
BME646 and ECE60146: Homework 6

Spring 2024
Due Date: 11:59pm, March 1, 2024

Checkpoint Due Date: 11:59pm, Feb 21, 2024
TA: Akshita Kamsali (akamsali@purdue.edu)

Turn in typed solutions via BrightSpace. Additional instructions can
be found at BrightSpace. Late submissions will be accepted with penalty:
-10 points per-late-day, up to 5 days. This is a VERY challenging
homework. Start early!

1 Introduction

In HW5, you worked with skip connections to improve the performance of
the Deep CNN classifier. Now we use these skip connections to construct
an object detector network.

Your task in HW6 is to build your own object detector for cakes and
other objects.

Because it is a more complex homework compared to what you have
worked on so far, you are going to need more time for this. So we are going
to help you pace your work by having you first submit a “Checkpoint” by
Feb 21. Subsequently, the deadline for the homework will be March 1. You
will only be allowed to upload your final submission if you submitted the
checkpoint. The checkpoint will count for 10% of the overall grade for this
homework.

1. For the Checkpoint due Feb 21, 2024, you will work on the problem of
single instance object detection. This will only require running a
script from the Examples directory of DLStudio. That is, you
will NOT be writing any new code for the Checkpoint submission.

2. For the final homework solution that is due March 1, 2024, you will
implement multi-instance object detection using YOLO.

Single-instance object detection is based on the assumption that each
image has only one object of interest (even when the image contains mul-
tiple objects). The goal in single-instance object is to detect and localize
that object. Localization is carried out by predicting the coordinates of the
bounding box for the detected object.

1

Multi-instance object detection, on the other hand, is based on the as-
sumption an image may contain multiple objects of interest and you want
to predict their labels and the coordinates of their bounding boxes.

Before launching into this homework, make sure that you have down-
loaded the newly released Version 2.3.4 of DLStudio from

https://engineering.purdue.edu/kak/distDLS/DLStudio-2.3.4.html

It constains the updated versions of SkipBlock and the networks that
use SkipBlock as a building block. You will be using one or more of those
networks for the current homework.

2 Getting Ready for This Homework

2.1 For Submitting the Checkpoint

The main thing you have to do for submitting the checkpoint is to run the
following script from the main Examples directory of DLStudio:

object_detection_and_localization.py

on the following training and testing datasets:

PurdueShapes5-10000-train.gz

PurdueShapes5-1000-test.gz

The integer value you see in the names of the datasets is the number of
images in each. You can download these datasets by clicking on the link
“Download the image datasets for the main DLStudio module” at the main
webpage for DLStudio. This link will give you not only the above two
datasets, but also the datasets you are going to need for some of the future
homework assignments in our class.

After you have downloaded the data archive into the Examples directory
in your installation of DLStudio, you would need to execute the following
(Linux) commands

tar xvf datasets_for_DLStudio.tar.gz

This will create a subdirectory data in the Examples directory and deposit
all the datasets in it.

That will set you up to execute the previously mentioned script object_detection_and_localization
.py in the Examples directory. This script uses the network class LOADnet2

2

https://engineering.purdue.edu/kak/distDLS/DLStudio-2.3.4.html

from DLStudio. The acronym ”LOAD” in ”LOADnet2” stands for ”LOcal-
ization And Detection”.

To understand the connection between the above mentioned script and
the network class LOADnet2 network class, search for the following string in
the DLStudio.py file:

class DetectAndLocalize

As you will see, this class contains ALL of the DLStudio code dealing with
single-instance object detection and localization. It defines multiple net-
works and difference loss functions for the job.

As you will see, the LOADnet2 class is very much like the BMEnet class you
saw in your previous homework. It uses the same SkipBlock that you are
already familiar with. The main difference between BMEnet and LOADnet2

is that the latter predicts both the class label for the detected object and
estimates the coordinates of its bounding box. Predicting the coordinates
is referred to as regression in DL.

For the Checkpoint submission, show the results you get with
the DLStudio datasets mentioned above. The work you submit
must also include a brief write-up on your understanding of the
architecture of LOADnet network.

2.2 For the Final Submission of HW6

NOTE: It would be best if you read the material in this section
after the class on Tuesday, Feb 20.

The very first thing you would need to do would be to beef up SkipBlock

you used for the Checkpoint submission. In order to do that, it would be
best if you first become familiar the logic of the ResNet as described in the
paper:

https://arxiv.org/abs/1512.03385

and with the GitHub code for ResNet:

https://github.com/pytorch/vision/blob/master/torchvision/

models/resnet.py

As you will see, ResNet has two different kinds of skip blocks, named
BasicBlock and BottleNeck. BasicBlock is used as a building-block in
ResNet-18 and ResNet-34. The numbers 18 and 34 refer to the number
of layers in these two networks. For deeper networks, ResNet uses the
BottleNeck class.

