Chris Ardohain
BME64600/ECE60146

Homework 4: Basic CNN Construction - PyTorch

Objective:

The objective of this homework was to introduce or refamiliarize us with basic CNN construction,
specifically in PyTorch using the COCO dataset as training and validation data. The project
exercises our ability to read in a dataset, construct a CNN, build a training and validation wrapper,

and evaluate the results.

Tasks:
Task 1: Prepare the dataset

The first step in this exercise was the
preparation of the dataset for ingestion by a
CNN. The homework refers to this as
dataset creation, however, dataset creation
typically refers to the painstaking process
of label assighment to each image. In this
particular case, we are using the COCO
dataset which comes prelabeled.
Fortunately, the COCO dataset also comes
with a python specific library that greatly
helps in terms of parsing the data. We
were asked to select 8000 training images
and 2000 validation images in the following
classes: boat, couch, dog, cake,
motorcycle. The output of my code
(Appendix A - Code Snippet 1) for this
section balanced the classes by randomly
retrieving 2000 of each class in the training
set and 400 of each in the validation set,
however, | belatedly realized that each
image had multiple images so the result
was 8000 and 2000 annotations (respective
to training and validation sets) but only
7862 and 1992 images respectively. It also
resized the images according to the
requirements set out in the homework.
Lastly, it produced to csv log files, one for
training and one for validation, that logged
image names, assigned class, and class
number. The first 3 images of each class
are presented in Figure 1.

motorcycle motorcycle motorcycle

Figure 1: Examples of COCO images by required classes



Chris Ardohain
BMEG64600/ECE60146

Task 2: CNN Construction

CNN construction was relatively simple given the example provided in the homework. Establishing
the network architecture is very much streamlined compared to the last homework through the use
of Pytorch, however, it is vital to understand how information is being passed between layers and
how each layer interacts and changes the data before it is passed to the next layer. To calculate the
layer output size and total number of layer parameters, | used the following two equations modified
with variables for my own understanding taken from here and here.

Calculate layer output size Calculate layer parameters

W —F+ 2P Where W is input size, Fis 2 WhereKS is kernel size,
+ 1 filter size (user input), P is OC * (KS * IC + 1) ICis inputchannels,and
S padding, and S is stride QOCis outputchannels

Figure 2 below highlights the application of these equations to the three networks we were required
to build, specifically as they relate to the homework requirements. The output feature map of the
first fully connected layer were of the following sizes [6272, 8192, 6272] with respect to Net1, Net2,
and Net3. For Net3, we were asked to ensure that the added convolutional layers had padding,
however, we were not asked to add padding to the first two convolutional layers as compared to
Net1. The total number of parameters were [406885, 535178, 499365] respectively. The final build
of these networks in code form can be found in Appendix A — Code Snippet 2.

Netl Net 2 Net 3
= IR G, 64, 60) m—— .,
 Conv2D | et A (15, 62, 62) h
1 f 3 3
|64/2

(16, 62, 62) (16, 64, 64) (16, 31, 31)

" Max Pooling | l62/2 l64/2 [——(_1 7) LU
32, 29, 29
(16, 31, 31) (16, 32, 32) " Com2D | 32-3+2)
1 1

(32, 29, 29) (32, 32, 32) ® ® @ X9 more

(32, 14, 14) (32, 16, 16) ™ Fiatten | S2x16x16
3exldxls 32x16x16 — ?4)

(64,5)
(6272, 64) (8192, 64)
e
(64,5) (64,5) 16(3°x3+1)=448
16(32x3+1)=448 16(32x3+1)=448 32(3%16+1)=4640
Number of 32(316+1)=4640 32(3%16+1)=4640 32(3%32+1)=9248x10=92480
6272x64+64=401472 8192x64+64=524352 6272x64+64=401472
Parameters: eas+s=325 64x5+5=325 64x5+5=325
448+4640+401472+325=406885 448+4640+529765+325=535178 448+4640+92480+401472+325=499365

Figure 2: Calculation of layer inputs, outputs, and parameters for each required network


https://www.baeldung.com/cs/convolutional-layer-size
https://towardsdatascience.com/understanding-and-calculating-the-number-of-parameters-in-convolution-neural-networks-cnns-fc88790d530d

Chris Ardohain
BMEG64600/ECE60146

Task 3: Data Loading, Model Training, and Validation Inference

After the networks were built, the next step involved developing a modified data loader subclass
that modifies the imagery in preparation for passing to the networks for training or evaluation. This
subclass reads in the csv data saved previously when the training and validation data was
appropriated and separated into new folders as well as modifying images as they are read in. There
is a transform that is applied converting the image to a tensor while normalizing between the values
of -1to 1. | also noticed that there were some grayscale images (1xchannel) that needed to be
converted to RGB when appropriate. This data loader subclass then passes the modified images to
the DatalLoader class during training. Code for the subclass can be found in Appendix A-Code
Snippet 3.

