
BME646 and ECE60146: Homework 4

Spring 2023
Due Date: 11:59pm, Feb 5, 2024

TA: Akshita Kamsali (akamsali@purdue.edu)

Turn in typed solutions via BrightSpace. Read all submission instruc-
tions carefully. Late submissions will be accepted with penalty: -10 points
per-late-day, up to 5 days.

1 Introduction

The two main goals of this homework:

1. To introduce you to the competition-grade and very famous COCO
dataset of images. A more correct name for the COCO dataset is
MS-COCO. The acronym stands for Microsoft Common Objects in
COntext. It is frequently used by researchers to showcase the power
of their neural networks for solving problems in image segmentation,
classification, object detection, etc. You will be tasked to create your
own image classification dataset as a relatively small subset of COCO.
The dataset you create will consist of the images and their annotations
as described later in this homework.

2. Your second goal will be to write PyTorch code for a CNN (Convo-
lutional Neural Network) for image classification. You will train the
CNN using the dataset you will extract from COCO as mentioned
above. Since this will be your first exercise in image classification, this
part of the homework will also suggest that you develop your classifi-
cation insights quickly by experimenting with DLStudio’s inner class
ExperimentsWithCIFAR using the far simpler CIFAR dataset that con-
sists of just 32× 32 images.

2 Background

2.1 About the COCO Dataset

Owing to its rich annotations, the COCO dataset, first published in 2014
[3], continues to be a most important resource in deep learning. A recent
very famous paper from Meta presented a powerful neural network for image

1



segmentation called Segment Anything (SAM) [2]. It was trained using the
COCO dataset. With its versatile annotations, the dataset can be used to
train networks for all kinds of tasks including image classification, object
detection, self-supervised learning, pose estimation, and more. To under-
stand the motivations behind its inception and to appreciate the challenges
faced in constructing the dataset, see the original paper [3] on COCO. You
should at least read the Introduction section of the paper.

For this homework, you will download a part of the full COCO dataset
and familiarize yourself with the COCO API, which provides a convenient
interface to the otherwise complicated annotation files. Finally, you will
create your own image dataset for classification using the downloaded COCO
files and the COCO API.

2.2 About the Image Classification Network You Will Write
Code For

DLStudio’s inner class ExperimentsWithCIFAR will serve as a sandbox for
quickly coming up to speed on this part of the Homework. The network you
have to create is likely to be very similar to the two examples — Net and
Net2 — shown in that part of DLStudio. After installing DLStudio, play
with these two networks by changing the parameters of the convolutional
and the fully connected layers and see what that does to the classification
accuracy. Regarding DLStudio, download its zip archive from its main doc
page, install the module, and go to its Examples directory to get hold of the
script named below.1:

python playing_with_cifar10.py

As with the DLStudio example code mentioned above, the classification
network you will create will use a certain number of convolutional layers
and, at its top, will contain one or more fully connected (FC) layers (also
known as Linear layers). The number of output nodes at the final layer is
equal to the number of image classes you will be working with, here 10.

In your experiments with the classification network, pay attention to the
changing resolution in the image tensor as it is pushed up the resolution
hierarchy of a CNN. This is particularly important when you are trying to

1The CIFAR-10 dataset will be downloaded automatically when you run the script
playing with cifar10.py. The CIFAR image dataset, made available by the University
of Toronto, is considered to be the fruit-fly of DL. The dataset consists of 32× 32 images,
50,000 for training and 10,000 for testing that can easily be processed in your laptop. Just
Google “CIFAR-10 dataset” for more information regarding the dataset.

2



estimate the number of nodes you need in the first fully connected layer
at the top of the network. Depending on the sizes of the convolutional
kernels you will use, you may also need to pay attention to the role played
by padding in the convolutional layers.

3 Programming Tasks

3.1 Using COCO to Create Your Own Image Classification
Dataset

Note: Don’t be concerned about the initial large size of the complete dataset
you download. You will utilize only a subset of the entire dataset, which you
will extract following the provided instructions. Make sure to execute these
steps accurately, save the subset data, and keep it for future assignments.