3

https://arxiv.org/abs/1512.03385
https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py
https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py

For the final submission, you will also be comparing two different loss
functions for the regression loss: The L2-norm based loss as provided by
torcn.nn.MSELoss and the CIoU Loss as provided by PyTorch’s complete_box_iou_loss
that is available at the link supplied in the Intro section. To prepare for
this comparison, review the material on Slides 38 through 48 of the Week 7
slides on Object Detection.

Your main goal for the final submission is to implement a multi-instance
object detection framework with a YOLO network. The rest of this section
details the steps you would need to go through for that.

1. Your first step would be to come to terms with the basic concepts
of YOLO. As will be explained in the class next Tuesday, the YOLO
logic is based on the notion of of Anchor Boxes. You divide an image
into a grid of cells and you associate N anchor boxes with each cell in
the grid. Each anchor box represents a bounding box with a different
aspect ratio.

Your first question is likely to be: Why divide the image into a
grid of cells? To respond, the job of estimating the exact location
of an object is assigned to that cell in the grid whose center is closest
to the center of the object itself. Therefore, in order to localize the
object, all that needs to be done is to estimate the offset between the
center of the cell and the center of true bounding box for the object.

But why have multiple anchor boxes at each cell of the grid?
As previously mentioned, anchor boxes are characterized by different
aspect ratios. That is, they are candidate bounding boxes with dif-
ferent height-to-width ratios. In Prof. Kak’s implementation in the
RegionProposalGenerator module, he creates five different anchor
boxes for each cell in the grid, these being for the aspect ratios: [1

/ 5, 1/3, 1/1, 3/1, 5/1] . The idea here is that the anchor box
whose aspect ratio is closest to that of the true bounding box for the
object will speak with the greatest confidence for that object.

2. You can deepen your understanding of the YOLO logic by looking
at the implementation of image gridding and anchor boxes in Version
2.1.1 of Prof. Kak’s RegionProposalGenerator module:

https://engineering.purdue.edu/kak/distRPG/

Go to the Example directory and execute the script:

4

https://engineering.purdue.edu/kak/distRPG/

multi_instance_object_detection.py

and work your way backwards into the module code to see how it
works. In particular, you should pay attention to how the notion of
anchor boxes is implemented in the function:

run_code_for_training_multi_instance_detection()

To execute the script multi_instance_object_detection.py, you
will need to download and install the following datasets:

Purdue_Dr_Eval_Multi_Dataset-clutter-10-noise-20-size-10000-train.gz

Purdue_Dr_Eval_Multi_Dataset-clutter-10-noise-20-size-1000-test.gz

Links for downloading the datasets can be found on the module’s web-
page. In the dataset names, a string like size-10000 indicates the
number of images in the dataset, the string noise-20 means 20%
added random noise, and the string clutter-10 means a maximum
of 10 background clutter objects in each image.

Follow the instructions on the main webpage for RegionProposalGenerator
on how to unpack the image data archive that comes with the module
and where to place it in your directory structure. These instructions
will ask you to download the main dataset archive and store it in the
Examples directory of the distribution.

3 Programming Tasks

3.1 Checkpoint Submission

Checkpoint submission should NOT require any programming by
you. All you have to do is to run the DLStudio script as described in Section
2.1 and submit your results. The document you submit should include a brief
writup on your understanding of the LOADnet network.

3.2 Final Submission of HW6

This section contains guidelines on how to extract images with one or more
than one instance of the object from the COCO dataset. Finally, implement
the YOLO logic to perform multi-instance detection.

5

3.2.1 How to Use the COCO Annotations

For this homework, you will need bounding boxes in addition to the labels
from the COCO dataset. In this section, we go over how to access these
annotations as shown in Fig. 1. The code below is sufficient to introduce
you how to prepare your own dataset and write your dataloader for this
homework.

Before we jump into the code, it is important to understand structures
of the COCO annotations. The COCO annotations are stored in the list of
dictionaries and what follows is an example of such a dictionary:

1 {

2 "id": 1409619 , # annotation ID

3 "category_id": 1, # COCO category ID

4 "iscrowd": 0, # specifies whether the

segmentation is for a single

object or for a group/cluster

of objects

5 "segmentation": [

6 [86.0, 238.8, ..., 382.74 , 241.17]

7], # a list of polygon vertices

around the object (x, y pixel

positions)

8 "image_id": 245915 , # integer ID for COCO image

9 "area": 3556.2197000000015 , # Area measured in pixels

10 "bbox": [86 , 65 , 220 , 334] # bounding box [top left x

position , top left y position ,

width , height]

11 }

The following code (refer to inline code comments for details) shows how
to access the required COCO annotation entries and display a randomly cho-
sen image with desired annotations for visual verification. After importing
the required python modules (e.g. cv2, skimage, pycocotools, etc.), you
can run the given code and visually verify the output yourself.