The other section of this code necessitated the development of a model training function that
accomplished several functions. This is the section that caused me the most trouble, so itis
heavily commented, but the first step was importing the data by first assigning the data loader
subclass to the correct location and then passing to the data loader base class. Next, | assigned
the GPU to conduct the work before loading the network, assigning the optimizer, conducting
model training, and logging the training loss. Upon completion of training, this function also
switches to evaluation mode and inferences all the validation data, producing a dataframe with
predictions and “ground truth” labels. |1would normally split these two steps so that the model
weights were saved to memory and later loaded in for validation (really testing) and application,
however, that sort of workflow is unnecessary for the homework requirements so this condensed
version works better. The output of this function is the loss log for every epoch and the
prediction/reference log. The function itself can be found in Appendix A — Code Snippet 4.

Task 4: Model Evaluation

The last coding requirement was the evaluation of the model through traditional means. The
functions | used to plot the results and the __main__ call function tying all the previous code
together in one bundle can be found in Appendix A— Code Snippet 5 and 6 respectively. The
plotting function produces both a loss comparison between networks, as well as confusion
matrices for each network. Lastly, it produces one csv per network that provides overall accuracy
per class. Alltables and figures are provided below.

COCO Class
Network Boat Couch Dog Cake  Motorcycle| Overall
Net 1 0.613 0.540 0.343 0.558 0.555 0.522
Net 2 0.650 0.480 0.265 0.485 0.633 0.525
Net 3 0.600 0.498 0.335 0.508 0.568 0.515

Table 1: Model accuracies by COCO class and CNN



True label

boat

couch

dog

cake

motorcycle

55

Chris Ardohain

BME64600/ECE60146

9 Training Loss —
Comparison
12
0 10 20 EPOBC?‘S 40 50 60

boat

Figure 3: Training Loss Comparison between the three networks.

couch

Net1 Net 2
boat
200
couch
150 5
K
v dog
S
E
100
cake
50
motorcycle
deg cake motorcycle boat couch dog
Predicted label Predicted label
Net 3
boat
200
couch
_ 150
T
|
‘» dog
2
= 100
cake
50

motorcycle

boat couch dog cake motorcycle
Predicted label

Figure 4: Confusion matrix for each model.

cake motorcycle

250

200

150

100



Chris Ardohain
BMEG64600/ECE60146

Discussion Questions:

1.

My results suggest that adding padding didn’t make much of a difference in terms of
classification performance, however, | understand that this is not always the case. Padding
ensures minimal loss of data when passing through convolutional layers which may be
important depending on your application. My intuition is that padding becomes more
important either when image resolution is poor or when object relationships within the
images are complex. In the first case, each pixel gains in importance since there are so few
to spare, while in the second case, loss of data may blur the relationship between objects.
Net 3 does have a vanishing gradient problem as highlighted by the resultant loss curve
which is not a smooth downward slope toward convergence. | was actually surprised that
Net 3 didn’t result in over training, although it is likely if the epoch count was increased
beyond the 60 | ran for my models. Net 3 just has too many layers for this application, and it
highlights that when it comes to CNNs, increased complexity isn’t always better.

Results indicate similar performance between all three networks. Network 1 is the best
performing, followed by network 2 and then network 3, but the differences in accuracy are
negligible. Network 1 performed best in three of the five classes (couch, dog, cake) while
network 2 performed best in the other two of five classes (boat, motorcycle) but worst in the
other three.

The easiest class to identify across all three networks was boat which | would expect would
relate to image context since most boat pictures are going to include water which is a rather
discernable feature as compared to the environments in which the other classes could be
found. For a similar reason, motorcycles are next which are always going to be found in
areas with roads, asphalt, or concrete. Conversely, couches, dogs, and cakes are found in
environments that are highly varied (wall color, rug color, furniture, people, etc.).

For application, | would suggest moving forward with network 1 as it is the simplest of the
networks that also happens to produce the best results if we continued to work with 64x64
images. To improve performance, | would first add in all training data that contained labels
of the classes of interest from the COCO dataset. Assuming we are continuing to work with
64x64 images, | would next focus on hyperparameter tuning. Lastly, | would apply cross
validation to ensure the model had an opportunity to train on all available images given the
limited number available. This would require the separation of a true test set but might be
worth itin the end.



