
Deep Learning: Homework 6 Final Submission 

Arian Mollajafari Sohi 

amollaja@purdue.edu 

3.2 Final Submission of HW6 

Object detection stands as an important task with wide-ranging applications, from autonomous 

vehicles to surveillance systems. Among the various algorithms developed for this purpose, 

YOLO (You Only Look Once) has emerged as a prominent method, known for its exceptional 

balance between speed and accuracy. In this homework we want to apply the YOLO logic on the 

COCO (Common Objects in Context) dataset. The COCO dataset, provides an ideal platform for 

training and evaluating object detection models. 

We have three objectives in this homework. First, we focus on creating a multi-instance object 

localization dataset derived from the COCO dataset. This involves preprocessing the original 

dataset to suit the specific requirements of this homework and YOLO algorithm. Second, we 

embark on the construction of a deep neural network tailored for object detection, leveraging the 

YOLO architecture. Lastly, the homework includes the training and evaluation of the network, 

where we fine-tune the model parameters and assess its performance on our test set. The 

following sections will detail each step of our approach. 

3.2.2 Creating Your Own Multi-Instance Object Localization Dataset 

In this part, we aim to construct a dataset tailored for multi-instance object localization, 

leveraging the COCO 2017 dataset. The dataset creation process involves filtering images and 

annotations to meet specific criteria, ensuring that the resulting dataset is conducive to training 

and evaluating. 

Dataset Criteria 

The following criteria were applied to select images for the dataset: 

Foreground Object Selection: Each image in the dataset must contain at least one foreground 

object belonging to one of three categories: 'cake', 'dog', or 'motorcycle'. 

Object Size Constraint: The area of any foreground object must exceed 4096 pixels (i.e., larger 

than 64×64 pixels) to ensure that the objects are sufficiently large for effective detection. 

Multi-Instance Capability: Unlike the previous homework, images can contain multiple 

foreground objects to accommodate the multi-instance object localization task. 

Image Resizing: All selected images are resized to 256×256 pixels. Correspondingly, the 

bounding box parameters of the objects are scaled to match the resized images. 

Dataset Split: The dataset is divided into a training set and a testing set, using images from the 

COCO 2017 Train and Val sets, respectively. 
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The following Python script shows the process of creating a dataset for multi-instance object 

localization using the COCO 2017 dataset. The script filters images based on specific criteria and 

prepares them for training and testing deep neural networks. 

Code Description: 

Class Selection: 

Define the classes of interest: 'cake', 'dog', and 'motorcycle'. 

Image Processing Function (save_resized_image): 

Resizes the image to 256x256 pixels. 

Draws bounding boxes around the objects of interest. 

Saves the processed image to the specified file path. 

Image Filtering and Processing Function (process_images): 

Iterates through each class of interest. 

Retrieves the category ID and all image IDs for each class. 

Filters images to include only those with objects larger than 4096 pixels. 

Processes and saves a limited number of images to the specified directory. 

Processing Training and Validation Images: 

Calls the process_images function for both training and validation datasets, with limits of 8000 

and 300 images, respectively. 



 

 

 



Sample images: 

Cake: 

 

 

Motorcycle: 

 

 

Dog: 

  



3.2.3 Building Your Deep Neural Network 

In this section, we describe the implementation of a deep convolutional neural network (CNN) 

designed for multi-instance object classification and localization, inspired by the YOLO 

architecture and tailored for the dataset created in the previous step. 

Network Architecture: 

The CNN, named YOLONet, is based on the YOLO architecture with adjustments made to 

accommodate the specific requirements of our task. The network consists of several 

convolutional layers followed by max-pooling layers, a skip connection, and fully connected 

layers. The final layer of the network is designed to output a yolo_tensor, which contains the 

predicted parameters for object localization and classification. 

Design Choices: 

Grid Size (S), Bounding Boxes (B), and Classes (C): The network is parameterized to 

accommodate a grid size of 7x7 (S=7), 2 bounding boxes per grid cell (B=2), and 3 object 

classes (C=3) corresponding to 'cake', 'dog', and 'motorcycle'. 

Skip Connection: A skip connection is implemented between the first and third convolutional 

layers to enhance feature extraction and improve gradient flow during training. 

Output YOLO Tensor: The final fully connected layer is designed to output a tensor with the 

shape [Batch Size, S, S, (B * 5 + C)], where 5 represents the parameters for bounding box 

prediction (x, y, width, height, objectness score) and C represents the number of classes. 

 

Code Description for YOLONet: 

The YOLONet class is a PyTorch module that implements a deep convolutional neural network 

for multi-instance object localization, inspired by the YOLO architecture. Here's a breakdown of 

the code: 

Class Initialization (__init__): 

The YOLONet class is initialized with parameters S, B, and C, representing the grid size, number 

of bounding boxes per grid cell, and number of object classes, respectively. 

The convolutional layers (conv1, conv2, conv3) are defined with kernel size 3 and padding 1 to 

maintain the spatial dimensions of the input. 

A skip connection layer (skip1) is defined to connect the output of the first convolutional layer to 

the input of the third convolutional layer. 