1 # Input

2 input_json = ’instances_train2017.json’

3 class_list = [’cake’, ’dog’, ’motorcycle ’]

4

5 ###########################

6 # Mapping from COCO label to Class indices

7 coco_labels_inverse = {}

8 coco = COCO(input_json)

9 catIds = coco.getCatIds(catNms=class_list)

10 categories = coco.loadCats(catIds)

11 categories.sort(key=lambda x: x[’id’])

6

12 print(categories)

13

14

15 for idx , in_class in enumerate(class_list):

16 for c in categories:

17 if c[’name’] == in_class:

18 coco_labels_inverse[c[’id’]] = idx

19 print(coco_labels_inverse)

20

21 #############################

22 # Retrieve Image list

23 imgIds = coco.getImgIds(catIds=catIds)

24

25 #############################

26 # Display one random image with annotation

27 idx = np.random.randint(0, len(imgIds))

28 img = coco.loadImgs(imgIds[idx])[0]

29 I = io.imread(img[’coco_url ’])

30 # change from grayscale to color

31 if len(I.shape) == 2:

32 I = skimage.color.gray2rgb(I)

33 # pay attention to the flag , iscrowd being set to False

34 annIds = coco.getAnnIds(imgIds=img[’id’], catIds=catIds ,

iscrowd=False)

35 anns = coco.loadAnns(annIds)

36 fig , ax = plt.subplots(1, 1)

37 image = np.uint8(I)

38 for ann in anns:

39 [x, y, w, h] = ann[’bbox’]

40 label = coco_labels_inverse[ann[’category_id ’]]

41 image = cv2.rectangle(image , (int(x), int(y)), (int(x + w),

int(y + h)), (36 , 255 , 12), 2)

42 image = cv2.putText(image , class_list[label], (int(x), int(

y - 10)), cv2.

FONT_HERSHEY_SIMPLEX ,

43 0.8, (36 , 255 , 12), 2)

44 ax.imshow(image)

45 ax.set_axis_off ()

46 plt.axis(’tight’)

47 plt.show()

3.2.2 Creating Your Own Multi-Instance Object Localization Dataset

In this exercise, you will create your own dataset based on following steps:

1. You need to write a script similar to HW4 that filters through the
images and annotations to generate your training and testing dataset
such that any image in your dataset meets the following criteria:

7

• Contains at least one foreground object. A foreground object
must be from one of the three categories: [’cake’, ’dog’,

’motorcycle’].

Additionally, the area of any foreground object must be larger
than 64× 64 = 4096 pixels1. Different from the HW4, there can
be multiple foreground objects in an image since we are dealing
with multi-instance object localization for this homework.

If there is none, that image should be discarded.

• When saving your images to disk, resize them to 256×256. Note
that you would also need to scale the bounding box parameters
accordingly after resizing.

• Again, use images from 2017 Train images for the training set
and 2017 Val images for the testing set.

Figure 1: Sample COCO images with bounding box and label annotations
for multi-instances.

Again, you have total freedom on how you organize your dataset as
long as it meets the above requirements. If done correctly, you will
end up with approximately 8000 train images and 300 test images.

2. In your report, make a figure of a selection of images from your created
dataset. You should plot at least 3 images from each of the three classes
like what is shown in Fig. 1 and with the annotations of all the present
foreground objects.

1Also, you can use the area entry in the annotation dictionary instead of calculating it
yourself.

8

3.2.3 Building Your Deep Neural Network

1. Once you have prepared the dataset, you now need to implement your
deep convolutional neural network (CNN) for multi-instance object
classification and localization. You can directly base your CNN archi-
tecture on LOADnet2 adjusting for YOLO parameters. Again, you
have total freedom on what specific architecture you choose. You will
need to use a beefed up SkipBlock in 2.2.

2. The key design choice you’ll need to make is on the organization of the
predicted parameters by your network. As you have learned in Prof.
Kak’s tutorial on Multi-Instance Object Detection [1], for any input
image, your CNN should output a yolo_tensor.

3. The exact shape of your predicted yolo_tensor is dependent on how
you choose to implement image gridding and the anchor boxes. It is
highly recommended that, before starting your own implementation,
you should review the tutorial again and familiarize yourself with the
notions of yolo_vector, which is predicted for each and every anchor
box, and yolo_tensor, which stacks all yolo_vectors.

4. In your report, designate a code block for your network architecture.

5. Additionally, clearly state the shape of your output yolo_tensor and
explain in detail how that shape is resulted from your design param-
eters, e.g. the total number of cells and the number of anchor boxes
per cell, etc.

