
Alexandre Olive Pellicer

1

HOMEWORK 5

Alexandre Olive Pellicer

Building the model

I have created the model as an extension of the BMEnet model, the model that is already

implemented in DLStudio and used for training the CIFAR_10 dataset. Since the number

of classes in the CIFAR_10 dataset is 10, the output of the last linear layer is 10. In our

case, since we are working with a dataset which contains 5 classes, we fixed the output

of the last linear layer to 5. Furthermore, the size of the images from CIFAR_10 dataset

is 32x32 while the size of the images from our dataset is 64x64. For that reason,

The CIFAR_10 dataset contains images of size 32x32 for 10 different classes. Our dataset

has images of size 64x64. For that reason, in our dataset we downsampled the images

one more time and we also decided to increase the number of channels to 256 following

the pattern of BMEnet.

When referring to the BMEnet, I am referring to the initial implementation given when

the instructions where submitted. After trying different architectures, I saw it was the

one it was giving me better results.

Find at the end of the report the class HW5Net which corresponds to the model used in

this homework.

Total number of learnable layers in your network

We print the number of learnable layers that our network has using:

 num_layers = len(list (net3.parameters ()))
 print("number of learnable layers: ", num_layers)
The obtained result is 188

Collect training loss for at least two different learning rates and include the plots in

your report.

The loss curve for lr=1e-4 and lr=5e-4 when training it for 15 epochs is the following:

Alexandre Olive Pellicer

2

 Fig 1: Loss curves for lr = 1e-4 and lr = 5e-4 after 15 epochs

I also saw that by increasing the number of epochs by 60, the training loss could be

reduced to values closer to 0. These are the plots obtained by training for 60 epochs

using again lr=1e-4 and lr=5e-4:

 Fig 2: Loss curves for lr = 1e-4 and lr = 5e-4 after 60 epochs

Alexandre Olive Pellicer

3

Report the accuracy numbers and the confusion matrix for different learning rates on

the test dataset.

 Fig 3: Confusion Matrix of Net5 using a lr=1e-4 and 15 epochs

15 epochs 60 epochs

Validation accuracy Training accuracy Validation accuracy Training accuracy

0.54 0.66 0.52 0.96

 Fig 4: Confusion Matrix of Net5 using a lr=5e-4 and 15 epochs

Alexandre Olive Pellicer

4

15 epochs 60 epochs

Validation accuracy Training accuracy Validation accuracy Training accuracy

0.43 0.44 0.43 0.59

From the obtained results we can say that the best performance is achieved when using

lr = 1e-4 and training for 15 epochs since we achieve an accuracy of 54%. From the loss

curves we could expect that the models trained after 60 epochs should perform better

since a lower value of loss was reached. Nevertheless, looking at the Training accuracy

for lr = 1e-4 and 60 epochs we see that we have 96%, a very high value which shows us

that we have a case of overfitting and that the model is not able to generalize. Thus, the

performance over the validation dataset is not that good.

State your observations regarding the classification performance of HW5Net in

comparison with what you achieved previously with Net3 in HW4. Also, attach your

confusion matrix of Net3 from HW4.

The confusion matrix of Net3 from HW4 is:

 Fig 5: Confusion matrix of Net3 from HW4

I will consider Net5 the model we have trained with lr=1e-4 for 15 epochs which is the

one that gave us a better accuracy: 54%

Looking at the loss curve obtained with Net5, we can see that the loss value converges

towards a low value. This didn’t happen with Net3 where we were in front of a case of a

vanishing gradient. In Net5 we have prevented a vanishing gradient case by using skip

Alexandre Olive Pellicer

5

connections. This allows us to train deeper neural networks. In our case, Net5 has 188

learnable layers, a much bigger number compared to the number of learnable layers

used in Net3 which was lower than 30.

In terms of accuracy, we see that the performance hasn’t improved that much. Both in

Net3 and Net5 the validation accuracy obtained is inside the range 50%-60%. About the

capacity of labeling correctly a specific class, we see that in both Net3 and Net5 the class

which is more times misclassified is the dog. As we mentioned in hw4, dog is the class

that is more difficult to correctly label because probably it is more prompt to appear to

images where there is also a “boat” or a “couch” or a “cake” or a “motorcycle” and we

are considering as a bad classification although it is correctly done. It is also curious to

see that Net5 classifies a considerable number of cakes as couches while in Net3 is in the

other way, it classifies a considerable number of couches as cakes. It is difficult to find an

explainable reason for these behaviors although we may think that they share some

features. For example, both cakes and couches are trend to be in indoors rooms.

