
Alexandre Olive Pellicer

1

HOMEWORK 7

Alexandre Olive Pellicer

3. Programming tasks

3.1. Execute the semantic segmentation.py script and evaluate both the training loss and the

test results. Provide a brief write-up of your understanding of mUnet and how it carries out

semantic segmentation of an image. By “evaluate” we mean just record the running losses

during training. One of the most commonly used tools for evaluating a semantic

segmentation network is through the IoU loss. If you wish, you can write that code yourself.

But that is not required for this homework.

Training loss:

The following plot contains the “running_loss_segmentation” every 500 iterations. The train

has been done during 6 epochs and a batch_size of 4 as done in the original code.

Fig 1: Plot of the MSE Loss of the PurdueShapes5MultiObject dataset

We can clearly see how the loss decreases converging towards a minimum although it does

some fluctuations. It looks like by increasing the number of epochs the loss wouldn’t be

reduced much more since it looks like it is converging to a minimum.

Alexandre Olive Pellicer

2

Test results:

In order to do a qualitative analysis of the obtained results, we have plotted the testing images

from the batch number 1, 50, 100, 150 and 200 with their predicted mask. These are the

obtained results:

Batch 1 Batch 50 Batch 100

Batch 150 Batch 200

Fig 2: Predicted masks obtained using the PurdueShapes5MultiObject testing dataset

In general, the performance is good although we can see that there isn’t a lot of precision

when it comes to specify correctly the boundaries. This also generates some confusion when it

Alexandre Olive Pellicer

3

comes to classify the detected objects, for example, between ovals and rectangles. Looking at

each batch we can say:

• Batch 1: we can see that the ovals from the first and fourth images (from left to right)

aren’t detected correctly since they are classified as rectangles. Their mask doesn’t

correctly fit with their real shape.

• Batch 50: in the second image we can see that we are misclassifying a rectangle as oval

and that the boundaries of the mask corresponding to the triangle are not accurate.

• Batch 100: in the third image we can see that the boundaries of the mask of the small

oval are not accurate.

• Batch 150: in this case we can see that the performance in the 4 images is good. There

are no relevant mistakes.

• Batch 200: in this case we can see how in the third image we are not being able to

detect the rectangle from the top right of the image. There is no mask associated to it.

Brief write-up of your understanding of mUnet and how it carries out semantic segmentation

of an image:

Since the output of the mUnet is compared with the ground truth mask to compute the loss,

we are forcing the network to predict the mask of the input images. Masks are composed of 5

channels each of them containing the “mask/shape” of the instances contained in the image

corresponding to each of the 5 classes “rectangle, triangle, disk, oval, star”.

About the structure of the mUnet, we first have a convolutional layer that increases the

number of the input image from 3 to 64. By doing this we are creating an embedding vector for

each pixel containing the features that will be learnt during training. Afterwards a

concatenation of several instances of “SkipBlockDN” are called. By doing this the image size is

down sampled from 64x64 (original input size) to 16x16 (size of the feature map in the bottle

neck of the mUnet) and the number of channels is increased from 64 to 128.

Furthermore, there are 3 skip connections that will be used to pass the detailed spatial

information from the encoder to the decoder. These skip connections take half of the channels

at 3 different levels (feature maps) of the encoder and add them (in terms of substitution) at

the corresponding 3 levels (feature maps) of the decoder.

The decoder is composed of a concatenation of several instances of “SkipBlockUP” with which

the feature map from the bottle neck goes from 128 channels and a size of 16x16 to 64

channels and a size of 64x64. A final convolution reduces the number of channels to 5 which

will be the 5 channels that characterize each mask as mentioned above.

To sum up, for segmentation, the encoder-decoder structure is used so that the encoder

gradually reduces the spatial dimensions of the input image to capture high-level features,

while the decoder gradually up samples the feature maps to produce a segmentation map of

the same size as the input image. Skip connections are used to pass the detailed spatial

information from the encoder to the decoder.

Alexandre Olive Pellicer

4

3.2. The run_code_for_training_for_semantic_segmentation function of the

SemanticSegmentation class in DLStudio uses just the MSE loss. MSE loss may not

adequately capture the subtleties of segmentation boundaries. To this end, we will

implement our own Dice loss and augment it with MSE loss and compare it against vanilla

MSE.

3.3. What follows is a code snippet to help you create your own implemenation for Dice Loss.

Make sure you set required_grad=True wherever necessary to ensure backpropagation,

therefore, enabling model learning.

Find the implementation of the dice loss in the code section at the bottom of the document.

3.4. Plot the best- and the worst-case training-loss vs. iterations using just the MSE loss, just

the Dice Loss and a combination of the two. Provide insights into potential factors

contributing to the observed variations in performance.

The following plots contain the “running_loss_segmentation” every 500 iterations for the MSE

loss, the Dice loss and the combination of the MSE and Dice loss. In all cases the train has been

done during 6 epochs and a batch_size of 4 as done in the original code.

Fig 3: Plot of the MSE Loss of the PurdueShapes5MultiObject dataset

Alexandre Olive Pellicer

5

Fig 4: Plot of the Dice Loss of the PurdueShapes5MultiObject dataset

As can be seen, the values of the MSE loss are much bigger than the values of the Dice loss.

Thus, to give to both of them relevance and following the advice from the TA Akshita Kamsali in

Piazza we have given extra weight to the Dice loss with values 20, 30 and 40 so that the total

loss has been computed 3 different times as:

Total loss = MSE loss + {20, 30, 40} * Dice loss

These are the obtained plots:

(a) (b) (c)

Fig 5: (a) Plot of the Total loss = (MSE loss + 20 * Dice loss) of the PurdueShapes5MultiObject

dataset. (b) and (c) represent the same data as in (a) but in 2 different plots so that the loss

curve can be seen clearly.

Alexandre Olive Pellicer

6

(a) (b) (c)

Fig 6: (a) Plot of the Total loss = (MSE loss + 30 * Dice loss) of the PurdueShapes5MultiObject

dataset. (b) and (c) represent the same data as in (a) but in 2 different plots so that the loss

curve can be seen clearly.

(a) (b) (c)

Fig 7: (a) Plot of the Total loss = (MSE loss + 40 * Dice loss) of the PurdueShapes5MultiObject

dataset. (b) and (c) represent the same data as in (a) but in 2 different plots so that the loss

curve can be seen clearly.

Fig 8: Plot containing the loss curves for MSE alone, MSE + 20* Dice, MSE + 30*Dice and MSE +

40* Dice

Alexandre Olive Pellicer

7

Since the MSE loss and the Dice loss are at different orders of magnitude, it is difficult to obtain

clear insights just by looking at the plots of the losses. For this reason, it is better to evaluate

qualitatively the obtained masks as it is done in the following section.

Nevertheless, we can also obtain some conclusions from the showed plots. For example, we

can see that the Dice loss converges towards a lower value when using it combined with the

MSE loss than when using it alone. This behavior happens when using scale_factor = 20, 30, 40.

This is because the MSE loss helps to get a general shape of the mask while the dice loss is

useful to define accurate boundaries of the mask. When using the Dice loss alone without the

MSE loss it is more difficult to reach smaller values.

We can also get some insights from the plot shown in Figure 8. We see that the MSE loss alone

reaches a smaller value compared to the combined loss. This does not give us much

information since the combined losses contain information about the overlap of the predicted

and ground truth masks so that a higher value does not mean a worst performance. In some

way, by comparing the MSE loss with the combined losses we could say that we are comparing

pears with apples. Nevertheless, comparing the 3 combined losses we see that the minimum

value is achieved when using a scale factor of 20.

3.5. State your qualitative observations on the model test results for MSE loss vs. Dice+MSE

loss.

Comparing the results obtained by scaling the Dice loss by a factor of 20, 30 and 40 we have

seen that the best result is achieved when we use scale_factor = 20. For this reason, we directly

compare the results obtained when using the MSE loss alone and the results obtained when

using the combined loss MSE + 20*Dice loss.

