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Homework 4: Basic CNN Construction - PyTorch 
Objective:  
The objective of this homework was to introduce or refamiliarize us with basic CNN construction, 
specifically in PyTorch using the COCO dataset as training and validation data.  The project 
exercises our ability to read in a dataset, construct a CNN, build a training and validation wrapper, 
and evaluate the results. 

Tasks: 
Task 1: Prepare the dataset 

The first step in this exercise was the 
preparation of the dataset for ingestion by a 
CNN.  The homework refers to this as 
dataset creation, however, dataset creation 
typically refers to the painstaking process 
of label assignment to each image.  In this 
particular case, we are using the COCO 
dataset which comes prelabeled.  
Fortunately, the COCO dataset also comes 
with a python specific library that greatly 
helps in terms of parsing the data.  We 
were asked to select 8000 training images 
and 2000 validation images in the following 
classes: boat, couch, dog, cake, 
motorcycle.  The output of my code 
(Appendix A – Code Snippet 1) for this 
section balanced the classes by randomly 
retrieving 2000 of each class in the training 
set and 400 of each in the validation set, 
however, I belatedly realized that each 
image had multiple images so the result 
was 8000 and 2000 annotations (respective 
to training and validation sets) but only 
7862 and 1992 images respectively.  It also 
resized the images according to the 
requirements set out in the homework.  
Lastly, it produced to csv log files, one for 
training and one for validation, that logged 
image names, assigned class, and class 
number.  The first 3 images of each class 
are presented in Figure 1. 

Figure 1: Examples of COCO images by required classes 
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Task 2: CNN Construction 
CNN construction was relatively simple given the example provided in the homework.  Establishing 
the network architecture is very much streamlined compared to the last homework through the use 
of Pytorch, however, it is vital to understand how information is being passed between layers and 
how each layer interacts and changes the data before it is passed to the next layer.  To calculate the 
layer output size and total number of layer parameters, I used the following two equations modified 
with variables for my own understanding taken from here and here. 

 

Figure 2 below highlights the application of these equations to the three networks we were required 
to build, specifically as they relate to the homework requirements.  The output feature map of the 
first fully connected layer were of the following sizes [6272, 8192, 6272] with respect to Net1, Net2, 
and Net3.  For Net3, we were asked to ensure that the added convolutional layers had padding, 
however, we were not asked to add padding to the first two convolutional layers as compared to 
Net1.  The total number of parameters were [406885, 535178, 499365] respectively.  The final build 
of these networks in code form can be found in Appendix A – Code Snippet 2. 

 

Figure 2: Calculation of layer inputs, outputs, and parameters for each required network 

 

https://www.baeldung.com/cs/convolutional-layer-size
https://towardsdatascience.com/understanding-and-calculating-the-number-of-parameters-in-convolution-neural-networks-cnns-fc88790d530d
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Task 3: Data Loading, Model Training, and Validation Inference 
After the networks were built, the next step involved developing a modified data loader subclass 
that modifies the imagery in preparation for passing to the networks for training or evaluation.  This 
subclass reads in the csv data saved previously when the training and validation data was 
appropriated and separated into new folders as well as modifying images as they are read in.  There 
is a transform that is applied converting the image to a tensor while normalizing between the values 
of -1 to 1.  I also noticed that there were some grayscale images (1xchannel) that needed to be 
converted to RGB when appropriate.  This data loader subclass then passes the modified images to 
the DataLoader class during training.  Code for the subclass can be found in Appendix A – Code 
Snippet 3. 

The other section of this code necessitated the development of a model training function that 
accomplished several functions.  This is the section that caused me the most trouble, so it is 
heavily commented, but the first step was importing the data by first assigning the data loader 
subclass to the correct location and then passing to the data loader base class.  Next, I assigned 
the GPU to conduct the work before loading the network, assigning the optimizer, conducting 
model training, and logging the training loss.  Upon completion of training, this function also 
switches to evaluation mode and inferences all the validation data, producing a dataframe with 
predictions and “ground truth” labels.  I would normally split these two steps so that the model 
weights were saved to memory and later loaded in for validation (really testing) and application, 
however, that sort of workflow is unnecessary for the homework requirements so this condensed 
version works better.  The output of this function is the loss log for every epoch and the 
prediction/reference log.  The function itself can be found in Appendix A – Code Snippet 4. 

