Alexandre Olive Pellicer

HOMEWORK 5

Alexandre Olive Pellicer

Building the model

| have created the model as an extension of the BMEnet model, the model that is already
implemented in DLStudio and used for training the CIFAR_10 dataset. Since the number
of classes in the CIFAR_10 dataset is 10, the output of the last linear layer is 10. In our
case, since we are working with a dataset which contains 5 classes, we fixed the output
of the last linear layer to 5. Furthermore, the size of the images from CIFAR_10 dataset
is 32x32 while the size of the images from our dataset is 64x64. For that reason,

The CIFAR_10 dataset contains images of size 32x32 for 10 different classes. Our dataset
has images of size 64x64. For that reason, in our dataset we downsampled the images
one more time and we also decided to increase the number of channels to 256 following
the pattern of BMEnet.

When referring to the BMEnet, | am referring to the initial implementation given when
the instructions where submitted. After trying different architectures, | saw it was the
one it was giving me better results.

Find at the end of the report the class HW5Net which corresponds to the model used in
this homework.

Total number of learnable layers in your network
We print the number of learnable layers that our network has using:

num_layers = len(list (net3.parameters ()))

print("number of learnable layers: ", num_layers)
The obtained result is 188

Collect training loss for at least two different learning rates and include the plots in
your report.

The loss curve for Ir=1e-4 and Ir=5e-4 when training it for 15 epochs is the following:

Alexandre Olive Pellicer

Loss Curves for Different Learning Rates

2.01 — LR=0.0001
—— LR=0.0005
1.8 A

1.6

14+

Loss

121

1.0

0.8 1

0.6 1

T T
] 50 100 150 200 250 300
Iterations

Fig 1: Loss curves for Ir = 1e-4 and Ir = 5e-4 after 15 epochs

| also saw that by increasing the number of epochs by 60, the training loss could be
reduced to values closer to 0. These are the plots obtained by training for 60 epochs
using again Ir=1e-4 and Ir=5e-4:

Loss Curves for Different Learning Rates

2.00 A
— LR=0.0001

—— LR=0.0005
1.75 4

1.50
1.25 Pu
2 1.00 %
3

0.75
0.50
0.25

0.00

T T T T r
i} 200 400 600 800 1000 1200
lterations

Fig 2: Loss curves for Ir = 1e-4 and Ir = 5e-4 after 60 epochs

Alexandre Olive Pellicer

Report the accuracy numbers and the confusion matrix for different learning rates on
the test dataset.

Confusion Matrix Net5 Ir=1e-4 epochs=15

62

boat

68

True labels
q

cake

61 27 39

motorcycle
1

| I
boat couch dog cake matorcycle
Predicted labels

Fig 3: Confusion Matrix of Net5 using a Ir=1e-4 and 15 epochs

15 epochs 60 epochs

Validation accuracy Training accuracy Validation accuracy | Training accuracy
0.54 0.66 0.52

Confusion Matrix Net5 Ir=>5e-4 epochs=15

E 0 52 2 8
8
£=
& - 61 96 102 122 19
8
0
2
= 5o 113 13 14
L=
=
g 19 14 11
8

5 104 8 72

maotorcycle

i i i
couch dog cake maotorcycle

Predicted labels

Fig 4: Confusion Matrix of Net5 using a Ir=5e-4 and 15 epochs

Alexandre Olive Pellicer

15 epochs 60 epochs
Validation accuracy Training accuracy | Validation accuracy | Training accuracy
0.43 0.44 0.43 0.59

From the obtained results we can say that the best performance is achieved when using
Ir = 1e-4 and training for 15 epochs since we achieve an accuracy of 54%. From the loss
curves we could expect that the models trained after 60 epochs should perform better
since a lower value of loss was reached. Nevertheless, looking at the Training accuracy
for Ir = 1e-4 and 60 epochs we see that we have - a very high value which shows us
that we have a case of overfitting and that the model is not able to generalize. Thus, the
performance over the validation dataset is not that good.