Alexandre Olive Pellicer

8

Batch 1 Batch 50

MSE loss MSE loss + 20 * Dice loss MSE loss MSE loss + 20 * Dice loss

Comments:
We can clearly see here how thanks to the Dice loss
the ovals from the firs and fourth image (from left to
right) are correctly classified as “ovals” when using
the MSE + Dice loss and not as rectangles as was
happening when using only the MSE loss

Comments:
We can clearly see how in the second image, when
using the MSE + Dice loss we are correctly classifying a
rectangle as rectangle and not as oval. Furthermore
the mask of the triangle in this same image is more
accurate

Batch 100 Batch 150

MSE loss MSE loss + 20 * Dice loss MSE loss MSE loss + 20 * Dice loss

Comments:
We can see that with the MSE + Dice loss we are
achieving a more accurate mask for one of the ovals from
the third image

Comments:
In this particular case we can see that for the 4 images
the performance is almost the same

Alexandre Olive Pellicer

9

Batch 200

MSE loss MSE loss + 20 * Dice loss

Comments:
In this case we can see how when using the MSE + Dice loss
we are able to get partially part of the mask of one of the
rectangles from the third image that when using only the
MSE loss was not detected

In general, we can see that when using the MSE + Dice loss the performance has been

improved in terms of being more accurate with the boundaries of the masks. Furthermore, we

see that some thin objects that weren’t detected when using the MSE loss alone, are detected

and created a mask for them when using the MSE + Dice loss.

Alexandre Olive Pellicer

10

4. Extra credit:

Creating the dataset:

We create a training and testing dataset using the COCO dataset and its API following the

strategy like the strategy used in previous homeworks. In this case, we pick the images

containing instances of “motorcycle”, “dog” or “cake” that accomplished the following

condition:

• Only contain a single object instance of at least 200 × 200 bounding box.

In order to create a dataset with the same structure as the PurdueShapes5MultiObject dataset,

we created a dictionary with key “index of image” and value a dictionary containing the

following information:

dataset[idx] = {

 0: r,

 1: g,

 2: b,

 3: final_mask,

 4: bbox_dict

 }
 Where r, g and b contain a column array with the value of the pixels of the images for each of

the RGB components respectively. Final_mask is a tensor with the same size as the image and

with 3 channels. The first channel contains the mask of a motorcycle in case it exists with value

50 to identify the mask. The second channel contains the mask of a dog in case it exists with

value 100 to identify the mask. The third channel contains the mask of a cake in case it exists

with value 150 to identify the mask. Bbox_dict contains the bounding boxes of the instances in

the image with a vector [x1, y1, x2, y2] where “1” indicates top left and “2” indicates bottom

right. It must be said that, as has been done with the images, masks and bounding boxes have

been scaled to 256x256. The code used to create the dataset can be found at the end of the

document.

The obtained dataset has the following characteristics:

• Length training dataset: 2606

• Length testing dataset: 119

Repeating the steps from section 3 for our portion of the COCO dataset:

4.1. Execute the semantic segmentation.py script and evaluate both the training loss and the

test results. Provide a brief write-up of your understanding of mUnet and how it carries out

semantic segmentation of an image. By “evaluate” we mean just record the running losses

during training. One of the most commonly used tools for evaluating a semantic

segmentation network is through the IoU loss. If you wish, you can write that code yourself.

But that is not required for this homework.

In this case we have used a batch_size of 4 and trained for 50 epochs. In the loss plots from this

section, we have plot the “running loss” every 50 iterations (i.e. the x axis represent 50

iterations).

Alexandre Olive Pellicer

11

Training loss:

This is the training Loss using only MSE loss:

Fig 9: Plot of the MSE Loss using our portion of the COCO dataset

We can clearly see how the loss decreases converging towards a minimum although it does

some fluctuations. It looks like by increasing the number of epochs the loss wouldn’t be

reduced much more since it looks like it is converging to a minimum.

Testing results:

These are some results obtained using the MSE loss:

Group 1 Group 2 Group 3

Alexandre Olive Pellicer

12

Group 4 Group 5

Fig 10: Predicted masks obtained using our portion of the COCO testing dataset

First of all, it must be said that the first channel of the mask contains the mask of motorcycles,

the second channel contains the mask of dogs and the third channel contains the mask of

cakes. From the obtained results we can see that there are some mistakes in the performance.

On the one hand, some instances are misclassified (i.e. for example, a motorcycle is classified

as a cake). On the other hand, the predicted masks are not very accurate. It must be stated that

in this case we are working with real world images that contain several objects and textures.

Thus, the images from the COCO dataset are more complex than the images from the

PurdueShapes5MultiObject and a decrease in the performance can be expected. Looking at

each of the groups we can obtain the following observations:

• Group 1: some masks are misclassified, and the shapes are not very accurate.

• Group 2: all the masks are correctly classified as dogs. From left to right, we can see

that the first and third masks are not very accurate.

• Group 3: we can see that the performance in the first and last image is acceptable. The

boundaries of the fourth mask aren’t very accurate. The network is not capable of

correctly identifying the masks for the second and third image.

• Group 4: for the first and fourth image the mask is built although the boundaries aren’t

very accurate. For the second image the dog is not detected and for the third image it

looks like the network has confused the dog with the horse. This is something possible

since instances of “dog” and “horse” share several features.

• Group 5: the second and third image create a mask of the cakes although the

boundaries are not very accurate. The first and fourth images deserve some room for

improvement.

New U-Net architecture:

Now we are working with images of size 256x256 that contain 1 instance of 3 different classes_

“dog”, “cake” or “motorcycle”. Since the mUnet given in the DLStudio is used to predict the

masks for images of size 64x64 containing instances of 5 different classes, we need to do some

modifications so that it can work with our new requirements.

Alexandre Olive Pellicer

13

The first change that is made is the number of channels that the output of the network will

have. We changed it from 5 to 3 since now we are dealing with only 3 images.

Another change that we make is increasing the depth of the network by incrementing the

number of down sample and up sample layers following the original structure from mUnet.

One of the characteristics from a U-Net architecture is reducing the amount of information in

the bottleneck so that only the relevant information is kept and the noisy information is

removed so that the relation between the pixels of the input image is learnt as desired. In the

original mUnet the input feature map is down sampled and increased the number of channels

from 64x32x32 to 128x16x16. If we didn’t increase the depth of the network, we would go

from a 64x256x256 input to a 128x64x64 feature map in the bottleneck. The size of the feature

map of the bottleneck might not be small enough to remove the noise. Thus, we add 2 more

down sample and up sample layers with their respective skip connections so that the feature

map in the bottleneck is of size 512x16x16.

4.2. The run_code_for_training_for_semantic_segmentation function of the

SemanticSegmentation class in DLStudio uses just the MSE loss. MSE loss may not

adequately capture the subtleties of segmentation boundaries. To this end, we will

implement our own Dice loss and augment it with MSE loss and compare it against vanilla

MSE.

4.3. What follows is a code snippet to help you create your own implemenation for Dice Loss.

Make sure you set required_grad=True wherever necessary to ensure backpropagation,

therefore, enabling model learning.

The dice loss used in this section is the same as presented in Section 3

4.4. Plot the best- and the worst-case training-loss vs. iterations using just the MSE loss, just

the Dice Loss and a combination of the two. Provide insights into potential factors

contributing to the observed variations in performance.

Fig 11: Plot of the MSE Loss using our portion of the COCO dataset

Alexandre Olive Pellicer

14

Fig 12: Plot of the Dice Loss using our portion of the COCO dataset

Fig 13: Plot containing the loss curves for MSE alone, MSE + 20* Dice, MSE + 40*Dice and MSE

+ 80* Dice

(a) (b) (c)

Fig 14: (a) Plot of the Total loss = (MSE loss + 80 * Dice loss) of our portion of the COCO dataset.

(b) and (c) represent the same data as in (a) but in 2 different plots so that the loss curve can

be seen clearly.

Alexandre Olive Pellicer

15

Since the MSE loss and the Dice loss are at different orders of magnitude, it is difficult to obtain

clear insights just by looking at the plots of the losses. For this reason, it is better to evaluate

qualitatively the obtained masks as it is done in the following section.

