elapsed_time, avg_loss, avg_mse_loss, 

avg_dice_loss)) 

                        FILE1.write("%.3f\n" % avg_loss) 

                        FILE1.flush() 

                         

                        running_loss = 0.0 

                        running_mse_loss = 0.0 

                        running_dice_loss = 0.0 

                         

            print("\nFinished Training\n") 

            self.save_model(net) 

             

            dictionary_losses = {} 

 

            nombre_imagen = 'yes' 

            dictionary_losses[nombre_imagen] = { 

                'criterion1': criterion1_loss, 

                'criterion2': criterion2_loss, 

                'criterion3': criterion3_loss, 

            } 

             

            with open('/home/aolivepe/ECE60146/HW7/DLStudio-

2.3.6/Examples/dictionary_Combined_scaleDice_80_COCO.pkl', 'wb') as 

archivo: 

                pickle.dump(dictionary_losses, archivo) 

 

        def save_model(self, model): 

            ''' 

            Save the trained model to a disk file 

            ''' 

            torch.save(model.state_dict(), 

self.dl_studio.path_saved_model) 

 

        def run_code_for_testing_semantic_segmentation(self, net): 

            

net.load_state_dict(torch.load(self.dl_studio.path_saved_model)) 

            batch_size = self.dl_studio.batch_size 

            image_size = self.dl_studio.image_size 

            max_num_objects = self.max_num_objects 

            with torch.no_grad(): 

                for i, data in enumerate(self.test_dataloader): 

                    im_tensor,mask_tensor,bbox_tensor 

=data['image'],data['mask_tensor'],data['bbox_tensor'] 
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                    if i % 3 == 0: 

                        aa= i+1 

                        print("\n\n\n\nShowing output for test batch %d: 

" % (aa)) 

                        outputs = net(im_tensor) 

                        print("output testing: ", outputs.shape)         

                

                        ## In the statement below: 1st arg for batch 

items, 2nd for channels, 3rd and 4th for image size 

                        output_bw_tensor = 

torch.zeros(batch_size,1,image_size[0],image_size[1], dtype=float) 

                        for image_idx in range(batch_size): 

                            for layer_idx in range(max_num_objects):  

                                for m in range(image_size[0]): 

                                    for n in range(image_size[1]): 

                                        output_bw_tensor[image_idx,0,m,n] 

 =  torch.max( outputs[image_idx,:,m,n] ) 

                        display_tensor = torch.zeros(7 * 

batch_size,3,image_size[0],image_size[1], dtype=float) 

                        for idx in range(batch_size): 

                            for bbox_idx in range(max_num_objects):    

                                bb_tensor = bbox_tensor[idx,bbox_idx] 

                                for k in range(max_num_objects): 

                                    i1 = int(bb_tensor[k][1]) 

                                    i2 = int(bb_tensor[k][3]) 

                                    j1 = int(bb_tensor[k][0]) 

                                    j2 = int(bb_tensor[k][2]) 

                                     

                                    # I CAN PROBABLY REMOVE THIS 

                                    if i1 > 255: 

                                        i1 = 255 

                                    if i2 > 255: 

                                        i2 = 255 

                                    if j1 > 255: 

                                        j1 = 255 

                                    if j2 > 255: 

                                        j2 = 255 

                                         

                                    output_bw_tensor[idx,0,i1:i2,j1] = 

255 

                                    output_bw_tensor[idx,0,i1:i2,j2] = 

255 

                                    output_bw_tensor[idx,0,i1,j1:j2] = 

255 

                                    output_bw_tensor[idx,0,i2,j1:j2] = 

255 

                                    im_tensor[idx,0,i1:i2,j1] = 255 

                                    im_tensor[idx,0,i1:i2,j2] = 255 

                                    im_tensor[idx,0,i1,j1:j2] = 255 
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                                    im_tensor[idx,0,i2,j1:j2] = 255 

                        display_tensor[:batch_size,:,:,:] = 

output_bw_tensor 

                        display_tensor[batch_size:2*batch_size,:,:,:] = 

im_tensor 

 

                        for batch_im_idx in range(batch_size): 

                            for mask_layer_idx in range(max_num_objects): 

                                for i in range(image_size[0]): 

                                    for j in range(image_size[1]): 

                                        if mask_layer_idx == 0: 

