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HOMEWORK 5 

Alexandre Olive Pellicer 

 

 
Building the model 

I have created the model as an extension of the BMEnet model, the model that is already 

implemented in DLStudio and used for training the CIFAR_10 dataset. Since the number 

of classes in the CIFAR_10 dataset is 10, the output of the last linear layer is 10. In our 

case, since we are working with a dataset which contains 5 classes, we fixed the output 

of the last linear layer to 5. Furthermore, the size of the images from CIFAR_10 dataset 

is 32x32 while the size of the images from our dataset is 64x64. For that reason,  

The CIFAR_10 dataset contains images of size 32x32 for 10 different classes. Our dataset 

has images of size 64x64. For that reason, in our dataset we downsampled the images 

one more time and we also decided to increase the number of channels to 256 following 

the pattern of BMEnet. 

When referring to the BMEnet, I am referring to the initial implementation given when 

the instructions where submitted. After trying different architectures, I saw it was the 

one it was giving me better results. 

Find at the end of the report the class HW5Net which corresponds to the model used in 

this homework. 

 

Total number of learnable layers in your network 

We print the number of learnable layers that our network has using: 

    num_layers = len( list ( net3.parameters () ) ) 
    print("number of learnable layers: ", num_layers) 
The obtained result is 188 

 

Collect training loss for at least two different learning rates and include the plots in 

your report. 

The loss curve for lr=1e-4 and lr=5e-4 when training it for 15 epochs is the following: 
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                             Fig 1: Loss curves for lr = 1e-4 and lr = 5e-4 after 15 epochs 

 

I also saw that by increasing the number of epochs by 60, the training loss could be 

reduced to values closer to 0. These are the plots obtained by training for 60 epochs 

using again lr=1e-4 and lr=5e-4: 

 

                             Fig 2: Loss curves for lr = 1e-4 and lr = 5e-4 after 60 epochs 
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Report the accuracy numbers and the confusion matrix for different learning rates on 

the test dataset.  

 

                         Fig 3: Confusion Matrix of Net5 using a lr=1e-4 and 15 epochs 

15 epochs 60 epochs 

Validation accuracy Training accuracy Validation accuracy Training accuracy 

0.54 0.66 0.52 0.96 

 

 

 

                         Fig 4: Confusion Matrix of Net5 using a lr=5e-4 and 15 epochs 
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15 epochs 60 epochs 

Validation accuracy Training accuracy Validation accuracy Training accuracy 

0.43 0.44 0.43 0.59 

 

From the obtained results we can say that the best performance is achieved when using 

lr = 1e-4 and training for 15 epochs since we achieve an accuracy of 54%. From the loss 

curves we could expect that the models trained after 60 epochs should perform better 

since a lower value of loss was reached. Nevertheless, looking at the Training accuracy 

for lr = 1e-4 and 60 epochs we see that we have 96%, a very high value which shows us 

that we have a case of overfitting and that the model is not able to generalize. Thus, the 

performance over the validation dataset is not that good. 

 

State your observations regarding the classification performance of HW5Net in 

comparison with what you achieved previously with Net3 in HW4. Also, attach your 

confusion matrix of Net3 from HW4.  

The confusion matrix of Net3 from HW4 is: 

 

                                           Fig 5: Confusion matrix of Net3 from HW4 

 

I will consider Net5 the model we have trained with lr=1e-4 for 15 epochs which is the 

one that gave us a better accuracy: 54% 

Looking at the loss curve obtained with Net5, we can see that the loss value converges 

towards a low value. This didn’t happen with Net3 where we were in front of a case of a 

vanishing gradient. In Net5 we have prevented a vanishing gradient case by using skip 
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connections. This allows us to train deeper neural networks. In our case, Net5 has 188 

learnable layers, a much bigger number compared to the number of learnable layers 

used in Net3 which was lower than 30. 

In terms of accuracy, we see that the performance hasn’t improved that much. Both in 

Net3 and Net5 the validation accuracy obtained is inside the range 50%-60%. About the 

capacity of labeling correctly a specific class, we see that in both Net3 and Net5 the class 

which is more times misclassified is the dog. As we mentioned in hw4, dog is the class 

that is more difficult to correctly label because probably it is more prompt to appear to 

images where there is also a “boat” or a “couch” or a “cake” or a “motorcycle” and we 

are considering as a bad classification although it is correctly done. It is also curious to 

see that Net5 classifies a considerable number of cakes as couches while in Net3 is in the 

other way, it classifies a considerable number of couches as cakes. It is difficult to find an 

explainable reason for these behaviors although we may think that they share some 

features. For example, both cakes and couches are trend to be in indoors rooms.  