Nevertheless, we can also obtain some conclusions from the showed plots. For example, we

can see that the Dice loss converges towards a lower value when using it combined with the

MSE loss than when using it alone. This is because the MSE loss helps to get a general shape of

the mask while the dice loss is useful to define accurate boundaries of the mask. When using

the Dice loss alone without the MSE loss it is more difficult to reach smaller values.

We can also get some insights from the plot shown in Figure 13. It can be seen that the

performance when using a scale factor of 20, 40 or 80 is very similar. By doing a qualitative

evaluation for each of these 3 different values of the scale factor, we saw that the best results

were obtained when scale_factor = 80. That is the reason why we add Figure 14 with the plots

of the loss when using a scale_factor=80 and why in the next section we also present the

results for scale_factor=80.

4.5. State your qualitative observations on the model test results for MSE loss vs. Dice+MSE

loss

Comparing the results obtained by scaling the Dice loss by a factor of 20, 40 and 80 we have

seen that the best result is achieved when we use scale_factor = 80. For this reason, we directly

compare the results obtained when using the MSE loss alone and the results obtained when

using the combined loss MSE + 80*Dice loss.

Group 1 Group 2

MSE loss MSE loss + 80 * Dice loss MSE loss MSE loss + 80 * Dice loss

Comments:
In this case we can clearly see an improvement when
using the MSE + Dice loss. All the masks are classified as
motorcycles and the shapes are more accurate although
they are not perfect yet.

Comments:
We can see that the performance has improved when
using the MSE+Dice loss for the boundaries of the masks
for the first, third and fourth images. Nevertheless, we can
note that the mask of the second image is worst
compared to the one obtained when using only the MSE
loss.

Alexandre Olive Pellicer

16

Group 3 Group 4

MSE loss MSE loss + 80 * Dice loss MSE loss MSE loss + 80 * Dice loss

Comments:
We can see a slightly performance in the boundaries of
the mask of the first and third image when using the
MSE + Dice loss. For the second and third image we are
not reconstructing any mask.

Comments:
Using the MSE + Dice loss we are still not being able to
predict a mask for the dog from the second image. The
performance for the first image hasn’t changed a lot. In
the third image we can see that with the MSE + Dice
loss we are reconstructing the mask from the dog and
not from the horse as it was happening when using the
MSE loss alone.

Group 5

MSE loss MSE loss + 80 * Dice loss

Comments:
In this case we can see that using the MSE + Dice loss
we are able to predict the mask of the second image
with more accurate boundaries. For the fourth image
we see that the network is confusing a plate of soup
with a cake due to their similarity. The performance for
the first image is almost the same using the MSE loss
alone and using the MSE+Dice loss

In general, we can see that when using the combination of MSE +80* Dice loss the results are

better than using the MSE alone. Nevertheless, we can find some singular cases where this is

not the exact behavior. We can also state that, although there is a general improvement when

using the MSE + 80*Dice loss, in some cases the masks are not accurate yet. In the

Alexandre Olive Pellicer

17

PurdueShapes5MultiObject dataset all the images had a solid black background and the

different instances were also from a solid color (for example, we could have a pink star over a

black background). The simplicity of the input images helps to predict more accurate masks.

The COCO dataset contains real world images (i.e. images with several objects and several

textures, thus several edges and boundaries) which are complex due to their naturality. Thus, it

is expected that the masks predicted by the network are not as accurate as the ones obtained

when using the PurdueShapes5MultiObject dataset.

CODE SECTION 3

Semantic_segmentation_combined.py

#!/usr/bin/env python

semantic_segmentation.py

import random

import numpy

import torch

import os, sys

import sys,os,os.path

import torch

import torch.nn as nn

import torch.nn.functional as F

import torchvision

import torchvision.transforms as tvt

import torch.optim as optim

import numpy as np

from PIL import ImageFilter

import numbers

import re

import math

import random

import copy

import matplotlib.pyplot as plt

import gzip

import pickle

import pymsgbox

import time

import logging

import torchvision.transforms.functional as TF

from DLStudio import *

WE CREATE SUPERCLASSES TO OVERWRITE THE FOLLOWING FUNCTIONS FROM THE

DLSTUDIO LIBRARY:

Alexandre Olive Pellicer

18

run_code_for_training_for_semantic_segmentation(self, net)

WE IMPLEMENT THE COMBINED LOSS AND SAVE THE RUNNING LOSS VALUES TO

DISPLAY THEM LATER IN PLOTS

run_code_for_testing_semantic_segmentation(self, net)

WE MODIFY THE CODE IN ORDER TO SAVE THE TESTING IMAGES WITH THEIR

MASKS

WE ADD THE METHOD dice_loss IMPLEMENTED FOLLOWING THE INSTRUCTIONS FROM

SECTION 3.3

THE REST OF THE CODE IS TAKEN FROM THE DLSTUDIO LIBRARY

class Prova1(DLStudio):

 class Prova2(DLStudio.SemanticSegmentation):

 # WE ADD THE METHOD dice_loss IMPLEMENTED FOLLOWING THE

INSTRUCTIONS FROM SECTION 3.3

 def dice_loss (self, preds : torch.Tensor, ground_truth :

torch.Tensor, epsilon =1e-6):

 """

 inputs :

 preds : predicted mask

 ground_truth : ground truth mask

 epsilon (float): prevents division by zero

 returns :

 dice_loss

 """

 # Step 1: Compute Dice Coefficient.

 numerator = torch.sum(preds * ground_truth, dim=(2, 3))

 denominator = torch.sum(preds * preds, dim=(2, 3)) +

torch.sum(ground_truth * ground_truth, dim=(2, 3))

 # Step 2: Compute dice_coefficient

 dice_coefficient = (2 * numerator) / (denominator + epsilon)

 # Step 3: Compute dice_loss

 dice_loss = 1 - dice_coefficient

 return dice_loss.mean()

 def run_code_for_training_for_semantic_segmentation(self, net):

 filename_for_out1 = "performance_numbers_" +

str(self.dl_studio.epochs) + ".txt"

 FILE1 = open(filename_for_out1, 'w')

 net = copy.deepcopy(net)

 net = net.to(self.dl_studio.device)

 optimizer = optim.SGD(net.parameters(),

 lr=self.dl_studio.learning_rate,

momentum=self.dl_studio.momentum)

 start_time = time.perf_counter()

Alexandre Olive Pellicer

19

 criterion1_loss = []

 criterion2_loss = []

 criterion3_loss = []

 criterion1 = nn.MSELoss()

 for epoch in range(self.dl_studio.epochs):

 print("")

 running_loss = 0.0

 running_mse_loss = 0.0

 running_dice_loss = 0.0

 for i, data in enumerate(self.train_dataloader):

 im_tensor,mask_tensor,bbox_tensor

=data['image'],data['mask_tensor'],data['bbox_tensor']

 im_tensor = im_tensor.to(self.dl_studio.device)

 mask_tensor = mask_tensor.type(torch.FloatTensor)

 mask_tensor = mask_tensor.to(self.dl_studio.device)

 bbox_tensor = bbox_tensor.to(self.dl_studio.device)

 optimizer.zero_grad()

 output = net(im_tensor)

 #WE IMPLEMENT THE COMBINED LOSS. WE CREATE A LOSS

VECTOR AND SET required_grad=True TO ENSURE BACKPROPAGATION

 loss = torch.tensor(0.0,

requires_grad=True).float().to(self.dl_studio.device)

 mse_loss = criterion1(output, mask_tensor)

 dice_loss = self.dice_loss(preds=output,

ground_truth=mask_tensor)

 loss = mse_loss + 40 * dice_loss

 loss.backward()

 optimizer.step()

 running_loss += loss.item()

 running_mse_loss += mse_loss.item()

 running_dice_loss += dice_loss.item()

 if i%500==499:

 current_time = time.perf_counter()

 elapsed_time = current_time - start_time

 avg_loss = running_loss / float(500)

 avg_mse_loss = running_mse_loss / float(500)

 avg_dice_loss = running_dice_loss / float(500)