Chris Ardohain
BMEG64600/ECE60146

Appendix A-Code

PIL Image

t matplotlib.pyplot plt
pandas pd

pycocotools.coco coco
random
torchvision.transforms tvt
torch

annotations_path r
images_path
hw_train_path

> hw_val_path

5 csv_out_path

/ categories
num_train

) num_val

3 num_figs-1
annotations-COCO(annotations_path)

i
train_temp
val_temp
category categories:

cls_num-i
i
img_ids-annotations. (catIds annotations.get Ids(catNms- [category]))
print( : : (category))
img_ids-random. (img_ids, t((num_train num_val) /len(categories)))
i

img_id img ids:

jo=1

img_meta-annotations. (img_id)
temp_img-Image. (images_path+img_meta

temp_img-temp_img. ((64,64))

f j<-int(num_train /len(categories)):
train_temp. ({'img_num’':img meta il :category, ‘cl :cls_num})
temp_img. (hw_train_path:img meta

val_temp. ( r :img_meta 1 :category, r :cls_num})
temp_img. (hw_val_path:img meta

54 train_df-pd.Dat (train_temp)
val_df pd. (val_temp)
train_df. (csv_out_path: "t T » index
val_df. (csv_out_path ti 3 » index

) three_instances-train_df. ( )- (3)
fig, axes - plt. ts(nrows-5, ncols-3, figsize-(10,15))
axes axes. ten()

i, (fig, (_, row)) enumerate(zip(axes, three_instances.
img path - hw_train_path:row| "im; "
img - Image. (img_path)
(img)
(row

(axis

Code Snippet 1: Dataset preparation code - Selection and delineation of training and validation sets from
the COCO dataset as well as plotting of three examples from each class.



Chris Ardohain
BMEG64600/ECE60146

Net1(nn.Module):
_(self):

)-__init_ ()
.convl = nn.Conv2d(3, 16, 3)
.pool = nn.MaxPool2d(2, 2)
.conv2 = nn.Conv2d (16, 32, 3)
.fcl = nn.Linear (6272, 64)
.fc2 = nn.Linear(64,5)

forward( P9 1
= .pool(F.relu( .convi(x)))
= .pool(F.relu( .conv2(x)))
x.view(x.shape[@], -1)
F.relu( .fc1(x))
.fc2(x)
X

Net2(nn.Module):
TA( )=
).__init_ ()
.convl = nn.Conv2d(3, 16, 3, padding=1)
.pool = nn.MaxPool2d(2, 2)
.conv2 = nn.Conv2d (16, 32, 3, padding=1)
.fcl = nn.Linear (8192, 64)
.fc2 = nn.Linear(64,5)

forward( 5 X)3
X = .pool(F.relu( .convi(x)))
X = .pool(F.relu( .conv2(x)))
x = x.view(x.shape[@], -1)
x = F.relu( .fc1(x))
X .fc2(x)

X

3(nn.Module):

nit_ ( )=

er(Net3, ).__init_ ()
.convl = nn.Conv2d(3, 16, 3
.pool = nn.MaxPool2d(2, 2)
.conv2 = nn.Conv2d (16, 32, 3)
.extra_convl nn.Conv2d (32, 32,
.extra_conv2 nn.Conv2d (32, 32,
.extra_conv3 = nn.Conv2d (32, 32,
.extra_conv4 = nn.Conv2d (32, 32,
.extra_conv5 nn.Conv2d (32, 32,
.extra_conv6é = nn.Conv2d (32, 32,
.extra_conv7 = nn.Conv2d (32, 32,
.extra_conv8 nn.Conv2d (32, 32,
.extra_conv9 = nn.Conv2d (32, 32,
.extra_convl® = nn.Conv2d (32, 32,
.fcl = nn.Linear (6272, 64)
.fc2 = nn.Linear(64,5)

padding=1)
padding=1)
padding=1)
padding=1)
padding=1)
padding=1)
padding=1)
padding=1)
padding=1)
» padding=1)

ww W

w W w

NowW W
We & v & & & & & &

forward( Xy

.pool(F.relu( .convli(x)))

.pool(F.relu( .conv2(x)))
.relu( .extra_convl(x))
.relu( .extra_conv2(x))
.relu( .extra_conv3(x))
.relu( .extra_conv4(x))
.relu( .extra_conv5(x))
.relu( .extra_conv6(x))
.relu( .extra_conv7(x))
.relu( .extra_conv8(x))
.relu( .extra_conv9(x))
.relu( .extra_conv1@(x))
.view(x.shape[@], -1)
.relu( .fcl(x))

.fc2(x)

X

X X X X X X X X X X X X XX
MmMXMMTMTMTTMTTMTMTMTM™M

Code Snippet 2: Network architectures built Pytorch



Chris Ardohain
BMEG64600/ECE60146

er(Dataset):
path, img dir, transform=transform_comp)

.img_num=
.class_name=
.class_num=

( )z
(Len(

.img_dir+ .img_num[ 1)
dtype=torch.int64)

if temp_img.
temp_img:

emp_img.convert( 'RGE")

mp_img= .transform(temp_img})
1 temp_img, label

Code Snippet 3: Data Loader subclass designed to read in csv data and modify images before
passing to DatalLoader base class.