As mentioned in HW4, our training a testing dataset have limitations of reduced number

of samples and images with more than one class. This makes it more difficult to obtain

the desired results. When targeting improving the performance of a deep learning

model, the data has a lot to do.

Optional: You may also attach the confusion matrix generated for CIFAR dataset. State

your observations in comparison to COCO dataset performance.

The confusion matrix obtained when using the CIFAR dataset is the following:

 Fig 6: Confusion matrix for the CIFAR_10 dataset

The obtained accuracy in this case is 75%.

We can see that when using the CIFAR dataset the obtained accuracy is better than the

results obtained with the COCO dataset that we have created by ourselves. In this case

we obtain better accuracy than when using the COCO dataset. The difference in accuracy

is significant which makes us think that one of the main problems for not improving our

training accuracy is the dataset with which we are working (i.e. our dataset has small

Alexandre Olive Pellicer

6

training and testing datasets, and it contains images where more than a class can be

present)

A 75% of training accuracy can be considered a good result. From the confusion matrix

we can also see that the model makes mistakes when classifying cats and dogs. This is

because they are very similar, and they share features. It also happens, although with

less frequency, with the horse. Cats, dogs, and horses are animals with 4 legs, for this

reason it is understandable the mistakes when classifying them. Something similar

happens with planes and birds. Both have 2 wings and are found probably in the sky. For

this reason, there are also mistakes when classifying them.

CODE:

import sys,os,os.path

import torch

import torch.nn as nn

import numpy as np

import matplotlib.pyplot as plt

import os

from torch.utils.data import DataLoader

import torch

import torch.nn as nn

from tqdm import tqdm

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.metrics import confusion_matrix

from sklearn.metrics import classification_report

import torchvision.transforms as tvt

from PIL import Image

import torch.nn.functional as F

import copy

from DLStudio import *

os.environ['CUDA_VISIBLE_DEVICES']='5'

USED THE MYDATASET CLASS USED IN PREVIOUS HOMEWORKS ------------------

class MyDataset (torch.utils.data.Dataset):

 def __init__ (self , root):

 super().__init__()

 # Obtain meta information (e.g. list of file names)

 self.root = root

 self.filenames = os.listdir(self.root)

 # Initialize data transforms , etc.

Alexandre Olive Pellicer

7

 self.transform = tvt.Compose([

 tvt.ToTensor(),

 tvt.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),

])

 def __len__ (self):

 # Return the total number of images

 # the number is a place holder only

 return len(self.filenames)

 def __getitem__ (self , index):

 # Read an image at index and perform processing

 path = os.path.join(self.root, self.filenames[index])

 cls = self.filenames[index].split('_')[0]

 img = Image.open(path)

 # Get the normalized tensor

 transformed_img = self.transform(img)

 if cls == "boat":

 label = torch.tensor([1.0, 0.0, 0.0, 0.0, 0.0])

 elif cls == "couch":

 label = torch.tensor([0.0, 1.0, 0.0, 0.0, 0.0])

 elif cls == "dog":

 label = torch.tensor([0.0, 0.0, 1.0, 0.0, 0.0])

 elif cls == "cake":

 label = torch.tensor([0.0, 0.0, 0.0, 1.0, 0.0])

 elif cls == "motorcycle":

 label = torch.tensor([0.0, 0.0, 0.0, 0.0, 1.0])

 # Return the tuple : (normalized tensor, label)

 return transformed_img, label

COPPIED THE LAST SKIPBLOCK CLASS IMPLEMENTATION PROVIDED BY PROFESSOR

KAK---

class SkipBlock(nn.Module):

 """