Alexandre Olive Pellicer

20

 #WE SAVE THE RUNNING LOSS VALUES TO DISPLAY THEM

LATER IN PLOTS

 criterion1_loss.append(running_loss)

 criterion2_loss.append(running_mse_loss)

 criterion3_loss.append(running_dice_loss)

 print("[epoch=%d/%d, iter=%4d elapsed_time=%3d

secs] loss: %.3f, MSE loss: %.3f, Dice loss: %.3f" % (epoch+1,

self.dl_studio.epochs, i+1, elapsed_time, avg_loss, avg_mse_loss,

avg_dice_loss))

 FILE1.write("%.3f\n" % avg_loss)

 FILE1.flush()

 running_loss = 0.0

 running_mse_loss = 0.0

 running_dice_loss = 0.0

 print("\nFinished Training\n")

 self.save_model(net)

 dictionary_losses = {}

 nombre_imagen = 'yes'

 dictionary_losses[nombre_imagen] = {

 'criterion1': criterion1_loss,

 'criterion2': criterion2_loss,

 'criterion3': criterion3_loss,

 }

 with open('/home/aolivepe/ECE60146/HW7/DLStudio-

2.3.6/Examples/dictionary_Combined_scaleDice_40.pkl', 'wb') as archivo:

 pickle.dump(dictionary_losses, archivo)

 def save_model(self, model):

 '''

 Save the trained model to a disk file

 '''

 torch.save(model.state_dict(),

self.dl_studio.path_saved_model)

 def run_code_for_testing_semantic_segmentation(self, net):

net.load_state_dict(torch.load(self.dl_studio.path_saved_model))

 batch_size = self.dl_studio.batch_size

 image_size = self.dl_studio.image_size

 max_num_objects = self.max_num_objects

 with torch.no_grad():

 for i, data in enumerate(self.test_dataloader):

Alexandre Olive Pellicer

21

 im_tensor,mask_tensor,bbox_tensor

=data['image'],data['mask_tensor'],data['bbox_tensor']

 if i % 50 == 0:

 aa= i+1

 print("\n\n\n\nShowing output for test batch %d:

" % (aa))

 outputs = net(im_tensor)

 ## In the statement below: 1st arg for batch

items, 2nd for channels, 3rd and 4th for image size

 output_bw_tensor =

torch.zeros(batch_size,1,image_size[0],image_size[1], dtype=float)

 for image_idx in range(batch_size):

 for layer_idx in range(max_num_objects):

 for m in range(image_size[0]):

 for n in range(image_size[1]):

 output_bw_tensor[image_idx,0,m,n]

 = torch.max(outputs[image_idx,:,m,n])

 display_tensor = torch.zeros(7 *

batch_size,3,image_size[0],image_size[1], dtype=float)

 for idx in range(batch_size):

 for bbox_idx in range(max_num_objects):

 bb_tensor = bbox_tensor[idx,bbox_idx]

 for k in range(max_num_objects):

 i1 = int(bb_tensor[k][1])

 i2 = int(bb_tensor[k][3])

 j1 = int(bb_tensor[k][0])

 j2 = int(bb_tensor[k][2])

 output_bw_tensor[idx,0,i1:i2,j1] =

255

 output_bw_tensor[idx,0,i1:i2,j2] =

255

 output_bw_tensor[idx,0,i1,j1:j2] =

255

 output_bw_tensor[idx,0,i2,j1:j2] =

255

 im_tensor[idx,0,i1:i2,j1] = 255

 im_tensor[idx,0,i1:i2,j2] = 255

 im_tensor[idx,0,i1,j1:j2] = 255

 im_tensor[idx,0,i2,j1:j2] = 255

 display_tensor[:batch_size,:,:,:] =

output_bw_tensor

 display_tensor[batch_size:2*batch_size,:,:,:] =

im_tensor

 for batch_im_idx in range(batch_size):

 for mask_layer_idx in range(max_num_objects):

 for i in range(image_size[0]):

 for j in range(image_size[1]):

 if mask_layer_idx == 0:

Alexandre Olive Pellicer

22

 if 25 <

outputs[batch_im_idx,mask_layer_idx,i,j] < 85:

outputs[batch_im_idx,mask_layer_idx,i,j] = 255

 else:

outputs[batch_im_idx,mask_layer_idx,i,j] = 50

 elif mask_layer_idx == 1:

 if 65 <

outputs[batch_im_idx,mask_layer_idx,i,j] < 135:

outputs[batch_im_idx,mask_layer_idx,i,j] = 255

 else:

outputs[batch_im_idx,mask_layer_idx,i,j] = 50

 elif mask_layer_idx == 2:

 if 115 <

outputs[batch_im_idx,mask_layer_idx,i,j] < 185:

outputs[batch_im_idx,mask_layer_idx,i,j] = 255

 else:

outputs[batch_im_idx,mask_layer_idx,i,j] = 50

 elif mask_layer_idx == 3:

 if 165 <

outputs[batch_im_idx,mask_layer_idx,i,j] < 230:

outputs[batch_im_idx,mask_layer_idx,i,j] = 255

 else:

outputs[batch_im_idx,mask_layer_idx,i,j] = 50

 elif mask_layer_idx == 4:

 if

outputs[batch_im_idx,mask_layer_idx,i,j] > 210:

outputs[batch_im_idx,mask_layer_idx,i,j] = 255

 else:

outputs[batch_im_idx,mask_layer_idx,i,j] = 50

display_tensor[2*batch_size+batch_size*mask_layer_idx+batch_im_idx,:,:,:]

= outputs[batch_im_idx,mask_layer_idx,:,:]

 #WE MODIFY THE CODE IN ORDER TO SAVE THE TESTING

IMAGES WITH THEIR MASKS

 # self.dl_studio.display_tensor_as_image(

 # torchvision.utils.make_grid(display_tensor,

nrow=batch_size, normalize=True, padding=2, pad_value=10))

Alexandre Olive Pellicer

23

 image =

TF.to_pil_image(torchvision.utils.make_grid(display_tensor,

nrow=batch_size, normalize=True, padding=2, pad_value=10))

image.save(f"/home/aolivepe/ECE60146/HW7/DLStudio-

2.3.6/Examples/testing_imgs_comb_40/{aa}.png")

WE USE THE NAME OF THE SUPERCLASSES THAT WE HAVE CREATED

dls = Prova1(

 dataroot = "./../../data/",

 image_size = [64,64],

 path_saved_model = "./saved_model",

 momentum = 0.9,

 learning_rate = 1e-4,

 epochs = 6,

 batch_size = 4,

 classes =

('rectangle','triangle','disk','oval','star'),

 use_gpu = True,

)

segmenter = Prova1.Prova2(

 dl_studio = dls,

 max_num_objects = 5,

)

dataserver_train = Prova1.Prova2.PurdueShapes5MultiObjectDataset(

 train_or_test = 'train',

 dl_studio = dls,

 segmenter = segmenter,

 dataset_file = "PurdueShapes5MultiObject-10000-

train.gz",

)

dataserver_test = Prova1.Prova2.PurdueShapes5MultiObjectDataset(

 train_or_test = 'test',

 dl_studio = dls,

 segmenter = segmenter,

 dataset_file = "PurdueShapes5MultiObject-1000-

test.gz"

)

segmenter.dataserver_train = dataserver_train

segmenter.dataserver_test = dataserver_test

segmenter.load_PurdueShapes5MultiObject_dataset(dataserver_train,

dataserver_test)

model = segmenter.mUnet(skip_connections=True, depth=16)

#model = segmenter.mUnet(skip_connections=False, depth=4)

Alexandre Olive Pellicer

24

number_of_learnable_params = sum(p.numel() for p in model.parameters() if

p.requires_grad)

print("\n\nThe number of learnable parameters in the model: %d\n" %

number_of_learnable_params)

num_layers = len(list(model.parameters()))

print("\nThe number of layers in the model: %d\n\n" % num_layers)

segmenter.run_code_for_training_for_semantic_segmentation(model)

import pymsgbox

response = pymsgbox.confirm("Finished training. Start testing on

unseen data?")