Through this exercise, you will create a custom dataset which is a subset
of the COCO dataset:

1. The first step is to install the COCO API in your conda environ-
ment. The Python version of the COCO API — pycocotools pro-
vides the necessary functionalities for loading the annotation JSON
files and accessing images using class names. The pycocoDemo.ipynb
demo available on the COCO API GitHub repository [1] is a useful
resource to familiarize yourself with the COCO API. You can install
the pycocotools package with the following command 2:

conda install -c conda-forge pycocotools

2. Now, you need to download the image files and their annotations. The
COCO dataset comes in 2014 and 2017 versions. For this homework,
you will be using the 2017 Train images. You can download them
directly from this page:

https://cocodataset.org/#download

On the same page, you will also need to download the accompany-
ing annotation files: 2017 Train/Val annotations. Unzip the two
archives you just downloaded.

2The following command may change based on your version of conda, please check for
the appropriate conda/pip command to install pycocotools

3

https://cocodataset.org/#download


3. You main task is to use those files to create your own image classifica-
tion dataset. Note that you can access the class labels of the images
stored in the instances_train2017.json file using the COCO API.
You have total freedom on how you organize your dataset as long as
it meets the following requirements:

• It should contain 1600 training and 400 validation images for each
of the following five classes:

[ ’boat’, ’cake’, ’couch’, ’dog’, ’motorcycle’]

This will amount to 8000 training images and 2000 validation im-
ages in total and there should be no duplicates. All images should
be taken from the 2017 Train images set you just downloaded.

• When saving your images to disk, resize them to 64× 64.

You may use the opencv and PIL module to perform above op-
erations.

4. In your report, make a figure of a selection of images from your created
dataset. You should plot at least 3 images from each of the five classes.

Do NOT submit any dataset, original or custom, to
Brightspace.

3.2 Image Classification using CNNs – Training and Valida-
tion

Once you have prepared the dataset, you now need to im-
plement and test the following CNN tasks:

CNN Task 1: In the following network, you will notice
that we are constructing instances of torch.nn.Conv2d
in the mode in which it only uses the valid pixels for
the convolutions. But, as you now know based on the
Week 5 lecture (and slides), this is going to cause the
image to shrink as it goes up the convolutional stack.

4



Your first task is to run the network as shown. Let’s
call this single layer CNN as Net1 . You may also mod-
ify the code by using nn.Sequential to implement
this.

1 class HW4Net(nn.Module):

2 def __init__(self):

3 super(HW4Net , self).__init__ ()

4 self.conv1 = nn.Conv2d(3, 16, 3)

5 self.pool = nn.MaxPool2d(2, 2)

6 self.conv2 = nn.Conv2d(16, 32, 3)

7 self.fc1 = nn.Linear(XXXX , 64)

8 self.fc2 = nn.Linear(64, XX)

9

10 def forward(self , x):

11 x = self.pool(F.relu(self.conv1(x)))

12 x = self.pool(F.relu(self.conv2(x)))

13 x = x.view(x.shape[0], -1)

14 x = F.relu(self.fc1(x))

15 x = self.fc2(x)

16 return x

Note that the value for XXXX will vary for each CNN ar-
chitecture and finding this parameter for each CNN is
your homework task. XX denotes the number of classes.
In order to experiment with a network like the one
shown above, your training routine can be as simple
as:

1 net = net.to(device)

2 criterion = torch.nn.CrossEntropyLoss ()

3 optimizer = torch.optim.Adam(

4 net.parameters (), lr=1e-3, betas=(0.9, 0.99))

5 epochs = 7

6 for epoch in range(epochs):

7 running_loss = 0.0

8 for i, data in enumerate(train_data_loader):

9 inputs , labels = data

10 inputs = inputs.to(device)

11 labels = labels.to(device)

12 optimizer.zero_grad ()

13 outputs = net(inputs)

14 loss = criterion(outputs , labels)

15 loss.backward ()

5



16 optimizer.step()

17 running_loss += loss.item()

18 if (i+1) % 100 == 0:

19 print("[epoch: %d, batch: %5d] loss: %.3f" \

20 % (epoch + 1, i + 1, running_loss / 100))

21 running_loss = 0.0

where the variable net is an instance of HW4Net.

CNN Task 2: In the HW4Net class as shown, we used the
class torch.nn.Conv2d class without padding. In this
task, construct instances of this class with padding.
Specifically, add a padding of one to the all the con-
volutional layers. Now calculate the loss again and
compare with the loss for the case when no padding
was used. This is the second CNN architecture, Net2
for this homework.