 Class Path: DLStudio -> SkipConnections -> SkipBlock

 """

 def __init__(self, in_ch, out_ch, downsample=False,

skip_connections=True):

 super(SkipBlock, self).__init__()

 self.downsample = downsample

 self.skip_connections = skip_connections

 self.in_ch = in_ch

 self.out_ch = out_ch

 self.convo1 = nn.Conv2d(in_ch, in_ch, 3, stride=1, padding=1)

 self.convo2 = nn.Conv2d(in_ch, out_ch, 3, stride=1, padding=1)

 self.bn1 = nn.BatchNorm2d(in_ch)

Alexandre Olive Pellicer

8

 self.bn2 = nn.BatchNorm2d(out_ch)

 self.in2out = nn.Conv2d(in_ch, out_ch, 1)

 if downsample:

 self.downsampler1 = nn.Conv2d(in_ch, in_ch, 1, stride=2)

 self.downsampler2 = nn.Conv2d(out_ch, out_ch, 1, stride=2)

 def forward(self, x):

 identity = x

 out = self.convo1(x)

 out = self.bn1(out)

 out = nn.functional.relu(out)

 out = self.convo2(out)

 out = self.bn2(out)

 out = nn.functional.relu(out)

 if self.downsample:

 identity = self.downsampler1(identity)

 out = self.downsampler2(out)

 if self.skip_connections:

 if (self.in_ch == self.out_ch) and (self.downsample is

False):

 out = out + identity

 elif (self.in_ch != self.out_ch) and (self.downsample is

False):

 identity = self.in2out(identity

) ### <<<< from Cheng-Hao Chen

 out = out + identity

 elif (self.in_ch != self.out_ch) and (self.downsample is

True):

 out = out + torch.cat((identity, identity), dim=1)

 return out

COPPIED THE FIRST BMENET CLASS IMPLEMENTATION AVAILABLE IN DLSTUDIO

AND EXTEND IT TO CREATE HW5NET --

class HW5Net(nn.Module):

 """

 Class Path: DLStudio -> SkipConnections -> HW5Net

 """

 def __init__(self, skip_connections=True, depth=32):

 super(HW5Net, self).__init__()

 if depth not in [8, 16, 32, 64]:

Alexandre Olive Pellicer

9

 sys.exit("HW5Net has been tested for depth for only 8, 16,

32, and 64")

 self.depth = depth // 8

 self.conv = nn.Conv2d(3, 64, 3, padding=1)

 self.pool = nn.MaxPool2d(2, 2)

 self.skip64_arr = nn.ModuleList()

 for i in range(self.depth):

 self.skip64_arr.append(SkipBlock(64,

64,skip_connections=skip_connections))

 self.skip64ds = SkipBlock(64, 64,downsample=True,

skip_connections=skip_connections)

 self.skip64to128 = SkipBlock(64,

128,skip_connections=skip_connections)

 self.skip128_arr = nn.ModuleList()

 for i in range(self.depth):

 self.skip128_arr.append(SkipBlock(128,

128,skip_connections=skip_connections))

 self.skip128ds = SkipBlock(128, 128,downsample=True,

skip_connections=skip_connections)

 self.skip128to256 = SkipBlock(128,

256,skip_connections=skip_connections)

 self.skip256_arr = nn.ModuleList()

 for i in range(self.depth):

 self.skip256_arr.append(SkipBlock(256, 256,

skip_connections=skip_connections))

 self.skip256ds = SkipBlock(256,256,downsample=True,

skip_connections=skip_connections)

 self.fc1 = nn.Linear(1024, 500)

 self.fc2 = nn.Linear(500, 5)

 # I implement the forward method as an extension of the given BMEnet

given. I downsample the input images one more time and I also increase

the number of channels one more time.