if response == "OK":

segmenter.run_code_for_testing_semantic_segmentation(model)

CODE SECTION 4

Creation of the dataset

import torchvision.transforms as tvt

import cv2

from PIL import Image

import skimage.io as io

from pycocotools.coco import COCO

import os

import random

from torch.utils.data import DataLoader

import torch

import torch.nn as nn

import torch.nn.functional as F

from tqdm import tqdm

import matplotlib.pyplot as plt

import numpy as np

import skimage

import pickle

from skimage.transform import resize

#Data to use for either the training or validation dataset

full_COCO_training_path = "../../../../Downloads/train2017/train2017"

full_COCO_validation_path = "../../../../Downloads/val2017/val2017"

our_COCO_training_path = "./HW7_TRAINING_DATASET"

our_COCO_validation_path = "./HW7_VALIDATION_DATASET"

Alexandre Olive Pellicer

25

annotations_training_path =

"./../HW6/annotations/instances_train2017.json"

annotations_validation_path =

"./../HW6/annotations/instances_val2017.json"

coco=COCO(annotations_validation_path)

Mapping from COCO label to Class indices

classes = ["dog", "cake", "motorcycle"]

catIds = coco.getCatIds(catNms=classes)

categories = coco.loadCats(catIds)

categories.sort(key=lambda x: x['id'])

coco_labels_inverse = {}

for idx, in_class in enumerate(classes):

 for c in categories:

 if c['name'] == in_class:

 coco_labels_inverse[c['id']] = idx

#4: motorcycle, 18: dog, 61: cake

Save in an array the image ids of the images containing instance of 2

or more of the targeted classes

imgIds_4_18 = coco.getImgIds(catIds=[4, 18])

imgIds_4_61 = coco.getImgIds(catIds=[4, 61])

imgIds_61_18 = coco.getImgIds(catIds=[61, 18])

imgIds_4_61_18 = coco.getImgIds(catIds=[4, 61, 18])

total_ids = imgIds_4_18 + imgIds_4_61 + imgIds_61_18 + imgIds_4_61_18

print(len(total_ids))

dataset = {}

a = 0

Iterate 3 times each over the images containing instances of ["dog",

"cake", "motorcycle"] and if accomplish the requirements, add it to the

dataset

for i, cat_id in enumerate(catIds):

 imgIds = coco.getImgIds(catIds=cat_id)

 # Remove the images containing instance of 2 or more of the targeted

classes

 filtered_array = [x for x in imgIds if x not in total_ids]

 for j, img_id in enumerate(filtered_array):

 annIds = coco.getAnnIds(imgIds=img_id, catIds=cat_id,

iscrowd=False)

 anns = coco.loadAnns(annIds)

 # If there is more than one instance of one class in the image we

skip it

Alexandre Olive Pellicer

26

 if len(anns) != 1:

 continue

 # Get the r, g, b arrays to save in the final dictionary resized

to 256x256

 img = coco.loadImgs(img_id)[0]

 I = io.imread(os.path.join(full_COCO_validation_path,

img['file_name']))

 if len(I.shape) == 2:

 I = skimage.color.gray2rgb(I)

 img_h, img_w = I.shape[0], I.shape[1]

 I = resize(I, (256, 256), anti_aliasing=True,

preserve_range=True)

 image = np.uint8(I)

 r = image[:,:,0]

 g = image[:,:,1]

 b = image[:,:,2]

 # Reshaping each channel into a 1D array

 r = r.reshape(-1, 1) # Reshape to (256*256, 1)

 g = g.reshape(-1, 1)

 b = b.reshape(-1, 1)

 area = True

 for i, ann in enumerate(anns):

 # If the area of the bounding box is lower than 200*200 we

skip it

 if ann['area']<200*200:

 area=False

 continue

 # Get the bounding box and mask resized to 256x256

 [x, y, w, h] = ann['bbox']

 bbox = [x*(256/img_w), y*(256/img_h), w*(256/img_w),

h*(256/img_h)]

 mask = coco.annToMask(ann)

 mask = resize(mask, (256, 256), anti_aliasing=True,

preserve_range=True)

 threshold = 0.5

 # Binarize the array

 mask = (mask > threshold).astype(int)

 # Save the mask and the bounding box following the

characteristics mentioned at the beginning of section 4

 final_mask = torch.zeros(3, 256, 256)

 if cat_id == 4:

Alexandre Olive Pellicer

27

 final_mask[0, :, :] = torch.from_numpy(mask)*50

 bbox_dict = {

 0:[[x*(256/img_w), y*(256/img_h), x*(256/img_w) +

w*(256/img_w), y*(256/img_h) + h*(256/img_h)]],

 1:[],

 2:[]

 }

 if cat_id == 18:

 final_mask[1, :, :] = torch.from_numpy(mask)*100

 bbox_dict = {

 0:[],

 1:[[x*(256/img_w), y*(256/img_h), x*(256/img_w) +

w*(256/img_w), y*(256/img_h) + h*(256/img_h)]],

 2:[]

 }

 if cat_id == 61:

 final_mask[2, :, :] = torch.from_numpy(mask)*150

 bbox_dict = {

 0:[],

 1:[],

 2:[[x*(256/img_w), y*(256/img_h), x*(256/img_w) +

w*(256/img_w), y*(256/img_h) + h*(256/img_h)]]

 }

 if area == False:

 continue

 # We create a dictionary called dataset where for each image with

index "a" we save the following information

 dataset[a] = {

 0: r,

 1: g,

 2: b,

 3: final_mask,

 4: bbox_dict

 }

 a = a+1

 print(f"**Acumulated** Num of images labeled with cat_id {cat_id}:

{a}")

#Save the dictionary in a "pkl" file

with open('validation_dataset.pkl', 'wb') as file:

 pickle.dump(dataset, file)

semantic_segmentation_combined_COCO.py

#!/usr/bin/env python

Alexandre Olive Pellicer

28

semantic_segmentation.py

import random

import numpy

import torch

import os, sys

import sys,os,os.path

import torch

import torch.nn as nn

import torch.nn.functional as F

import torchvision

import torchvision.transforms as tvt

import torch.optim as optim

import numpy as np

from PIL import ImageFilter

import numbers

import re

import math

import random

import copy

import matplotlib.pyplot as plt

import gzip

import pickle

import pymsgbox

import time

import logging

import torchvision.transforms.functional as TF

from DLStudio import *

WE CREATE SUPERCLASSES TO OVERWRITE THE FOLLOWING FUNCTIONS FROM THE

DLSTUDIO LIBRARY:

run_code_for_training_for_semantic_segmentation(self, net)

WE IMPLEMENT THE COMBINED LOSS AND SAVE THE RUNNING LOSS VALUES TO

DISPLAY THEM LATER IN PLOTS

run_code_for_testing_semantic_segmentation(self, net)

WE MODIFY THE CODE IN ORDER TO SAVE THE TESTING IMAGES WITH THEIR

MASKS

WE ADD THE METHOD dice_loss IMPLEMENTED FOLLOWING THE INSTRUCTIONS FROM

SECTION 3.3

WE CREATE A SUPERCLASS OF THE DATASET CLASS TO OVERWRITE ITS METHODS

Alexandre Olive Pellicer

29

WE CREATE A SUPERCLASS OF THE mUnet CLASS TO OVERWRITE ITS METHODS

THE REST OF THE CODE IS TAKEN FROM THE DLSTUDIO LIBRARY

class Prova1(DLStudio):

 class Prova2(DLStudio.SemanticSegmentation):

 class MyDataset(torch.utils.data.Dataset):

 def __init__(self, dl_studio, segmenter, train_or_test,

dataset_file):

 super(Prova1.Prova2.MyDataset, self).__init__()

 max_num_objects = segmenter.max_num_objects

 if train_or_test == 'train':

 print("\nLoading training data from torch saved

file")

