
Chris Ardohain
BME64600/ECE60146

Homework 7: Semantic Segmenation
Objective:
This homework focuses on the application of semantic segmentation U-Net model to the Purdue
shapes dataset accompanying DLStudio.

Tasks:
Task 1: Semantic Segmentation by U-Net

U-Net is based on what is now a common encoder-decoder architecture where the encoder path
focuses on extracting object featurs and decoder path focuses on mapping those objects back to
the pixel space. This idea was first introduced as Fully Connected Networks but U-Net improves
upon this architecture by allowing information to pass from encoder to decoder through multiple
skip connections that improve the performance of the decoder by preserving fine detail related
pixel relationships. The decoder path also takes advantage of transpose convolutions which greatly
improves the efficiency of the decoding process by converting convolutions into matrix-vector
products, which GPUs are uniquely built to compute.

Task 2: Code Modifications
Code modification for this assignment was relatively light as the semantic segmentation example
provided in DLStudio – 2.3.6 (link) provided the framework for data loading, model architecture, and
evaluation. The default loss calculation in the original code was MSE and the only modification that
needed to be made was in the semantic_segmenation.py file with the inclusion of a if __name__ ==
“__main__”: line for parallel processing tasks in windows.

The second modification related to the development of a Dice loss class which I based partially on
example provided in the homework and partially on a Kaggle library found at this link. Lastly, we
were asked to combine the two loss criteria into a single loss value. I took two different approaches
to this, first scaling Dice by 20 and then by 400. The code modifications can be found in Appendix A
as Code Snippets 1-3.

Task 3: Loss Comparisons
The first thing to note about comparing loss values is the large difference in scale between MSE and
Dice loss. MSE loss exists as the average of the squares of differences between ground truth and
predictions. Raw MSE loss values ranged from ~450 to ~350 over the six epochs. Dice loss, on the
other hand, produces a value between 0 and 1 with 1 representing perfect overlap between ground
truth and predictions. Therefore, comparison of the loss results is a somewhat messy task. For the
purposes of this homework, I normalized the losses between 0 and 1 based upon the minimum and
maximum loss values across all epochs for each model. This does not allow a true comparison
between models in terms of performance, which would require fixing the loss function, but rather
highlights to what extent models increased performance over their training iterations. The
normalized loss graphs are provided in Figure 1.

https://engineering.purdue.edu/kak/distDLS/
https://www.kaggle.com/code/bigironsphere/loss-function-library-keras-pytorch#Dice-Loss

Chris Ardohain
BME64600/ECE60146

Figure 1: Loss graphs (normalized)

Comparing the initial MSE vs. Dice Loss highlights some significant differences between the two in
terms of impact on model performance. The model based on MSE loss improved much more from
the initial iteration than the Dice loss model, however, the Dice loss model produced a smoother
loss curve indicating a stable learning process but possible underfitting. Given the large
differences in raw values between the loss functions, combining the two presented a challenge. I
initially followed the advice given in Piazza, scaling the Dice loss by 20, but the result was a curve
that remained very similar to the original MSE loss. This is unsurprising since the MSE loss
produced values in the 350 to 450 range while Dice now only scaled to between 16 and 20. I then
decided to increase the scale value such that MSE and Dice would largely be on equal footing in
terms of contribution to overall loss. This was accomplished by scaling Dice by 400 before its
addition to MSE. The result highlights not only the greatest increase in performance from the initial
model iteration, but also a smoother convergence.

Task 4: Qualitative Results
Unfortunately, visual inspection of test set predictions contradicts the results from the normalized
training loss. Visual inspection of model outputs against the test set show that MSE alone
performed well at identifying and mapping larger objects while some of the smaller objects or
objects that overlapped were sometimes missed. Conversely, the Dice only model did well at

Chris Ardohain
BME64600/ECE60146

identifying shape boundaries
but often misclassified the
objects and failed to fill in the
pixels of solid objects.
Combining the two produces
some interesting results. When
Dice is scaled by a factor of 20,
it is comparable to MSE alone
results but picks up just slightly
more on small or occluded
objects. However, when it is
scaled by a factor of 400, many
of the problems of Dice alone
are reintroduced such as not
filling in objects completely.
Figure 2 provides a visual
example of model outputs
based on loss functions.

Personally, I believe that Dice
loss performs sub optimally
against this dataset for one of
two reasons. The first may
have to deal with the fact that
the dataset is more balanced
than imbalanced and Dice is
designed to work more
effectively with imbalanced
datasets (small objects, big
images). Secondly, it is
possible that Dice is
undertraining and would
perform better with more
training data, longer training
time, or a more complex model
(although the latter two are less
likely to help given the
simplicity of the images).

Figure 2: Visual Comparison of Test Set Results

Chris Ardohain
BME64600/ECE60146

Appendix A – Code

Code Snippet 1: DiceLoss Class for calculation and forward pass.

Code Snippet 2: Modification to Training code block for the inclusion of Dice as a loss function.

Chris Ardohain
BME64600/ECE60146

Code Snippet 3: Modification of Semantic_Segmentation.py code to manage parallel process in windows (if
__name__=="__main__":).