CNN Task 3: So far, both Net1 and Net2 can be only
considered as very shallow networks. Now in this task,
we would like you to experiment with a deeper net-
work. Modify the HW4Net class to chain at least 10 ex-
tra convolutional layers between the second conv layer
and the first linear layer. Each new convolutional layer
should have 32 in-channels, 32 out-channels, a kernel
size of 3 and padding of 1. In the forward() method,
the output of each conv layer should be fed through an
activation function before passed into the next layer.
Note that you would also need to update the value of
XXXX accordingly. The resulting network will be the
third CNN architecture — Net3 .

Before you proceed further, identify the number of pa-
rameters in each of your network.

6



(a) Training loss for the three CNNs. (b) Sample confusion matrix.

Figure 1: Sample output, training loss and validation confusion matrix. The
plotting options are flexible. Your results could vary based on your choice
of hyperparamters. The confusion matrix shown is for a different dataset
and is for illustration only.

Note that in order to train and evaluate your CNNs,
you will need to implement your own torch.utils.data

.Dataset and DataLoader classes for loading the images
and labels. This is similar to what you have implemented
in HW2.

For evaluating the performance of your CNN classifier,
you need to write your own code for calculating the con-
fusion matrix. For the dataset that you created, your con-
fusion matrix will be a 5 × 5 array of numbers, with both
the rows and the columns standing for the 5 classes in the
dataset. The numbers in each row should show how the
test samples corresponding to that class were correctly and
incorrectly classified. You might find scikit-learn and
seaborn python packages useful for this task. Fig. 1b
shows a sample plot of the training loss and a sample con-
fusion matrix. It’s important to note that your own plots
could vary based on your choice of hyperparameters.

7



In your report, you should include a figure that plots the
training losses of all three networks together. Further, in-
clude the confusion matrix for each of the three networks
on the validation set. Add a table with net name, corre-
sponding number of parameters and classification accuracy.
Finally, include your answers to the following questions:

1. Does adding padding to the convolutional layers make
a difference in classification performance?

2. As you may have known, naively chaining a large num-
ber of layers can result in difficulties in training. This
phenomenon is often referred to as vanishing gradient.
Do you observe something like that in Net3?

3. Compare the classification results by all three networks,
which CNN do you think is the best performer?

4. By observing your confusion matrices, which class or
classes do you think are more difficult to correctly dif-
ferentiate and why?

5. What is one thing that you propose to make the clas-
sification performance better?

4 Submission Instructions

Include a typed report explaining how did you solve the
given programming tasks.

1. Your pdf must include a description of

• The figures and descriptions as mentioned in Sec.
3.

8



• Your source code. Make sure that your source code
files are adequately commented and cleaned up.

2. Turn in a pdf file a typed self-contained pdf report
with source code and results. Rename your .pdf file as
hw4 <First Name><Last Name>.pdf

3. Turn in a zipped file, it should include all source code
files (only .py files are accepted). Rename your .zip file
as hw4 <First Name><Last Name>.zip .

4. Do NOT submit your network weights.

5. Do NOT submit your dataset.

6. For all homeworks, you are encouraged to use .ipynb

for development and the report. If you use .ipynb,
please convert it to .py and submit that as source code.

7. You can resubmit a homework assignment as many
times as you want up to the deadline. Each submission
will overwrite any previous submission. If you are
submitting late, do it only once on BrightSpace.
Otherwise, we cannot guarantee that your latest sub-
mission will be pulled for grading and will not accept
related regrade requests.

8. Regrade requests regarding failing to follow instruc-
tions are not accepted.

9. The sample solutions from previous years are for refer-
ence only. Your code and final report must be your own

work.

9



10. To help better provide feedback to you, make sure to
number your figures.

References

[1] COCO API - http://cocodataset.org/. URL https://

github.com/cocodataset/cocoapi.

[2] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi
Mao, Chloe Rolland, Laura Gustafson, Tete Xiao,
Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo,
Piotr Dollár, and Ross Girshick. Segment anything,
2023.

[3] Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir
Bourdev, Ross Girshick, James Hays, Pietro Perona,
Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollár.
Microsoft coco: Common objects in context, 2015.

10

https://github.com/cocodataset/cocoapi
https://github.com/cocodataset/cocoapi

	Introduction
	Background
	About the COCO Dataset
	About the Image Classification Network You Will Write Code For

	Programming Tasks
	Using COCO to Create Your Own Image Classification Dataset
	Image Classification using CNNs – Training and Validation

	Submission Instructions