 # Load dictionary with training dataset

 with

open('/home/aolivepe/ECE60146/HW7/training_dataset.pkl', 'rb') as file:

 self.dataset = pickle.load(file)

 self.label_map = {

 'motorcycle': 50,

 'dog': 100,

 'cake': 150

 }

 self.num_shapes = len(self.label_map)

 self.image_size = dl_studio.image_size

 else:

 # Load dictionary with testing dataset

 with

open('/home/aolivepe/ECE60146/HW7/validation_dataset.pkl', 'rb') as file:

 self.dataset = pickle.load(file)

 self.label_map = {

 'motorcycle': 50,

 'dog': 100,

 'cake': 150

 }

 # reverse the key-value pairs in the label

dictionary:

 self.class_labels = {

 50: 'motorcycle',

 100: 'dog',

 150: 'cake'

 }

 self.num_shapes = len(self.class_labels)

 self.image_size = dl_studio.image_size

Alexandre Olive Pellicer

30

 def __len__(self):

 return len(self.dataset)

 def __getitem__(self, idx):

 # Creating image

 image_size = self.image_size

 r = np.array(self.dataset[idx][0])

 g = np.array(self.dataset[idx][1])

 b = np.array(self.dataset[idx][2])

 R,G,B = r.reshape(image_size[0],image_size[1]),

g.reshape(image_size[0],image_size[1]),

b.reshape(image_size[0],image_size[1])

 im_tensor = torch.zeros(3,image_size[0],image_size[1],

dtype=torch.float)

 im_tensor[0,:,:] = torch.from_numpy(R)

 im_tensor[1,:,:] = torch.from_numpy(G)

 im_tensor[2,:,:] = torch.from_numpy(B)

 # Getting mask

 mask_array = np.array(self.dataset[idx][3])

 max_num_objects = len(mask_array[0])

 mask_tensor = torch.from_numpy(mask_array)

 mask_val_to_bbox_map = self.dataset[idx][4]

 max_bboxes_per_entry_in_map = max([

len(mask_val_to_bbox_map[key]) for key in mask_val_to_bbox_map])

 ## The first arg 5 is for the number of bboxes we are

going to need. If all the

 ## shapes are exactly the same, you are going to need

five different bbox'es.

 ## The second arg is the index reserved for each shape

in a single bbox

 bbox_tensor =

torch.zeros(max_num_objects,self.num_shapes,4, dtype=torch.float)

 for bbox_idx in range(max_bboxes_per_entry_in_map):

 for key in mask_val_to_bbox_map:

 if len(mask_val_to_bbox_map[key]) == 1:

 if bbox_idx == 0:

 bbox_tensor[bbox_idx,key,:] =

torch.from_numpy(np.array(mask_val_to_bbox_map[key][bbox_idx]))

 elif len(mask_val_to_bbox_map[key]) > 1 and

bbox_idx < len(mask_val_to_bbox_map[key]):

 bbox_tensor[bbox_idx,key,:] =

torch.from_numpy(np.array(mask_val_to_bbox_map[key][bbox_idx]))

 sample = {'image' : im_tensor,

 'mask_tensor' : mask_tensor,

Alexandre Olive Pellicer

31

 'bbox_tensor' : bbox_tensor }

 return sample

 class MymUnet(nn.Module):

 # EXTENSION OF THE mUnet PROVIDED IN DLSTUDIO BUILT FOLLOWING

THE EXPLANATIONS FROM SECTION 4.1.

 def __init__(self, skip_connections=True, depth=16):

 super(Prova1.Prova2.MymUnet, self).__init__()

 self.depth = depth // 2

 self.conv_in = nn.Conv2d(3, 64, 3, padding=1)

 ## For the DN arm of the U:

 self.bn1DN = nn.BatchNorm2d(64)

 self.bn2DN = nn.BatchNorm2d(128)

 self.bn3DN = nn.BatchNorm2d(256)

 self.bn4DN = nn.BatchNorm2d(512)

 self.skip64DN_arr = nn.ModuleList()

 for i in range(self.depth):

self.skip64DN_arr.append(DLStudio.SemanticSegmentation.SkipBlockDN(64,

64, skip_connections=skip_connections))

 self.skip64dsDN =

DLStudio.SemanticSegmentation.SkipBlockDN(64, 64, downsample=True,

skip_connections=skip_connections)

 self.skip64to128DN =

DLStudio.SemanticSegmentation.SkipBlockDN(64, 128,

skip_connections=skip_connections)

 self.skip128DN_arr = nn.ModuleList()

 for i in range(self.depth):

self.skip128DN_arr.append(DLStudio.SemanticSegmentation.SkipBlockDN(128,

128, skip_connections=skip_connections))

 self.skip128dsDN =

DLStudio.SemanticSegmentation.SkipBlockDN(128,128, downsample=True,

skip_connections=skip_connections)

 self.skip128to256DN =

DLStudio.SemanticSegmentation.SkipBlockDN(128, 256,

skip_connections=skip_connections)

 self.skip256DN_arr = nn.ModuleList()

 for i in range(self.depth):

self.skip256DN_arr.append(DLStudio.SemanticSegmentation.SkipBlockDN(256,

256, skip_connections=skip_connections))

Alexandre Olive Pellicer

32

 self.skip256dsDN =

DLStudio.SemanticSegmentation.SkipBlockDN(256,256, downsample=True,

skip_connections=skip_connections)

 self.skip256to512DN =

DLStudio.SemanticSegmentation.SkipBlockDN(256, 512,

skip_connections=skip_connections)

 self.skip512DN_arr = nn.ModuleList()

 for i in range(self.depth):

self.skip512DN_arr.append(DLStudio.SemanticSegmentation.SkipBlockDN(512,

512, skip_connections=skip_connections))

 self.skip512dsDN =

DLStudio.SemanticSegmentation.SkipBlockDN(512,512, downsample=True,

skip_connections=skip_connections)

 ## For the UP arm of the U:

 self.bn1UP = nn.BatchNorm2d(512)

 self.bn2UP = nn.BatchNorm2d(256)

 self.bn3UP = nn.BatchNorm2d(128)

 self.bn4UP = nn.BatchNorm2d(64)

 self.skip64UP_arr = nn.ModuleList()

 for i in range(self.depth):

self.skip64UP_arr.append(DLStudio.SemanticSegmentation.SkipBlockUP(64,

64, skip_connections=skip_connections))

 self.skip64usUP =

DLStudio.SemanticSegmentation.SkipBlockUP(64, 64, upsample=True,

skip_connections=skip_connections)

 self.skip128to64UP =

DLStudio.SemanticSegmentation.SkipBlockUP(128, 64,

skip_connections=skip_connections)

 self.skip128UP_arr = nn.ModuleList()

 for i in range(self.depth):

self.skip128UP_arr.append(DLStudio.SemanticSegmentation.SkipBlockUP(128,

128, skip_connections=skip_connections))

 self.skip128usUP =

DLStudio.SemanticSegmentation.SkipBlockUP(128,128, upsample=True,

skip_connections=skip_connections)

 self.skip256to128UP =

DLStudio.SemanticSegmentation.SkipBlockUP(256, 128,

skip_connections=skip_connections)

Alexandre Olive Pellicer

33

 self.skip256UP_arr = nn.ModuleList()

 for i in range(self.depth):

self.skip256UP_arr.append(DLStudio.SemanticSegmentation.SkipBlockUP(256,

256, skip_connections=skip_connections))

 self.skip256usUP =

DLStudio.SemanticSegmentation.SkipBlockUP(256,256, upsample=True,

skip_connections=skip_connections)

 self.skip512to256UP =

DLStudio.SemanticSegmentation.SkipBlockUP(512, 256,

skip_connections=skip_connections)

 self.skip512UP_arr = nn.ModuleList()

 for i in range(self.depth):

self.skip512UP_arr.append(DLStudio.SemanticSegmentation.SkipBlockUP(512,

512, skip_connections=skip_connections))

 self.skip512usUP =

DLStudio.SemanticSegmentation.SkipBlockUP(512,512, upsample=True,

skip_connections=skip_connections)

 self.conv_out = nn.ConvTranspose2d(64, 3, 3,

stride=2,dilation=2,output_padding=1,padding=2)

 def forward(self, x):