State your observations regarding the classification performance of HW5Net in
comparison with what you achieved previously with Net3 in HW4. Also, attach your
confusion matrix of Net3 from HW4.

The confusion matrix of Net3 from HW4 is:

Confusion Matrix Net3

i 32 20 76
8
=
S - 7 137 10
8
w
]
-3
= g- 47 a2 107 124 40
u
=
’_
g
g < -] a3 19
@
o
=
- 51 32 34
:
i i i i
boat couch dog cake motorcycle

Predicted labels

Fig 5: Confusion matrix of Net3 from HW4

| will consider Net5 the model we have trained with Ir=1e-4 for 15 epochs which is the
one that gave us a better accuracy: 54%

Looking at the loss curve obtained with Net5, we can see that the loss value converges
towards a low value. This didn’t happen with Net3 where we were in front of a case of a
vanishing gradient. In Net5 we have prevented a vanishing gradient case by using skip

Alexandre Olive Pellicer

connections. This allows us to train deeper neural networks. In our case, Net5 has 188
learnable layers, a much bigger number compared to the number of learnable layers
used in Net3 which was lower than 30.

In terms of accuracy, we see that the performance hasn’t improved that much. Both in
Net3 and Net5 the validation accuracy obtained is inside the range 50%-60%. About the
capacity of labeling correctly a specific class, we see that in both Net3 and Net5 the class
which is more times misclassified is the dog. As we mentioned in hw4, dog is the class
that is more difficult to correctly label because probably it is more prompt to appear to
images where there is also a “boat” or a “couch” or a “cake” or a “motorcycle” and we
are considering as a bad classification although it is correctly done. It is also curious to
see that Net5 classifies a considerable number of cakes as couches while in Net3 is in the
other way, it classifies a considerable number of couches as cakes. It is difficult to find an
explainable reason for these behaviors although we may think that they share some
features. For example, both cakes and couches are trend to be in indoors rooms.

As mentioned in HW4, our training a testing dataset have limitations of reduced number
of samples and images with more than one class. This makes it more difficult to obtain
the desired results. When targeting improving the performance of a deep learning
model, the data has a lot to do.

Optional: You may also attach the confusion matrix generated for CIFAR dataset. State
your observations in comparison to COCO dataset performance.

The confusion matrix obtained when using the CIFAR dataset is the following:
Displaying the comfusion matrix:

car bird frog horse ship
plane: 82. 1.5 2.88 1.48 1.18 A8 8,98
] 83.48 8.8 :
B .98
o8
18

[x7]
d

.88

=

[=)]
$ ok

[CRISIT,
P

fd Pl B Pl
[~}
[ia)

2.4
2.
1l

]

ROy

=
= R L

P P P
o]
4
ATy -1
5 L

Fig 6: Confusion matrix for the CIFAR_10 dataset
The obtained accuracy in this case is 75%.

We can see that when using the CIFAR dataset the obtained accuracy is better than the
results obtained with the COCO dataset that we have created by ourselves. In this case
we obtain better accuracy than when using the COCO dataset. The difference in accuracy
is significant which makes us think that one of the main problems for not improving our
training accuracy is the dataset with which we are working (i.e. our dataset has small

Alexandre Olive Pellicer

training and testing datasets, and it contains images where more than a class can be
present)

A 75% of training accuracy can be considered a good result. From the confusion matrix
we can also see that the model makes mistakes when classifying cats and dogs. This is
because they are very similar, and they share features. It also happens, although with
less frequency, with the horse. Cats, dogs, and horses are animals with 4 legs, for this
reason it is understandable the mistakes when classifying them. Something similar
happens with planes and birds. Both have 2 wings and are found probably in the sky. For
this reason, there are also mistakes when classifying them.