A max-pooling layer (pool) is defined with a kernel size of 2 and stride 2 to reduce the spatial 

dimensions by half after each convolutional layer. 



Fully connected layers (fc1, fc2) are defined to process the flattened output of the convolutional 

layers and output the final yolo_tensor. The second fully connected layer (fc2) is specifically 

designed to match the shape of the yolo_tensor. 

Forward Pass (forward): 

The input image x is passed through the first convolutional layer (conv1), followed by a ReLU 

activation function and max-pooling. The result is stored in x1. 

The output x1 is then passed through the second convolutional layer (conv2), followed by ReLU 

and max-pooling, resulting in x2. 

Similarly, x2 is passed through the third convolutional layer (conv3), followed by ReLU and 

max-pooling, resulting in x3. 

The skip connection is implemented by applying the skip1 layer to x1, pooling twice to match 

the dimensions, and then adding the result element-wise to x3. 

The output x3 is then flattened and passed through the first fully connected layer (fc1), followed 

by a ReLU activation function. 

Finally, the output is passed through the second fully connected layer (fc2) to obtain the 

yolo_tensor. The yolo_tensor is then reshaped to the desired output shape [Batch Size, S, S, (B * 

5 + C)], where the last dimension includes the parameters for bounding box prediction and class 

probabilities for each grid cell and bounding box. 

Instantiation of YOLONet: 

The network is instantiated with the specified grid size (S), number of bounding boxes per cell 

(B), and number of object classes (C). In this case, the values are set to 7, 2, and 3, respectively, 

to accommodate the dataset and task requirements. 



 

 

3.3 Training and Evaluating Your Network 

 

1. Dataloader: 

The dataloader is responsible for loading the images and their corresponding annotations in a 

format suitable for training the YOLO model. 

Writing a Custom Dataloader: 

Dataloader Structure: 

The dataloader should inherit from PyTorch's Dataset class and implement the __getitem__ 

method, which returns the data for a single image. 

The __getitem__ method should return: 



The image tensor: A PyTorch tensor representing the image. 

For each foreground object in the image: 

• The index of the assigned cell in the grid. 

• The index of the assigned anchor box within the cell. 

• The ground truth yolo_vector for the object. 

Assigning Cells and Anchor Boxes: 

The assignment of a cell to a ground truth (GT) bounding box is typically based on the center of 

the bounding box. The cell containing the center of the GT bounding box is chosen as the 

assigned cell. 

The assignment of an anchor box is based on the highest Intersection over Union (IoU) between 

the GT bounding box and the predefined anchor boxes for the cell. The anchor box with the 

highest IoU is chosen as the assigned anchor box. 

YOLO Vector: 

The yolo_vector for each object should contain the following parameters: 

• δx and δy: The offsets between the center of the GT bounding box and the center of the 

assigned anchor box. 

• σw and σh: The ratios between the width and height of the GT bounding box and the 

width and height of the assigned anchor box. 

MyDataset: 

The MyDataset class is a class that loads images and annotations from the COCO dataset for use 

in training and evaluating a YOLO model. Here's a breakdown of the updated code: 

Initialization (__init__): 

The constructor now also takes in parameters S and B, representing the grid size and the number 

of bounding boxes per grid cell, respectively. 

The rest of the initialization process remains the same as before, loading the COCO dataset, 

filtering image IDs, and setting up the class-to-index mapping and transformations. 

Length Method (__len__): 

Returns the number of images in the dataset, as before. 

Get Item Method (__getitem__): 

Loads an image and its annotations based on the provided index. 

Initializes a yolo_tensor with the shape (S, S, B, 5 + len(class_names)), where 5 accounts for the 

bounding box parameters and objectness score, and len(class_names) accounts for the class 

probabilities. 



For each annotation in the image: 

o Converts the bounding box format from COCO to YOLO (center coordinates and 

normalized dimensions). 

o Assigns the bounding box to a grid cell based on its center coordinates. 

o Assigns the bounding box to an anchor box (in this simplified example, the assignment is 

a dummy value). 

o Constructs a yolo_vector containing the bounding box parameters, objectness score, and 

one-hot encoded class label. 

o Updates the corresponding entry in the yolo_tensor with the yolo_vector. 

Applies the specified transformations to the image. 

Returns the transformed image and the yolo_tensor. 

 



 

 

2. Training: 

Task Description: 

The part involves defining a custom loss function for training a YOLO model. The YOLO model 

is designed for object detection tasks and requires a specialized loss function that takes into 

account various aspects of the model's predictions. The loss function consists of several 

components: 

Confidence Loss: Penalizes the model for inaccuracies in predicting the objectness score, which 

indicates the presence of an object within a bounding box. This loss is calculated separately for 

boxes that contain objects (object present) and for boxes that do not contain objects (no object 

present). 

Class Loss: Penalizes the model for inaccuracies in predicting the class of the object contained 

within a bounding box. 



Intersection over Union (IoU): A measure used to evaluate the overlap between the predicted 

bounding box and the ground truth bounding box. It is used as part of the confidence loss 

calculation. 