3.3 Training and Evaluating Your Network

Now that you have finished designing your deep CNN, it is finally time to
put your glorious multi-cake detector in action. What is described in this
section is probably the most challenging part of the homework. To train
and evaluate your YOLO framework, you should follow the steps below:

1. Write your own dataloader. While everyone’s implementation will
differ, it is highly recommended that the following items should be
returned by your __getitem__ method for multi-instance object lo-
calization:

(a) The image tensor;

(b) For each foreground object present in the image:

9

i. Index of the assigned cell;

ii. Index of the assigned anchor box;

iii. Groundtruth yolo_vector.

The tricky part here is how to best assign a cell and an anchor box
given a GT bounding box. For this part, you will have to implement
your own logic. Typically, one would start with finding the best cell,
and subsequently, choose the anchor box with the highest IoU with
the GT bounding box. You would need to pass on the indices of the
chosen cell and anchor box for the calculation of the losses explained
later in this section.

It is also worthy to remind yourself that the part in a yolo_vector

concerning the bounding box should contain four parameters: δx, δy,
σw and σh. The first two, δx and δy, are simply the offsets between
the GT box center and the anchor box center. While the last two, σw
and σh, can be the “ratios” between the GT and anchor widths and
heights:

wGT = eσw · wanchor,

hGT = eσh · hanchor.

2. Create your own training code (or adjust existing code) for training
your network. This time, you’ll need three different types of losses:
a binary cross-entropy loss for detecting objects, a cross-entropy loss
for classifying objects, and another loss for refining bounding box po-
sitions.

3. Develop your own evaluation code (or make modifications to exist-
ing code). Evaluating single-instance detectors, assessing the perfor-
mance of a multi-instance detector can be more complex and may be
beyond the scope of this homework assignment, as discussed in Prof.
Kak’s tutorial [1]. Therefore, for this assignment, we only require you
to present your multi-instance detection and localization results in a
qualitative manner. This means that for each test image, you should
display the predicted bounding boxes and their corresponding class
labels alongside the ground truth annotations.

Specifically, you’ll need to create your own method for translating the
predicted yolo_tensor into bounding box predictions and class label
predictions that can be visually represented. You have the flexibility
to implement this logic according to your own approach.

10

4. In your report, write several paragraphs summarizing on how you have
implemented your dataloading, training and evaluation logic.

Additionally, include a plot of all three losses over training iterations
(you should train your network for at least 10-15 epochs).

For presenting the outputs of your YOLO detector, display your multi-
instance localization and detection results for at least 8 different images
from the test set. Again, for a given test image, you should plot the
predicted bounding boxes and class labels along with the GT annota-
tions for all foreground objects. You should strive to present your best
multi-instance results in at least 6 images while you can use the other
2 images to illustrate the current shortcomings of your multi-instance
detector. Additionally, you should include a paragraph that discusses
the performance of your YOLO detector.

4 Submission Instructions

Include a typed report explaining how did you solve the given programming
tasks. For checkpoint I and the final submission for HW6, you need to
submit the following:

1. Your pdf must include a description of

• The figures and descriptions as mentioned in Sec. 3.

• For final submission only, your source code. Make sure that your
source code files are adequately commented and cleaned up.

2. Turn in a pdf file a typed self-contained pdf report with source code
and results. Rename your .pdf file as hw6 <First Name><Last Name>.pdf

3. Turn in a zipped file, it should include all source code files (only .py
files are accepted). Rename your .zip file as hw5 <First Name><Last
Name>.zip .

4. There will be seperate submission links for Checkpoint I and HW6 on
Brightspace

5. Do NOT submit your network weights.

6. Do NOT submit your dataset.

11

7. For all homeworks, you are encouraged to use .ipynb for development
and the report. If you use .ipynb, please convert it to .py and submit
that as source code.

8. You can resubmit a homework assignment as many times as you want
up to the deadline. Each submission will overwrite any previous
submission. If you are submitting late, do it only once on
BrightSpace. Otherwise, we cannot guarantee that your latest sub-
mission will be pulled for grading and will not accept related regrade
requests.

9. The sample solutions from previous years are for reference only. Your
code and final report must be your own work.

10. To help better provide feedback to you, make sure to number your
figures and tables.

References

[1] Multi-Instance Object Detection – Anchor Boxes and Region Pro-
posals. URL https://engineering.purdue.edu/DeepLearn/pdf-kak/

MultiDetection.pdf.

12

https://engineering.purdue.edu/DeepLearn/pdf-kak/MultiDetection.pdf
https://engineering.purdue.edu/DeepLearn/pdf-kak/MultiDetection.pdf

	Introduction
	Getting Ready for This Homework
	For Submitting the Checkpoint
	For the Final Submission of HW6

	Programming Tasks
	Checkpoint Submission
	Final Submission of HW6
	How to Use the COCO Annotations
	Creating Your Own Multi-Instance Object Localization Dataset
	Building Your Deep Neural Network

	Training and Evaluating Your Network

	Submission Instructions