 ## Going down to the bottom of the U:

 x =

nn.MaxPool2d(2,2)(nn.functional.relu(self.conv_in(x)))

 for i,skip64 in

enumerate(self.skip64DN_arr[:self.depth//4]):

 x = skip64(x)

 num_channels_to_save1 = x.shape[1] // 2

 save_for_upside_1 =

x[:,:num_channels_to_save1,:,:].clone()

 x = self.skip64dsDN(x)

 for i,skip64 in

enumerate(self.skip64DN_arr[self.depth//4:]):

 x = skip64(x)

 x = self.bn1DN(x)

 num_channels_to_save2 = x.shape[1] // 2

 save_for_upside_2 =

x[:,:num_channels_to_save2,:,:].clone()

 x = self.skip64to128DN(x)

Alexandre Olive Pellicer

34

 for i,skip128 in

enumerate(self.skip128DN_arr[:self.depth//4]):

 x = skip128(x)

 num_channels_to_save3 = x.shape[1] // 2

 save_for_upside_3 =

x[:,:num_channels_to_save3,:,:].clone()

 x = self.skip128dsDN(x)

 for i,skip128 in

enumerate(self.skip128DN_arr[self.depth//4:]):

 x = skip128(x)

 x = self.bn2DN(x)

 num_channels_to_save4 = x.shape[1] // 2

 save_for_upside_4 =

x[:,:num_channels_to_save4,:,:].clone()

 x = self.skip128to256DN(x)

 for i,skip256 in

enumerate(self.skip256DN_arr[:self.depth//4]):

 x = skip256(x)

 num_channels_to_save5 = x.shape[1] // 2

 save_for_upside_5 =

x[:,:num_channels_to_save5,:,:].clone()

 x = self.skip256dsDN(x)

 for i,skip256 in

enumerate(self.skip256DN_arr[self.depth//4:]):

 x = skip256(x)

 x = self.bn3DN(x)

 num_channels_to_save6 = x.shape[1] // 2

 save_for_upside_6 =

x[:,:num_channels_to_save6,:,:].clone()

 x = self.skip256to512DN(x)

 for i,skip512 in

enumerate(self.skip512DN_arr[:self.depth//4]):

 x = skip512(x)

 x = self.bn4DN(x)

 num_channels_to_save7 = x.shape[1] // 2

 save_for_upside_7 =

x[:,:num_channels_to_save7,:,:].clone()

 for i,skip512 in

enumerate(self.skip512DN_arr[self.depth//4:]):

 x = skip512(x)

 x = self.skip512dsDN(x)

 ## Coming up from the bottom of U on the other side:

 x = self.skip512usUP(x)

Alexandre Olive Pellicer

35

 for i,skip512 in

enumerate(self.skip512UP_arr[:self.depth//4]):

 x = skip512(x)

 x[:,:num_channels_to_save7,:,:] = save_for_upside_7

 x = self.bn1UP(x)

 for i,skip512 in

enumerate(self.skip512UP_arr[:self.depth//4]):

 x = skip512(x)

 x = self.skip512to256UP(x)

 for i,skip256 in

enumerate(self.skip256UP_arr[self.depth//4:]):

 x = skip256(x)

 x[:,:num_channels_to_save6,:,:] = save_for_upside_6

 x = self.bn2UP(x)

 x = self.skip256usUP(x)

 for i,skip256 in

enumerate(self.skip256UP_arr[:self.depth//4]):

 x = skip256(x)

 x[:,:num_channels_to_save5,:,:] = save_for_upside_5

 x = self.skip256to128UP(x)

 for i,skip128 in

enumerate(self.skip128UP_arr[self.depth//4:]):

 x = skip128(x)

 x[:,:num_channels_to_save4,:,:] = save_for_upside_4

 x = self.bn3UP(x)

 x = self.skip128usUP(x)

 for i,skip128 in

enumerate(self.skip128UP_arr[:self.depth//4]):

 x = skip128(x)

 x[:,:num_channels_to_save3,:,:] = save_for_upside_3

 x = self.skip128to64UP(x)

 for i,skip64 in

enumerate(self.skip64UP_arr[self.depth//4:]):

 x = skip64(x)

 x[:,:num_channels_to_save2,:,:] = save_for_upside_2

 x = self.bn4UP(x)

 x = self.skip64usUP(x)

 for i,skip64 in

enumerate(self.skip64UP_arr[:self.depth//4]):

 x = skip64(x)

 x[:,:num_channels_to_save1,:,:] = save_for_upside_1

Alexandre Olive Pellicer

36

 x = self.conv_out(x)

 return x

 # WE ADD THE METHOD dice_loss IMPLEMENTED FOLLOWING THE

INSTRUCTIONS FROM SECTION 3.3

 def dice_loss (self, preds : torch.Tensor, ground_truth :

torch.Tensor, epsilon =1e-6):

 """

 inputs :

 preds : predicted mask

 ground_truth : ground truth mask

 epsilon (float): prevents division by zero

 returns :

 dice_loss

 """

 # Step 1: Compute Dice Coefficient.

 numerator = torch.sum(preds * ground_truth, dim=(2, 3))

 denominator = torch.sum(preds * preds, dim=(2, 3)) +

torch.sum(ground_truth * ground_truth, dim=(2, 3))

 # Step 2: Compute dice_coefficient

 dice_coefficient = (2 * numerator) / (denominator + epsilon)

 # Step 3: Compute dice_loss

 dice_loss = 1 - dice_coefficient

 return dice_loss.mean()

 def run_code_for_training_for_semantic_segmentation(self, net):

 filename_for_out1 = "performance_numbers_" +

str(self.dl_studio.epochs) + ".txt"

 FILE1 = open(filename_for_out1, 'w')

 net = copy.deepcopy(net)

 net = net.to(self.dl_studio.device)

 optimizer = optim.SGD(net.parameters(),

 lr=self.dl_studio.learning_rate,

momentum=self.dl_studio.momentum)

 start_time = time.perf_counter()

 criterion1_loss = []

 criterion2_loss = []

 criterion3_loss = []

 criterion1 = nn.MSELoss()

 for epoch in range(self.dl_studio.epochs):

 print("")

Alexandre Olive Pellicer

37

 running_loss = 0.0

 running_mse_loss = 0.0

 running_dice_loss = 0.0

 for i, data in enumerate(self.train_dataloader):

 im_tensor,mask_tensor,bbox_tensor

=data['image'],data['mask_tensor'],data['bbox_tensor']

 im_tensor = im_tensor.to(self.dl_studio.device)

 mask_tensor = mask_tensor.type(torch.FloatTensor)

 mask_tensor = mask_tensor.to(self.dl_studio.device)

 bbox_tensor = bbox_tensor.to(self.dl_studio.device)

 optimizer.zero_grad()

 output = net(im_tensor)

 # print("output: ", output.shape, torch.max(output),

torch.min(output))

 # print("mask_tensor: ", mask_tensor.shape,

torch.max(mask_tensor), torch.min(mask_tensor))

 #WE IMPLEMENT THE COMBINED LOSS. WE CREATE A LOSS

VECTOR AND SET required_grad=True TO ENSURE BACKPROPAGATION

 loss = torch.tensor(0.0,

requires_grad=True).float().to(self.dl_studio.device)

 mse_loss = criterion1(output, mask_tensor)

 dice_loss = self.dice_loss(preds=output,

ground_truth=mask_tensor)

 loss = mse_loss + 80 * dice_loss

 loss.backward()

 optimizer.step()

 running_loss += loss.item()

 running_mse_loss += mse_loss.item()

 running_dice_loss += dice_loss.item()

 if i%50==49:

 current_time = time.perf_counter()

 elapsed_time = current_time - start_time

 avg_loss = running_loss / float(50)

 avg_mse_loss = running_mse_loss / float(50)

 avg_dice_loss = running_dice_loss / float(50)

 #WE SAVE THE RUNNING LOSS VALUES TO DISPLAY THEM

LATER IN PLOTS

 criterion1_loss.append(running_loss)

 criterion2_loss.append(running_mse_loss)