 # Finally I adjust the arguments of the linear layers

 def forward(self, x):

 x = self.pool(nn.functional.relu(self.conv(x)))

 for i,skip64 in enumerate(self.skip64_arr[:self.depth//4]):

 x = skip64(x)

 x = self.skip64ds(x)

 for i,skip64 in enumerate(self.skip64_arr[self.depth//4:]):

 x = skip64(x)

 x = self.skip64ds(x)

 x = self.skip64to128(x)

Alexandre Olive Pellicer

10

 for i,skip128 in enumerate(self.skip128_arr[:self.depth//4]):

 x = skip128(x)

 x = self.skip128ds(x)

 for i,skip128 in enumerate(self.skip128_arr[self.depth//4:]):

 x = skip128(x)

 x = self.skip128ds(x)

 x = self.skip128to256(x)

 for i,skip256 in enumerate(self.skip256_arr[:self.depth//4]):

 x = skip256(x)

 for i,skip256 in enumerate(self.skip256_arr[self.depth//4:]):

 x = skip256(x)

 x = x.view(x.shape[0], - 1)

 x = nn.functional.relu(self.fc1(x))

 x = self.fc2(x)

 return x

SCRIPT TO RUN THE TRAINING ---

device = "cuda:0"

Dataloader

my_dataset = MyDataset ("../../../COCOTraining")

batch_size = 4

train_data_loader = DataLoader(my_dataset, batch_size = batch_size,

shuffle = True)

List where the loss values will be stored

loss_net3 = []

net3 = HW5Net()

Training routine provided by the assignment

net3 = net3.to(device)

Print number of learnable layers

num_layers = len(list (net3.parameters ()))

print("number of learnable layers: ", num_layers)

criterion = torch.nn.CrossEntropyLoss()

optimizer = torch.optim.Adam(net3.parameters(), lr=5e-4, betas=(0.9,

0.99))

epochs = 60

for epoch in tqdm(range(epochs)):

 running_loss = 0.0

 for i, data in enumerate(train_data_loader):

 inputs, labels = data

 inputs = inputs.to(device)

Alexandre Olive Pellicer

11

 labels = labels.to(device)

 optimizer.zero_grad()

 outputs = net3(inputs)

 loss = criterion(outputs, labels)

 loss.backward()

 optimizer.step()

 running_loss += loss.item()

 if (i+1) % 100 == 0:

 # print("[epoch: %d, batch: %5d] loss: %.3f" \

 # % (epoch + 1, i + 1, running_loss / 100))

 loss_net3.append(running_loss/100)

 running_loss = 0.0

Save the learned parameters of the model to do inference afterwards

torch.save(net3.state_dict(), './net5_replicate_60epochs.pth')

PLOT TRAINING LOSS--

plt.plot(loss_net3)

plt.legend(["loss_net3"])

Adding labels and title

plt.xlabel('Iterations')

plt.ylabel('Loss')

plt.title('Loss comparisson for the 3 networks')

Display the plot

plt.show()

TESTING AND CONFUSSION MATRIX (We run this code for each network)-----

--

device = "cuda:0"

Dataloader loading the Validation dataset

my_dataset = MyDataset("../COCOValidation")

batch_size = 4

train_data_loader = DataLoader(my_dataset, batch_size = batch_size,

shuffle = True)

Lists where the labels will be stored for each of the images from the

Validation dataset

predictions = []

real_labels = []

Load the trained weights

net3 = HW5Net()

net3.load_state_dict(torch.load('net5_replicate_60epochs.pth'))

Alexandre Olive Pellicer

12

net3 = net3.to(device)

Set the model to evaluation mode

net3.eval()

Get the predicted label and the real label from each image and store

them to the lists mentioned before

for i, data in enumerate(train_data_loader):

 inputs, labels = data

 inputs = inputs.to(device)

 labels = labels.to(device)

 with torch.no_grad():

 outputs = net3(inputs)

 outputs = outputs.split(1)

 labels = labels.split(1)

 for lbl in labels:

 real_labels.append(torch.argmax(lbl.squeeze()).item())

 for pred in outputs:

 predictions.append(torch.argmax(pred.squeeze()).item())

Compute the confusion matrix

cm = confusion_matrix(real_labels, predictions)

Create a heatmap for visualization

plt.figure(figsize=(8, 6))

sns.heatmap(cm, annot=True, fmt='g', cmap='Blues', cbar=False,

xticklabels=['boat','couch','dog', 'cake', 'motorcycle'],

yticklabels=['boat','couch','dog', 'cake', 'motorcycle'])

plt.xlabel('Predicted labels')

plt.ylabel('True labels')

plt.title('Confusion Matrix Net3')

plt.show()

Print classification report for additional metrics like accuracy

print("Classification Report:\n", classification_report(real_labels,

predictions))