As mentioned in HW4, our training a testing dataset have limitations of reduced number 

of samples and images with more than one class. This makes it more difficult to obtain 

the desired results. When targeting improving the performance of a deep learning 

model, the data has a lot to do. 

 

Optional: You may also attach the confusion matrix generated for CIFAR dataset. State 

your observations in comparison to COCO dataset performance. 

The confusion matrix obtained when using the CIFAR dataset is the following: 

 

                                 Fig 6: Confusion matrix for the CIFAR_10 dataset 

The obtained accuracy in this case is 75%. 

We can see that when using the CIFAR dataset the obtained accuracy is better than the 

results obtained with the COCO dataset that we have created by ourselves. In this case 

we obtain better accuracy than when using the COCO dataset. The difference in accuracy 

is significant which makes us think that one of the main problems for not improving our 

training accuracy is the dataset with which we are working (i.e. our dataset has small 
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training and testing datasets, and it contains images where more than a class can be 

present) 

A 75% of training accuracy can be considered a good result. From the confusion matrix 

we can also see that the model makes mistakes when classifying cats and dogs. This is 

because they are very similar, and they share features. It also happens, although with 

less frequency, with the horse. Cats, dogs, and horses are animals with 4 legs, for this 

reason it is understandable the mistakes when classifying them. Something similar 

happens with planes and birds. Both have 2 wings and are found probably in the sky. For 

this reason, there are also mistakes when classifying them. 

 

CODE: 

import sys,os,os.path 

import torch 

import torch.nn as nn 

import numpy as np 

import matplotlib.pyplot as plt 

import os 

from torch.utils.data import DataLoader 

import torch 

import torch.nn as nn 

from tqdm import tqdm 

import matplotlib.pyplot as plt 

import seaborn as sns 

from sklearn.metrics import confusion_matrix 

from sklearn.metrics import classification_report 

import torchvision.transforms as tvt 

from PIL import Image 

import torch.nn.functional as F 

import copy 

 

from DLStudio import * 

 

os.environ['CUDA_VISIBLE_DEVICES']='5' 

 

## USED THE MYDATASET CLASS USED IN PREVIOUS HOMEWORKS ------------------

--------------------------------- 

class MyDataset ( torch.utils.data.Dataset ): 

     

    def __init__ ( self , root ): 

        super().__init__() 

        # Obtain meta information (e.g. list of file names ) 

        self.root = root 

        self.filenames = os.listdir(self.root) 

         

        # Initialize data transforms , etc. 
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        self.transform = tvt.Compose([ 

            tvt.ToTensor(), 

            tvt.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), 

        ]) 

 

    def __len__ ( self ): 

        # Return the total number of images 

        # the number is a place holder only 

        return len(self.filenames) 

 

    def __getitem__ ( self , index ): 

        # Read an image at index and perform processing 

        path = os.path.join(self.root, self.filenames[index]) 

        cls = self.filenames[index].split('_')[0] 

        img = Image.open(path) 

         

        # Get the normalized tensor 

        transformed_img = self.transform(img) 

         

        if cls == "boat": 

            label = torch.tensor([1.0, 0.0, 0.0, 0.0, 0.0]) 

        elif cls == "couch": 

            label = torch.tensor([0.0, 1.0, 0.0, 0.0, 0.0]) 

        elif cls == "dog": 

            label = torch.tensor([0.0, 0.0, 1.0, 0.0, 0.0]) 

        elif cls == "cake": 

            label = torch.tensor([0.0, 0.0, 0.0, 1.0, 0.0]) 

        elif cls == "motorcycle": 

            label = torch.tensor([0.0, 0.0, 0.0, 0.0, 1.0]) 

         

        # Return the tuple : ( normalized tensor, label ) 

        return transformed_img, label 

 

## COPPIED THE LAST SKIPBLOCK CLASS IMPLEMENTATION PROVIDED BY PROFESSOR 

KAK--------------------------------------------------- 

class SkipBlock(nn.Module): 

    """ 

    Class Path:   DLStudio  ->  SkipConnections  ->  SkipBlock 

    """             

    def __init__(self, in_ch, out_ch, downsample=False, 

skip_connections=True): 

        super(SkipBlock, self).__init__() 

        self.downsample = downsample 

        self.skip_connections = skip_connections 

        self.in_ch = in_ch 

        self.out_ch = out_ch 

        self.convo1 = nn.Conv2d(in_ch, in_ch, 3, stride=1, padding=1) 

        self.convo2 = nn.Conv2d(in_ch, out_ch, 3, stride=1, padding=1) 

        self.bn1 = nn.BatchNorm2d(in_ch) 
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        self.bn2 = nn.BatchNorm2d(out_ch) 

