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Homework 7: Semantic Segmenation 
Objective:  
This homework focuses on the application of semantic segmentation U-Net model to the Purdue 
shapes dataset accompanying DLStudio. 

Tasks: 
Task 1: Semantic Segmentation by U-Net 

U-Net is based on what is now a common encoder-decoder architecture where the encoder path 
focuses on extracting object featurs and decoder path focuses on mapping those objects back to 
the pixel space. This idea was first introduced as Fully Connected Networks but U-Net improves 
upon this architecture by allowing information to pass from encoder to decoder through multiple 
skip connections that improve the performance of the decoder by preserving fine detail related 
pixel relationships.  The decoder path also takes advantage of transpose convolutions which greatly 
improves the efficiency of the decoding process by converting convolutions into matrix-vector 
products, which GPUs are uniquely built to compute.   

Task 2: Code Modifications 
Code modification for this assignment was relatively light as the semantic segmentation example 
provided in DLStudio – 2.3.6 (link) provided the framework for data loading, model architecture, and 
evaluation.  The default loss calculation in the original code was MSE and the only modification that 
needed to be made was in the semantic_segmenation.py file with the inclusion of a if __name__ == 
“__main__”: line for parallel processing tasks in windows.   

The second modification related to the development of a Dice loss class which I based partially on 
example provided in the homework and partially on a Kaggle library found at this link.  Lastly, we 
were asked to combine the two loss criteria into a single loss value.  I took two different approaches 
to this, first scaling Dice by 20 and then by 400.  The code modifications can be found in Appendix A 
as Code Snippets 1-3.   

Task 3: Loss Comparisons 
The first thing to note about comparing loss values is the large difference in scale between MSE and 
Dice loss.  MSE loss exists as the average of the squares of differences between ground truth and 
predictions.  Raw MSE loss values ranged from ~450 to ~350 over the six epochs.  Dice loss, on the 
other hand, produces a value between 0 and 1 with 1 representing perfect overlap between ground 
truth and predictions.  Therefore, comparison of the loss results is a somewhat messy task.  For the 
purposes of this homework, I normalized the losses between 0 and 1 based upon the minimum and 
maximum loss values across all epochs for each model.  This does not allow a true comparison 
between models in terms of performance, which would require fixing the loss function, but rather 
highlights to what extent models increased performance over their training iterations.  The 
normalized loss graphs are provided in Figure 1. 

https://engineering.purdue.edu/kak/distDLS/
https://www.kaggle.com/code/bigironsphere/loss-function-library-keras-pytorch#Dice-Loss
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Figure 1: Loss graphs (normalized) 

Comparing the initial MSE vs. Dice Loss highlights some significant differences between the two in 
terms of impact on model performance.  The model based on MSE loss improved much more from 
the initial iteration than the Dice loss model, however, the Dice loss model produced a smoother 
loss curve indicating a stable learning process but possible underfitting.  Given the large 
differences in raw values between the loss functions, combining the two presented a challenge.  I 
initially followed the advice given in Piazza, scaling the Dice loss by 20, but the result was a curve 
that remained very similar to the original MSE loss.  This is unsurprising since the MSE loss 
produced values in the 350 to 450 range while Dice now only scaled to between 16 and 20.  I then 
decided to increase the scale value such that MSE and Dice would largely be on equal footing in 
terms of contribution to overall loss.  This was accomplished by scaling Dice by 400 before its 
addition to MSE.  The result highlights not only the greatest increase in performance from the initial 
model iteration, but also a smoother convergence. 

Task 4: Qualitative Results 
Unfortunately, visual inspection of test set predictions contradicts the results from the normalized 
training loss.  Visual inspection of model outputs against the test set show that MSE alone 
performed well at identifying and mapping larger objects while some of the smaller objects or 
objects that overlapped were sometimes missed.  Conversely, the Dice only model did well at 
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identifying shape boundaries 
but often misclassified the 
objects and failed to fill in the 
pixels of solid objects.  
Combining the two produces 
some interesting results.  When 
Dice is scaled by a factor of 20, 
it is comparable to MSE alone 
results but picks up just slightly 
more on small or occluded 
objects.  However, when it is 
scaled by a factor of 400, many 
of the problems of Dice alone 
are reintroduced such as not 
filling in objects completely.  
Figure 2 provides a visual 
example of model outputs 
based on loss functions.  

Personally, I believe that Dice 
loss performs sub optimally 
against this dataset for one of 
two reasons.  The first may 
have to deal with the fact that 
the dataset is more balanced 
than imbalanced and Dice is 
designed to work more 
effectively with imbalanced 
datasets (small objects, big 
images).  Secondly, it is 
possible that Dice is 
undertraining and would 
perform better with more 
training data, longer training 
time, or a more complex model 
(although the latter two are less 
likely to help given the 
simplicity of the images). 

  

Figure 2: Visual Comparison of Test Set Results 



Chris Ardohain 
BME64600/ECE60146 

Appendix A – Code 

 

Code Snippet 1: DiceLoss Class for calculation and forward pass. 

 

Code Snippet 2: Modification to Training code block for the inclusion of Dice as a loss function. 
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Code Snippet 3: Modification of Semantic_Segmentation.py code to manage parallel process in windows (if 
__name__=="__main__":). 