Alexandre Olive Pellicer

38

 criterion3_loss.append(running_dice_loss)

 print("[epoch=%d/%d, iter=%4d elapsed_time=%3d

secs] loss: %.3f, MSE loss: %.3f, Dice loss: %.3f" % (epoch+1,

self.dl_studio.epochs, i+1, elapsed_time, avg_loss, avg_mse_loss,

avg_dice_loss))

 FILE1.write("%.3f\n" % avg_loss)

 FILE1.flush()

 running_loss = 0.0

 running_mse_loss = 0.0

 running_dice_loss = 0.0

 print("\nFinished Training\n")

 self.save_model(net)

 dictionary_losses = {}

 nombre_imagen = 'yes'

 dictionary_losses[nombre_imagen] = {

 'criterion1': criterion1_loss,

 'criterion2': criterion2_loss,

 'criterion3': criterion3_loss,

 }

 with open('/home/aolivepe/ECE60146/HW7/DLStudio-

2.3.6/Examples/dictionary_Combined_scaleDice_80_COCO.pkl', 'wb') as

archivo:

 pickle.dump(dictionary_losses, archivo)

 def save_model(self, model):

 '''

 Save the trained model to a disk file

 '''

 torch.save(model.state_dict(),

self.dl_studio.path_saved_model)

 def run_code_for_testing_semantic_segmentation(self, net):

net.load_state_dict(torch.load(self.dl_studio.path_saved_model))

 batch_size = self.dl_studio.batch_size

 image_size = self.dl_studio.image_size

 max_num_objects = self.max_num_objects

 with torch.no_grad():

 for i, data in enumerate(self.test_dataloader):

 im_tensor,mask_tensor,bbox_tensor

=data['image'],data['mask_tensor'],data['bbox_tensor']

Alexandre Olive Pellicer

39

 if i % 3 == 0:

 aa= i+1

 print("\n\n\n\nShowing output for test batch %d:

" % (aa))

 outputs = net(im_tensor)

 print("output testing: ", outputs.shape)

 ## In the statement below: 1st arg for batch

items, 2nd for channels, 3rd and 4th for image size

 output_bw_tensor =

torch.zeros(batch_size,1,image_size[0],image_size[1], dtype=float)

 for image_idx in range(batch_size):

 for layer_idx in range(max_num_objects):

 for m in range(image_size[0]):

 for n in range(image_size[1]):

 output_bw_tensor[image_idx,0,m,n]

 = torch.max(outputs[image_idx,:,m,n])

 display_tensor = torch.zeros(7 *

batch_size,3,image_size[0],image_size[1], dtype=float)

 for idx in range(batch_size):

 for bbox_idx in range(max_num_objects):

 bb_tensor = bbox_tensor[idx,bbox_idx]

 for k in range(max_num_objects):

 i1 = int(bb_tensor[k][1])

 i2 = int(bb_tensor[k][3])

 j1 = int(bb_tensor[k][0])

 j2 = int(bb_tensor[k][2])

 # I CAN PROBABLY REMOVE THIS

 if i1 > 255:

 i1 = 255

 if i2 > 255:

 i2 = 255

 if j1 > 255:

 j1 = 255

 if j2 > 255:

 j2 = 255

 output_bw_tensor[idx,0,i1:i2,j1] =

255

 output_bw_tensor[idx,0,i1:i2,j2] =

255

 output_bw_tensor[idx,0,i1,j1:j2] =

255

 output_bw_tensor[idx,0,i2,j1:j2] =

255

 im_tensor[idx,0,i1:i2,j1] = 255

 im_tensor[idx,0,i1:i2,j2] = 255

 im_tensor[idx,0,i1,j1:j2] = 255

Alexandre Olive Pellicer

40

 im_tensor[idx,0,i2,j1:j2] = 255

 display_tensor[:batch_size,:,:,:] =

output_bw_tensor

 display_tensor[batch_size:2*batch_size,:,:,:] =

im_tensor

 for batch_im_idx in range(batch_size):

 for mask_layer_idx in range(max_num_objects):

 for i in range(image_size[0]):

 for j in range(image_size[1]):

 if mask_layer_idx == 0:

 #SINCE WE ARE WORKING ONLY

WITH 3 CLASSES, WE REMOVED THE OTHER 2 LEVELS

 if 25 <

outputs[batch_im_idx,mask_layer_idx,i,j] < 85:

outputs[batch_im_idx,mask_layer_idx,i,j] = 255

 else:

outputs[batch_im_idx,mask_layer_idx,i,j] = 50

 elif mask_layer_idx == 1:

 if 65 <

outputs[batch_im_idx,mask_layer_idx,i,j] < 135:

outputs[batch_im_idx,mask_layer_idx,i,j] = 255

 else:

outputs[batch_im_idx,mask_layer_idx,i,j] = 50

 elif mask_layer_idx == 2:

 if 115 <

outputs[batch_im_idx,mask_layer_idx,i,j] < 185:

outputs[batch_im_idx,mask_layer_idx,i,j] = 255

 else:

outputs[batch_im_idx,mask_layer_idx,i,j] = 50

display_tensor[2*batch_size+batch_size*mask_layer_idx+batch_im_idx,:,:,:]

= outputs[batch_im_idx,mask_layer_idx,:,:]

 #WE MODIFY THE CODE IN ORDER TO SAVE THE TESTING

IMAGES WITH THEIR MASKS

 # self.dl_studio.display_tensor_as_image(

 # torchvision.utils.make_grid(display_tensor,

nrow=batch_size, normalize=True, padding=2, pad_value=10))

 image =

TF.to_pil_image(torchvision.utils.make_grid(display_tensor,

nrow=batch_size, normalize=True, padding=2, pad_value=10))

Alexandre Olive Pellicer

41

image.save(f"/home/aolivepe/ECE60146/HW7/DLStudio-

2.3.6/Examples/testing_imgs_comb_300_COCO/{aa}.png")

WE USE THE NAME OF THE SUPERCLASSES THAT WE HAVE CREATED

dls = Prova1(

 dataroot = "./../../data/",

 image_size = [256,256],

 path_saved_model = "./saved_model_Dice_COCO_300",

 momentum = 0.9,

 learning_rate = 1e-4,

 epochs = 50,

 batch_size = 4,

 classes = ('motorcycle','dog','cake'),

 use_gpu = True,

)

segmenter = Prova1.Prova2(

 dl_studio = dls,

 max_num_objects = 3,

)

dataserver_train = Prova1.Prova2.MyDataset(

 train_or_test = 'train',

 dl_studio = dls,

 segmenter = segmenter,

 dataset_file = "PurdueShapes5MultiObject-10000-

train.gz",

)

dataserver_test = Prova1.Prova2.MyDataset(

 train_or_test = 'test',

 dl_studio = dls,

 segmenter = segmenter,

 dataset_file = "PurdueShapes5MultiObject-1000-

test.gz"

)

segmenter.dataserver_train = dataserver_train

segmenter.dataserver_test = dataserver_test

#Create dataloaders

segmenter.load_PurdueShapes5MultiObject_dataset(dataserver_train,

dataserver_test)

model = segmenter.MymUnet(skip_connections=True, depth=16)

#model = segmenter.mUnet(skip_connections=False, depth=4)

number_of_learnable_params = sum(p.numel() for p in model.parameters() if

p.requires_grad)

Alexandre Olive Pellicer

42

print("\n\nThe number of learnable parameters in the model: %d\n" %

number_of_learnable_params)

num_layers = len(list(model.parameters()))

print("\nThe number of layers in the model: %d\n\n" % num_layers)

segmenter.run_code_for_training_for_semantic_segmentation(model)

model.load_state_dict(torch.load("/home/aolivepe/ECE60146/HW7/DLStudio-

2.3.6/Examples/saved_model"))

print("Start Testing")

import pymsgbox

response = pymsgbox.confirm("Finished training. Start testing on

unseen data?")

if response == "OK":

segmenter.run_code_for_testing_semantic_segmentation(model)