CODE:

import sys,o0s,o0s.path

import torch

import torch.nn as nn

import numpy as np

import matplotlib.pyplot as plt

import os

from torch.utils.data import Dataloader
import torch

import torch.nn as nn

from tqdm import tqdm

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.metrics import confusion_matrix
from sklearn.metrics import classification_report
import torchvision.transforms as tvt

from PIL import Image

import torch.nn.functional as F

import copy

from DLStudio import *

os.environ['CUDA_VISIBLE_DEVICES']='5"

MyDataset (torch.utils.data.Dataset):

__init_ (self , root):
super().__init__ ()

self.root = root
self.filenames = os.listdir(self.root)

Alexandre Olive Pellicer

self.
t
t

D

len

retur
__get

path
cls =
img =

trans

if cl
1
elif
1
elif
1
elif
1
elif
1

retur

SkipBlo

Class Pat
__ini
skip_connecti
super
self
self.
self.
self.
self.
self.
self.

transform = tvt.Compose([
vt.ToTensor(),
vt.Normalize((0.5, 0.5, ©.5), (0.5, 0.5, 0.5)),

_(self):

n len(self.filenames)
item__ (self , index):

= os.path.join(self.root, self.filenames[index])
self.filenames[index].split("' ")[0]
Image.open(path)

formed_img = self.transform(img)

s == "boat":

abel = torch.tensor([1.0,
cls == "couch":

abel = torch.tensor([0.0,
cls == "dog":

abel = torch.tensor([0.0,
cls == "cake":

abel = torch.tensor([0.0,
cls == "motorcycle":

abel = torch.tensor([0.0,

n transformed_img, label

ck(nn.Module):

h: DLStudio -> SkipConnections -> SkipBlock

t_ (self, in_ch, out_ch, downsample=
ons=):
(SkipBlock, self). init_ ()

.downsample = downsample

skip_connections = skip_connections

in_ch = in_ch

out_ch = out_ch

convol nn.Conv2d(in_ch, in_ch, 3, stride=1, padding=1)
convo2 = nn.Conv2d(in_ch, out ch, 3, stride=1, padding=1)
bnl = nn.BatchNorm2d(in_ch)

Alexandre Olive Pellicer

self.bn2 = nn.BatchNorm2d(out_ch)
self.in2out = nn.Conv2d(in_ch, out_ch, 1)

if downsample:
self.downsamplerl = nn.Conv2d(in_ch, in_ch, 1, stride=2)
self.downsampler2 = nn.Conv2d(out_ch, out ch, 1, stride=2)

forward(self, x):
identity = x

out = self.convol(x)
out = self.bnl(out)
out = nn.functional.relu(out)

out = self.convo2(out)
out = self.bn2(out)
out = nn.functional.relu(out)

if self.downsample:
identity = self.downsamplerl(identity)

out = self.downsampler2(out)

if self.skip connections:
if (self.in _ch == self.out ch) (self.downsample

out = out + identity
elif (self.in_ch != self.out ch) (self.downsample

identity = self.in2out(identity

out = out + identity
elif (self.in_ch != self.out ch) (self.downsample

out = out + torch.cat((identity, identity), dim=1)

return out

HW5Net (nn.Module):

Class Path: DLStudio -> SkipConnections -> HW5Net

__init_ (self, skip_connections= , depth=32):
super (HWS5Net, self). init ()
if depth [8, 16, 32, 64]:

Alexandre Olive Pellicer

sys.exit("HW5Net has been tested for depth for only 8, 16,
32, and 64")
self.depth = depth // 8
self.conv = nn.Conv2d(3, 64, 3, padding=1)
self.pool = nn.MaxPool2d(2, 2)

self.skip64_arr = nn.ModulelList()
for i in range(self.depth):
self.skip64_arr.append(SkipBlock (64,

64,skip_connections=skip_connections))

self.skip64ds = SkipBlock(64, 64,downsample=
skip_connections=skip connections)

self.skip64tol28 = SkipBlock(64,
128, skip connections=skip connections)

self.skip128 arr = nn.ModulelList()
for i in range(self.depth):
self.skip128 arr.append(SkipBlock (128,