Chris Ardohain
BMEG64600/ECE60146

in_model{csv_dir, img dir, network, epochs, batch_s=32, learning_rate=1e-3}:

train_set = cocoData_loader(csv_path = os.path.join(csv_dir, "training_Llog.csv'),
img_dir = os.path.join(img_dir, "train/"))
train_loader = Dataloader(train_set, batch_size = batch_s, shuffle = True, num workers = 4)

val_set = cocoData_loader(csv_path = os.path.join(csv_dir, ‘validation_Llog.csv'),
img_dir = os.path.join(img_dir, "val/ "))
val_loader = DataLoader(val set, batch_size = batch_s, shuffle = False, num_workers = 4)

torch dev1ce( "cuda:@" if torch.cuda.is_available() =lse "cpu™)

s T odel To the gpu

model = network.to(device)
crlterlon = nn. CrossEntropyLoss()

= torch.optim.Adam(model.parameters(), lr = learning_rate, betas=(8.9, 8.93))

model training

model.train()

1055 _log = []
or epoch in range(epochs):
running_loss = 8.8
epoch loss = 8.8
or data in train_loader:

1np;ts, labelc data
1nputs, labels = 1nputs to(dev1ce), labels.to(device)

running_loss += loss.item()
epoch_ loss += loss. 1tem()

055 g
loss_log.append(epoch_loss / len(train_. loader))
print('Epoch {} Complete - Epoch Less= {:.2f} , Total Loss={:.2f}'.format(str(epoch),epoch_loss,running loss})
print(‘'Finished Training')

total_correct =
total_samples
pred_list = []
ref_list = []

ith torch.no_grad():
for 1mages, labels in val_ loader:

images, labels = images.to(device}, labels.to(device)
outputs = model(images)

5 predlcted

total correct += (predicted
total samples 4= labels.size

pred llst extend(predlcted cp numpy())
ref list. extend(labels cpu().numpy())

pred ref pd. DataFrame({ pred’: pred_list, ‘ref’: ref_list})
accuracy = 1e@ * total_correct f total_samples
print(f'Accuracy on {total_samples} validation images: {accuracy:.2f} &")

~eturn loss_log, pred_ref

Code Snippet 4: Data Loader and Validation Inference




Chris Ardohain
BMEG64600/ECE60146

issign gpu
device = orch deu1ce( cuda:8” if torch.cuda.is_available() else “cpu™)

cocoData_loader(csv_path = os.path.join(csv_dir, "training Log.csv'),
img_dir = os.path.join(img_dir, "train/"))
train_loader = Dataloader(train_set, batch_size = batch_s, shuffle = True, num_workers = 4)

val set = cocoData_loader(csv_path = os.path.join(csv_dir, 'validation Log.csv'),
img_dir = os.path.join(img_dir, "'val/ "))
val_loader DataLoader(val_set, batch_size = batch_s, shuffle = False, num_workers = 4)

model = network to(device)
crlterlon = nn. CrossEntropyLoss()

= learning_rate, betas=(@.9, @.99))

loss log
or epoch in range(epochs):
running_loss = 8.8
epoch loss = @.@
for data in train_loader:
1nputs, labels = data
1nputs, labels 1nputs to(dev1ce) labels.to(device)

crlterlon(outputs, labels. long())

runnlng_loss += loss.item()

epoch_ loss = loss 1tem()

loss log append(epoch loss / len(train_. loader))

print('Epech {} Complete - Epoch Loss= {:.2f} , Total Less={:.2f}".format(str(epoch),epoch_loss,running_loss))
print( 'Finished Training")

total_samples
pred_list = []
ref_list = []

th torch.no_grad():
for images, labels in val_loader:
images, labels = 1mages.t0(device), labels.to(device)
outputs = model(lmages)

5 pred1cted torch max(F softmax(outputs dir

total correct + (predlcted == labels).sum(}.item()
total samples + labels. Slle(BJ

pred l1st extend(predlcted cpu(). numpy())
ref list. extend(labels cpu( ) .numpy(})

pred ref pd.DataFrame({ pre ": pred_list, ‘ref’: ref_list})
accuracy = 188 * total_correct / total_samples
print(f Accuracy on {total_ samples} validation images: {accuracy:.2f} &")

~eturn loss_log, pred_ref

Code Snippet 5: Model training and accuracy calculations against the validation set




Chris Ardohain
BMEG64600/ECE60146

poch_num):

ed'].valu
[em[i][i] um(cm[i]) for 1 in r
ormat(net_name), ind

g'.format(net_name))

ch_num} for net in [Netl(), Ne

format(i), i

Code Snippet 7: __main__ run function