         

        self.in2out  =  nn.Conv2d(in_ch, out_ch, 1) 

         

        if downsample: 

            self.downsampler1 = nn.Conv2d(in_ch, in_ch, 1, stride=2) 

            self.downsampler2 = nn.Conv2d(out_ch, out_ch, 1, stride=2) 

 

    def forward(self, x): 

        identity = x 

                                              

        out = self.convo1(x)                               

        out = self.bn1(out)                               

        out = nn.functional.relu(out) 

         

        out = self.convo2(out)                               

        out = self.bn2(out)                               

        out = nn.functional.relu(out) 

         

        if self.downsample: 

            identity = self.downsampler1(identity) 

            out = self.downsampler2(out) 

             

        if self.skip_connections: 

            if (self.in_ch == self.out_ch) and (self.downsample is 

False): 

                out = out + identity 

            elif (self.in_ch != self.out_ch) and (self.downsample is 

False): 

                identity = self.in2out( identity 

)                             ###  <<<<  from  Cheng-Hao Chen 

                out = out + identity 

            elif (self.in_ch != self.out_ch) and (self.downsample is 

True): 

                out = out + torch.cat((identity, identity), dim=1) 

                 

        return out 

 

## COPPIED THE FIRST BMENET CLASS IMPLEMENTATION AVAILABLE IN DLSTUDIO 

AND EXTEND IT TO CREATE HW5NET ------------------------------------------

--------- 

class HW5Net(nn.Module): 

    """ 

    Class Path:   DLStudio  ->  SkipConnections  ->  HW5Net 

    """ 

    def __init__(self, skip_connections=True, depth=32): 

        super(HW5Net, self).__init__() 

        if depth not in [8, 16, 32, 64]: 
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            sys.exit("HW5Net has been tested for depth for only 8, 16, 

32, and 64") 

        self.depth = depth // 8 

        self.conv = nn.Conv2d(3, 64, 3, padding=1) 

        self.pool = nn.MaxPool2d(2, 2) 

         

        self.skip64_arr = nn.ModuleList() 

        for i in range(self.depth): 

            self.skip64_arr.append(SkipBlock(64, 

64,skip_connections=skip_connections)) 

        self.skip64ds = SkipBlock(64, 64,downsample=True, 

skip_connections=skip_connections) 

        self.skip64to128 = SkipBlock(64, 

128,skip_connections=skip_connections ) 

         

        self.skip128_arr = nn.ModuleList() 

        for i in range(self.depth): 

            self.skip128_arr.append(SkipBlock(128, 

128,skip_connections=skip_connections)) 

        self.skip128ds = SkipBlock(128, 128,downsample=True, 

skip_connections=skip_connections) 

        self.skip128to256 = SkipBlock(128, 

256,skip_connections=skip_connections ) 

         

        self.skip256_arr = nn.ModuleList() 

        for i in range(self.depth): 

            self.skip256_arr.append(SkipBlock(256, 256, 

skip_connections=skip_connections)) 

        self.skip256ds = SkipBlock(256,256,downsample=True, 

skip_connections=skip_connections) 

 

        self.fc1 =  nn.Linear(1024, 500) 

        self.fc2 =  nn.Linear(500, 5) 

         

    # I implement the forward method as an extension of the given BMEnet 

given. I downsample the input images one more time and I also increase 

the number of channels one more time.  

    # Finally I adjust the arguments of the linear layers 

    def forward(self, x): 

        x = self.pool(nn.functional.relu(self.conv(x)))  

                  

        for i,skip64 in enumerate(self.skip64_arr[:self.depth//4]): 

            x = skip64(x)                 

        x = self.skip64ds(x) 

        for i,skip64 in enumerate(self.skip64_arr[self.depth//4:]): 

            x = skip64(x)                 

        x = self.skip64ds(x)        

        x = self.skip64to128(x) 
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        for i,skip128 in enumerate(self.skip128_arr[:self.depth//4]): 

            x = skip128(x)                 

        x = self.skip128ds(x) 

        for i,skip128 in enumerate(self.skip128_arr[self.depth//4:]): 

            x = skip128(x)                 

        x = self.skip128ds(x)        

        x = self.skip128to256(x) 