128, skip connections=skip connections))

self.skip128ds = SkipBlock(128, 128,downsample=
skip_connections=skip_connections)

self.skip128to256 = SkipBlock (128,
256,skip_connections=skip connections)

self.skip256 arr = nn.ModulelList()
for i in range(self.depth):
self.skip256_arr.append(SkipBlock (256, 256,
skip_connections=skip connections))
self.skip256ds = SkipBlock(256,256,downsample=
skip_connections=skip connections)

self.fcl nn.Linear (1024, 500)
self.fc2 nn.Linear(500, 5)

forward(self, x):
x = self.pool(nn.functional.relu(self.conv(x)))

i,skip64 in enumerate(self.skip64 _arr[:self.depth//4]):
x = skip64(x)

self.skip64ds(x)

i,skip64 in enumerate(self.skip64 _arr[self.depth//4:]):
x = skip64(x)

self.skip64ds(x)

self.skip64to0128(x)

Alexandre Olive Pellicer

i,skip128 in enumerate(self.skip128 arr[:self.depth//4]):
x = skip128(x)

self.skip128ds(x)

i,skip128 in enumerate(self.skipl28 arr[self.depth//4:]):
x = skip128(x)

self.skip128ds(x)

self.skip128t0256(x)

i,skip256 in enumerate(self.skip256 arr[:self.depth//4]):
x = skip256(x)
i,skip256 in enumerate(self.skip256 arr[self.depth//4:]):
x = skip256(x)

x.view(x.shape[@0], - 1)
= nn.functional.relu(self.fcl(x))
= self.fc2(x)
return X

device = "cuda:0"

my dataset = MyDataset ("../../../COCOTraining")

batch size = 4

train_data_loader = DatalLoader(my_dataset, batch size = batch size,
shuffle =)

loss net3 = []
net3 = HW5Net()

net3 = net3.to(device)

num_layers = len(list (net3.parameters ()))
print("number of learnable layers: ", num_layers)

criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(net3.parameters(), lr=5e-4, betas=(0.9,
0.99))
epochs = 60
for epoch in tgdm(range(epochs)):
running_loss = 0.0
for i, data in enumerate(train_data_loader):
inputs, labels = data
inputs = inputs.to(device)

Alexandre Olive Pellicer

labels = labels.to(device)
optimizer.zero_grad()

outputs = net3(inputs)

loss = criterion(outputs, labels)
loss.backward()

optimizer.step()

running loss += loss.item()

if (i+1) % 100 == 0:

loss_net3.append(running loss/100)
running loss = 0.0

torch.save(net3.state_dict(), './net5_replicate_6@epochs.pth"')

.plot(loss _net3)
.legend(["loss _net3"])
.xlabel('Iterations")

.ylabel('Loss")
.title('Loss comparisson for the 3 networks')

.show()

device = "cuda:0"

my_dataset = MyDataset("../COCOValidation")

batch_size = 4

train_data_loader = DatalLoader(my_dataset, batch size = batch size,
shuffle =)

predictions
real_labels

net3 = HW5Net()
net3.load state dict(torch.load('net5 replicate 6@epochs.pth'))

Alexandre Olive Pellicer

net3 = net3.to(device)

net3.eval()

for i, data in enumerate(train_data_loader):

inputs, labels = data

inputs = inputs.to(device)

labels = labels.to(device)

with torch.no _grad():
outputs = net3(inputs)

outputs = outputs.split(1)

labels = labels.split(1)

for 1bl in labels:
real_ labels.append(torch.argmax(lbl.squeeze()).item())

for pred in outputs:
predictions.append(torch.argmax(pred.squeeze()).item())

cm = confusion matrix(real labels, predictions)

plt.figure(figsize=(8, 6))

sns.heatmap(cm, annot= , fmt="g', cmap='Blues', cbar=
xticklabels=['boat"', 'couch', 'dog', 'cake', 'motorcycle'],
yticklabels=['boat', 'couch', 'dog', 'cake', 'motorcycle'])
plt.xlabel('Predicted labels')

plt.ylabel('True labels')

plt.title('Confusion Matrix Net3')

plt.show()

print("Classification Report:\n", classification_report(real labels,
predictions))

12