                                            #SINCE WE ARE WORKING ONLY 

WITH 3 CLASSES, WE REMOVED THE OTHER 2 LEVELS 

                                            if 25 < 

outputs[batch_im_idx,mask_layer_idx,i,j] < 85: 

                                                

outputs[batch_im_idx,mask_layer_idx,i,j] = 255 

                                            else: 

                                                

outputs[batch_im_idx,mask_layer_idx,i,j] = 50 

                                        elif mask_layer_idx == 1: 

                                            if 65 < 

outputs[batch_im_idx,mask_layer_idx,i,j] < 135: 

                                                

outputs[batch_im_idx,mask_layer_idx,i,j] = 255 

                                            else: 

                                                

outputs[batch_im_idx,mask_layer_idx,i,j] = 50 

                                        elif mask_layer_idx == 2: 

                                            if 115 < 

outputs[batch_im_idx,mask_layer_idx,i,j] < 185: 

                                                

outputs[batch_im_idx,mask_layer_idx,i,j] = 255 

                                            else: 

                                                

outputs[batch_im_idx,mask_layer_idx,i,j] = 50 

 

                                

display_tensor[2*batch_size+batch_size*mask_layer_idx+batch_im_idx,:,:,:]

= outputs[batch_im_idx,mask_layer_idx,:,:] 

                        #WE MODIFY THE CODE IN ORDER TO SAVE THE TESTING 

IMAGES WITH THEIR MASKS 

                        # self.dl_studio.display_tensor_as_image( 

                        #    torchvision.utils.make_grid(display_tensor, 

nrow=batch_size, normalize=True, padding=2, pad_value=10)) 

                        image = 

TF.to_pil_image(torchvision.utils.make_grid(display_tensor, 

nrow=batch_size, normalize=True, padding=2, pad_value=10)) 
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image.save(f"/home/aolivepe/ECE60146/HW7/DLStudio-

2.3.6/Examples/testing_imgs_comb_300_COCO/{aa}.png") 

 

# WE USE THE NAME OF THE SUPERCLASSES THAT WE HAVE CREATED 

dls = Prova1( 

                  dataroot = "./../../data/", 

                  image_size = [256,256], 

                  path_saved_model = "./saved_model_Dice_COCO_300", 

                  momentum = 0.9, 

                  learning_rate = 1e-4, 

                  epochs = 50, 

                  batch_size = 4, 

                  classes = ('motorcycle','dog','cake'), 

                  use_gpu = True, 

              ) 

 

segmenter = Prova1.Prova2(  

                  dl_studio = dls,  

                  max_num_objects = 3, 

              ) 

 

dataserver_train = Prova1.Prova2.MyDataset( 

                          train_or_test = 'train', 

                          dl_studio = dls, 

                          segmenter = segmenter, 

                          dataset_file = "PurdueShapes5MultiObject-10000-

train.gz",  

                        ) 

dataserver_test = Prova1.Prova2.MyDataset( 

                          train_or_test = 'test', 

                          dl_studio = dls, 

                          segmenter = segmenter, 

                          dataset_file = "PurdueShapes5MultiObject-1000-

test.gz" 

                        ) 

segmenter.dataserver_train = dataserver_train 

segmenter.dataserver_test = dataserver_test 

 

#Create dataloaders 

segmenter.load_PurdueShapes5MultiObject_dataset(dataserver_train, 

dataserver_test) 

 

model = segmenter.MymUnet(skip_connections=True, depth=16) 

#model = segmenter.mUnet(skip_connections=False, depth=4) 

 

number_of_learnable_params = sum(p.numel() for p in model.parameters() if 

p.requires_grad) 
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print("\n\nThe number of learnable parameters in the model: %d\n" % 

number_of_learnable_params) 

 

num_layers = len(list(model.parameters())) 

print("\nThe number of layers in the model: %d\n\n" % num_layers) 

 

segmenter.run_code_for_training_for_semantic_segmentation(model) 

# model.load_state_dict(torch.load("/home/aolivepe/ECE60146/HW7/DLStudio-

2.3.6/Examples/saved_model")) 

 

print("Start Testing") 

# import pymsgbox 

# response = pymsgbox.confirm("Finished training.  Start testing on 

unseen data?") 

# if response == "OK":  

segmenter.run_code_for_testing_semantic_segmentation(model) 
 