Task 4: Model Evaluation 
The last coding requirement was the evaluation of the model through traditional means.  The 
functions I used to plot the results and the __main__ call function tying all the previous code 
together in one bundle can be found in Appendix A – Code Snippet 5 and 6 respectively.  The 
plotting function produces both a loss comparison between networks, as well as confusion 
matrices for each network.  Lastly, it produces one csv per network that provides overall accuracy 
per class.  All tables and figures are provided below. 

 

Table 1: Model accuracies by COCO class and CNN 

Network Boat Couch Dog Cake Motorcycle Overall

Net 1 0.613 0.540 0.343 0.558 0.555 0.522

Net 2 0.650 0.480 0.265 0.485 0.633 0.525

Net 3 0.600 0.498 0.335 0.508 0.568 0.515

COCO Class
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Figure 3: Training Loss Comparison between the three networks. 

 

Figure 4: Confusion matrix for each model. 
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Discussion Questions: 
1. My results suggest that adding padding didn’t make much of a difference in terms of 

classification performance, however, I understand that this is not always the case.  Padding 
ensures minimal loss of data when passing through convolutional layers which may be 
important depending on your application.  My intuition is that padding becomes more 
important either when image resolution is poor or when object relationships within the 
images are complex.  In the first case, each pixel gains in importance since there are so few 
to spare, while in the second case, loss of data may blur the relationship between objects. 

2. Net 3 does have a vanishing gradient problem as highlighted by the resultant loss curve 
which is not a smooth downward slope toward convergence.  I was actually surprised that 
Net 3 didn’t result in over training, although it is likely if the epoch count was increased 
beyond the 60 I ran for my models.  Net 3 just has too many layers for this application, and it 
highlights that when it comes to CNNs, increased complexity isn’t always better. 

3. Results indicate similar performance between all three networks.  Network 1 is the best 
performing, followed by network 2 and then network 3, but the differences in accuracy are 
negligible.  Network 1 performed best in three of the five classes (couch, dog, cake) while 
network 2 performed best in the other two of five classes (boat, motorcycle) but worst in the 
other three.   

4. The easiest class to identify across all three networks was boat which I would expect would 
relate to image context since most boat pictures are going to include water which is a rather 
discernable feature as compared to the environments in which the other classes could be 
found.  For a similar reason, motorcycles are next which are always going to be found in 
areas with roads, asphalt, or concrete.  Conversely, couches, dogs, and cakes are found in 
environments that are highly varied (wall color, rug color, furniture, people, etc.). 

5. For application, I would suggest moving forward with network 1 as it is the simplest of the 
networks that also happens to produce the best results if we continued to work with 64x64 
images.  To improve performance, I would first add in all training data that contained labels 
of the classes of interest from the COCO dataset.  Assuming we are continuing to work with 
64x64 images, I would next focus on hyperparameter tuning.  Lastly, I would apply cross 
validation to ensure the model had an opportunity to train on all available images given the 
limited number available.  This would require the separation of a true test set but might be 
worth it in the end. 
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Appendix A – Code 

 

Code Snippet 1: Dataset preparation code - Selection and delineation of training and validation sets from 
the COCO dataset as well as plotting of three examples from each class. 
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Code Snippet 2: Network architectures built Pytorch 
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Code Snippet 3: Data Loader subclass designed to read in csv data and modify images before 
passing to DataLoader base class. 
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Code Snippet 4: Data Loader and Validation Inference 
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Code Snippet 5: Model training and accuracy calculations against the validation set 



Chris Ardohain 
BME64600/ECE60146 

 

Code Snippet 6: Plotting Function for both loss comparison and confusion matrices. 

 

Code Snippet 7: __main__ run function 