         

        for i,skip256 in enumerate(self.skip256_arr[:self.depth//4]): 

            x = skip256(x)                 

        for i,skip256 in enumerate(self.skip256_arr[self.depth//4:]): 

            x = skip256(x) 

                             

        x  =  x.view( x.shape[0], - 1 ) 

        x = nn.functional.relu(self.fc1(x)) 

        x = self.fc2(x) 

        return x   

     

## SCRIPT TO RUN THE TRAINING -------------------------------------------

-------- 

device = "cuda:0" 

 

# Dataloader 

my_dataset = MyDataset ("../../../COCOTraining") 

batch_size = 4 

train_data_loader = DataLoader(my_dataset, batch_size = batch_size, 

shuffle = True ) 

 

# List where the loss values will be stored 

loss_net3 = [] 

 

net3 = HW5Net() 

# Training routine provided by the assignment 

net3 = net3.to(device) 

 

# Print number of learnable layers 

num_layers = len( list ( net3.parameters () ) ) 

print("number of learnable layers: ", num_layers) 

 

criterion = torch.nn.CrossEntropyLoss() 

optimizer = torch.optim.Adam(net3.parameters(), lr=5e-4, betas=(0.9, 

0.99)) 

epochs = 60 

for epoch in tqdm(range(epochs)):        

    running_loss = 0.0 

    for i, data in enumerate(train_data_loader): 

        inputs, labels = data 

        inputs = inputs.to(device) 
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        labels = labels.to(device) 

        optimizer.zero_grad() 

        outputs = net3(inputs) 

        loss = criterion(outputs, labels) 

        loss.backward() 

        optimizer.step() 

 

        running_loss += loss.item() 

        if (i+1) % 100 == 0: 

            # print("[epoch: %d, batch: %5d] loss: %.3f" \ 

            # % (epoch + 1, i + 1, running_loss / 100)) 

            loss_net3.append(running_loss/100) 

            running_loss = 0.0 

 

# Save the learned parameters of the model to do inference afterwards 

torch.save(net3.state_dict(), './net5_replicate_60epochs.pth') 

 

## PLOT TRAINING LOSS----------------------------------------------------

------------------------------ 

plt.plot(loss_net3) 

 

plt.legend(["loss_net3"]) 

 

# Adding labels and title 

plt.xlabel('Iterations') 

plt.ylabel('Loss') 

plt.title('Loss comparisson for the 3 networks') 

 

# Display the plot 

plt.show() 

 

## TESTING AND CONFUSSION MATRIX (We run this code for each network)-----

---------------------------------------------- 

device = "cuda:0" 

 

# Dataloader loading the Validation dataset 

my_dataset = MyDataset("../COCOValidation") 

batch_size = 4 

train_data_loader = DataLoader(my_dataset, batch_size = batch_size, 

shuffle = True ) 

 

# Lists where the labels will be stored for each of the images from the 

Validation dataset 

predictions = [] 

real_labels = [] 

 

# Load the trained weights 

net3 = HW5Net() 

net3.load_state_dict(torch.load('net5_replicate_60epochs.pth')) 



Alexandre Olive Pellicer 

12 
 

net3 = net3.to(device) 

 

# Set the model to evaluation mode 

net3.eval() 

 

# Get the predicted label and the real label from each image and store 

them to the lists mentioned before 

for i, data in enumerate(train_data_loader): 

    inputs, labels = data 

    inputs = inputs.to(device) 

    labels = labels.to(device) 

    with torch.no_grad(): 

        outputs = net3(inputs) 

    outputs = outputs.split(1) 

    labels = labels.split(1) 

    for lbl in labels: 

        real_labels.append(torch.argmax(lbl.squeeze()).item()) 

    for pred in outputs: 

        predictions.append(torch.argmax(pred.squeeze()).item()) 

 

# Compute the confusion matrix 

cm = confusion_matrix(real_labels, predictions) 

 

# Create a heatmap for visualization 

plt.figure(figsize=(8, 6)) 

sns.heatmap(cm, annot=True, fmt='g', cmap='Blues', cbar=False, 

xticklabels=['boat','couch','dog', 'cake', 'motorcycle'], 

yticklabels=['boat','couch','dog', 'cake', 'motorcycle']) 

plt.xlabel('Predicted labels') 

plt.ylabel('True labels') 

plt.title('Confusion Matrix Net3') 

plt.show() 

 

# Print classification report for additional metrics like accuracy 

print("Classification Report:\n", classification_report(real_labels, 

predictions)) 

 

 