Coordinate Loss: Penalizes the model for inaccuracies in predicting the center coordinates of the 

bounding boxes. 

Size Loss: Penalizes the model for inaccuracies in predicting the width and height of the 

bounding boxes. 

The total loss is a weighted sum of these individual loss components. 

Code Explanation: 

Class Initialization (__init__): 

Initializes the YOLOLoss class with parameters for the grid size (S), number of bounding boxes 

per grid cell (B), number of classes (C), and weights for the coordinate loss (lambda_coord) and 

no object loss (lambda_noobj). 

Forward Method (forward): 

Takes in the model predictions and the target (ground truth) tensors. The predictions and 

targets are expected to have dimensions (batch_size, S, S, B*5+C). 

Splits the predictions and targets into their components: bounding box parameters and 

class predictions. 

Calculates the IoU between the predicted and target bounding boxes. 

Determines the best bounding box for each grid cell based on the IoU. 

Calculates the coordinate loss, size loss, object loss, no object loss, and class loss as 

described above. 

Computes the total loss as the sum of the individual loss components. 

compute_iou Method: 

A static method that calculates the Intersection over Union (IoU) between two sets of bounding 

boxes. This is used to evaluate the accuracy of the predicted bounding boxes compared to the 

ground truth. 



 

 



The next part is responsible for training a YOLO model for object detection. It begins by 

instantiating the custom YOLO loss function, YOLOLoss, with the specified grid size (S), 

number of bounding boxes per grid cell (B), and number of classes (C). This loss function is then 

moved to the appropriate computational device (GPU or CPU) using the .to(device) method. 

An Adam optimizer is created to update the parameters of the YOLO model (yolo_net) during 

training, with a learning rate of 1e-3. The training process is carried out over a specified number 

of epochs, within which the model iterates over the training data in mini-batches. 

For each mini-batch, the input images and target annotations (ground truth bounding boxes and 

class labels) are transferred to the computational device. The optimizer's gradients are reset to 

zero to prevent accumulation across mini-batches. A forward pass through the YOLO model 

generates predictions, which are then used to compute the loss using the previously defined 

YOLO loss function. This loss takes into account various aspects of the predictions, such as the 

accuracy of bounding box coordinates, objectness scores, and class predictions. 

Backpropagation is performed to calculate the gradients of the loss with respect to the model 

parameters, and the optimizer updates the parameters based on these gradients. The loss for each 

mini-batch is accumulated to calculate the average loss over a certain number of mini-batches 

(e.g., every 100 mini-batches), which is then printed to monitor the training progress. 

After training for the specified number of epochs, a message indicating the completion of 

training is printed. At this point, the YOLO model has been trained to detect objects in images, 

with its performance depending on the effectiveness of the loss function, optimizer, and the 

quality of the training data. 

 



 

 



 

 

 

3. Evaluation: 

In this task, we develop our evaluation method to assess the performance of a multi-instance 

object detector trained using the YOLO framework. The evaluation focused on presenting 

qualitative results by visually displaying the predicted bounding boxes and class labels for each 

object detected in test images, alongside the ground truth annotations. 

The evaluation process involved several key steps: 

Processing Predicted YOLO Tensor: The predicted yolo_tensor from the YOLO model contained 

information about bounding boxes and class probabilities for each grid cell in the image. We 

extracted the bounding box coordinates and the corresponding class probabilities from this 

tensor. For each grid cell, we selected the bounding box with the highest objectness score and 

chose the class with the highest probability as the predicted class for that bounding box. 

Converting Coordinates: The bounding box coordinates in the yolo_tensor were relative to the 

grid cell. We converted these coordinates to absolute coordinates relative to the entire image by 

scaling them based on the size of the grid and the size of the image. 



Displaying Predictions and Ground Truth: We drew the predicted bounding boxes on the test 

images with labels indicating the predicted class. We also drew the ground truth bounding boxes 

on the images in a different plot. 

To visually evaluate the performance of a YOLO model, we need to convert the predictions (the 

yolo_tensor) into actual bounding box coordinates and class labels.  

Selecting Boxes: Determine which boxes have a confidence score above a certain threshold to 

filter out weak detections. 

Applying Non-Maximum Suppression (NMS): Among the boxes that predict the presence of an 

object, we use NMS to select the most accurate box and discard others that overlap significantly 

with it. 

Class Prediction: Determine the class with the highest score for each box after NMS. 

Rescaling Bounding Boxes: Rescale the bounding box coordinates to the original image 

dimensions. 

 



 

 

Best multi-instance results: 
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Poor multi-instance results: 



 

Pred      GT 

 

Pred      GT 

Our YOLO detector underperforms when it encounters objects that are partially occluded or 

when distinguishing between similar categories, such as differentiating a bike from a motorcycle. 

These issues could be attributed to insufficient training on examples of partial occlusion and 

closely related object classes. To enhance its performance, we can enrich the dataset with a 

higher representation of these challenging scenarios or a more sophisticated architecture to 

improve its capacity. 


